1 /* 2 * zswap.c - zswap driver file 3 * 4 * zswap is a backend for frontswap that takes pages that are in the process 5 * of being swapped out and attempts to compress and store them in a 6 * RAM-based memory pool. This can result in a significant I/O reduction on 7 * the swap device and, in the case where decompressing from RAM is faster 8 * than reading from the swap device, can also improve workload performance. 9 * 10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 2 15 * of the License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/module.h> 26 #include <linux/cpu.h> 27 #include <linux/highmem.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/frontswap.h> 33 #include <linux/rbtree.h> 34 #include <linux/swap.h> 35 #include <linux/crypto.h> 36 #include <linux/mempool.h> 37 #include <linux/zpool.h> 38 39 #include <linux/mm_types.h> 40 #include <linux/page-flags.h> 41 #include <linux/swapops.h> 42 #include <linux/writeback.h> 43 #include <linux/pagemap.h> 44 45 /********************************* 46 * statistics 47 **********************************/ 48 /* Total bytes used by the compressed storage */ 49 static u64 zswap_pool_total_size; 50 /* The number of compressed pages currently stored in zswap */ 51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 52 53 /* 54 * The statistics below are not protected from concurrent access for 55 * performance reasons so they may not be a 100% accurate. However, 56 * they do provide useful information on roughly how many times a 57 * certain event is occurring. 58 */ 59 60 /* Pool limit was hit (see zswap_max_pool_percent) */ 61 static u64 zswap_pool_limit_hit; 62 /* Pages written back when pool limit was reached */ 63 static u64 zswap_written_back_pages; 64 /* Store failed due to a reclaim failure after pool limit was reached */ 65 static u64 zswap_reject_reclaim_fail; 66 /* Compressed page was too big for the allocator to (optimally) store */ 67 static u64 zswap_reject_compress_poor; 68 /* Store failed because underlying allocator could not get memory */ 69 static u64 zswap_reject_alloc_fail; 70 /* Store failed because the entry metadata could not be allocated (rare) */ 71 static u64 zswap_reject_kmemcache_fail; 72 /* Duplicate store was encountered (rare) */ 73 static u64 zswap_duplicate_entry; 74 75 /********************************* 76 * tunables 77 **********************************/ 78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */ 79 static bool zswap_enabled __read_mostly; 80 module_param_named(enabled, zswap_enabled, bool, 0444); 81 82 /* Compressor to be used by zswap (fixed at boot for now) */ 83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo" 84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 85 module_param_named(compressor, zswap_compressor, charp, 0444); 86 87 /* The maximum percentage of memory that the compressed pool can occupy */ 88 static unsigned int zswap_max_pool_percent = 20; 89 module_param_named(max_pool_percent, 90 zswap_max_pool_percent, uint, 0644); 91 92 /* Compressed storage to use */ 93 #define ZSWAP_ZPOOL_DEFAULT "zbud" 94 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 95 module_param_named(zpool, zswap_zpool_type, charp, 0444); 96 97 /* zpool is shared by all of zswap backend */ 98 static struct zpool *zswap_pool; 99 100 /********************************* 101 * compression functions 102 **********************************/ 103 /* per-cpu compression transforms */ 104 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; 105 106 enum comp_op { 107 ZSWAP_COMPOP_COMPRESS, 108 ZSWAP_COMPOP_DECOMPRESS 109 }; 110 111 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, 112 u8 *dst, unsigned int *dlen) 113 { 114 struct crypto_comp *tfm; 115 int ret; 116 117 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); 118 switch (op) { 119 case ZSWAP_COMPOP_COMPRESS: 120 ret = crypto_comp_compress(tfm, src, slen, dst, dlen); 121 break; 122 case ZSWAP_COMPOP_DECOMPRESS: 123 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); 124 break; 125 default: 126 ret = -EINVAL; 127 } 128 129 put_cpu(); 130 return ret; 131 } 132 133 static int __init zswap_comp_init(void) 134 { 135 if (!crypto_has_comp(zswap_compressor, 0, 0)) { 136 pr_info("%s compressor not available\n", zswap_compressor); 137 /* fall back to default compressor */ 138 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; 139 if (!crypto_has_comp(zswap_compressor, 0, 0)) 140 /* can't even load the default compressor */ 141 return -ENODEV; 142 } 143 pr_info("using %s compressor\n", zswap_compressor); 144 145 /* alloc percpu transforms */ 146 zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); 147 if (!zswap_comp_pcpu_tfms) 148 return -ENOMEM; 149 return 0; 150 } 151 152 static void __init zswap_comp_exit(void) 153 { 154 /* free percpu transforms */ 155 free_percpu(zswap_comp_pcpu_tfms); 156 } 157 158 /********************************* 159 * data structures 160 **********************************/ 161 /* 162 * struct zswap_entry 163 * 164 * This structure contains the metadata for tracking a single compressed 165 * page within zswap. 166 * 167 * rbnode - links the entry into red-black tree for the appropriate swap type 168 * refcount - the number of outstanding reference to the entry. This is needed 169 * to protect against premature freeing of the entry by code 170 * concurrent calls to load, invalidate, and writeback. The lock 171 * for the zswap_tree structure that contains the entry must 172 * be held while changing the refcount. Since the lock must 173 * be held, there is no reason to also make refcount atomic. 174 * offset - the swap offset for the entry. Index into the red-black tree. 175 * handle - zpool allocation handle that stores the compressed page data 176 * length - the length in bytes of the compressed page data. Needed during 177 * decompression 178 */ 179 struct zswap_entry { 180 struct rb_node rbnode; 181 pgoff_t offset; 182 int refcount; 183 unsigned int length; 184 unsigned long handle; 185 }; 186 187 struct zswap_header { 188 swp_entry_t swpentry; 189 }; 190 191 /* 192 * The tree lock in the zswap_tree struct protects a few things: 193 * - the rbtree 194 * - the refcount field of each entry in the tree 195 */ 196 struct zswap_tree { 197 struct rb_root rbroot; 198 spinlock_t lock; 199 }; 200 201 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 202 203 /********************************* 204 * zswap entry functions 205 **********************************/ 206 static struct kmem_cache *zswap_entry_cache; 207 208 static int __init zswap_entry_cache_create(void) 209 { 210 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 211 return zswap_entry_cache == NULL; 212 } 213 214 static void __init zswap_entry_cache_destroy(void) 215 { 216 kmem_cache_destroy(zswap_entry_cache); 217 } 218 219 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 220 { 221 struct zswap_entry *entry; 222 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 223 if (!entry) 224 return NULL; 225 entry->refcount = 1; 226 RB_CLEAR_NODE(&entry->rbnode); 227 return entry; 228 } 229 230 static void zswap_entry_cache_free(struct zswap_entry *entry) 231 { 232 kmem_cache_free(zswap_entry_cache, entry); 233 } 234 235 /********************************* 236 * rbtree functions 237 **********************************/ 238 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 239 { 240 struct rb_node *node = root->rb_node; 241 struct zswap_entry *entry; 242 243 while (node) { 244 entry = rb_entry(node, struct zswap_entry, rbnode); 245 if (entry->offset > offset) 246 node = node->rb_left; 247 else if (entry->offset < offset) 248 node = node->rb_right; 249 else 250 return entry; 251 } 252 return NULL; 253 } 254 255 /* 256 * In the case that a entry with the same offset is found, a pointer to 257 * the existing entry is stored in dupentry and the function returns -EEXIST 258 */ 259 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 260 struct zswap_entry **dupentry) 261 { 262 struct rb_node **link = &root->rb_node, *parent = NULL; 263 struct zswap_entry *myentry; 264 265 while (*link) { 266 parent = *link; 267 myentry = rb_entry(parent, struct zswap_entry, rbnode); 268 if (myentry->offset > entry->offset) 269 link = &(*link)->rb_left; 270 else if (myentry->offset < entry->offset) 271 link = &(*link)->rb_right; 272 else { 273 *dupentry = myentry; 274 return -EEXIST; 275 } 276 } 277 rb_link_node(&entry->rbnode, parent, link); 278 rb_insert_color(&entry->rbnode, root); 279 return 0; 280 } 281 282 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 283 { 284 if (!RB_EMPTY_NODE(&entry->rbnode)) { 285 rb_erase(&entry->rbnode, root); 286 RB_CLEAR_NODE(&entry->rbnode); 287 } 288 } 289 290 /* 291 * Carries out the common pattern of freeing and entry's zpool allocation, 292 * freeing the entry itself, and decrementing the number of stored pages. 293 */ 294 static void zswap_free_entry(struct zswap_entry *entry) 295 { 296 zpool_free(zswap_pool, entry->handle); 297 zswap_entry_cache_free(entry); 298 atomic_dec(&zswap_stored_pages); 299 zswap_pool_total_size = zpool_get_total_size(zswap_pool); 300 } 301 302 /* caller must hold the tree lock */ 303 static void zswap_entry_get(struct zswap_entry *entry) 304 { 305 entry->refcount++; 306 } 307 308 /* caller must hold the tree lock 309 * remove from the tree and free it, if nobody reference the entry 310 */ 311 static void zswap_entry_put(struct zswap_tree *tree, 312 struct zswap_entry *entry) 313 { 314 int refcount = --entry->refcount; 315 316 BUG_ON(refcount < 0); 317 if (refcount == 0) { 318 zswap_rb_erase(&tree->rbroot, entry); 319 zswap_free_entry(entry); 320 } 321 } 322 323 /* caller must hold the tree lock */ 324 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 325 pgoff_t offset) 326 { 327 struct zswap_entry *entry = NULL; 328 329 entry = zswap_rb_search(root, offset); 330 if (entry) 331 zswap_entry_get(entry); 332 333 return entry; 334 } 335 336 /********************************* 337 * per-cpu code 338 **********************************/ 339 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 340 341 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) 342 { 343 struct crypto_comp *tfm; 344 u8 *dst; 345 346 switch (action) { 347 case CPU_UP_PREPARE: 348 tfm = crypto_alloc_comp(zswap_compressor, 0, 0); 349 if (IS_ERR(tfm)) { 350 pr_err("can't allocate compressor transform\n"); 351 return NOTIFY_BAD; 352 } 353 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; 354 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 355 if (!dst) { 356 pr_err("can't allocate compressor buffer\n"); 357 crypto_free_comp(tfm); 358 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; 359 return NOTIFY_BAD; 360 } 361 per_cpu(zswap_dstmem, cpu) = dst; 362 break; 363 case CPU_DEAD: 364 case CPU_UP_CANCELED: 365 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); 366 if (tfm) { 367 crypto_free_comp(tfm); 368 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; 369 } 370 dst = per_cpu(zswap_dstmem, cpu); 371 kfree(dst); 372 per_cpu(zswap_dstmem, cpu) = NULL; 373 break; 374 default: 375 break; 376 } 377 return NOTIFY_OK; 378 } 379 380 static int zswap_cpu_notifier(struct notifier_block *nb, 381 unsigned long action, void *pcpu) 382 { 383 unsigned long cpu = (unsigned long)pcpu; 384 return __zswap_cpu_notifier(action, cpu); 385 } 386 387 static struct notifier_block zswap_cpu_notifier_block = { 388 .notifier_call = zswap_cpu_notifier 389 }; 390 391 static int __init zswap_cpu_init(void) 392 { 393 unsigned long cpu; 394 395 cpu_notifier_register_begin(); 396 for_each_online_cpu(cpu) 397 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) 398 goto cleanup; 399 __register_cpu_notifier(&zswap_cpu_notifier_block); 400 cpu_notifier_register_done(); 401 return 0; 402 403 cleanup: 404 for_each_online_cpu(cpu) 405 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); 406 cpu_notifier_register_done(); 407 return -ENOMEM; 408 } 409 410 /********************************* 411 * helpers 412 **********************************/ 413 static bool zswap_is_full(void) 414 { 415 return totalram_pages * zswap_max_pool_percent / 100 < 416 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 417 } 418 419 /********************************* 420 * writeback code 421 **********************************/ 422 /* return enum for zswap_get_swap_cache_page */ 423 enum zswap_get_swap_ret { 424 ZSWAP_SWAPCACHE_NEW, 425 ZSWAP_SWAPCACHE_EXIST, 426 ZSWAP_SWAPCACHE_FAIL, 427 }; 428 429 /* 430 * zswap_get_swap_cache_page 431 * 432 * This is an adaption of read_swap_cache_async() 433 * 434 * This function tries to find a page with the given swap entry 435 * in the swapper_space address space (the swap cache). If the page 436 * is found, it is returned in retpage. Otherwise, a page is allocated, 437 * added to the swap cache, and returned in retpage. 438 * 439 * If success, the swap cache page is returned in retpage 440 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 441 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 442 * the new page is added to swapcache and locked 443 * Returns ZSWAP_SWAPCACHE_FAIL on error 444 */ 445 static int zswap_get_swap_cache_page(swp_entry_t entry, 446 struct page **retpage) 447 { 448 struct page *found_page, *new_page = NULL; 449 struct address_space *swapper_space = swap_address_space(entry); 450 int err; 451 452 *retpage = NULL; 453 do { 454 /* 455 * First check the swap cache. Since this is normally 456 * called after lookup_swap_cache() failed, re-calling 457 * that would confuse statistics. 458 */ 459 found_page = find_get_page(swapper_space, entry.val); 460 if (found_page) 461 break; 462 463 /* 464 * Get a new page to read into from swap. 465 */ 466 if (!new_page) { 467 new_page = alloc_page(GFP_KERNEL); 468 if (!new_page) 469 break; /* Out of memory */ 470 } 471 472 /* 473 * call radix_tree_preload() while we can wait. 474 */ 475 err = radix_tree_preload(GFP_KERNEL); 476 if (err) 477 break; 478 479 /* 480 * Swap entry may have been freed since our caller observed it. 481 */ 482 err = swapcache_prepare(entry); 483 if (err == -EEXIST) { /* seems racy */ 484 radix_tree_preload_end(); 485 continue; 486 } 487 if (err) { /* swp entry is obsolete ? */ 488 radix_tree_preload_end(); 489 break; 490 } 491 492 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 493 __set_page_locked(new_page); 494 SetPageSwapBacked(new_page); 495 err = __add_to_swap_cache(new_page, entry); 496 if (likely(!err)) { 497 radix_tree_preload_end(); 498 lru_cache_add_anon(new_page); 499 *retpage = new_page; 500 return ZSWAP_SWAPCACHE_NEW; 501 } 502 radix_tree_preload_end(); 503 ClearPageSwapBacked(new_page); 504 __clear_page_locked(new_page); 505 /* 506 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 507 * clear SWAP_HAS_CACHE flag. 508 */ 509 swapcache_free(entry); 510 } while (err != -ENOMEM); 511 512 if (new_page) 513 page_cache_release(new_page); 514 if (!found_page) 515 return ZSWAP_SWAPCACHE_FAIL; 516 *retpage = found_page; 517 return ZSWAP_SWAPCACHE_EXIST; 518 } 519 520 /* 521 * Attempts to free an entry by adding a page to the swap cache, 522 * decompressing the entry data into the page, and issuing a 523 * bio write to write the page back to the swap device. 524 * 525 * This can be thought of as a "resumed writeback" of the page 526 * to the swap device. We are basically resuming the same swap 527 * writeback path that was intercepted with the frontswap_store() 528 * in the first place. After the page has been decompressed into 529 * the swap cache, the compressed version stored by zswap can be 530 * freed. 531 */ 532 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 533 { 534 struct zswap_header *zhdr; 535 swp_entry_t swpentry; 536 struct zswap_tree *tree; 537 pgoff_t offset; 538 struct zswap_entry *entry; 539 struct page *page; 540 u8 *src, *dst; 541 unsigned int dlen; 542 int ret; 543 struct writeback_control wbc = { 544 .sync_mode = WB_SYNC_NONE, 545 }; 546 547 /* extract swpentry from data */ 548 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 549 swpentry = zhdr->swpentry; /* here */ 550 zpool_unmap_handle(pool, handle); 551 tree = zswap_trees[swp_type(swpentry)]; 552 offset = swp_offset(swpentry); 553 554 /* find and ref zswap entry */ 555 spin_lock(&tree->lock); 556 entry = zswap_entry_find_get(&tree->rbroot, offset); 557 if (!entry) { 558 /* entry was invalidated */ 559 spin_unlock(&tree->lock); 560 return 0; 561 } 562 spin_unlock(&tree->lock); 563 BUG_ON(offset != entry->offset); 564 565 /* try to allocate swap cache page */ 566 switch (zswap_get_swap_cache_page(swpentry, &page)) { 567 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 568 ret = -ENOMEM; 569 goto fail; 570 571 case ZSWAP_SWAPCACHE_EXIST: 572 /* page is already in the swap cache, ignore for now */ 573 page_cache_release(page); 574 ret = -EEXIST; 575 goto fail; 576 577 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 578 /* decompress */ 579 dlen = PAGE_SIZE; 580 src = (u8 *)zpool_map_handle(zswap_pool, entry->handle, 581 ZPOOL_MM_RO) + sizeof(struct zswap_header); 582 dst = kmap_atomic(page); 583 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, 584 entry->length, dst, &dlen); 585 kunmap_atomic(dst); 586 zpool_unmap_handle(zswap_pool, entry->handle); 587 BUG_ON(ret); 588 BUG_ON(dlen != PAGE_SIZE); 589 590 /* page is up to date */ 591 SetPageUptodate(page); 592 } 593 594 /* move it to the tail of the inactive list after end_writeback */ 595 SetPageReclaim(page); 596 597 /* start writeback */ 598 __swap_writepage(page, &wbc, end_swap_bio_write); 599 page_cache_release(page); 600 zswap_written_back_pages++; 601 602 spin_lock(&tree->lock); 603 /* drop local reference */ 604 zswap_entry_put(tree, entry); 605 606 /* 607 * There are two possible situations for entry here: 608 * (1) refcount is 1(normal case), entry is valid and on the tree 609 * (2) refcount is 0, entry is freed and not on the tree 610 * because invalidate happened during writeback 611 * search the tree and free the entry if find entry 612 */ 613 if (entry == zswap_rb_search(&tree->rbroot, offset)) 614 zswap_entry_put(tree, entry); 615 spin_unlock(&tree->lock); 616 617 goto end; 618 619 /* 620 * if we get here due to ZSWAP_SWAPCACHE_EXIST 621 * a load may happening concurrently 622 * it is safe and okay to not free the entry 623 * if we free the entry in the following put 624 * it it either okay to return !0 625 */ 626 fail: 627 spin_lock(&tree->lock); 628 zswap_entry_put(tree, entry); 629 spin_unlock(&tree->lock); 630 631 end: 632 return ret; 633 } 634 635 /********************************* 636 * frontswap hooks 637 **********************************/ 638 /* attempts to compress and store an single page */ 639 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 640 struct page *page) 641 { 642 struct zswap_tree *tree = zswap_trees[type]; 643 struct zswap_entry *entry, *dupentry; 644 int ret; 645 unsigned int dlen = PAGE_SIZE, len; 646 unsigned long handle; 647 char *buf; 648 u8 *src, *dst; 649 struct zswap_header *zhdr; 650 651 if (!tree) { 652 ret = -ENODEV; 653 goto reject; 654 } 655 656 /* reclaim space if needed */ 657 if (zswap_is_full()) { 658 zswap_pool_limit_hit++; 659 if (zpool_shrink(zswap_pool, 1, NULL)) { 660 zswap_reject_reclaim_fail++; 661 ret = -ENOMEM; 662 goto reject; 663 } 664 } 665 666 /* allocate entry */ 667 entry = zswap_entry_cache_alloc(GFP_KERNEL); 668 if (!entry) { 669 zswap_reject_kmemcache_fail++; 670 ret = -ENOMEM; 671 goto reject; 672 } 673 674 /* compress */ 675 dst = get_cpu_var(zswap_dstmem); 676 src = kmap_atomic(page); 677 ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); 678 kunmap_atomic(src); 679 if (ret) { 680 ret = -EINVAL; 681 goto freepage; 682 } 683 684 /* store */ 685 len = dlen + sizeof(struct zswap_header); 686 ret = zpool_malloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN, 687 &handle); 688 if (ret == -ENOSPC) { 689 zswap_reject_compress_poor++; 690 goto freepage; 691 } 692 if (ret) { 693 zswap_reject_alloc_fail++; 694 goto freepage; 695 } 696 zhdr = zpool_map_handle(zswap_pool, handle, ZPOOL_MM_RW); 697 zhdr->swpentry = swp_entry(type, offset); 698 buf = (u8 *)(zhdr + 1); 699 memcpy(buf, dst, dlen); 700 zpool_unmap_handle(zswap_pool, handle); 701 put_cpu_var(zswap_dstmem); 702 703 /* populate entry */ 704 entry->offset = offset; 705 entry->handle = handle; 706 entry->length = dlen; 707 708 /* map */ 709 spin_lock(&tree->lock); 710 do { 711 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 712 if (ret == -EEXIST) { 713 zswap_duplicate_entry++; 714 /* remove from rbtree */ 715 zswap_rb_erase(&tree->rbroot, dupentry); 716 zswap_entry_put(tree, dupentry); 717 } 718 } while (ret == -EEXIST); 719 spin_unlock(&tree->lock); 720 721 /* update stats */ 722 atomic_inc(&zswap_stored_pages); 723 zswap_pool_total_size = zpool_get_total_size(zswap_pool); 724 725 return 0; 726 727 freepage: 728 put_cpu_var(zswap_dstmem); 729 zswap_entry_cache_free(entry); 730 reject: 731 return ret; 732 } 733 734 /* 735 * returns 0 if the page was successfully decompressed 736 * return -1 on entry not found or error 737 */ 738 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 739 struct page *page) 740 { 741 struct zswap_tree *tree = zswap_trees[type]; 742 struct zswap_entry *entry; 743 u8 *src, *dst; 744 unsigned int dlen; 745 int ret; 746 747 /* find */ 748 spin_lock(&tree->lock); 749 entry = zswap_entry_find_get(&tree->rbroot, offset); 750 if (!entry) { 751 /* entry was written back */ 752 spin_unlock(&tree->lock); 753 return -1; 754 } 755 spin_unlock(&tree->lock); 756 757 /* decompress */ 758 dlen = PAGE_SIZE; 759 src = (u8 *)zpool_map_handle(zswap_pool, entry->handle, 760 ZPOOL_MM_RO) + sizeof(struct zswap_header); 761 dst = kmap_atomic(page); 762 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, 763 dst, &dlen); 764 kunmap_atomic(dst); 765 zpool_unmap_handle(zswap_pool, entry->handle); 766 BUG_ON(ret); 767 768 spin_lock(&tree->lock); 769 zswap_entry_put(tree, entry); 770 spin_unlock(&tree->lock); 771 772 return 0; 773 } 774 775 /* frees an entry in zswap */ 776 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 777 { 778 struct zswap_tree *tree = zswap_trees[type]; 779 struct zswap_entry *entry; 780 781 /* find */ 782 spin_lock(&tree->lock); 783 entry = zswap_rb_search(&tree->rbroot, offset); 784 if (!entry) { 785 /* entry was written back */ 786 spin_unlock(&tree->lock); 787 return; 788 } 789 790 /* remove from rbtree */ 791 zswap_rb_erase(&tree->rbroot, entry); 792 793 /* drop the initial reference from entry creation */ 794 zswap_entry_put(tree, entry); 795 796 spin_unlock(&tree->lock); 797 } 798 799 /* frees all zswap entries for the given swap type */ 800 static void zswap_frontswap_invalidate_area(unsigned type) 801 { 802 struct zswap_tree *tree = zswap_trees[type]; 803 struct zswap_entry *entry, *n; 804 805 if (!tree) 806 return; 807 808 /* walk the tree and free everything */ 809 spin_lock(&tree->lock); 810 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 811 zswap_free_entry(entry); 812 tree->rbroot = RB_ROOT; 813 spin_unlock(&tree->lock); 814 kfree(tree); 815 zswap_trees[type] = NULL; 816 } 817 818 static struct zpool_ops zswap_zpool_ops = { 819 .evict = zswap_writeback_entry 820 }; 821 822 static void zswap_frontswap_init(unsigned type) 823 { 824 struct zswap_tree *tree; 825 826 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); 827 if (!tree) { 828 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 829 return; 830 } 831 832 tree->rbroot = RB_ROOT; 833 spin_lock_init(&tree->lock); 834 zswap_trees[type] = tree; 835 } 836 837 static struct frontswap_ops zswap_frontswap_ops = { 838 .store = zswap_frontswap_store, 839 .load = zswap_frontswap_load, 840 .invalidate_page = zswap_frontswap_invalidate_page, 841 .invalidate_area = zswap_frontswap_invalidate_area, 842 .init = zswap_frontswap_init 843 }; 844 845 /********************************* 846 * debugfs functions 847 **********************************/ 848 #ifdef CONFIG_DEBUG_FS 849 #include <linux/debugfs.h> 850 851 static struct dentry *zswap_debugfs_root; 852 853 static int __init zswap_debugfs_init(void) 854 { 855 if (!debugfs_initialized()) 856 return -ENODEV; 857 858 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 859 if (!zswap_debugfs_root) 860 return -ENOMEM; 861 862 debugfs_create_u64("pool_limit_hit", S_IRUGO, 863 zswap_debugfs_root, &zswap_pool_limit_hit); 864 debugfs_create_u64("reject_reclaim_fail", S_IRUGO, 865 zswap_debugfs_root, &zswap_reject_reclaim_fail); 866 debugfs_create_u64("reject_alloc_fail", S_IRUGO, 867 zswap_debugfs_root, &zswap_reject_alloc_fail); 868 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, 869 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 870 debugfs_create_u64("reject_compress_poor", S_IRUGO, 871 zswap_debugfs_root, &zswap_reject_compress_poor); 872 debugfs_create_u64("written_back_pages", S_IRUGO, 873 zswap_debugfs_root, &zswap_written_back_pages); 874 debugfs_create_u64("duplicate_entry", S_IRUGO, 875 zswap_debugfs_root, &zswap_duplicate_entry); 876 debugfs_create_u64("pool_total_size", S_IRUGO, 877 zswap_debugfs_root, &zswap_pool_total_size); 878 debugfs_create_atomic_t("stored_pages", S_IRUGO, 879 zswap_debugfs_root, &zswap_stored_pages); 880 881 return 0; 882 } 883 884 static void __exit zswap_debugfs_exit(void) 885 { 886 debugfs_remove_recursive(zswap_debugfs_root); 887 } 888 #else 889 static int __init zswap_debugfs_init(void) 890 { 891 return 0; 892 } 893 894 static void __exit zswap_debugfs_exit(void) { } 895 #endif 896 897 /********************************* 898 * module init and exit 899 **********************************/ 900 static int __init init_zswap(void) 901 { 902 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN; 903 904 if (!zswap_enabled) 905 return 0; 906 907 pr_info("loading zswap\n"); 908 909 zswap_pool = zpool_create_pool(zswap_zpool_type, gfp, &zswap_zpool_ops); 910 if (!zswap_pool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) { 911 pr_info("%s zpool not available\n", zswap_zpool_type); 912 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT; 913 zswap_pool = zpool_create_pool(zswap_zpool_type, gfp, 914 &zswap_zpool_ops); 915 } 916 if (!zswap_pool) { 917 pr_err("%s zpool not available\n", zswap_zpool_type); 918 pr_err("zpool creation failed\n"); 919 goto error; 920 } 921 pr_info("using %s pool\n", zswap_zpool_type); 922 923 if (zswap_entry_cache_create()) { 924 pr_err("entry cache creation failed\n"); 925 goto cachefail; 926 } 927 if (zswap_comp_init()) { 928 pr_err("compressor initialization failed\n"); 929 goto compfail; 930 } 931 if (zswap_cpu_init()) { 932 pr_err("per-cpu initialization failed\n"); 933 goto pcpufail; 934 } 935 936 frontswap_register_ops(&zswap_frontswap_ops); 937 if (zswap_debugfs_init()) 938 pr_warn("debugfs initialization failed\n"); 939 return 0; 940 pcpufail: 941 zswap_comp_exit(); 942 compfail: 943 zswap_entry_cache_destroy(); 944 cachefail: 945 zpool_destroy_pool(zswap_pool); 946 error: 947 return -ENOMEM; 948 } 949 /* must be late so crypto has time to come up */ 950 late_initcall(init_zswap); 951 952 MODULE_LICENSE("GPL"); 953 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 954 MODULE_DESCRIPTION("Compressed cache for swap pages"); 955