xref: /openbmc/linux/mm/zswap.c (revision d2999e1b)
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zbud.h>
38 
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44 
45 /*********************************
46 * statistics
47 **********************************/
48 /* Number of memory pages used by the compressed pool */
49 static u64 zswap_pool_pages;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0444);
81 
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0444);
86 
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90 			zswap_max_pool_percent, uint, 0644);
91 
92 /* zbud_pool is shared by all of zswap backend  */
93 static struct zbud_pool *zswap_pool;
94 
95 /*********************************
96 * compression functions
97 **********************************/
98 /* per-cpu compression transforms */
99 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
100 
101 enum comp_op {
102 	ZSWAP_COMPOP_COMPRESS,
103 	ZSWAP_COMPOP_DECOMPRESS
104 };
105 
106 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
107 				u8 *dst, unsigned int *dlen)
108 {
109 	struct crypto_comp *tfm;
110 	int ret;
111 
112 	tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
113 	switch (op) {
114 	case ZSWAP_COMPOP_COMPRESS:
115 		ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
116 		break;
117 	case ZSWAP_COMPOP_DECOMPRESS:
118 		ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
119 		break;
120 	default:
121 		ret = -EINVAL;
122 	}
123 
124 	put_cpu();
125 	return ret;
126 }
127 
128 static int __init zswap_comp_init(void)
129 {
130 	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
131 		pr_info("%s compressor not available\n", zswap_compressor);
132 		/* fall back to default compressor */
133 		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
134 		if (!crypto_has_comp(zswap_compressor, 0, 0))
135 			/* can't even load the default compressor */
136 			return -ENODEV;
137 	}
138 	pr_info("using %s compressor\n", zswap_compressor);
139 
140 	/* alloc percpu transforms */
141 	zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
142 	if (!zswap_comp_pcpu_tfms)
143 		return -ENOMEM;
144 	return 0;
145 }
146 
147 static void zswap_comp_exit(void)
148 {
149 	/* free percpu transforms */
150 	if (zswap_comp_pcpu_tfms)
151 		free_percpu(zswap_comp_pcpu_tfms);
152 }
153 
154 /*********************************
155 * data structures
156 **********************************/
157 /*
158  * struct zswap_entry
159  *
160  * This structure contains the metadata for tracking a single compressed
161  * page within zswap.
162  *
163  * rbnode - links the entry into red-black tree for the appropriate swap type
164  * refcount - the number of outstanding reference to the entry. This is needed
165  *            to protect against premature freeing of the entry by code
166  *            concurrent calls to load, invalidate, and writeback.  The lock
167  *            for the zswap_tree structure that contains the entry must
168  *            be held while changing the refcount.  Since the lock must
169  *            be held, there is no reason to also make refcount atomic.
170  * offset - the swap offset for the entry.  Index into the red-black tree.
171  * handle - zbud allocation handle that stores the compressed page data
172  * length - the length in bytes of the compressed page data.  Needed during
173  *          decompression
174  */
175 struct zswap_entry {
176 	struct rb_node rbnode;
177 	pgoff_t offset;
178 	int refcount;
179 	unsigned int length;
180 	unsigned long handle;
181 };
182 
183 struct zswap_header {
184 	swp_entry_t swpentry;
185 };
186 
187 /*
188  * The tree lock in the zswap_tree struct protects a few things:
189  * - the rbtree
190  * - the refcount field of each entry in the tree
191  */
192 struct zswap_tree {
193 	struct rb_root rbroot;
194 	spinlock_t lock;
195 };
196 
197 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
198 
199 /*********************************
200 * zswap entry functions
201 **********************************/
202 static struct kmem_cache *zswap_entry_cache;
203 
204 static int zswap_entry_cache_create(void)
205 {
206 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
207 	return zswap_entry_cache == NULL;
208 }
209 
210 static void zswap_entry_cache_destory(void)
211 {
212 	kmem_cache_destroy(zswap_entry_cache);
213 }
214 
215 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
216 {
217 	struct zswap_entry *entry;
218 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
219 	if (!entry)
220 		return NULL;
221 	entry->refcount = 1;
222 	RB_CLEAR_NODE(&entry->rbnode);
223 	return entry;
224 }
225 
226 static void zswap_entry_cache_free(struct zswap_entry *entry)
227 {
228 	kmem_cache_free(zswap_entry_cache, entry);
229 }
230 
231 /*********************************
232 * rbtree functions
233 **********************************/
234 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
235 {
236 	struct rb_node *node = root->rb_node;
237 	struct zswap_entry *entry;
238 
239 	while (node) {
240 		entry = rb_entry(node, struct zswap_entry, rbnode);
241 		if (entry->offset > offset)
242 			node = node->rb_left;
243 		else if (entry->offset < offset)
244 			node = node->rb_right;
245 		else
246 			return entry;
247 	}
248 	return NULL;
249 }
250 
251 /*
252  * In the case that a entry with the same offset is found, a pointer to
253  * the existing entry is stored in dupentry and the function returns -EEXIST
254  */
255 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
256 			struct zswap_entry **dupentry)
257 {
258 	struct rb_node **link = &root->rb_node, *parent = NULL;
259 	struct zswap_entry *myentry;
260 
261 	while (*link) {
262 		parent = *link;
263 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
264 		if (myentry->offset > entry->offset)
265 			link = &(*link)->rb_left;
266 		else if (myentry->offset < entry->offset)
267 			link = &(*link)->rb_right;
268 		else {
269 			*dupentry = myentry;
270 			return -EEXIST;
271 		}
272 	}
273 	rb_link_node(&entry->rbnode, parent, link);
274 	rb_insert_color(&entry->rbnode, root);
275 	return 0;
276 }
277 
278 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
279 {
280 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
281 		rb_erase(&entry->rbnode, root);
282 		RB_CLEAR_NODE(&entry->rbnode);
283 	}
284 }
285 
286 /*
287  * Carries out the common pattern of freeing and entry's zbud allocation,
288  * freeing the entry itself, and decrementing the number of stored pages.
289  */
290 static void zswap_free_entry(struct zswap_entry *entry)
291 {
292 	zbud_free(zswap_pool, entry->handle);
293 	zswap_entry_cache_free(entry);
294 	atomic_dec(&zswap_stored_pages);
295 	zswap_pool_pages = zbud_get_pool_size(zswap_pool);
296 }
297 
298 /* caller must hold the tree lock */
299 static void zswap_entry_get(struct zswap_entry *entry)
300 {
301 	entry->refcount++;
302 }
303 
304 /* caller must hold the tree lock
305 * remove from the tree and free it, if nobody reference the entry
306 */
307 static void zswap_entry_put(struct zswap_tree *tree,
308 			struct zswap_entry *entry)
309 {
310 	int refcount = --entry->refcount;
311 
312 	BUG_ON(refcount < 0);
313 	if (refcount == 0) {
314 		zswap_rb_erase(&tree->rbroot, entry);
315 		zswap_free_entry(entry);
316 	}
317 }
318 
319 /* caller must hold the tree lock */
320 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
321 				pgoff_t offset)
322 {
323 	struct zswap_entry *entry = NULL;
324 
325 	entry = zswap_rb_search(root, offset);
326 	if (entry)
327 		zswap_entry_get(entry);
328 
329 	return entry;
330 }
331 
332 /*********************************
333 * per-cpu code
334 **********************************/
335 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
336 
337 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
338 {
339 	struct crypto_comp *tfm;
340 	u8 *dst;
341 
342 	switch (action) {
343 	case CPU_UP_PREPARE:
344 		tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
345 		if (IS_ERR(tfm)) {
346 			pr_err("can't allocate compressor transform\n");
347 			return NOTIFY_BAD;
348 		}
349 		*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
350 		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
351 		if (!dst) {
352 			pr_err("can't allocate compressor buffer\n");
353 			crypto_free_comp(tfm);
354 			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
355 			return NOTIFY_BAD;
356 		}
357 		per_cpu(zswap_dstmem, cpu) = dst;
358 		break;
359 	case CPU_DEAD:
360 	case CPU_UP_CANCELED:
361 		tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
362 		if (tfm) {
363 			crypto_free_comp(tfm);
364 			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
365 		}
366 		dst = per_cpu(zswap_dstmem, cpu);
367 		kfree(dst);
368 		per_cpu(zswap_dstmem, cpu) = NULL;
369 		break;
370 	default:
371 		break;
372 	}
373 	return NOTIFY_OK;
374 }
375 
376 static int zswap_cpu_notifier(struct notifier_block *nb,
377 				unsigned long action, void *pcpu)
378 {
379 	unsigned long cpu = (unsigned long)pcpu;
380 	return __zswap_cpu_notifier(action, cpu);
381 }
382 
383 static struct notifier_block zswap_cpu_notifier_block = {
384 	.notifier_call = zswap_cpu_notifier
385 };
386 
387 static int zswap_cpu_init(void)
388 {
389 	unsigned long cpu;
390 
391 	cpu_notifier_register_begin();
392 	for_each_online_cpu(cpu)
393 		if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
394 			goto cleanup;
395 	__register_cpu_notifier(&zswap_cpu_notifier_block);
396 	cpu_notifier_register_done();
397 	return 0;
398 
399 cleanup:
400 	for_each_online_cpu(cpu)
401 		__zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
402 	cpu_notifier_register_done();
403 	return -ENOMEM;
404 }
405 
406 /*********************************
407 * helpers
408 **********************************/
409 static bool zswap_is_full(void)
410 {
411 	return totalram_pages * zswap_max_pool_percent / 100 <
412 		zswap_pool_pages;
413 }
414 
415 /*********************************
416 * writeback code
417 **********************************/
418 /* return enum for zswap_get_swap_cache_page */
419 enum zswap_get_swap_ret {
420 	ZSWAP_SWAPCACHE_NEW,
421 	ZSWAP_SWAPCACHE_EXIST,
422 	ZSWAP_SWAPCACHE_FAIL,
423 };
424 
425 /*
426  * zswap_get_swap_cache_page
427  *
428  * This is an adaption of read_swap_cache_async()
429  *
430  * This function tries to find a page with the given swap entry
431  * in the swapper_space address space (the swap cache).  If the page
432  * is found, it is returned in retpage.  Otherwise, a page is allocated,
433  * added to the swap cache, and returned in retpage.
434  *
435  * If success, the swap cache page is returned in retpage
436  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
437  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
438  *     the new page is added to swapcache and locked
439  * Returns ZSWAP_SWAPCACHE_FAIL on error
440  */
441 static int zswap_get_swap_cache_page(swp_entry_t entry,
442 				struct page **retpage)
443 {
444 	struct page *found_page, *new_page = NULL;
445 	struct address_space *swapper_space = swap_address_space(entry);
446 	int err;
447 
448 	*retpage = NULL;
449 	do {
450 		/*
451 		 * First check the swap cache.  Since this is normally
452 		 * called after lookup_swap_cache() failed, re-calling
453 		 * that would confuse statistics.
454 		 */
455 		found_page = find_get_page(swapper_space, entry.val);
456 		if (found_page)
457 			break;
458 
459 		/*
460 		 * Get a new page to read into from swap.
461 		 */
462 		if (!new_page) {
463 			new_page = alloc_page(GFP_KERNEL);
464 			if (!new_page)
465 				break; /* Out of memory */
466 		}
467 
468 		/*
469 		 * call radix_tree_preload() while we can wait.
470 		 */
471 		err = radix_tree_preload(GFP_KERNEL);
472 		if (err)
473 			break;
474 
475 		/*
476 		 * Swap entry may have been freed since our caller observed it.
477 		 */
478 		err = swapcache_prepare(entry);
479 		if (err == -EEXIST) { /* seems racy */
480 			radix_tree_preload_end();
481 			continue;
482 		}
483 		if (err) { /* swp entry is obsolete ? */
484 			radix_tree_preload_end();
485 			break;
486 		}
487 
488 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
489 		__set_page_locked(new_page);
490 		SetPageSwapBacked(new_page);
491 		err = __add_to_swap_cache(new_page, entry);
492 		if (likely(!err)) {
493 			radix_tree_preload_end();
494 			lru_cache_add_anon(new_page);
495 			*retpage = new_page;
496 			return ZSWAP_SWAPCACHE_NEW;
497 		}
498 		radix_tree_preload_end();
499 		ClearPageSwapBacked(new_page);
500 		__clear_page_locked(new_page);
501 		/*
502 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
503 		 * clear SWAP_HAS_CACHE flag.
504 		 */
505 		swapcache_free(entry, NULL);
506 	} while (err != -ENOMEM);
507 
508 	if (new_page)
509 		page_cache_release(new_page);
510 	if (!found_page)
511 		return ZSWAP_SWAPCACHE_FAIL;
512 	*retpage = found_page;
513 	return ZSWAP_SWAPCACHE_EXIST;
514 }
515 
516 /*
517  * Attempts to free an entry by adding a page to the swap cache,
518  * decompressing the entry data into the page, and issuing a
519  * bio write to write the page back to the swap device.
520  *
521  * This can be thought of as a "resumed writeback" of the page
522  * to the swap device.  We are basically resuming the same swap
523  * writeback path that was intercepted with the frontswap_store()
524  * in the first place.  After the page has been decompressed into
525  * the swap cache, the compressed version stored by zswap can be
526  * freed.
527  */
528 static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
529 {
530 	struct zswap_header *zhdr;
531 	swp_entry_t swpentry;
532 	struct zswap_tree *tree;
533 	pgoff_t offset;
534 	struct zswap_entry *entry;
535 	struct page *page;
536 	u8 *src, *dst;
537 	unsigned int dlen;
538 	int ret;
539 	struct writeback_control wbc = {
540 		.sync_mode = WB_SYNC_NONE,
541 	};
542 
543 	/* extract swpentry from data */
544 	zhdr = zbud_map(pool, handle);
545 	swpentry = zhdr->swpentry; /* here */
546 	zbud_unmap(pool, handle);
547 	tree = zswap_trees[swp_type(swpentry)];
548 	offset = swp_offset(swpentry);
549 
550 	/* find and ref zswap entry */
551 	spin_lock(&tree->lock);
552 	entry = zswap_entry_find_get(&tree->rbroot, offset);
553 	if (!entry) {
554 		/* entry was invalidated */
555 		spin_unlock(&tree->lock);
556 		return 0;
557 	}
558 	spin_unlock(&tree->lock);
559 	BUG_ON(offset != entry->offset);
560 
561 	/* try to allocate swap cache page */
562 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
563 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
564 		ret = -ENOMEM;
565 		goto fail;
566 
567 	case ZSWAP_SWAPCACHE_EXIST:
568 		/* page is already in the swap cache, ignore for now */
569 		page_cache_release(page);
570 		ret = -EEXIST;
571 		goto fail;
572 
573 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
574 		/* decompress */
575 		dlen = PAGE_SIZE;
576 		src = (u8 *)zbud_map(zswap_pool, entry->handle) +
577 			sizeof(struct zswap_header);
578 		dst = kmap_atomic(page);
579 		ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
580 				entry->length, dst, &dlen);
581 		kunmap_atomic(dst);
582 		zbud_unmap(zswap_pool, entry->handle);
583 		BUG_ON(ret);
584 		BUG_ON(dlen != PAGE_SIZE);
585 
586 		/* page is up to date */
587 		SetPageUptodate(page);
588 	}
589 
590 	/* move it to the tail of the inactive list after end_writeback */
591 	SetPageReclaim(page);
592 
593 	/* start writeback */
594 	__swap_writepage(page, &wbc, end_swap_bio_write);
595 	page_cache_release(page);
596 	zswap_written_back_pages++;
597 
598 	spin_lock(&tree->lock);
599 	/* drop local reference */
600 	zswap_entry_put(tree, entry);
601 
602 	/*
603 	* There are two possible situations for entry here:
604 	* (1) refcount is 1(normal case),  entry is valid and on the tree
605 	* (2) refcount is 0, entry is freed and not on the tree
606 	*     because invalidate happened during writeback
607 	*  search the tree and free the entry if find entry
608 	*/
609 	if (entry == zswap_rb_search(&tree->rbroot, offset))
610 		zswap_entry_put(tree, entry);
611 	spin_unlock(&tree->lock);
612 
613 	goto end;
614 
615 	/*
616 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
617 	* a load may happening concurrently
618 	* it is safe and okay to not free the entry
619 	* if we free the entry in the following put
620 	* it it either okay to return !0
621 	*/
622 fail:
623 	spin_lock(&tree->lock);
624 	zswap_entry_put(tree, entry);
625 	spin_unlock(&tree->lock);
626 
627 end:
628 	return ret;
629 }
630 
631 /*********************************
632 * frontswap hooks
633 **********************************/
634 /* attempts to compress and store an single page */
635 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
636 				struct page *page)
637 {
638 	struct zswap_tree *tree = zswap_trees[type];
639 	struct zswap_entry *entry, *dupentry;
640 	int ret;
641 	unsigned int dlen = PAGE_SIZE, len;
642 	unsigned long handle;
643 	char *buf;
644 	u8 *src, *dst;
645 	struct zswap_header *zhdr;
646 
647 	if (!tree) {
648 		ret = -ENODEV;
649 		goto reject;
650 	}
651 
652 	/* reclaim space if needed */
653 	if (zswap_is_full()) {
654 		zswap_pool_limit_hit++;
655 		if (zbud_reclaim_page(zswap_pool, 8)) {
656 			zswap_reject_reclaim_fail++;
657 			ret = -ENOMEM;
658 			goto reject;
659 		}
660 	}
661 
662 	/* allocate entry */
663 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
664 	if (!entry) {
665 		zswap_reject_kmemcache_fail++;
666 		ret = -ENOMEM;
667 		goto reject;
668 	}
669 
670 	/* compress */
671 	dst = get_cpu_var(zswap_dstmem);
672 	src = kmap_atomic(page);
673 	ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
674 	kunmap_atomic(src);
675 	if (ret) {
676 		ret = -EINVAL;
677 		goto freepage;
678 	}
679 
680 	/* store */
681 	len = dlen + sizeof(struct zswap_header);
682 	ret = zbud_alloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
683 		&handle);
684 	if (ret == -ENOSPC) {
685 		zswap_reject_compress_poor++;
686 		goto freepage;
687 	}
688 	if (ret) {
689 		zswap_reject_alloc_fail++;
690 		goto freepage;
691 	}
692 	zhdr = zbud_map(zswap_pool, handle);
693 	zhdr->swpentry = swp_entry(type, offset);
694 	buf = (u8 *)(zhdr + 1);
695 	memcpy(buf, dst, dlen);
696 	zbud_unmap(zswap_pool, handle);
697 	put_cpu_var(zswap_dstmem);
698 
699 	/* populate entry */
700 	entry->offset = offset;
701 	entry->handle = handle;
702 	entry->length = dlen;
703 
704 	/* map */
705 	spin_lock(&tree->lock);
706 	do {
707 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
708 		if (ret == -EEXIST) {
709 			zswap_duplicate_entry++;
710 			/* remove from rbtree */
711 			zswap_rb_erase(&tree->rbroot, dupentry);
712 			zswap_entry_put(tree, dupentry);
713 		}
714 	} while (ret == -EEXIST);
715 	spin_unlock(&tree->lock);
716 
717 	/* update stats */
718 	atomic_inc(&zswap_stored_pages);
719 	zswap_pool_pages = zbud_get_pool_size(zswap_pool);
720 
721 	return 0;
722 
723 freepage:
724 	put_cpu_var(zswap_dstmem);
725 	zswap_entry_cache_free(entry);
726 reject:
727 	return ret;
728 }
729 
730 /*
731  * returns 0 if the page was successfully decompressed
732  * return -1 on entry not found or error
733 */
734 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
735 				struct page *page)
736 {
737 	struct zswap_tree *tree = zswap_trees[type];
738 	struct zswap_entry *entry;
739 	u8 *src, *dst;
740 	unsigned int dlen;
741 	int ret;
742 
743 	/* find */
744 	spin_lock(&tree->lock);
745 	entry = zswap_entry_find_get(&tree->rbroot, offset);
746 	if (!entry) {
747 		/* entry was written back */
748 		spin_unlock(&tree->lock);
749 		return -1;
750 	}
751 	spin_unlock(&tree->lock);
752 
753 	/* decompress */
754 	dlen = PAGE_SIZE;
755 	src = (u8 *)zbud_map(zswap_pool, entry->handle) +
756 			sizeof(struct zswap_header);
757 	dst = kmap_atomic(page);
758 	ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
759 		dst, &dlen);
760 	kunmap_atomic(dst);
761 	zbud_unmap(zswap_pool, entry->handle);
762 	BUG_ON(ret);
763 
764 	spin_lock(&tree->lock);
765 	zswap_entry_put(tree, entry);
766 	spin_unlock(&tree->lock);
767 
768 	return 0;
769 }
770 
771 /* frees an entry in zswap */
772 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
773 {
774 	struct zswap_tree *tree = zswap_trees[type];
775 	struct zswap_entry *entry;
776 
777 	/* find */
778 	spin_lock(&tree->lock);
779 	entry = zswap_rb_search(&tree->rbroot, offset);
780 	if (!entry) {
781 		/* entry was written back */
782 		spin_unlock(&tree->lock);
783 		return;
784 	}
785 
786 	/* remove from rbtree */
787 	zswap_rb_erase(&tree->rbroot, entry);
788 
789 	/* drop the initial reference from entry creation */
790 	zswap_entry_put(tree, entry);
791 
792 	spin_unlock(&tree->lock);
793 }
794 
795 /* frees all zswap entries for the given swap type */
796 static void zswap_frontswap_invalidate_area(unsigned type)
797 {
798 	struct zswap_tree *tree = zswap_trees[type];
799 	struct zswap_entry *entry, *n;
800 
801 	if (!tree)
802 		return;
803 
804 	/* walk the tree and free everything */
805 	spin_lock(&tree->lock);
806 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
807 		zswap_free_entry(entry);
808 	tree->rbroot = RB_ROOT;
809 	spin_unlock(&tree->lock);
810 	kfree(tree);
811 	zswap_trees[type] = NULL;
812 }
813 
814 static struct zbud_ops zswap_zbud_ops = {
815 	.evict = zswap_writeback_entry
816 };
817 
818 static void zswap_frontswap_init(unsigned type)
819 {
820 	struct zswap_tree *tree;
821 
822 	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
823 	if (!tree) {
824 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
825 		return;
826 	}
827 
828 	tree->rbroot = RB_ROOT;
829 	spin_lock_init(&tree->lock);
830 	zswap_trees[type] = tree;
831 }
832 
833 static struct frontswap_ops zswap_frontswap_ops = {
834 	.store = zswap_frontswap_store,
835 	.load = zswap_frontswap_load,
836 	.invalidate_page = zswap_frontswap_invalidate_page,
837 	.invalidate_area = zswap_frontswap_invalidate_area,
838 	.init = zswap_frontswap_init
839 };
840 
841 /*********************************
842 * debugfs functions
843 **********************************/
844 #ifdef CONFIG_DEBUG_FS
845 #include <linux/debugfs.h>
846 
847 static struct dentry *zswap_debugfs_root;
848 
849 static int __init zswap_debugfs_init(void)
850 {
851 	if (!debugfs_initialized())
852 		return -ENODEV;
853 
854 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
855 	if (!zswap_debugfs_root)
856 		return -ENOMEM;
857 
858 	debugfs_create_u64("pool_limit_hit", S_IRUGO,
859 			zswap_debugfs_root, &zswap_pool_limit_hit);
860 	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
861 			zswap_debugfs_root, &zswap_reject_reclaim_fail);
862 	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
863 			zswap_debugfs_root, &zswap_reject_alloc_fail);
864 	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
865 			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
866 	debugfs_create_u64("reject_compress_poor", S_IRUGO,
867 			zswap_debugfs_root, &zswap_reject_compress_poor);
868 	debugfs_create_u64("written_back_pages", S_IRUGO,
869 			zswap_debugfs_root, &zswap_written_back_pages);
870 	debugfs_create_u64("duplicate_entry", S_IRUGO,
871 			zswap_debugfs_root, &zswap_duplicate_entry);
872 	debugfs_create_u64("pool_pages", S_IRUGO,
873 			zswap_debugfs_root, &zswap_pool_pages);
874 	debugfs_create_atomic_t("stored_pages", S_IRUGO,
875 			zswap_debugfs_root, &zswap_stored_pages);
876 
877 	return 0;
878 }
879 
880 static void __exit zswap_debugfs_exit(void)
881 {
882 	debugfs_remove_recursive(zswap_debugfs_root);
883 }
884 #else
885 static int __init zswap_debugfs_init(void)
886 {
887 	return 0;
888 }
889 
890 static void __exit zswap_debugfs_exit(void) { }
891 #endif
892 
893 /*********************************
894 * module init and exit
895 **********************************/
896 static int __init init_zswap(void)
897 {
898 	if (!zswap_enabled)
899 		return 0;
900 
901 	pr_info("loading zswap\n");
902 
903 	zswap_pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
904 	if (!zswap_pool) {
905 		pr_err("zbud pool creation failed\n");
906 		goto error;
907 	}
908 
909 	if (zswap_entry_cache_create()) {
910 		pr_err("entry cache creation failed\n");
911 		goto cachefail;
912 	}
913 	if (zswap_comp_init()) {
914 		pr_err("compressor initialization failed\n");
915 		goto compfail;
916 	}
917 	if (zswap_cpu_init()) {
918 		pr_err("per-cpu initialization failed\n");
919 		goto pcpufail;
920 	}
921 
922 	frontswap_register_ops(&zswap_frontswap_ops);
923 	if (zswap_debugfs_init())
924 		pr_warn("debugfs initialization failed\n");
925 	return 0;
926 pcpufail:
927 	zswap_comp_exit();
928 compfail:
929 	zswap_entry_cache_destory();
930 cachefail:
931 	zbud_destroy_pool(zswap_pool);
932 error:
933 	return -ENOMEM;
934 }
935 /* must be late so crypto has time to come up */
936 late_initcall(init_zswap);
937 
938 MODULE_LICENSE("GPL");
939 MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
940 MODULE_DESCRIPTION("Compressed cache for swap pages");
941