xref: /openbmc/linux/mm/zswap.c (revision 867a0e05)
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38 
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44 
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52 
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59 
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74 
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0444);
81 
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0444);
86 
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90 			zswap_max_pool_percent, uint, 0644);
91 
92 /* Compressed storage to use */
93 #define ZSWAP_ZPOOL_DEFAULT "zbud"
94 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
95 module_param_named(zpool, zswap_zpool_type, charp, 0444);
96 
97 /* zpool is shared by all of zswap backend  */
98 static struct zpool *zswap_pool;
99 
100 /*********************************
101 * compression functions
102 **********************************/
103 /* per-cpu compression transforms */
104 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
105 
106 enum comp_op {
107 	ZSWAP_COMPOP_COMPRESS,
108 	ZSWAP_COMPOP_DECOMPRESS
109 };
110 
111 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
112 				u8 *dst, unsigned int *dlen)
113 {
114 	struct crypto_comp *tfm;
115 	int ret;
116 
117 	tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
118 	switch (op) {
119 	case ZSWAP_COMPOP_COMPRESS:
120 		ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
121 		break;
122 	case ZSWAP_COMPOP_DECOMPRESS:
123 		ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
124 		break;
125 	default:
126 		ret = -EINVAL;
127 	}
128 
129 	put_cpu();
130 	return ret;
131 }
132 
133 static int __init zswap_comp_init(void)
134 {
135 	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
136 		pr_info("%s compressor not available\n", zswap_compressor);
137 		/* fall back to default compressor */
138 		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
139 		if (!crypto_has_comp(zswap_compressor, 0, 0))
140 			/* can't even load the default compressor */
141 			return -ENODEV;
142 	}
143 	pr_info("using %s compressor\n", zswap_compressor);
144 
145 	/* alloc percpu transforms */
146 	zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
147 	if (!zswap_comp_pcpu_tfms)
148 		return -ENOMEM;
149 	return 0;
150 }
151 
152 static void __init zswap_comp_exit(void)
153 {
154 	/* free percpu transforms */
155 	free_percpu(zswap_comp_pcpu_tfms);
156 }
157 
158 /*********************************
159 * data structures
160 **********************************/
161 /*
162  * struct zswap_entry
163  *
164  * This structure contains the metadata for tracking a single compressed
165  * page within zswap.
166  *
167  * rbnode - links the entry into red-black tree for the appropriate swap type
168  * refcount - the number of outstanding reference to the entry. This is needed
169  *            to protect against premature freeing of the entry by code
170  *            concurrent calls to load, invalidate, and writeback.  The lock
171  *            for the zswap_tree structure that contains the entry must
172  *            be held while changing the refcount.  Since the lock must
173  *            be held, there is no reason to also make refcount atomic.
174  * offset - the swap offset for the entry.  Index into the red-black tree.
175  * handle - zpool allocation handle that stores the compressed page data
176  * length - the length in bytes of the compressed page data.  Needed during
177  *          decompression
178  */
179 struct zswap_entry {
180 	struct rb_node rbnode;
181 	pgoff_t offset;
182 	int refcount;
183 	unsigned int length;
184 	unsigned long handle;
185 };
186 
187 struct zswap_header {
188 	swp_entry_t swpentry;
189 };
190 
191 /*
192  * The tree lock in the zswap_tree struct protects a few things:
193  * - the rbtree
194  * - the refcount field of each entry in the tree
195  */
196 struct zswap_tree {
197 	struct rb_root rbroot;
198 	spinlock_t lock;
199 };
200 
201 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
202 
203 /*********************************
204 * zswap entry functions
205 **********************************/
206 static struct kmem_cache *zswap_entry_cache;
207 
208 static int __init zswap_entry_cache_create(void)
209 {
210 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
211 	return zswap_entry_cache == NULL;
212 }
213 
214 static void __init zswap_entry_cache_destroy(void)
215 {
216 	kmem_cache_destroy(zswap_entry_cache);
217 }
218 
219 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
220 {
221 	struct zswap_entry *entry;
222 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
223 	if (!entry)
224 		return NULL;
225 	entry->refcount = 1;
226 	RB_CLEAR_NODE(&entry->rbnode);
227 	return entry;
228 }
229 
230 static void zswap_entry_cache_free(struct zswap_entry *entry)
231 {
232 	kmem_cache_free(zswap_entry_cache, entry);
233 }
234 
235 /*********************************
236 * rbtree functions
237 **********************************/
238 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
239 {
240 	struct rb_node *node = root->rb_node;
241 	struct zswap_entry *entry;
242 
243 	while (node) {
244 		entry = rb_entry(node, struct zswap_entry, rbnode);
245 		if (entry->offset > offset)
246 			node = node->rb_left;
247 		else if (entry->offset < offset)
248 			node = node->rb_right;
249 		else
250 			return entry;
251 	}
252 	return NULL;
253 }
254 
255 /*
256  * In the case that a entry with the same offset is found, a pointer to
257  * the existing entry is stored in dupentry and the function returns -EEXIST
258  */
259 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
260 			struct zswap_entry **dupentry)
261 {
262 	struct rb_node **link = &root->rb_node, *parent = NULL;
263 	struct zswap_entry *myentry;
264 
265 	while (*link) {
266 		parent = *link;
267 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
268 		if (myentry->offset > entry->offset)
269 			link = &(*link)->rb_left;
270 		else if (myentry->offset < entry->offset)
271 			link = &(*link)->rb_right;
272 		else {
273 			*dupentry = myentry;
274 			return -EEXIST;
275 		}
276 	}
277 	rb_link_node(&entry->rbnode, parent, link);
278 	rb_insert_color(&entry->rbnode, root);
279 	return 0;
280 }
281 
282 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
283 {
284 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
285 		rb_erase(&entry->rbnode, root);
286 		RB_CLEAR_NODE(&entry->rbnode);
287 	}
288 }
289 
290 /*
291  * Carries out the common pattern of freeing and entry's zpool allocation,
292  * freeing the entry itself, and decrementing the number of stored pages.
293  */
294 static void zswap_free_entry(struct zswap_entry *entry)
295 {
296 	zpool_free(zswap_pool, entry->handle);
297 	zswap_entry_cache_free(entry);
298 	atomic_dec(&zswap_stored_pages);
299 	zswap_pool_total_size = zpool_get_total_size(zswap_pool);
300 }
301 
302 /* caller must hold the tree lock */
303 static void zswap_entry_get(struct zswap_entry *entry)
304 {
305 	entry->refcount++;
306 }
307 
308 /* caller must hold the tree lock
309 * remove from the tree and free it, if nobody reference the entry
310 */
311 static void zswap_entry_put(struct zswap_tree *tree,
312 			struct zswap_entry *entry)
313 {
314 	int refcount = --entry->refcount;
315 
316 	BUG_ON(refcount < 0);
317 	if (refcount == 0) {
318 		zswap_rb_erase(&tree->rbroot, entry);
319 		zswap_free_entry(entry);
320 	}
321 }
322 
323 /* caller must hold the tree lock */
324 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
325 				pgoff_t offset)
326 {
327 	struct zswap_entry *entry = NULL;
328 
329 	entry = zswap_rb_search(root, offset);
330 	if (entry)
331 		zswap_entry_get(entry);
332 
333 	return entry;
334 }
335 
336 /*********************************
337 * per-cpu code
338 **********************************/
339 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
340 
341 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
342 {
343 	struct crypto_comp *tfm;
344 	u8 *dst;
345 
346 	switch (action) {
347 	case CPU_UP_PREPARE:
348 		tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
349 		if (IS_ERR(tfm)) {
350 			pr_err("can't allocate compressor transform\n");
351 			return NOTIFY_BAD;
352 		}
353 		*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
354 		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
355 		if (!dst) {
356 			pr_err("can't allocate compressor buffer\n");
357 			crypto_free_comp(tfm);
358 			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
359 			return NOTIFY_BAD;
360 		}
361 		per_cpu(zswap_dstmem, cpu) = dst;
362 		break;
363 	case CPU_DEAD:
364 	case CPU_UP_CANCELED:
365 		tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
366 		if (tfm) {
367 			crypto_free_comp(tfm);
368 			*per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
369 		}
370 		dst = per_cpu(zswap_dstmem, cpu);
371 		kfree(dst);
372 		per_cpu(zswap_dstmem, cpu) = NULL;
373 		break;
374 	default:
375 		break;
376 	}
377 	return NOTIFY_OK;
378 }
379 
380 static int zswap_cpu_notifier(struct notifier_block *nb,
381 				unsigned long action, void *pcpu)
382 {
383 	unsigned long cpu = (unsigned long)pcpu;
384 	return __zswap_cpu_notifier(action, cpu);
385 }
386 
387 static struct notifier_block zswap_cpu_notifier_block = {
388 	.notifier_call = zswap_cpu_notifier
389 };
390 
391 static int __init zswap_cpu_init(void)
392 {
393 	unsigned long cpu;
394 
395 	cpu_notifier_register_begin();
396 	for_each_online_cpu(cpu)
397 		if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
398 			goto cleanup;
399 	__register_cpu_notifier(&zswap_cpu_notifier_block);
400 	cpu_notifier_register_done();
401 	return 0;
402 
403 cleanup:
404 	for_each_online_cpu(cpu)
405 		__zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
406 	cpu_notifier_register_done();
407 	return -ENOMEM;
408 }
409 
410 /*********************************
411 * helpers
412 **********************************/
413 static bool zswap_is_full(void)
414 {
415 	return totalram_pages * zswap_max_pool_percent / 100 <
416 		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
417 }
418 
419 /*********************************
420 * writeback code
421 **********************************/
422 /* return enum for zswap_get_swap_cache_page */
423 enum zswap_get_swap_ret {
424 	ZSWAP_SWAPCACHE_NEW,
425 	ZSWAP_SWAPCACHE_EXIST,
426 	ZSWAP_SWAPCACHE_FAIL,
427 };
428 
429 /*
430  * zswap_get_swap_cache_page
431  *
432  * This is an adaption of read_swap_cache_async()
433  *
434  * This function tries to find a page with the given swap entry
435  * in the swapper_space address space (the swap cache).  If the page
436  * is found, it is returned in retpage.  Otherwise, a page is allocated,
437  * added to the swap cache, and returned in retpage.
438  *
439  * If success, the swap cache page is returned in retpage
440  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
441  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
442  *     the new page is added to swapcache and locked
443  * Returns ZSWAP_SWAPCACHE_FAIL on error
444  */
445 static int zswap_get_swap_cache_page(swp_entry_t entry,
446 				struct page **retpage)
447 {
448 	struct page *found_page, *new_page = NULL;
449 	struct address_space *swapper_space = swap_address_space(entry);
450 	int err;
451 
452 	*retpage = NULL;
453 	do {
454 		/*
455 		 * First check the swap cache.  Since this is normally
456 		 * called after lookup_swap_cache() failed, re-calling
457 		 * that would confuse statistics.
458 		 */
459 		found_page = find_get_page(swapper_space, entry.val);
460 		if (found_page)
461 			break;
462 
463 		/*
464 		 * Get a new page to read into from swap.
465 		 */
466 		if (!new_page) {
467 			new_page = alloc_page(GFP_KERNEL);
468 			if (!new_page)
469 				break; /* Out of memory */
470 		}
471 
472 		/*
473 		 * call radix_tree_preload() while we can wait.
474 		 */
475 		err = radix_tree_preload(GFP_KERNEL);
476 		if (err)
477 			break;
478 
479 		/*
480 		 * Swap entry may have been freed since our caller observed it.
481 		 */
482 		err = swapcache_prepare(entry);
483 		if (err == -EEXIST) { /* seems racy */
484 			radix_tree_preload_end();
485 			continue;
486 		}
487 		if (err) { /* swp entry is obsolete ? */
488 			radix_tree_preload_end();
489 			break;
490 		}
491 
492 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
493 		__set_page_locked(new_page);
494 		SetPageSwapBacked(new_page);
495 		err = __add_to_swap_cache(new_page, entry);
496 		if (likely(!err)) {
497 			radix_tree_preload_end();
498 			lru_cache_add_anon(new_page);
499 			*retpage = new_page;
500 			return ZSWAP_SWAPCACHE_NEW;
501 		}
502 		radix_tree_preload_end();
503 		ClearPageSwapBacked(new_page);
504 		__clear_page_locked(new_page);
505 		/*
506 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
507 		 * clear SWAP_HAS_CACHE flag.
508 		 */
509 		swapcache_free(entry);
510 	} while (err != -ENOMEM);
511 
512 	if (new_page)
513 		page_cache_release(new_page);
514 	if (!found_page)
515 		return ZSWAP_SWAPCACHE_FAIL;
516 	*retpage = found_page;
517 	return ZSWAP_SWAPCACHE_EXIST;
518 }
519 
520 /*
521  * Attempts to free an entry by adding a page to the swap cache,
522  * decompressing the entry data into the page, and issuing a
523  * bio write to write the page back to the swap device.
524  *
525  * This can be thought of as a "resumed writeback" of the page
526  * to the swap device.  We are basically resuming the same swap
527  * writeback path that was intercepted with the frontswap_store()
528  * in the first place.  After the page has been decompressed into
529  * the swap cache, the compressed version stored by zswap can be
530  * freed.
531  */
532 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
533 {
534 	struct zswap_header *zhdr;
535 	swp_entry_t swpentry;
536 	struct zswap_tree *tree;
537 	pgoff_t offset;
538 	struct zswap_entry *entry;
539 	struct page *page;
540 	u8 *src, *dst;
541 	unsigned int dlen;
542 	int ret;
543 	struct writeback_control wbc = {
544 		.sync_mode = WB_SYNC_NONE,
545 	};
546 
547 	/* extract swpentry from data */
548 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
549 	swpentry = zhdr->swpentry; /* here */
550 	zpool_unmap_handle(pool, handle);
551 	tree = zswap_trees[swp_type(swpentry)];
552 	offset = swp_offset(swpentry);
553 
554 	/* find and ref zswap entry */
555 	spin_lock(&tree->lock);
556 	entry = zswap_entry_find_get(&tree->rbroot, offset);
557 	if (!entry) {
558 		/* entry was invalidated */
559 		spin_unlock(&tree->lock);
560 		return 0;
561 	}
562 	spin_unlock(&tree->lock);
563 	BUG_ON(offset != entry->offset);
564 
565 	/* try to allocate swap cache page */
566 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
567 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
568 		ret = -ENOMEM;
569 		goto fail;
570 
571 	case ZSWAP_SWAPCACHE_EXIST:
572 		/* page is already in the swap cache, ignore for now */
573 		page_cache_release(page);
574 		ret = -EEXIST;
575 		goto fail;
576 
577 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
578 		/* decompress */
579 		dlen = PAGE_SIZE;
580 		src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
581 				ZPOOL_MM_RO) + sizeof(struct zswap_header);
582 		dst = kmap_atomic(page);
583 		ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
584 				entry->length, dst, &dlen);
585 		kunmap_atomic(dst);
586 		zpool_unmap_handle(zswap_pool, entry->handle);
587 		BUG_ON(ret);
588 		BUG_ON(dlen != PAGE_SIZE);
589 
590 		/* page is up to date */
591 		SetPageUptodate(page);
592 	}
593 
594 	/* move it to the tail of the inactive list after end_writeback */
595 	SetPageReclaim(page);
596 
597 	/* start writeback */
598 	__swap_writepage(page, &wbc, end_swap_bio_write);
599 	page_cache_release(page);
600 	zswap_written_back_pages++;
601 
602 	spin_lock(&tree->lock);
603 	/* drop local reference */
604 	zswap_entry_put(tree, entry);
605 
606 	/*
607 	* There are two possible situations for entry here:
608 	* (1) refcount is 1(normal case),  entry is valid and on the tree
609 	* (2) refcount is 0, entry is freed and not on the tree
610 	*     because invalidate happened during writeback
611 	*  search the tree and free the entry if find entry
612 	*/
613 	if (entry == zswap_rb_search(&tree->rbroot, offset))
614 		zswap_entry_put(tree, entry);
615 	spin_unlock(&tree->lock);
616 
617 	goto end;
618 
619 	/*
620 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
621 	* a load may happening concurrently
622 	* it is safe and okay to not free the entry
623 	* if we free the entry in the following put
624 	* it it either okay to return !0
625 	*/
626 fail:
627 	spin_lock(&tree->lock);
628 	zswap_entry_put(tree, entry);
629 	spin_unlock(&tree->lock);
630 
631 end:
632 	return ret;
633 }
634 
635 /*********************************
636 * frontswap hooks
637 **********************************/
638 /* attempts to compress and store an single page */
639 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
640 				struct page *page)
641 {
642 	struct zswap_tree *tree = zswap_trees[type];
643 	struct zswap_entry *entry, *dupentry;
644 	int ret;
645 	unsigned int dlen = PAGE_SIZE, len;
646 	unsigned long handle;
647 	char *buf;
648 	u8 *src, *dst;
649 	struct zswap_header *zhdr;
650 
651 	if (!tree) {
652 		ret = -ENODEV;
653 		goto reject;
654 	}
655 
656 	/* reclaim space if needed */
657 	if (zswap_is_full()) {
658 		zswap_pool_limit_hit++;
659 		if (zpool_shrink(zswap_pool, 1, NULL)) {
660 			zswap_reject_reclaim_fail++;
661 			ret = -ENOMEM;
662 			goto reject;
663 		}
664 	}
665 
666 	/* allocate entry */
667 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
668 	if (!entry) {
669 		zswap_reject_kmemcache_fail++;
670 		ret = -ENOMEM;
671 		goto reject;
672 	}
673 
674 	/* compress */
675 	dst = get_cpu_var(zswap_dstmem);
676 	src = kmap_atomic(page);
677 	ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
678 	kunmap_atomic(src);
679 	if (ret) {
680 		ret = -EINVAL;
681 		goto freepage;
682 	}
683 
684 	/* store */
685 	len = dlen + sizeof(struct zswap_header);
686 	ret = zpool_malloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
687 		&handle);
688 	if (ret == -ENOSPC) {
689 		zswap_reject_compress_poor++;
690 		goto freepage;
691 	}
692 	if (ret) {
693 		zswap_reject_alloc_fail++;
694 		goto freepage;
695 	}
696 	zhdr = zpool_map_handle(zswap_pool, handle, ZPOOL_MM_RW);
697 	zhdr->swpentry = swp_entry(type, offset);
698 	buf = (u8 *)(zhdr + 1);
699 	memcpy(buf, dst, dlen);
700 	zpool_unmap_handle(zswap_pool, handle);
701 	put_cpu_var(zswap_dstmem);
702 
703 	/* populate entry */
704 	entry->offset = offset;
705 	entry->handle = handle;
706 	entry->length = dlen;
707 
708 	/* map */
709 	spin_lock(&tree->lock);
710 	do {
711 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
712 		if (ret == -EEXIST) {
713 			zswap_duplicate_entry++;
714 			/* remove from rbtree */
715 			zswap_rb_erase(&tree->rbroot, dupentry);
716 			zswap_entry_put(tree, dupentry);
717 		}
718 	} while (ret == -EEXIST);
719 	spin_unlock(&tree->lock);
720 
721 	/* update stats */
722 	atomic_inc(&zswap_stored_pages);
723 	zswap_pool_total_size = zpool_get_total_size(zswap_pool);
724 
725 	return 0;
726 
727 freepage:
728 	put_cpu_var(zswap_dstmem);
729 	zswap_entry_cache_free(entry);
730 reject:
731 	return ret;
732 }
733 
734 /*
735  * returns 0 if the page was successfully decompressed
736  * return -1 on entry not found or error
737 */
738 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
739 				struct page *page)
740 {
741 	struct zswap_tree *tree = zswap_trees[type];
742 	struct zswap_entry *entry;
743 	u8 *src, *dst;
744 	unsigned int dlen;
745 	int ret;
746 
747 	/* find */
748 	spin_lock(&tree->lock);
749 	entry = zswap_entry_find_get(&tree->rbroot, offset);
750 	if (!entry) {
751 		/* entry was written back */
752 		spin_unlock(&tree->lock);
753 		return -1;
754 	}
755 	spin_unlock(&tree->lock);
756 
757 	/* decompress */
758 	dlen = PAGE_SIZE;
759 	src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
760 			ZPOOL_MM_RO) + sizeof(struct zswap_header);
761 	dst = kmap_atomic(page);
762 	ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
763 		dst, &dlen);
764 	kunmap_atomic(dst);
765 	zpool_unmap_handle(zswap_pool, entry->handle);
766 	BUG_ON(ret);
767 
768 	spin_lock(&tree->lock);
769 	zswap_entry_put(tree, entry);
770 	spin_unlock(&tree->lock);
771 
772 	return 0;
773 }
774 
775 /* frees an entry in zswap */
776 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
777 {
778 	struct zswap_tree *tree = zswap_trees[type];
779 	struct zswap_entry *entry;
780 
781 	/* find */
782 	spin_lock(&tree->lock);
783 	entry = zswap_rb_search(&tree->rbroot, offset);
784 	if (!entry) {
785 		/* entry was written back */
786 		spin_unlock(&tree->lock);
787 		return;
788 	}
789 
790 	/* remove from rbtree */
791 	zswap_rb_erase(&tree->rbroot, entry);
792 
793 	/* drop the initial reference from entry creation */
794 	zswap_entry_put(tree, entry);
795 
796 	spin_unlock(&tree->lock);
797 }
798 
799 /* frees all zswap entries for the given swap type */
800 static void zswap_frontswap_invalidate_area(unsigned type)
801 {
802 	struct zswap_tree *tree = zswap_trees[type];
803 	struct zswap_entry *entry, *n;
804 
805 	if (!tree)
806 		return;
807 
808 	/* walk the tree and free everything */
809 	spin_lock(&tree->lock);
810 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
811 		zswap_free_entry(entry);
812 	tree->rbroot = RB_ROOT;
813 	spin_unlock(&tree->lock);
814 	kfree(tree);
815 	zswap_trees[type] = NULL;
816 }
817 
818 static struct zpool_ops zswap_zpool_ops = {
819 	.evict = zswap_writeback_entry
820 };
821 
822 static void zswap_frontswap_init(unsigned type)
823 {
824 	struct zswap_tree *tree;
825 
826 	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
827 	if (!tree) {
828 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
829 		return;
830 	}
831 
832 	tree->rbroot = RB_ROOT;
833 	spin_lock_init(&tree->lock);
834 	zswap_trees[type] = tree;
835 }
836 
837 static struct frontswap_ops zswap_frontswap_ops = {
838 	.store = zswap_frontswap_store,
839 	.load = zswap_frontswap_load,
840 	.invalidate_page = zswap_frontswap_invalidate_page,
841 	.invalidate_area = zswap_frontswap_invalidate_area,
842 	.init = zswap_frontswap_init
843 };
844 
845 /*********************************
846 * debugfs functions
847 **********************************/
848 #ifdef CONFIG_DEBUG_FS
849 #include <linux/debugfs.h>
850 
851 static struct dentry *zswap_debugfs_root;
852 
853 static int __init zswap_debugfs_init(void)
854 {
855 	if (!debugfs_initialized())
856 		return -ENODEV;
857 
858 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
859 	if (!zswap_debugfs_root)
860 		return -ENOMEM;
861 
862 	debugfs_create_u64("pool_limit_hit", S_IRUGO,
863 			zswap_debugfs_root, &zswap_pool_limit_hit);
864 	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
865 			zswap_debugfs_root, &zswap_reject_reclaim_fail);
866 	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
867 			zswap_debugfs_root, &zswap_reject_alloc_fail);
868 	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
869 			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
870 	debugfs_create_u64("reject_compress_poor", S_IRUGO,
871 			zswap_debugfs_root, &zswap_reject_compress_poor);
872 	debugfs_create_u64("written_back_pages", S_IRUGO,
873 			zswap_debugfs_root, &zswap_written_back_pages);
874 	debugfs_create_u64("duplicate_entry", S_IRUGO,
875 			zswap_debugfs_root, &zswap_duplicate_entry);
876 	debugfs_create_u64("pool_total_size", S_IRUGO,
877 			zswap_debugfs_root, &zswap_pool_total_size);
878 	debugfs_create_atomic_t("stored_pages", S_IRUGO,
879 			zswap_debugfs_root, &zswap_stored_pages);
880 
881 	return 0;
882 }
883 
884 static void __exit zswap_debugfs_exit(void)
885 {
886 	debugfs_remove_recursive(zswap_debugfs_root);
887 }
888 #else
889 static int __init zswap_debugfs_init(void)
890 {
891 	return 0;
892 }
893 
894 static void __exit zswap_debugfs_exit(void) { }
895 #endif
896 
897 /*********************************
898 * module init and exit
899 **********************************/
900 static int __init init_zswap(void)
901 {
902 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
903 
904 	if (!zswap_enabled)
905 		return 0;
906 
907 	pr_info("loading zswap\n");
908 
909 	zswap_pool = zpool_create_pool(zswap_zpool_type, gfp, &zswap_zpool_ops);
910 	if (!zswap_pool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
911 		pr_info("%s zpool not available\n", zswap_zpool_type);
912 		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
913 		zswap_pool = zpool_create_pool(zswap_zpool_type, gfp,
914 					&zswap_zpool_ops);
915 	}
916 	if (!zswap_pool) {
917 		pr_err("%s zpool not available\n", zswap_zpool_type);
918 		pr_err("zpool creation failed\n");
919 		goto error;
920 	}
921 	pr_info("using %s pool\n", zswap_zpool_type);
922 
923 	if (zswap_entry_cache_create()) {
924 		pr_err("entry cache creation failed\n");
925 		goto cachefail;
926 	}
927 	if (zswap_comp_init()) {
928 		pr_err("compressor initialization failed\n");
929 		goto compfail;
930 	}
931 	if (zswap_cpu_init()) {
932 		pr_err("per-cpu initialization failed\n");
933 		goto pcpufail;
934 	}
935 
936 	frontswap_register_ops(&zswap_frontswap_ops);
937 	if (zswap_debugfs_init())
938 		pr_warn("debugfs initialization failed\n");
939 	return 0;
940 pcpufail:
941 	zswap_comp_exit();
942 compfail:
943 	zswap_entry_cache_destroy();
944 cachefail:
945 	zpool_destroy_pool(zswap_pool);
946 error:
947 	return -ENOMEM;
948 }
949 /* must be late so crypto has time to come up */
950 late_initcall(init_zswap);
951 
952 MODULE_LICENSE("GPL");
953 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
954 MODULE_DESCRIPTION("Compressed cache for swap pages");
955