1 /* 2 * zswap.c - zswap driver file 3 * 4 * zswap is a backend for frontswap that takes pages that are in the process 5 * of being swapped out and attempts to compress and store them in a 6 * RAM-based memory pool. This can result in a significant I/O reduction on 7 * the swap device and, in the case where decompressing from RAM is faster 8 * than reading from the swap device, can also improve workload performance. 9 * 10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 2 15 * of the License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/module.h> 26 #include <linux/cpu.h> 27 #include <linux/highmem.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/frontswap.h> 33 #include <linux/rbtree.h> 34 #include <linux/swap.h> 35 #include <linux/crypto.h> 36 #include <linux/mempool.h> 37 #include <linux/zbud.h> 38 39 #include <linux/mm_types.h> 40 #include <linux/page-flags.h> 41 #include <linux/swapops.h> 42 #include <linux/writeback.h> 43 #include <linux/pagemap.h> 44 45 /********************************* 46 * statistics 47 **********************************/ 48 /* Number of memory pages used by the compressed pool */ 49 static u64 zswap_pool_pages; 50 /* The number of compressed pages currently stored in zswap */ 51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 52 53 /* 54 * The statistics below are not protected from concurrent access for 55 * performance reasons so they may not be a 100% accurate. However, 56 * they do provide useful information on roughly how many times a 57 * certain event is occurring. 58 */ 59 60 /* Pool limit was hit (see zswap_max_pool_percent) */ 61 static u64 zswap_pool_limit_hit; 62 /* Pages written back when pool limit was reached */ 63 static u64 zswap_written_back_pages; 64 /* Store failed due to a reclaim failure after pool limit was reached */ 65 static u64 zswap_reject_reclaim_fail; 66 /* Compressed page was too big for the allocator to (optimally) store */ 67 static u64 zswap_reject_compress_poor; 68 /* Store failed because underlying allocator could not get memory */ 69 static u64 zswap_reject_alloc_fail; 70 /* Store failed because the entry metadata could not be allocated (rare) */ 71 static u64 zswap_reject_kmemcache_fail; 72 /* Duplicate store was encountered (rare) */ 73 static u64 zswap_duplicate_entry; 74 75 /********************************* 76 * tunables 77 **********************************/ 78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */ 79 static bool zswap_enabled __read_mostly; 80 module_param_named(enabled, zswap_enabled, bool, 0444); 81 82 /* Compressor to be used by zswap (fixed at boot for now) */ 83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo" 84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 85 module_param_named(compressor, zswap_compressor, charp, 0444); 86 87 /* The maximum percentage of memory that the compressed pool can occupy */ 88 static unsigned int zswap_max_pool_percent = 20; 89 module_param_named(max_pool_percent, 90 zswap_max_pool_percent, uint, 0644); 91 92 /********************************* 93 * compression functions 94 **********************************/ 95 /* per-cpu compression transforms */ 96 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; 97 98 enum comp_op { 99 ZSWAP_COMPOP_COMPRESS, 100 ZSWAP_COMPOP_DECOMPRESS 101 }; 102 103 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, 104 u8 *dst, unsigned int *dlen) 105 { 106 struct crypto_comp *tfm; 107 int ret; 108 109 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); 110 switch (op) { 111 case ZSWAP_COMPOP_COMPRESS: 112 ret = crypto_comp_compress(tfm, src, slen, dst, dlen); 113 break; 114 case ZSWAP_COMPOP_DECOMPRESS: 115 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); 116 break; 117 default: 118 ret = -EINVAL; 119 } 120 121 put_cpu(); 122 return ret; 123 } 124 125 static int __init zswap_comp_init(void) 126 { 127 if (!crypto_has_comp(zswap_compressor, 0, 0)) { 128 pr_info("%s compressor not available\n", zswap_compressor); 129 /* fall back to default compressor */ 130 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 131 if (!crypto_has_comp(zswap_compressor, 0, 0)) 132 /* can't even load the default compressor */ 133 return -ENODEV; 134 } 135 pr_info("using %s compressor\n", zswap_compressor); 136 137 /* alloc percpu transforms */ 138 zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); 139 if (!zswap_comp_pcpu_tfms) 140 return -ENOMEM; 141 return 0; 142 } 143 144 static void zswap_comp_exit(void) 145 { 146 /* free percpu transforms */ 147 if (zswap_comp_pcpu_tfms) 148 free_percpu(zswap_comp_pcpu_tfms); 149 } 150 151 /********************************* 152 * data structures 153 **********************************/ 154 /* 155 * struct zswap_entry 156 * 157 * This structure contains the metadata for tracking a single compressed 158 * page within zswap. 159 * 160 * rbnode - links the entry into red-black tree for the appropriate swap type 161 * refcount - the number of outstanding reference to the entry. This is needed 162 * to protect against premature freeing of the entry by code 163 * concurent calls to load, invalidate, and writeback. The lock 164 * for the zswap_tree structure that contains the entry must 165 * be held while changing the refcount. Since the lock must 166 * be held, there is no reason to also make refcount atomic. 167 * offset - the swap offset for the entry. Index into the red-black tree. 168 * handle - zsmalloc allocation handle that stores the compressed page data 169 * length - the length in bytes of the compressed page data. Needed during 170 * decompression 171 */ 172 struct zswap_entry { 173 struct rb_node rbnode; 174 pgoff_t offset; 175 int refcount; 176 unsigned int length; 177 unsigned long handle; 178 }; 179 180 struct zswap_header { 181 swp_entry_t swpentry; 182 }; 183 184 /* 185 * The tree lock in the zswap_tree struct protects a few things: 186 * - the rbtree 187 * - the refcount field of each entry in the tree 188 */ 189 struct zswap_tree { 190 struct rb_root rbroot; 191 spinlock_t lock; 192 struct zbud_pool *pool; 193 }; 194 195 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 196 197 /********************************* 198 * zswap entry functions 199 **********************************/ 200 static struct kmem_cache *zswap_entry_cache; 201 202 static int zswap_entry_cache_create(void) 203 { 204 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 205 return (zswap_entry_cache == NULL); 206 } 207 208 static void zswap_entry_cache_destory(void) 209 { 210 kmem_cache_destroy(zswap_entry_cache); 211 } 212 213 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 214 { 215 struct zswap_entry *entry; 216 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 217 if (!entry) 218 return NULL; 219 entry->refcount = 1; 220 RB_CLEAR_NODE(&entry->rbnode); 221 return entry; 222 } 223 224 static void zswap_entry_cache_free(struct zswap_entry *entry) 225 { 226 kmem_cache_free(zswap_entry_cache, entry); 227 } 228 229 /********************************* 230 * rbtree functions 231 **********************************/ 232 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 233 { 234 struct rb_node *node = root->rb_node; 235 struct zswap_entry *entry; 236 237 while (node) { 238 entry = rb_entry(node, struct zswap_entry, rbnode); 239 if (entry->offset > offset) 240 node = node->rb_left; 241 else if (entry->offset < offset) 242 node = node->rb_right; 243 else 244 return entry; 245 } 246 return NULL; 247 } 248 249 /* 250 * In the case that a entry with the same offset is found, a pointer to 251 * the existing entry is stored in dupentry and the function returns -EEXIST 252 */ 253 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 254 struct zswap_entry **dupentry) 255 { 256 struct rb_node **link = &root->rb_node, *parent = NULL; 257 struct zswap_entry *myentry; 258 259 while (*link) { 260 parent = *link; 261 myentry = rb_entry(parent, struct zswap_entry, rbnode); 262 if (myentry->offset > entry->offset) 263 link = &(*link)->rb_left; 264 else if (myentry->offset < entry->offset) 265 link = &(*link)->rb_right; 266 else { 267 *dupentry = myentry; 268 return -EEXIST; 269 } 270 } 271 rb_link_node(&entry->rbnode, parent, link); 272 rb_insert_color(&entry->rbnode, root); 273 return 0; 274 } 275 276 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 277 { 278 if (!RB_EMPTY_NODE(&entry->rbnode)) { 279 rb_erase(&entry->rbnode, root); 280 RB_CLEAR_NODE(&entry->rbnode); 281 } 282 } 283 284 /* 285 * Carries out the common pattern of freeing and entry's zsmalloc allocation, 286 * freeing the entry itself, and decrementing the number of stored pages. 287 */ 288 static void zswap_free_entry(struct zswap_tree *tree, 289 struct zswap_entry *entry) 290 { 291 zbud_free(tree->pool, entry->handle); 292 zswap_entry_cache_free(entry); 293 atomic_dec(&zswap_stored_pages); 294 zswap_pool_pages = zbud_get_pool_size(tree->pool); 295 } 296 297 /* caller must hold the tree lock */ 298 static void zswap_entry_get(struct zswap_entry *entry) 299 { 300 entry->refcount++; 301 } 302 303 /* caller must hold the tree lock 304 * remove from the tree and free it, if nobody reference the entry 305 */ 306 static void zswap_entry_put(struct zswap_tree *tree, 307 struct zswap_entry *entry) 308 { 309 int refcount = --entry->refcount; 310 311 BUG_ON(refcount < 0); 312 if (refcount == 0) { 313 zswap_rb_erase(&tree->rbroot, entry); 314 zswap_free_entry(tree, entry); 315 } 316 } 317 318 /* caller must hold the tree lock */ 319 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 320 pgoff_t offset) 321 { 322 struct zswap_entry *entry = NULL; 323 324 entry = zswap_rb_search(root, offset); 325 if (entry) 326 zswap_entry_get(entry); 327 328 return entry; 329 } 330 331 /********************************* 332 * per-cpu code 333 **********************************/ 334 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 335 336 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) 337 { 338 struct crypto_comp *tfm; 339 u8 *dst; 340 341 switch (action) { 342 case CPU_UP_PREPARE: 343 tfm = crypto_alloc_comp(zswap_compressor, 0, 0); 344 if (IS_ERR(tfm)) { 345 pr_err("can't allocate compressor transform\n"); 346 return NOTIFY_BAD; 347 } 348 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; 349 dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); 350 if (!dst) { 351 pr_err("can't allocate compressor buffer\n"); 352 crypto_free_comp(tfm); 353 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; 354 return NOTIFY_BAD; 355 } 356 per_cpu(zswap_dstmem, cpu) = dst; 357 break; 358 case CPU_DEAD: 359 case CPU_UP_CANCELED: 360 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); 361 if (tfm) { 362 crypto_free_comp(tfm); 363 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; 364 } 365 dst = per_cpu(zswap_dstmem, cpu); 366 kfree(dst); 367 per_cpu(zswap_dstmem, cpu) = NULL; 368 break; 369 default: 370 break; 371 } 372 return NOTIFY_OK; 373 } 374 375 static int zswap_cpu_notifier(struct notifier_block *nb, 376 unsigned long action, void *pcpu) 377 { 378 unsigned long cpu = (unsigned long)pcpu; 379 return __zswap_cpu_notifier(action, cpu); 380 } 381 382 static struct notifier_block zswap_cpu_notifier_block = { 383 .notifier_call = zswap_cpu_notifier 384 }; 385 386 static int zswap_cpu_init(void) 387 { 388 unsigned long cpu; 389 390 get_online_cpus(); 391 for_each_online_cpu(cpu) 392 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) 393 goto cleanup; 394 register_cpu_notifier(&zswap_cpu_notifier_block); 395 put_online_cpus(); 396 return 0; 397 398 cleanup: 399 for_each_online_cpu(cpu) 400 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); 401 put_online_cpus(); 402 return -ENOMEM; 403 } 404 405 /********************************* 406 * helpers 407 **********************************/ 408 static bool zswap_is_full(void) 409 { 410 return (totalram_pages * zswap_max_pool_percent / 100 < 411 zswap_pool_pages); 412 } 413 414 /********************************* 415 * writeback code 416 **********************************/ 417 /* return enum for zswap_get_swap_cache_page */ 418 enum zswap_get_swap_ret { 419 ZSWAP_SWAPCACHE_NEW, 420 ZSWAP_SWAPCACHE_EXIST, 421 ZSWAP_SWAPCACHE_FAIL, 422 }; 423 424 /* 425 * zswap_get_swap_cache_page 426 * 427 * This is an adaption of read_swap_cache_async() 428 * 429 * This function tries to find a page with the given swap entry 430 * in the swapper_space address space (the swap cache). If the page 431 * is found, it is returned in retpage. Otherwise, a page is allocated, 432 * added to the swap cache, and returned in retpage. 433 * 434 * If success, the swap cache page is returned in retpage 435 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 436 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 437 * the new page is added to swapcache and locked 438 * Returns ZSWAP_SWAPCACHE_FAIL on error 439 */ 440 static int zswap_get_swap_cache_page(swp_entry_t entry, 441 struct page **retpage) 442 { 443 struct page *found_page, *new_page = NULL; 444 struct address_space *swapper_space = swap_address_space(entry); 445 int err; 446 447 *retpage = NULL; 448 do { 449 /* 450 * First check the swap cache. Since this is normally 451 * called after lookup_swap_cache() failed, re-calling 452 * that would confuse statistics. 453 */ 454 found_page = find_get_page(swapper_space, entry.val); 455 if (found_page) 456 break; 457 458 /* 459 * Get a new page to read into from swap. 460 */ 461 if (!new_page) { 462 new_page = alloc_page(GFP_KERNEL); 463 if (!new_page) 464 break; /* Out of memory */ 465 } 466 467 /* 468 * call radix_tree_preload() while we can wait. 469 */ 470 err = radix_tree_preload(GFP_KERNEL); 471 if (err) 472 break; 473 474 /* 475 * Swap entry may have been freed since our caller observed it. 476 */ 477 err = swapcache_prepare(entry); 478 if (err == -EEXIST) { /* seems racy */ 479 radix_tree_preload_end(); 480 continue; 481 } 482 if (err) { /* swp entry is obsolete ? */ 483 radix_tree_preload_end(); 484 break; 485 } 486 487 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 488 __set_page_locked(new_page); 489 SetPageSwapBacked(new_page); 490 err = __add_to_swap_cache(new_page, entry); 491 if (likely(!err)) { 492 radix_tree_preload_end(); 493 lru_cache_add_anon(new_page); 494 *retpage = new_page; 495 return ZSWAP_SWAPCACHE_NEW; 496 } 497 radix_tree_preload_end(); 498 ClearPageSwapBacked(new_page); 499 __clear_page_locked(new_page); 500 /* 501 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 502 * clear SWAP_HAS_CACHE flag. 503 */ 504 swapcache_free(entry, NULL); 505 } while (err != -ENOMEM); 506 507 if (new_page) 508 page_cache_release(new_page); 509 if (!found_page) 510 return ZSWAP_SWAPCACHE_FAIL; 511 *retpage = found_page; 512 return ZSWAP_SWAPCACHE_EXIST; 513 } 514 515 /* 516 * Attempts to free an entry by adding a page to the swap cache, 517 * decompressing the entry data into the page, and issuing a 518 * bio write to write the page back to the swap device. 519 * 520 * This can be thought of as a "resumed writeback" of the page 521 * to the swap device. We are basically resuming the same swap 522 * writeback path that was intercepted with the frontswap_store() 523 * in the first place. After the page has been decompressed into 524 * the swap cache, the compressed version stored by zswap can be 525 * freed. 526 */ 527 static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) 528 { 529 struct zswap_header *zhdr; 530 swp_entry_t swpentry; 531 struct zswap_tree *tree; 532 pgoff_t offset; 533 struct zswap_entry *entry; 534 struct page *page; 535 u8 *src, *dst; 536 unsigned int dlen; 537 int ret; 538 struct writeback_control wbc = { 539 .sync_mode = WB_SYNC_NONE, 540 }; 541 542 /* extract swpentry from data */ 543 zhdr = zbud_map(pool, handle); 544 swpentry = zhdr->swpentry; /* here */ 545 zbud_unmap(pool, handle); 546 tree = zswap_trees[swp_type(swpentry)]; 547 offset = swp_offset(swpentry); 548 BUG_ON(pool != tree->pool); 549 550 /* find and ref zswap entry */ 551 spin_lock(&tree->lock); 552 entry = zswap_entry_find_get(&tree->rbroot, offset); 553 if (!entry) { 554 /* entry was invalidated */ 555 spin_unlock(&tree->lock); 556 return 0; 557 } 558 spin_unlock(&tree->lock); 559 BUG_ON(offset != entry->offset); 560 561 /* try to allocate swap cache page */ 562 switch (zswap_get_swap_cache_page(swpentry, &page)) { 563 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 564 ret = -ENOMEM; 565 goto fail; 566 567 case ZSWAP_SWAPCACHE_EXIST: 568 /* page is already in the swap cache, ignore for now */ 569 page_cache_release(page); 570 ret = -EEXIST; 571 goto fail; 572 573 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 574 /* decompress */ 575 dlen = PAGE_SIZE; 576 src = (u8 *)zbud_map(tree->pool, entry->handle) + 577 sizeof(struct zswap_header); 578 dst = kmap_atomic(page); 579 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, 580 entry->length, dst, &dlen); 581 kunmap_atomic(dst); 582 zbud_unmap(tree->pool, entry->handle); 583 BUG_ON(ret); 584 BUG_ON(dlen != PAGE_SIZE); 585 586 /* page is up to date */ 587 SetPageUptodate(page); 588 } 589 590 /* move it to the tail of the inactive list after end_writeback */ 591 SetPageReclaim(page); 592 593 /* start writeback */ 594 __swap_writepage(page, &wbc, end_swap_bio_write); 595 page_cache_release(page); 596 zswap_written_back_pages++; 597 598 spin_lock(&tree->lock); 599 /* drop local reference */ 600 zswap_entry_put(tree, entry); 601 602 /* 603 * There are two possible situations for entry here: 604 * (1) refcount is 1(normal case), entry is valid and on the tree 605 * (2) refcount is 0, entry is freed and not on the tree 606 * because invalidate happened during writeback 607 * search the tree and free the entry if find entry 608 */ 609 if (entry == zswap_rb_search(&tree->rbroot, offset)) 610 zswap_entry_put(tree, entry); 611 spin_unlock(&tree->lock); 612 613 goto end; 614 615 /* 616 * if we get here due to ZSWAP_SWAPCACHE_EXIST 617 * a load may happening concurrently 618 * it is safe and okay to not free the entry 619 * if we free the entry in the following put 620 * it it either okay to return !0 621 */ 622 fail: 623 spin_lock(&tree->lock); 624 zswap_entry_put(tree, entry); 625 spin_unlock(&tree->lock); 626 627 end: 628 return ret; 629 } 630 631 /********************************* 632 * frontswap hooks 633 **********************************/ 634 /* attempts to compress and store an single page */ 635 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 636 struct page *page) 637 { 638 struct zswap_tree *tree = zswap_trees[type]; 639 struct zswap_entry *entry, *dupentry; 640 int ret; 641 unsigned int dlen = PAGE_SIZE, len; 642 unsigned long handle; 643 char *buf; 644 u8 *src, *dst; 645 struct zswap_header *zhdr; 646 647 if (!tree) { 648 ret = -ENODEV; 649 goto reject; 650 } 651 652 /* reclaim space if needed */ 653 if (zswap_is_full()) { 654 zswap_pool_limit_hit++; 655 if (zbud_reclaim_page(tree->pool, 8)) { 656 zswap_reject_reclaim_fail++; 657 ret = -ENOMEM; 658 goto reject; 659 } 660 } 661 662 /* allocate entry */ 663 entry = zswap_entry_cache_alloc(GFP_KERNEL); 664 if (!entry) { 665 zswap_reject_kmemcache_fail++; 666 ret = -ENOMEM; 667 goto reject; 668 } 669 670 /* compress */ 671 dst = get_cpu_var(zswap_dstmem); 672 src = kmap_atomic(page); 673 ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); 674 kunmap_atomic(src); 675 if (ret) { 676 ret = -EINVAL; 677 goto freepage; 678 } 679 680 /* store */ 681 len = dlen + sizeof(struct zswap_header); 682 ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, 683 &handle); 684 if (ret == -ENOSPC) { 685 zswap_reject_compress_poor++; 686 goto freepage; 687 } 688 if (ret) { 689 zswap_reject_alloc_fail++; 690 goto freepage; 691 } 692 zhdr = zbud_map(tree->pool, handle); 693 zhdr->swpentry = swp_entry(type, offset); 694 buf = (u8 *)(zhdr + 1); 695 memcpy(buf, dst, dlen); 696 zbud_unmap(tree->pool, handle); 697 put_cpu_var(zswap_dstmem); 698 699 /* populate entry */ 700 entry->offset = offset; 701 entry->handle = handle; 702 entry->length = dlen; 703 704 /* map */ 705 spin_lock(&tree->lock); 706 do { 707 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 708 if (ret == -EEXIST) { 709 zswap_duplicate_entry++; 710 /* remove from rbtree */ 711 zswap_rb_erase(&tree->rbroot, dupentry); 712 zswap_entry_put(tree, dupentry); 713 } 714 } while (ret == -EEXIST); 715 spin_unlock(&tree->lock); 716 717 /* update stats */ 718 atomic_inc(&zswap_stored_pages); 719 zswap_pool_pages = zbud_get_pool_size(tree->pool); 720 721 return 0; 722 723 freepage: 724 put_cpu_var(zswap_dstmem); 725 zswap_entry_cache_free(entry); 726 reject: 727 return ret; 728 } 729 730 /* 731 * returns 0 if the page was successfully decompressed 732 * return -1 on entry not found or error 733 */ 734 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 735 struct page *page) 736 { 737 struct zswap_tree *tree = zswap_trees[type]; 738 struct zswap_entry *entry; 739 u8 *src, *dst; 740 unsigned int dlen; 741 int ret; 742 743 /* find */ 744 spin_lock(&tree->lock); 745 entry = zswap_entry_find_get(&tree->rbroot, offset); 746 if (!entry) { 747 /* entry was written back */ 748 spin_unlock(&tree->lock); 749 return -1; 750 } 751 spin_unlock(&tree->lock); 752 753 /* decompress */ 754 dlen = PAGE_SIZE; 755 src = (u8 *)zbud_map(tree->pool, entry->handle) + 756 sizeof(struct zswap_header); 757 dst = kmap_atomic(page); 758 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, 759 dst, &dlen); 760 kunmap_atomic(dst); 761 zbud_unmap(tree->pool, entry->handle); 762 BUG_ON(ret); 763 764 spin_lock(&tree->lock); 765 zswap_entry_put(tree, entry); 766 spin_unlock(&tree->lock); 767 768 return 0; 769 } 770 771 /* frees an entry in zswap */ 772 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 773 { 774 struct zswap_tree *tree = zswap_trees[type]; 775 struct zswap_entry *entry; 776 777 /* find */ 778 spin_lock(&tree->lock); 779 entry = zswap_rb_search(&tree->rbroot, offset); 780 if (!entry) { 781 /* entry was written back */ 782 spin_unlock(&tree->lock); 783 return; 784 } 785 786 /* remove from rbtree */ 787 zswap_rb_erase(&tree->rbroot, entry); 788 789 /* drop the initial reference from entry creation */ 790 zswap_entry_put(tree, entry); 791 792 spin_unlock(&tree->lock); 793 } 794 795 /* frees all zswap entries for the given swap type */ 796 static void zswap_frontswap_invalidate_area(unsigned type) 797 { 798 struct zswap_tree *tree = zswap_trees[type]; 799 struct zswap_entry *entry, *n; 800 801 if (!tree) 802 return; 803 804 /* walk the tree and free everything */ 805 spin_lock(&tree->lock); 806 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 807 zswap_free_entry(tree, entry); 808 tree->rbroot = RB_ROOT; 809 spin_unlock(&tree->lock); 810 811 zbud_destroy_pool(tree->pool); 812 kfree(tree); 813 zswap_trees[type] = NULL; 814 } 815 816 static struct zbud_ops zswap_zbud_ops = { 817 .evict = zswap_writeback_entry 818 }; 819 820 static void zswap_frontswap_init(unsigned type) 821 { 822 struct zswap_tree *tree; 823 824 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); 825 if (!tree) 826 goto err; 827 tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); 828 if (!tree->pool) 829 goto freetree; 830 tree->rbroot = RB_ROOT; 831 spin_lock_init(&tree->lock); 832 zswap_trees[type] = tree; 833 return; 834 835 freetree: 836 kfree(tree); 837 err: 838 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 839 } 840 841 static struct frontswap_ops zswap_frontswap_ops = { 842 .store = zswap_frontswap_store, 843 .load = zswap_frontswap_load, 844 .invalidate_page = zswap_frontswap_invalidate_page, 845 .invalidate_area = zswap_frontswap_invalidate_area, 846 .init = zswap_frontswap_init 847 }; 848 849 /********************************* 850 * debugfs functions 851 **********************************/ 852 #ifdef CONFIG_DEBUG_FS 853 #include <linux/debugfs.h> 854 855 static struct dentry *zswap_debugfs_root; 856 857 static int __init zswap_debugfs_init(void) 858 { 859 if (!debugfs_initialized()) 860 return -ENODEV; 861 862 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 863 if (!zswap_debugfs_root) 864 return -ENOMEM; 865 866 debugfs_create_u64("pool_limit_hit", S_IRUGO, 867 zswap_debugfs_root, &zswap_pool_limit_hit); 868 debugfs_create_u64("reject_reclaim_fail", S_IRUGO, 869 zswap_debugfs_root, &zswap_reject_reclaim_fail); 870 debugfs_create_u64("reject_alloc_fail", S_IRUGO, 871 zswap_debugfs_root, &zswap_reject_alloc_fail); 872 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, 873 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 874 debugfs_create_u64("reject_compress_poor", S_IRUGO, 875 zswap_debugfs_root, &zswap_reject_compress_poor); 876 debugfs_create_u64("written_back_pages", S_IRUGO, 877 zswap_debugfs_root, &zswap_written_back_pages); 878 debugfs_create_u64("duplicate_entry", S_IRUGO, 879 zswap_debugfs_root, &zswap_duplicate_entry); 880 debugfs_create_u64("pool_pages", S_IRUGO, 881 zswap_debugfs_root, &zswap_pool_pages); 882 debugfs_create_atomic_t("stored_pages", S_IRUGO, 883 zswap_debugfs_root, &zswap_stored_pages); 884 885 return 0; 886 } 887 888 static void __exit zswap_debugfs_exit(void) 889 { 890 debugfs_remove_recursive(zswap_debugfs_root); 891 } 892 #else 893 static int __init zswap_debugfs_init(void) 894 { 895 return 0; 896 } 897 898 static void __exit zswap_debugfs_exit(void) { } 899 #endif 900 901 /********************************* 902 * module init and exit 903 **********************************/ 904 static int __init init_zswap(void) 905 { 906 if (!zswap_enabled) 907 return 0; 908 909 pr_info("loading zswap\n"); 910 if (zswap_entry_cache_create()) { 911 pr_err("entry cache creation failed\n"); 912 goto error; 913 } 914 if (zswap_comp_init()) { 915 pr_err("compressor initialization failed\n"); 916 goto compfail; 917 } 918 if (zswap_cpu_init()) { 919 pr_err("per-cpu initialization failed\n"); 920 goto pcpufail; 921 } 922 frontswap_register_ops(&zswap_frontswap_ops); 923 if (zswap_debugfs_init()) 924 pr_warn("debugfs initialization failed\n"); 925 return 0; 926 pcpufail: 927 zswap_comp_exit(); 928 compfail: 929 zswap_entry_cache_destory(); 930 error: 931 return -ENOMEM; 932 } 933 /* must be late so crypto has time to come up */ 934 late_initcall(init_zswap); 935 936 MODULE_LICENSE("GPL"); 937 MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); 938 MODULE_DESCRIPTION("Compressed cache for swap pages"); 939