1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * zswap.c - zswap driver file 4 * 5 * zswap is a backend for frontswap that takes pages that are in the process 6 * of being swapped out and attempts to compress and store them in a 7 * RAM-based memory pool. This can result in a significant I/O reduction on 8 * the swap device and, in the case where decompressing from RAM is faster 9 * than reading from the swap device, can also improve workload performance. 10 * 11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/highmem.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/types.h> 22 #include <linux/atomic.h> 23 #include <linux/frontswap.h> 24 #include <linux/rbtree.h> 25 #include <linux/swap.h> 26 #include <linux/crypto.h> 27 #include <linux/scatterlist.h> 28 #include <linux/mempool.h> 29 #include <linux/zpool.h> 30 #include <crypto/acompress.h> 31 32 #include <linux/mm_types.h> 33 #include <linux/page-flags.h> 34 #include <linux/swapops.h> 35 #include <linux/writeback.h> 36 #include <linux/pagemap.h> 37 #include <linux/workqueue.h> 38 39 #include "swap.h" 40 41 /********************************* 42 * statistics 43 **********************************/ 44 /* Total bytes used by the compressed storage */ 45 u64 zswap_pool_total_size; 46 /* The number of compressed pages currently stored in zswap */ 47 atomic_t zswap_stored_pages = ATOMIC_INIT(0); 48 /* The number of same-value filled pages currently stored in zswap */ 49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0); 50 51 /* 52 * The statistics below are not protected from concurrent access for 53 * performance reasons so they may not be a 100% accurate. However, 54 * they do provide useful information on roughly how many times a 55 * certain event is occurring. 56 */ 57 58 /* Pool limit was hit (see zswap_max_pool_percent) */ 59 static u64 zswap_pool_limit_hit; 60 /* Pages written back when pool limit was reached */ 61 static u64 zswap_written_back_pages; 62 /* Store failed due to a reclaim failure after pool limit was reached */ 63 static u64 zswap_reject_reclaim_fail; 64 /* Compressed page was too big for the allocator to (optimally) store */ 65 static u64 zswap_reject_compress_poor; 66 /* Store failed because underlying allocator could not get memory */ 67 static u64 zswap_reject_alloc_fail; 68 /* Store failed because the entry metadata could not be allocated (rare) */ 69 static u64 zswap_reject_kmemcache_fail; 70 /* Duplicate store was encountered (rare) */ 71 static u64 zswap_duplicate_entry; 72 73 /* Shrinker work queue */ 74 static struct workqueue_struct *shrink_wq; 75 /* Pool limit was hit, we need to calm down */ 76 static bool zswap_pool_reached_full; 77 78 /********************************* 79 * tunables 80 **********************************/ 81 82 #define ZSWAP_PARAM_UNSET "" 83 84 static int zswap_setup(void); 85 86 /* Enable/disable zswap */ 87 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); 88 static int zswap_enabled_param_set(const char *, 89 const struct kernel_param *); 90 static const struct kernel_param_ops zswap_enabled_param_ops = { 91 .set = zswap_enabled_param_set, 92 .get = param_get_bool, 93 }; 94 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); 95 96 /* Crypto compressor to use */ 97 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 98 static int zswap_compressor_param_set(const char *, 99 const struct kernel_param *); 100 static const struct kernel_param_ops zswap_compressor_param_ops = { 101 .set = zswap_compressor_param_set, 102 .get = param_get_charp, 103 .free = param_free_charp, 104 }; 105 module_param_cb(compressor, &zswap_compressor_param_ops, 106 &zswap_compressor, 0644); 107 108 /* Compressed storage zpool to use */ 109 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 110 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 111 static const struct kernel_param_ops zswap_zpool_param_ops = { 112 .set = zswap_zpool_param_set, 113 .get = param_get_charp, 114 .free = param_free_charp, 115 }; 116 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); 117 118 /* The maximum percentage of memory that the compressed pool can occupy */ 119 static unsigned int zswap_max_pool_percent = 20; 120 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 121 122 /* The threshold for accepting new pages after the max_pool_percent was hit */ 123 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ 124 module_param_named(accept_threshold_percent, zswap_accept_thr_percent, 125 uint, 0644); 126 127 /* 128 * Enable/disable handling same-value filled pages (enabled by default). 129 * If disabled every page is considered non-same-value filled. 130 */ 131 static bool zswap_same_filled_pages_enabled = true; 132 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled, 133 bool, 0644); 134 135 /* Enable/disable handling non-same-value filled pages (enabled by default) */ 136 static bool zswap_non_same_filled_pages_enabled = true; 137 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled, 138 bool, 0644); 139 140 /********************************* 141 * data structures 142 **********************************/ 143 144 struct crypto_acomp_ctx { 145 struct crypto_acomp *acomp; 146 struct acomp_req *req; 147 struct crypto_wait wait; 148 u8 *dstmem; 149 struct mutex *mutex; 150 }; 151 152 struct zswap_pool { 153 struct zpool *zpool; 154 struct crypto_acomp_ctx __percpu *acomp_ctx; 155 struct kref kref; 156 struct list_head list; 157 struct work_struct release_work; 158 struct work_struct shrink_work; 159 struct hlist_node node; 160 char tfm_name[CRYPTO_MAX_ALG_NAME]; 161 }; 162 163 /* 164 * struct zswap_entry 165 * 166 * This structure contains the metadata for tracking a single compressed 167 * page within zswap. 168 * 169 * rbnode - links the entry into red-black tree for the appropriate swap type 170 * offset - the swap offset for the entry. Index into the red-black tree. 171 * refcount - the number of outstanding reference to the entry. This is needed 172 * to protect against premature freeing of the entry by code 173 * concurrent calls to load, invalidate, and writeback. The lock 174 * for the zswap_tree structure that contains the entry must 175 * be held while changing the refcount. Since the lock must 176 * be held, there is no reason to also make refcount atomic. 177 * length - the length in bytes of the compressed page data. Needed during 178 * decompression. For a same value filled page length is 0. 179 * pool - the zswap_pool the entry's data is in 180 * handle - zpool allocation handle that stores the compressed page data 181 * value - value of the same-value filled pages which have same content 182 */ 183 struct zswap_entry { 184 struct rb_node rbnode; 185 pgoff_t offset; 186 int refcount; 187 unsigned int length; 188 struct zswap_pool *pool; 189 union { 190 unsigned long handle; 191 unsigned long value; 192 }; 193 struct obj_cgroup *objcg; 194 }; 195 196 struct zswap_header { 197 swp_entry_t swpentry; 198 }; 199 200 /* 201 * The tree lock in the zswap_tree struct protects a few things: 202 * - the rbtree 203 * - the refcount field of each entry in the tree 204 */ 205 struct zswap_tree { 206 struct rb_root rbroot; 207 spinlock_t lock; 208 }; 209 210 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 211 212 /* RCU-protected iteration */ 213 static LIST_HEAD(zswap_pools); 214 /* protects zswap_pools list modification */ 215 static DEFINE_SPINLOCK(zswap_pools_lock); 216 /* pool counter to provide unique names to zpool */ 217 static atomic_t zswap_pools_count = ATOMIC_INIT(0); 218 219 enum zswap_init_type { 220 ZSWAP_UNINIT, 221 ZSWAP_INIT_SUCCEED, 222 ZSWAP_INIT_FAILED 223 }; 224 225 static enum zswap_init_type zswap_init_state; 226 227 /* used to ensure the integrity of initialization */ 228 static DEFINE_MUTEX(zswap_init_lock); 229 230 /* init completed, but couldn't create the initial pool */ 231 static bool zswap_has_pool; 232 233 /********************************* 234 * helpers and fwd declarations 235 **********************************/ 236 237 #define zswap_pool_debug(msg, p) \ 238 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 239 zpool_get_type((p)->zpool)) 240 241 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle); 242 static int zswap_pool_get(struct zswap_pool *pool); 243 static void zswap_pool_put(struct zswap_pool *pool); 244 245 static const struct zpool_ops zswap_zpool_ops = { 246 .evict = zswap_writeback_entry 247 }; 248 249 static bool zswap_is_full(void) 250 { 251 return totalram_pages() * zswap_max_pool_percent / 100 < 252 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 253 } 254 255 static bool zswap_can_accept(void) 256 { 257 return totalram_pages() * zswap_accept_thr_percent / 100 * 258 zswap_max_pool_percent / 100 > 259 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 260 } 261 262 static void zswap_update_total_size(void) 263 { 264 struct zswap_pool *pool; 265 u64 total = 0; 266 267 rcu_read_lock(); 268 269 list_for_each_entry_rcu(pool, &zswap_pools, list) 270 total += zpool_get_total_size(pool->zpool); 271 272 rcu_read_unlock(); 273 274 zswap_pool_total_size = total; 275 } 276 277 /********************************* 278 * zswap entry functions 279 **********************************/ 280 static struct kmem_cache *zswap_entry_cache; 281 282 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 283 { 284 struct zswap_entry *entry; 285 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 286 if (!entry) 287 return NULL; 288 entry->refcount = 1; 289 RB_CLEAR_NODE(&entry->rbnode); 290 return entry; 291 } 292 293 static void zswap_entry_cache_free(struct zswap_entry *entry) 294 { 295 kmem_cache_free(zswap_entry_cache, entry); 296 } 297 298 /********************************* 299 * rbtree functions 300 **********************************/ 301 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 302 { 303 struct rb_node *node = root->rb_node; 304 struct zswap_entry *entry; 305 306 while (node) { 307 entry = rb_entry(node, struct zswap_entry, rbnode); 308 if (entry->offset > offset) 309 node = node->rb_left; 310 else if (entry->offset < offset) 311 node = node->rb_right; 312 else 313 return entry; 314 } 315 return NULL; 316 } 317 318 /* 319 * In the case that a entry with the same offset is found, a pointer to 320 * the existing entry is stored in dupentry and the function returns -EEXIST 321 */ 322 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 323 struct zswap_entry **dupentry) 324 { 325 struct rb_node **link = &root->rb_node, *parent = NULL; 326 struct zswap_entry *myentry; 327 328 while (*link) { 329 parent = *link; 330 myentry = rb_entry(parent, struct zswap_entry, rbnode); 331 if (myentry->offset > entry->offset) 332 link = &(*link)->rb_left; 333 else if (myentry->offset < entry->offset) 334 link = &(*link)->rb_right; 335 else { 336 *dupentry = myentry; 337 return -EEXIST; 338 } 339 } 340 rb_link_node(&entry->rbnode, parent, link); 341 rb_insert_color(&entry->rbnode, root); 342 return 0; 343 } 344 345 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 346 { 347 if (!RB_EMPTY_NODE(&entry->rbnode)) { 348 rb_erase(&entry->rbnode, root); 349 RB_CLEAR_NODE(&entry->rbnode); 350 } 351 } 352 353 /* 354 * Carries out the common pattern of freeing and entry's zpool allocation, 355 * freeing the entry itself, and decrementing the number of stored pages. 356 */ 357 static void zswap_free_entry(struct zswap_entry *entry) 358 { 359 if (entry->objcg) { 360 obj_cgroup_uncharge_zswap(entry->objcg, entry->length); 361 obj_cgroup_put(entry->objcg); 362 } 363 if (!entry->length) 364 atomic_dec(&zswap_same_filled_pages); 365 else { 366 zpool_free(entry->pool->zpool, entry->handle); 367 zswap_pool_put(entry->pool); 368 } 369 zswap_entry_cache_free(entry); 370 atomic_dec(&zswap_stored_pages); 371 zswap_update_total_size(); 372 } 373 374 /* caller must hold the tree lock */ 375 static void zswap_entry_get(struct zswap_entry *entry) 376 { 377 entry->refcount++; 378 } 379 380 /* caller must hold the tree lock 381 * remove from the tree and free it, if nobody reference the entry 382 */ 383 static void zswap_entry_put(struct zswap_tree *tree, 384 struct zswap_entry *entry) 385 { 386 int refcount = --entry->refcount; 387 388 BUG_ON(refcount < 0); 389 if (refcount == 0) { 390 zswap_rb_erase(&tree->rbroot, entry); 391 zswap_free_entry(entry); 392 } 393 } 394 395 /* caller must hold the tree lock */ 396 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 397 pgoff_t offset) 398 { 399 struct zswap_entry *entry; 400 401 entry = zswap_rb_search(root, offset); 402 if (entry) 403 zswap_entry_get(entry); 404 405 return entry; 406 } 407 408 /********************************* 409 * per-cpu code 410 **********************************/ 411 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 412 /* 413 * If users dynamically change the zpool type and compressor at runtime, i.e. 414 * zswap is running, zswap can have more than one zpool on one cpu, but they 415 * are sharing dtsmem. So we need this mutex to be per-cpu. 416 */ 417 static DEFINE_PER_CPU(struct mutex *, zswap_mutex); 418 419 static int zswap_dstmem_prepare(unsigned int cpu) 420 { 421 struct mutex *mutex; 422 u8 *dst; 423 424 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 425 if (!dst) 426 return -ENOMEM; 427 428 mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu)); 429 if (!mutex) { 430 kfree(dst); 431 return -ENOMEM; 432 } 433 434 mutex_init(mutex); 435 per_cpu(zswap_dstmem, cpu) = dst; 436 per_cpu(zswap_mutex, cpu) = mutex; 437 return 0; 438 } 439 440 static int zswap_dstmem_dead(unsigned int cpu) 441 { 442 struct mutex *mutex; 443 u8 *dst; 444 445 mutex = per_cpu(zswap_mutex, cpu); 446 kfree(mutex); 447 per_cpu(zswap_mutex, cpu) = NULL; 448 449 dst = per_cpu(zswap_dstmem, cpu); 450 kfree(dst); 451 per_cpu(zswap_dstmem, cpu) = NULL; 452 453 return 0; 454 } 455 456 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) 457 { 458 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 459 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 460 struct crypto_acomp *acomp; 461 struct acomp_req *req; 462 463 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); 464 if (IS_ERR(acomp)) { 465 pr_err("could not alloc crypto acomp %s : %ld\n", 466 pool->tfm_name, PTR_ERR(acomp)); 467 return PTR_ERR(acomp); 468 } 469 acomp_ctx->acomp = acomp; 470 471 req = acomp_request_alloc(acomp_ctx->acomp); 472 if (!req) { 473 pr_err("could not alloc crypto acomp_request %s\n", 474 pool->tfm_name); 475 crypto_free_acomp(acomp_ctx->acomp); 476 return -ENOMEM; 477 } 478 acomp_ctx->req = req; 479 480 crypto_init_wait(&acomp_ctx->wait); 481 /* 482 * if the backend of acomp is async zip, crypto_req_done() will wakeup 483 * crypto_wait_req(); if the backend of acomp is scomp, the callback 484 * won't be called, crypto_wait_req() will return without blocking. 485 */ 486 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 487 crypto_req_done, &acomp_ctx->wait); 488 489 acomp_ctx->mutex = per_cpu(zswap_mutex, cpu); 490 acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu); 491 492 return 0; 493 } 494 495 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) 496 { 497 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); 498 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); 499 500 if (!IS_ERR_OR_NULL(acomp_ctx)) { 501 if (!IS_ERR_OR_NULL(acomp_ctx->req)) 502 acomp_request_free(acomp_ctx->req); 503 if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) 504 crypto_free_acomp(acomp_ctx->acomp); 505 } 506 507 return 0; 508 } 509 510 /********************************* 511 * pool functions 512 **********************************/ 513 514 static struct zswap_pool *__zswap_pool_current(void) 515 { 516 struct zswap_pool *pool; 517 518 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 519 WARN_ONCE(!pool && zswap_has_pool, 520 "%s: no page storage pool!\n", __func__); 521 522 return pool; 523 } 524 525 static struct zswap_pool *zswap_pool_current(void) 526 { 527 assert_spin_locked(&zswap_pools_lock); 528 529 return __zswap_pool_current(); 530 } 531 532 static struct zswap_pool *zswap_pool_current_get(void) 533 { 534 struct zswap_pool *pool; 535 536 rcu_read_lock(); 537 538 pool = __zswap_pool_current(); 539 if (!zswap_pool_get(pool)) 540 pool = NULL; 541 542 rcu_read_unlock(); 543 544 return pool; 545 } 546 547 static struct zswap_pool *zswap_pool_last_get(void) 548 { 549 struct zswap_pool *pool, *last = NULL; 550 551 rcu_read_lock(); 552 553 list_for_each_entry_rcu(pool, &zswap_pools, list) 554 last = pool; 555 WARN_ONCE(!last && zswap_has_pool, 556 "%s: no page storage pool!\n", __func__); 557 if (!zswap_pool_get(last)) 558 last = NULL; 559 560 rcu_read_unlock(); 561 562 return last; 563 } 564 565 /* type and compressor must be null-terminated */ 566 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 567 { 568 struct zswap_pool *pool; 569 570 assert_spin_locked(&zswap_pools_lock); 571 572 list_for_each_entry_rcu(pool, &zswap_pools, list) { 573 if (strcmp(pool->tfm_name, compressor)) 574 continue; 575 if (strcmp(zpool_get_type(pool->zpool), type)) 576 continue; 577 /* if we can't get it, it's about to be destroyed */ 578 if (!zswap_pool_get(pool)) 579 continue; 580 return pool; 581 } 582 583 return NULL; 584 } 585 586 static void shrink_worker(struct work_struct *w) 587 { 588 struct zswap_pool *pool = container_of(w, typeof(*pool), 589 shrink_work); 590 591 if (zpool_shrink(pool->zpool, 1, NULL)) 592 zswap_reject_reclaim_fail++; 593 zswap_pool_put(pool); 594 } 595 596 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 597 { 598 struct zswap_pool *pool; 599 char name[38]; /* 'zswap' + 32 char (max) num + \0 */ 600 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 601 int ret; 602 603 if (!zswap_has_pool) { 604 /* if either are unset, pool initialization failed, and we 605 * need both params to be set correctly before trying to 606 * create a pool. 607 */ 608 if (!strcmp(type, ZSWAP_PARAM_UNSET)) 609 return NULL; 610 if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) 611 return NULL; 612 } 613 614 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 615 if (!pool) 616 return NULL; 617 618 /* unique name for each pool specifically required by zsmalloc */ 619 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); 620 621 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops); 622 if (!pool->zpool) { 623 pr_err("%s zpool not available\n", type); 624 goto error; 625 } 626 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 627 628 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 629 630 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); 631 if (!pool->acomp_ctx) { 632 pr_err("percpu alloc failed\n"); 633 goto error; 634 } 635 636 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, 637 &pool->node); 638 if (ret) 639 goto error; 640 pr_debug("using %s compressor\n", pool->tfm_name); 641 642 /* being the current pool takes 1 ref; this func expects the 643 * caller to always add the new pool as the current pool 644 */ 645 kref_init(&pool->kref); 646 INIT_LIST_HEAD(&pool->list); 647 INIT_WORK(&pool->shrink_work, shrink_worker); 648 649 zswap_pool_debug("created", pool); 650 651 return pool; 652 653 error: 654 if (pool->acomp_ctx) 655 free_percpu(pool->acomp_ctx); 656 if (pool->zpool) 657 zpool_destroy_pool(pool->zpool); 658 kfree(pool); 659 return NULL; 660 } 661 662 static struct zswap_pool *__zswap_pool_create_fallback(void) 663 { 664 bool has_comp, has_zpool; 665 666 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 667 if (!has_comp && strcmp(zswap_compressor, 668 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { 669 pr_err("compressor %s not available, using default %s\n", 670 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); 671 param_free_charp(&zswap_compressor); 672 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; 673 has_comp = crypto_has_acomp(zswap_compressor, 0, 0); 674 } 675 if (!has_comp) { 676 pr_err("default compressor %s not available\n", 677 zswap_compressor); 678 param_free_charp(&zswap_compressor); 679 zswap_compressor = ZSWAP_PARAM_UNSET; 680 } 681 682 has_zpool = zpool_has_pool(zswap_zpool_type); 683 if (!has_zpool && strcmp(zswap_zpool_type, 684 CONFIG_ZSWAP_ZPOOL_DEFAULT)) { 685 pr_err("zpool %s not available, using default %s\n", 686 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); 687 param_free_charp(&zswap_zpool_type); 688 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; 689 has_zpool = zpool_has_pool(zswap_zpool_type); 690 } 691 if (!has_zpool) { 692 pr_err("default zpool %s not available\n", 693 zswap_zpool_type); 694 param_free_charp(&zswap_zpool_type); 695 zswap_zpool_type = ZSWAP_PARAM_UNSET; 696 } 697 698 if (!has_comp || !has_zpool) 699 return NULL; 700 701 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 702 } 703 704 static void zswap_pool_destroy(struct zswap_pool *pool) 705 { 706 zswap_pool_debug("destroying", pool); 707 708 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); 709 free_percpu(pool->acomp_ctx); 710 zpool_destroy_pool(pool->zpool); 711 kfree(pool); 712 } 713 714 static int __must_check zswap_pool_get(struct zswap_pool *pool) 715 { 716 if (!pool) 717 return 0; 718 719 return kref_get_unless_zero(&pool->kref); 720 } 721 722 static void __zswap_pool_release(struct work_struct *work) 723 { 724 struct zswap_pool *pool = container_of(work, typeof(*pool), 725 release_work); 726 727 synchronize_rcu(); 728 729 /* nobody should have been able to get a kref... */ 730 WARN_ON(kref_get_unless_zero(&pool->kref)); 731 732 /* pool is now off zswap_pools list and has no references. */ 733 zswap_pool_destroy(pool); 734 } 735 736 static void __zswap_pool_empty(struct kref *kref) 737 { 738 struct zswap_pool *pool; 739 740 pool = container_of(kref, typeof(*pool), kref); 741 742 spin_lock(&zswap_pools_lock); 743 744 WARN_ON(pool == zswap_pool_current()); 745 746 list_del_rcu(&pool->list); 747 748 INIT_WORK(&pool->release_work, __zswap_pool_release); 749 schedule_work(&pool->release_work); 750 751 spin_unlock(&zswap_pools_lock); 752 } 753 754 static void zswap_pool_put(struct zswap_pool *pool) 755 { 756 kref_put(&pool->kref, __zswap_pool_empty); 757 } 758 759 /********************************* 760 * param callbacks 761 **********************************/ 762 763 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) 764 { 765 /* no change required */ 766 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) 767 return false; 768 return true; 769 } 770 771 /* val must be a null-terminated string */ 772 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 773 char *type, char *compressor) 774 { 775 struct zswap_pool *pool, *put_pool = NULL; 776 char *s = strstrip((char *)val); 777 int ret = 0; 778 bool new_pool = false; 779 780 mutex_lock(&zswap_init_lock); 781 switch (zswap_init_state) { 782 case ZSWAP_UNINIT: 783 /* if this is load-time (pre-init) param setting, 784 * don't create a pool; that's done during init. 785 */ 786 ret = param_set_charp(s, kp); 787 break; 788 case ZSWAP_INIT_SUCCEED: 789 new_pool = zswap_pool_changed(s, kp); 790 break; 791 case ZSWAP_INIT_FAILED: 792 pr_err("can't set param, initialization failed\n"); 793 ret = -ENODEV; 794 } 795 mutex_unlock(&zswap_init_lock); 796 797 /* no need to create a new pool, return directly */ 798 if (!new_pool) 799 return ret; 800 801 if (!type) { 802 if (!zpool_has_pool(s)) { 803 pr_err("zpool %s not available\n", s); 804 return -ENOENT; 805 } 806 type = s; 807 } else if (!compressor) { 808 if (!crypto_has_acomp(s, 0, 0)) { 809 pr_err("compressor %s not available\n", s); 810 return -ENOENT; 811 } 812 compressor = s; 813 } else { 814 WARN_ON(1); 815 return -EINVAL; 816 } 817 818 spin_lock(&zswap_pools_lock); 819 820 pool = zswap_pool_find_get(type, compressor); 821 if (pool) { 822 zswap_pool_debug("using existing", pool); 823 WARN_ON(pool == zswap_pool_current()); 824 list_del_rcu(&pool->list); 825 } 826 827 spin_unlock(&zswap_pools_lock); 828 829 if (!pool) 830 pool = zswap_pool_create(type, compressor); 831 832 if (pool) 833 ret = param_set_charp(s, kp); 834 else 835 ret = -EINVAL; 836 837 spin_lock(&zswap_pools_lock); 838 839 if (!ret) { 840 put_pool = zswap_pool_current(); 841 list_add_rcu(&pool->list, &zswap_pools); 842 zswap_has_pool = true; 843 } else if (pool) { 844 /* add the possibly pre-existing pool to the end of the pools 845 * list; if it's new (and empty) then it'll be removed and 846 * destroyed by the put after we drop the lock 847 */ 848 list_add_tail_rcu(&pool->list, &zswap_pools); 849 put_pool = pool; 850 } 851 852 spin_unlock(&zswap_pools_lock); 853 854 if (!zswap_has_pool && !pool) { 855 /* if initial pool creation failed, and this pool creation also 856 * failed, maybe both compressor and zpool params were bad. 857 * Allow changing this param, so pool creation will succeed 858 * when the other param is changed. We already verified this 859 * param is ok in the zpool_has_pool() or crypto_has_acomp() 860 * checks above. 861 */ 862 ret = param_set_charp(s, kp); 863 } 864 865 /* drop the ref from either the old current pool, 866 * or the new pool we failed to add 867 */ 868 if (put_pool) 869 zswap_pool_put(put_pool); 870 871 return ret; 872 } 873 874 static int zswap_compressor_param_set(const char *val, 875 const struct kernel_param *kp) 876 { 877 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 878 } 879 880 static int zswap_zpool_param_set(const char *val, 881 const struct kernel_param *kp) 882 { 883 return __zswap_param_set(val, kp, NULL, zswap_compressor); 884 } 885 886 static int zswap_enabled_param_set(const char *val, 887 const struct kernel_param *kp) 888 { 889 int ret = -ENODEV; 890 891 /* if this is load-time (pre-init) param setting, only set param. */ 892 if (system_state != SYSTEM_RUNNING) 893 return param_set_bool(val, kp); 894 895 mutex_lock(&zswap_init_lock); 896 switch (zswap_init_state) { 897 case ZSWAP_UNINIT: 898 if (zswap_setup()) 899 break; 900 fallthrough; 901 case ZSWAP_INIT_SUCCEED: 902 if (!zswap_has_pool) 903 pr_err("can't enable, no pool configured\n"); 904 else 905 ret = param_set_bool(val, kp); 906 break; 907 case ZSWAP_INIT_FAILED: 908 pr_err("can't enable, initialization failed\n"); 909 } 910 mutex_unlock(&zswap_init_lock); 911 912 return ret; 913 } 914 915 /********************************* 916 * writeback code 917 **********************************/ 918 /* return enum for zswap_get_swap_cache_page */ 919 enum zswap_get_swap_ret { 920 ZSWAP_SWAPCACHE_NEW, 921 ZSWAP_SWAPCACHE_EXIST, 922 ZSWAP_SWAPCACHE_FAIL, 923 }; 924 925 /* 926 * zswap_get_swap_cache_page 927 * 928 * This is an adaption of read_swap_cache_async() 929 * 930 * This function tries to find a page with the given swap entry 931 * in the swapper_space address space (the swap cache). If the page 932 * is found, it is returned in retpage. Otherwise, a page is allocated, 933 * added to the swap cache, and returned in retpage. 934 * 935 * If success, the swap cache page is returned in retpage 936 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 937 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 938 * the new page is added to swapcache and locked 939 * Returns ZSWAP_SWAPCACHE_FAIL on error 940 */ 941 static int zswap_get_swap_cache_page(swp_entry_t entry, 942 struct page **retpage) 943 { 944 bool page_was_allocated; 945 946 *retpage = __read_swap_cache_async(entry, GFP_KERNEL, 947 NULL, 0, &page_was_allocated); 948 if (page_was_allocated) 949 return ZSWAP_SWAPCACHE_NEW; 950 if (!*retpage) 951 return ZSWAP_SWAPCACHE_FAIL; 952 return ZSWAP_SWAPCACHE_EXIST; 953 } 954 955 /* 956 * Attempts to free an entry by adding a page to the swap cache, 957 * decompressing the entry data into the page, and issuing a 958 * bio write to write the page back to the swap device. 959 * 960 * This can be thought of as a "resumed writeback" of the page 961 * to the swap device. We are basically resuming the same swap 962 * writeback path that was intercepted with the frontswap_store() 963 * in the first place. After the page has been decompressed into 964 * the swap cache, the compressed version stored by zswap can be 965 * freed. 966 */ 967 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 968 { 969 struct zswap_header *zhdr; 970 swp_entry_t swpentry; 971 struct zswap_tree *tree; 972 pgoff_t offset; 973 struct zswap_entry *entry; 974 struct page *page; 975 struct scatterlist input, output; 976 struct crypto_acomp_ctx *acomp_ctx; 977 978 u8 *src, *tmp = NULL; 979 unsigned int dlen; 980 int ret; 981 struct writeback_control wbc = { 982 .sync_mode = WB_SYNC_NONE, 983 }; 984 985 if (!zpool_can_sleep_mapped(pool)) { 986 tmp = kmalloc(PAGE_SIZE, GFP_KERNEL); 987 if (!tmp) 988 return -ENOMEM; 989 } 990 991 /* extract swpentry from data */ 992 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 993 swpentry = zhdr->swpentry; /* here */ 994 tree = zswap_trees[swp_type(swpentry)]; 995 offset = swp_offset(swpentry); 996 zpool_unmap_handle(pool, handle); 997 998 /* find and ref zswap entry */ 999 spin_lock(&tree->lock); 1000 entry = zswap_entry_find_get(&tree->rbroot, offset); 1001 if (!entry) { 1002 /* entry was invalidated */ 1003 spin_unlock(&tree->lock); 1004 kfree(tmp); 1005 return 0; 1006 } 1007 spin_unlock(&tree->lock); 1008 BUG_ON(offset != entry->offset); 1009 1010 /* try to allocate swap cache page */ 1011 switch (zswap_get_swap_cache_page(swpentry, &page)) { 1012 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 1013 ret = -ENOMEM; 1014 goto fail; 1015 1016 case ZSWAP_SWAPCACHE_EXIST: 1017 /* page is already in the swap cache, ignore for now */ 1018 put_page(page); 1019 ret = -EEXIST; 1020 goto fail; 1021 1022 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 1023 /* decompress */ 1024 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 1025 dlen = PAGE_SIZE; 1026 1027 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 1028 src = (u8 *)zhdr + sizeof(struct zswap_header); 1029 if (!zpool_can_sleep_mapped(pool)) { 1030 memcpy(tmp, src, entry->length); 1031 src = tmp; 1032 zpool_unmap_handle(pool, handle); 1033 } 1034 1035 mutex_lock(acomp_ctx->mutex); 1036 sg_init_one(&input, src, entry->length); 1037 sg_init_table(&output, 1); 1038 sg_set_page(&output, page, PAGE_SIZE, 0); 1039 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen); 1040 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 1041 dlen = acomp_ctx->req->dlen; 1042 mutex_unlock(acomp_ctx->mutex); 1043 1044 if (!zpool_can_sleep_mapped(pool)) 1045 kfree(tmp); 1046 else 1047 zpool_unmap_handle(pool, handle); 1048 1049 BUG_ON(ret); 1050 BUG_ON(dlen != PAGE_SIZE); 1051 1052 /* page is up to date */ 1053 SetPageUptodate(page); 1054 } 1055 1056 /* move it to the tail of the inactive list after end_writeback */ 1057 SetPageReclaim(page); 1058 1059 /* start writeback */ 1060 __swap_writepage(page, &wbc); 1061 put_page(page); 1062 zswap_written_back_pages++; 1063 1064 spin_lock(&tree->lock); 1065 /* drop local reference */ 1066 zswap_entry_put(tree, entry); 1067 1068 /* 1069 * There are two possible situations for entry here: 1070 * (1) refcount is 1(normal case), entry is valid and on the tree 1071 * (2) refcount is 0, entry is freed and not on the tree 1072 * because invalidate happened during writeback 1073 * search the tree and free the entry if find entry 1074 */ 1075 if (entry == zswap_rb_search(&tree->rbroot, offset)) 1076 zswap_entry_put(tree, entry); 1077 spin_unlock(&tree->lock); 1078 1079 return ret; 1080 1081 fail: 1082 if (!zpool_can_sleep_mapped(pool)) 1083 kfree(tmp); 1084 1085 /* 1086 * if we get here due to ZSWAP_SWAPCACHE_EXIST 1087 * a load may be happening concurrently. 1088 * it is safe and okay to not free the entry. 1089 * if we free the entry in the following put 1090 * it is also okay to return !0 1091 */ 1092 spin_lock(&tree->lock); 1093 zswap_entry_put(tree, entry); 1094 spin_unlock(&tree->lock); 1095 1096 return ret; 1097 } 1098 1099 static int zswap_is_page_same_filled(void *ptr, unsigned long *value) 1100 { 1101 unsigned long *page; 1102 unsigned long val; 1103 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; 1104 1105 page = (unsigned long *)ptr; 1106 val = page[0]; 1107 1108 if (val != page[last_pos]) 1109 return 0; 1110 1111 for (pos = 1; pos < last_pos; pos++) { 1112 if (val != page[pos]) 1113 return 0; 1114 } 1115 1116 *value = val; 1117 1118 return 1; 1119 } 1120 1121 static void zswap_fill_page(void *ptr, unsigned long value) 1122 { 1123 unsigned long *page; 1124 1125 page = (unsigned long *)ptr; 1126 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long)); 1127 } 1128 1129 /********************************* 1130 * frontswap hooks 1131 **********************************/ 1132 /* attempts to compress and store an single page */ 1133 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 1134 struct page *page) 1135 { 1136 struct zswap_tree *tree = zswap_trees[type]; 1137 struct zswap_entry *entry, *dupentry; 1138 struct scatterlist input, output; 1139 struct crypto_acomp_ctx *acomp_ctx; 1140 struct obj_cgroup *objcg = NULL; 1141 struct zswap_pool *pool; 1142 int ret; 1143 unsigned int hlen, dlen = PAGE_SIZE; 1144 unsigned long handle, value; 1145 char *buf; 1146 u8 *src, *dst; 1147 struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) }; 1148 gfp_t gfp; 1149 1150 /* THP isn't supported */ 1151 if (PageTransHuge(page)) { 1152 ret = -EINVAL; 1153 goto reject; 1154 } 1155 1156 if (!zswap_enabled || !tree) { 1157 ret = -ENODEV; 1158 goto reject; 1159 } 1160 1161 objcg = get_obj_cgroup_from_page(page); 1162 if (objcg && !obj_cgroup_may_zswap(objcg)) 1163 goto shrink; 1164 1165 /* reclaim space if needed */ 1166 if (zswap_is_full()) { 1167 zswap_pool_limit_hit++; 1168 zswap_pool_reached_full = true; 1169 goto shrink; 1170 } 1171 1172 if (zswap_pool_reached_full) { 1173 if (!zswap_can_accept()) { 1174 ret = -ENOMEM; 1175 goto reject; 1176 } else 1177 zswap_pool_reached_full = false; 1178 } 1179 1180 /* allocate entry */ 1181 entry = zswap_entry_cache_alloc(GFP_KERNEL); 1182 if (!entry) { 1183 zswap_reject_kmemcache_fail++; 1184 ret = -ENOMEM; 1185 goto reject; 1186 } 1187 1188 if (zswap_same_filled_pages_enabled) { 1189 src = kmap_atomic(page); 1190 if (zswap_is_page_same_filled(src, &value)) { 1191 kunmap_atomic(src); 1192 entry->offset = offset; 1193 entry->length = 0; 1194 entry->value = value; 1195 atomic_inc(&zswap_same_filled_pages); 1196 goto insert_entry; 1197 } 1198 kunmap_atomic(src); 1199 } 1200 1201 if (!zswap_non_same_filled_pages_enabled) { 1202 ret = -EINVAL; 1203 goto freepage; 1204 } 1205 1206 /* if entry is successfully added, it keeps the reference */ 1207 entry->pool = zswap_pool_current_get(); 1208 if (!entry->pool) { 1209 ret = -EINVAL; 1210 goto freepage; 1211 } 1212 1213 /* compress */ 1214 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 1215 1216 mutex_lock(acomp_ctx->mutex); 1217 1218 dst = acomp_ctx->dstmem; 1219 sg_init_table(&input, 1); 1220 sg_set_page(&input, page, PAGE_SIZE, 0); 1221 1222 /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */ 1223 sg_init_one(&output, dst, PAGE_SIZE * 2); 1224 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); 1225 /* 1226 * it maybe looks a little bit silly that we send an asynchronous request, 1227 * then wait for its completion synchronously. This makes the process look 1228 * synchronous in fact. 1229 * Theoretically, acomp supports users send multiple acomp requests in one 1230 * acomp instance, then get those requests done simultaneously. but in this 1231 * case, frontswap actually does store and load page by page, there is no 1232 * existing method to send the second page before the first page is done 1233 * in one thread doing frontswap. 1234 * but in different threads running on different cpu, we have different 1235 * acomp instance, so multiple threads can do (de)compression in parallel. 1236 */ 1237 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); 1238 dlen = acomp_ctx->req->dlen; 1239 1240 if (ret) { 1241 ret = -EINVAL; 1242 goto put_dstmem; 1243 } 1244 1245 /* store */ 1246 hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0; 1247 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; 1248 if (zpool_malloc_support_movable(entry->pool->zpool)) 1249 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; 1250 ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle); 1251 if (ret == -ENOSPC) { 1252 zswap_reject_compress_poor++; 1253 goto put_dstmem; 1254 } 1255 if (ret) { 1256 zswap_reject_alloc_fail++; 1257 goto put_dstmem; 1258 } 1259 buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO); 1260 memcpy(buf, &zhdr, hlen); 1261 memcpy(buf + hlen, dst, dlen); 1262 zpool_unmap_handle(entry->pool->zpool, handle); 1263 mutex_unlock(acomp_ctx->mutex); 1264 1265 /* populate entry */ 1266 entry->offset = offset; 1267 entry->handle = handle; 1268 entry->length = dlen; 1269 1270 insert_entry: 1271 entry->objcg = objcg; 1272 if (objcg) { 1273 obj_cgroup_charge_zswap(objcg, entry->length); 1274 /* Account before objcg ref is moved to tree */ 1275 count_objcg_event(objcg, ZSWPOUT); 1276 } 1277 1278 /* map */ 1279 spin_lock(&tree->lock); 1280 do { 1281 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 1282 if (ret == -EEXIST) { 1283 zswap_duplicate_entry++; 1284 /* remove from rbtree */ 1285 zswap_rb_erase(&tree->rbroot, dupentry); 1286 zswap_entry_put(tree, dupentry); 1287 } 1288 } while (ret == -EEXIST); 1289 spin_unlock(&tree->lock); 1290 1291 /* update stats */ 1292 atomic_inc(&zswap_stored_pages); 1293 zswap_update_total_size(); 1294 count_vm_event(ZSWPOUT); 1295 1296 return 0; 1297 1298 put_dstmem: 1299 mutex_unlock(acomp_ctx->mutex); 1300 zswap_pool_put(entry->pool); 1301 freepage: 1302 zswap_entry_cache_free(entry); 1303 reject: 1304 if (objcg) 1305 obj_cgroup_put(objcg); 1306 return ret; 1307 1308 shrink: 1309 pool = zswap_pool_last_get(); 1310 if (pool) 1311 queue_work(shrink_wq, &pool->shrink_work); 1312 ret = -ENOMEM; 1313 goto reject; 1314 } 1315 1316 /* 1317 * returns 0 if the page was successfully decompressed 1318 * return -1 on entry not found or error 1319 */ 1320 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 1321 struct page *page) 1322 { 1323 struct zswap_tree *tree = zswap_trees[type]; 1324 struct zswap_entry *entry; 1325 struct scatterlist input, output; 1326 struct crypto_acomp_ctx *acomp_ctx; 1327 u8 *src, *dst, *tmp; 1328 unsigned int dlen; 1329 int ret; 1330 1331 /* find */ 1332 spin_lock(&tree->lock); 1333 entry = zswap_entry_find_get(&tree->rbroot, offset); 1334 if (!entry) { 1335 /* entry was written back */ 1336 spin_unlock(&tree->lock); 1337 return -1; 1338 } 1339 spin_unlock(&tree->lock); 1340 1341 if (!entry->length) { 1342 dst = kmap_atomic(page); 1343 zswap_fill_page(dst, entry->value); 1344 kunmap_atomic(dst); 1345 ret = 0; 1346 goto stats; 1347 } 1348 1349 if (!zpool_can_sleep_mapped(entry->pool->zpool)) { 1350 tmp = kmalloc(entry->length, GFP_KERNEL); 1351 if (!tmp) { 1352 ret = -ENOMEM; 1353 goto freeentry; 1354 } 1355 } 1356 1357 /* decompress */ 1358 dlen = PAGE_SIZE; 1359 src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO); 1360 if (zpool_evictable(entry->pool->zpool)) 1361 src += sizeof(struct zswap_header); 1362 1363 if (!zpool_can_sleep_mapped(entry->pool->zpool)) { 1364 memcpy(tmp, src, entry->length); 1365 src = tmp; 1366 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1367 } 1368 1369 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); 1370 mutex_lock(acomp_ctx->mutex); 1371 sg_init_one(&input, src, entry->length); 1372 sg_init_table(&output, 1); 1373 sg_set_page(&output, page, PAGE_SIZE, 0); 1374 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen); 1375 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); 1376 mutex_unlock(acomp_ctx->mutex); 1377 1378 if (zpool_can_sleep_mapped(entry->pool->zpool)) 1379 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1380 else 1381 kfree(tmp); 1382 1383 BUG_ON(ret); 1384 stats: 1385 count_vm_event(ZSWPIN); 1386 if (entry->objcg) 1387 count_objcg_event(entry->objcg, ZSWPIN); 1388 freeentry: 1389 spin_lock(&tree->lock); 1390 zswap_entry_put(tree, entry); 1391 spin_unlock(&tree->lock); 1392 1393 return ret; 1394 } 1395 1396 /* frees an entry in zswap */ 1397 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 1398 { 1399 struct zswap_tree *tree = zswap_trees[type]; 1400 struct zswap_entry *entry; 1401 1402 /* find */ 1403 spin_lock(&tree->lock); 1404 entry = zswap_rb_search(&tree->rbroot, offset); 1405 if (!entry) { 1406 /* entry was written back */ 1407 spin_unlock(&tree->lock); 1408 return; 1409 } 1410 1411 /* remove from rbtree */ 1412 zswap_rb_erase(&tree->rbroot, entry); 1413 1414 /* drop the initial reference from entry creation */ 1415 zswap_entry_put(tree, entry); 1416 1417 spin_unlock(&tree->lock); 1418 } 1419 1420 /* frees all zswap entries for the given swap type */ 1421 static void zswap_frontswap_invalidate_area(unsigned type) 1422 { 1423 struct zswap_tree *tree = zswap_trees[type]; 1424 struct zswap_entry *entry, *n; 1425 1426 if (!tree) 1427 return; 1428 1429 /* walk the tree and free everything */ 1430 spin_lock(&tree->lock); 1431 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 1432 zswap_free_entry(entry); 1433 tree->rbroot = RB_ROOT; 1434 spin_unlock(&tree->lock); 1435 kfree(tree); 1436 zswap_trees[type] = NULL; 1437 } 1438 1439 static void zswap_frontswap_init(unsigned type) 1440 { 1441 struct zswap_tree *tree; 1442 1443 tree = kzalloc(sizeof(*tree), GFP_KERNEL); 1444 if (!tree) { 1445 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1446 return; 1447 } 1448 1449 tree->rbroot = RB_ROOT; 1450 spin_lock_init(&tree->lock); 1451 zswap_trees[type] = tree; 1452 } 1453 1454 static const struct frontswap_ops zswap_frontswap_ops = { 1455 .store = zswap_frontswap_store, 1456 .load = zswap_frontswap_load, 1457 .invalidate_page = zswap_frontswap_invalidate_page, 1458 .invalidate_area = zswap_frontswap_invalidate_area, 1459 .init = zswap_frontswap_init 1460 }; 1461 1462 /********************************* 1463 * debugfs functions 1464 **********************************/ 1465 #ifdef CONFIG_DEBUG_FS 1466 #include <linux/debugfs.h> 1467 1468 static struct dentry *zswap_debugfs_root; 1469 1470 static int zswap_debugfs_init(void) 1471 { 1472 if (!debugfs_initialized()) 1473 return -ENODEV; 1474 1475 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1476 1477 debugfs_create_u64("pool_limit_hit", 0444, 1478 zswap_debugfs_root, &zswap_pool_limit_hit); 1479 debugfs_create_u64("reject_reclaim_fail", 0444, 1480 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1481 debugfs_create_u64("reject_alloc_fail", 0444, 1482 zswap_debugfs_root, &zswap_reject_alloc_fail); 1483 debugfs_create_u64("reject_kmemcache_fail", 0444, 1484 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1485 debugfs_create_u64("reject_compress_poor", 0444, 1486 zswap_debugfs_root, &zswap_reject_compress_poor); 1487 debugfs_create_u64("written_back_pages", 0444, 1488 zswap_debugfs_root, &zswap_written_back_pages); 1489 debugfs_create_u64("duplicate_entry", 0444, 1490 zswap_debugfs_root, &zswap_duplicate_entry); 1491 debugfs_create_u64("pool_total_size", 0444, 1492 zswap_debugfs_root, &zswap_pool_total_size); 1493 debugfs_create_atomic_t("stored_pages", 0444, 1494 zswap_debugfs_root, &zswap_stored_pages); 1495 debugfs_create_atomic_t("same_filled_pages", 0444, 1496 zswap_debugfs_root, &zswap_same_filled_pages); 1497 1498 return 0; 1499 } 1500 #else 1501 static int zswap_debugfs_init(void) 1502 { 1503 return 0; 1504 } 1505 #endif 1506 1507 /********************************* 1508 * module init and exit 1509 **********************************/ 1510 static int zswap_setup(void) 1511 { 1512 struct zswap_pool *pool; 1513 int ret; 1514 1515 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 1516 if (!zswap_entry_cache) { 1517 pr_err("entry cache creation failed\n"); 1518 goto cache_fail; 1519 } 1520 1521 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare", 1522 zswap_dstmem_prepare, zswap_dstmem_dead); 1523 if (ret) { 1524 pr_err("dstmem alloc failed\n"); 1525 goto dstmem_fail; 1526 } 1527 1528 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, 1529 "mm/zswap_pool:prepare", 1530 zswap_cpu_comp_prepare, 1531 zswap_cpu_comp_dead); 1532 if (ret) 1533 goto hp_fail; 1534 1535 pool = __zswap_pool_create_fallback(); 1536 if (pool) { 1537 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1538 zpool_get_type(pool->zpool)); 1539 list_add(&pool->list, &zswap_pools); 1540 zswap_has_pool = true; 1541 } else { 1542 pr_err("pool creation failed\n"); 1543 zswap_enabled = false; 1544 } 1545 1546 shrink_wq = create_workqueue("zswap-shrink"); 1547 if (!shrink_wq) 1548 goto fallback_fail; 1549 1550 ret = frontswap_register_ops(&zswap_frontswap_ops); 1551 if (ret) 1552 goto destroy_wq; 1553 if (zswap_debugfs_init()) 1554 pr_warn("debugfs initialization failed\n"); 1555 zswap_init_state = ZSWAP_INIT_SUCCEED; 1556 return 0; 1557 1558 destroy_wq: 1559 destroy_workqueue(shrink_wq); 1560 fallback_fail: 1561 if (pool) 1562 zswap_pool_destroy(pool); 1563 hp_fail: 1564 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE); 1565 dstmem_fail: 1566 kmem_cache_destroy(zswap_entry_cache); 1567 cache_fail: 1568 /* if built-in, we aren't unloaded on failure; don't allow use */ 1569 zswap_init_state = ZSWAP_INIT_FAILED; 1570 zswap_enabled = false; 1571 return -ENOMEM; 1572 } 1573 1574 static int __init zswap_init(void) 1575 { 1576 if (!zswap_enabled) 1577 return 0; 1578 return zswap_setup(); 1579 } 1580 /* must be late so crypto has time to come up */ 1581 late_initcall(zswap_init); 1582 1583 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1584 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1585