1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #ifdef CONFIG_ZPOOL 111 /* 112 * The second least-significant bit in the object's header identifies if the 113 * value stored at the header is a deferred handle from the last reclaim 114 * attempt. 115 * 116 * As noted above, this is valid because we have room for two bits. 117 */ 118 #define OBJ_DEFERRED_HANDLE_TAG 2 119 #define OBJ_TAG_BITS 2 120 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG) 121 #else 122 #define OBJ_TAG_BITS 1 123 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 124 #endif /* CONFIG_ZPOOL */ 125 126 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 127 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 128 129 #define HUGE_BITS 1 130 #define FULLNESS_BITS 4 131 #define CLASS_BITS 8 132 #define ISOLATED_BITS 5 133 #define MAGIC_VAL_BITS 8 134 135 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 136 137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 138 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 /* each chunk includes extra space to keep handle */ 143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 144 145 /* 146 * On systems with 4K page size, this gives 255 size classes! There is a 147 * trader-off here: 148 * - Large number of size classes is potentially wasteful as free page are 149 * spread across these classes 150 * - Small number of size classes causes large internal fragmentation 151 * - Probably its better to use specific size classes (empirically 152 * determined). NOTE: all those class sizes must be set as multiple of 153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 154 * 155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 156 * (reason above) 157 */ 158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 160 ZS_SIZE_CLASS_DELTA) + 1) 161 162 /* 163 * Pages are distinguished by the ratio of used memory (that is the ratio 164 * of ->inuse objects to all objects that page can store). For example, 165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 166 * 167 * The number of fullness groups is not random. It allows us to keep 168 * difference between the least busy page in the group (minimum permitted 169 * number of ->inuse objects) and the most busy page (maximum permitted 170 * number of ->inuse objects) at a reasonable value. 171 */ 172 enum fullness_group { 173 ZS_INUSE_RATIO_0, 174 ZS_INUSE_RATIO_10, 175 /* NOTE: 8 more fullness groups here */ 176 ZS_INUSE_RATIO_99 = 10, 177 ZS_INUSE_RATIO_100, 178 NR_FULLNESS_GROUPS, 179 }; 180 181 enum class_stat_type { 182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 184 ZS_OBJS_INUSE, 185 NR_CLASS_STAT_TYPES, 186 }; 187 188 struct zs_size_stat { 189 unsigned long objs[NR_CLASS_STAT_TYPES]; 190 }; 191 192 #ifdef CONFIG_ZSMALLOC_STAT 193 static struct dentry *zs_stat_root; 194 #endif 195 196 static size_t huge_class_size; 197 198 struct size_class { 199 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 200 /* 201 * Size of objects stored in this class. Must be multiple 202 * of ZS_ALIGN. 203 */ 204 int size; 205 int objs_per_zspage; 206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 207 int pages_per_zspage; 208 209 unsigned int index; 210 struct zs_size_stat stats; 211 }; 212 213 /* 214 * Placed within free objects to form a singly linked list. 215 * For every zspage, zspage->freeobj gives head of this list. 216 * 217 * This must be power of 2 and less than or equal to ZS_ALIGN 218 */ 219 struct link_free { 220 union { 221 /* 222 * Free object index; 223 * It's valid for non-allocated object 224 */ 225 unsigned long next; 226 /* 227 * Handle of allocated object. 228 */ 229 unsigned long handle; 230 #ifdef CONFIG_ZPOOL 231 /* 232 * Deferred handle of a reclaimed object. 233 */ 234 unsigned long deferred_handle; 235 #endif 236 }; 237 }; 238 239 struct zs_pool { 240 const char *name; 241 242 struct size_class *size_class[ZS_SIZE_CLASSES]; 243 struct kmem_cache *handle_cachep; 244 struct kmem_cache *zspage_cachep; 245 246 atomic_long_t pages_allocated; 247 248 struct zs_pool_stats stats; 249 250 /* Compact classes */ 251 struct shrinker shrinker; 252 253 #ifdef CONFIG_ZPOOL 254 /* List tracking the zspages in LRU order by most recently added object */ 255 struct list_head lru; 256 struct zpool *zpool; 257 const struct zpool_ops *zpool_ops; 258 #endif 259 260 #ifdef CONFIG_ZSMALLOC_STAT 261 struct dentry *stat_dentry; 262 #endif 263 #ifdef CONFIG_COMPACTION 264 struct work_struct free_work; 265 #endif 266 spinlock_t lock; 267 atomic_t compaction_in_progress; 268 }; 269 270 struct zspage { 271 struct { 272 unsigned int huge:HUGE_BITS; 273 unsigned int fullness:FULLNESS_BITS; 274 unsigned int class:CLASS_BITS + 1; 275 unsigned int isolated:ISOLATED_BITS; 276 unsigned int magic:MAGIC_VAL_BITS; 277 }; 278 unsigned int inuse; 279 unsigned int freeobj; 280 struct page *first_page; 281 struct list_head list; /* fullness list */ 282 283 #ifdef CONFIG_ZPOOL 284 /* links the zspage to the lru list in the pool */ 285 struct list_head lru; 286 bool under_reclaim; 287 #endif 288 289 struct zs_pool *pool; 290 rwlock_t lock; 291 }; 292 293 struct mapping_area { 294 local_lock_t lock; 295 char *vm_buf; /* copy buffer for objects that span pages */ 296 char *vm_addr; /* address of kmap_atomic()'ed pages */ 297 enum zs_mapmode vm_mm; /* mapping mode */ 298 }; 299 300 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 301 static void SetZsHugePage(struct zspage *zspage) 302 { 303 zspage->huge = 1; 304 } 305 306 static bool ZsHugePage(struct zspage *zspage) 307 { 308 return zspage->huge; 309 } 310 311 static void migrate_lock_init(struct zspage *zspage); 312 static void migrate_read_lock(struct zspage *zspage); 313 static void migrate_read_unlock(struct zspage *zspage); 314 315 #ifdef CONFIG_COMPACTION 316 static void migrate_write_lock(struct zspage *zspage); 317 static void migrate_write_lock_nested(struct zspage *zspage); 318 static void migrate_write_unlock(struct zspage *zspage); 319 static void kick_deferred_free(struct zs_pool *pool); 320 static void init_deferred_free(struct zs_pool *pool); 321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 322 #else 323 static void migrate_write_lock(struct zspage *zspage) {} 324 static void migrate_write_lock_nested(struct zspage *zspage) {} 325 static void migrate_write_unlock(struct zspage *zspage) {} 326 static void kick_deferred_free(struct zs_pool *pool) {} 327 static void init_deferred_free(struct zs_pool *pool) {} 328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 329 #endif 330 331 static int create_cache(struct zs_pool *pool) 332 { 333 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 334 0, 0, NULL); 335 if (!pool->handle_cachep) 336 return 1; 337 338 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 339 0, 0, NULL); 340 if (!pool->zspage_cachep) { 341 kmem_cache_destroy(pool->handle_cachep); 342 pool->handle_cachep = NULL; 343 return 1; 344 } 345 346 return 0; 347 } 348 349 static void destroy_cache(struct zs_pool *pool) 350 { 351 kmem_cache_destroy(pool->handle_cachep); 352 kmem_cache_destroy(pool->zspage_cachep); 353 } 354 355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 356 { 357 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 358 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 359 } 360 361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 362 { 363 kmem_cache_free(pool->handle_cachep, (void *)handle); 364 } 365 366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 367 { 368 return kmem_cache_zalloc(pool->zspage_cachep, 369 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 370 } 371 372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 373 { 374 kmem_cache_free(pool->zspage_cachep, zspage); 375 } 376 377 /* pool->lock(which owns the handle) synchronizes races */ 378 static void record_obj(unsigned long handle, unsigned long obj) 379 { 380 *(unsigned long *)handle = obj; 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 struct zs_pool *pool = zs_create_pool(name); 397 398 if (pool) { 399 pool->zpool = zpool; 400 pool->zpool_ops = zpool_ops; 401 } 402 403 return pool; 404 } 405 406 static void zs_zpool_destroy(void *pool) 407 { 408 zs_destroy_pool(pool); 409 } 410 411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 412 unsigned long *handle) 413 { 414 *handle = zs_malloc(pool, size, gfp); 415 416 if (IS_ERR_VALUE(*handle)) 417 return PTR_ERR((void *)*handle); 418 return 0; 419 } 420 static void zs_zpool_free(void *pool, unsigned long handle) 421 { 422 zs_free(pool, handle); 423 } 424 425 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 426 427 static int zs_zpool_shrink(void *pool, unsigned int pages, 428 unsigned int *reclaimed) 429 { 430 unsigned int total = 0; 431 int ret = -EINVAL; 432 433 while (total < pages) { 434 ret = zs_reclaim_page(pool, 8); 435 if (ret < 0) 436 break; 437 total++; 438 } 439 440 if (reclaimed) 441 *reclaimed = total; 442 443 return ret; 444 } 445 446 static void *zs_zpool_map(void *pool, unsigned long handle, 447 enum zpool_mapmode mm) 448 { 449 enum zs_mapmode zs_mm; 450 451 switch (mm) { 452 case ZPOOL_MM_RO: 453 zs_mm = ZS_MM_RO; 454 break; 455 case ZPOOL_MM_WO: 456 zs_mm = ZS_MM_WO; 457 break; 458 case ZPOOL_MM_RW: 459 default: 460 zs_mm = ZS_MM_RW; 461 break; 462 } 463 464 return zs_map_object(pool, handle, zs_mm); 465 } 466 static void zs_zpool_unmap(void *pool, unsigned long handle) 467 { 468 zs_unmap_object(pool, handle); 469 } 470 471 static u64 zs_zpool_total_size(void *pool) 472 { 473 return zs_get_total_pages(pool) << PAGE_SHIFT; 474 } 475 476 static struct zpool_driver zs_zpool_driver = { 477 .type = "zsmalloc", 478 .owner = THIS_MODULE, 479 .create = zs_zpool_create, 480 .destroy = zs_zpool_destroy, 481 .malloc_support_movable = true, 482 .malloc = zs_zpool_malloc, 483 .free = zs_zpool_free, 484 .shrink = zs_zpool_shrink, 485 .map = zs_zpool_map, 486 .unmap = zs_zpool_unmap, 487 .total_size = zs_zpool_total_size, 488 }; 489 490 MODULE_ALIAS("zpool-zsmalloc"); 491 #endif /* CONFIG_ZPOOL */ 492 493 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 494 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 495 .lock = INIT_LOCAL_LOCK(lock), 496 }; 497 498 static __maybe_unused int is_first_page(struct page *page) 499 { 500 return PagePrivate(page); 501 } 502 503 /* Protected by pool->lock */ 504 static inline int get_zspage_inuse(struct zspage *zspage) 505 { 506 return zspage->inuse; 507 } 508 509 510 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 511 { 512 zspage->inuse += val; 513 } 514 515 static inline struct page *get_first_page(struct zspage *zspage) 516 { 517 struct page *first_page = zspage->first_page; 518 519 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 520 return first_page; 521 } 522 523 static inline unsigned int get_first_obj_offset(struct page *page) 524 { 525 return page->page_type; 526 } 527 528 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 529 { 530 page->page_type = offset; 531 } 532 533 static inline unsigned int get_freeobj(struct zspage *zspage) 534 { 535 return zspage->freeobj; 536 } 537 538 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 539 { 540 zspage->freeobj = obj; 541 } 542 543 static void get_zspage_mapping(struct zspage *zspage, 544 unsigned int *class_idx, 545 int *fullness) 546 { 547 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 548 549 *fullness = zspage->fullness; 550 *class_idx = zspage->class; 551 } 552 553 static struct size_class *zspage_class(struct zs_pool *pool, 554 struct zspage *zspage) 555 { 556 return pool->size_class[zspage->class]; 557 } 558 559 static void set_zspage_mapping(struct zspage *zspage, 560 unsigned int class_idx, 561 int fullness) 562 { 563 zspage->class = class_idx; 564 zspage->fullness = fullness; 565 } 566 567 /* 568 * zsmalloc divides the pool into various size classes where each 569 * class maintains a list of zspages where each zspage is divided 570 * into equal sized chunks. Each allocation falls into one of these 571 * classes depending on its size. This function returns index of the 572 * size class which has chunk size big enough to hold the given size. 573 */ 574 static int get_size_class_index(int size) 575 { 576 int idx = 0; 577 578 if (likely(size > ZS_MIN_ALLOC_SIZE)) 579 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 580 ZS_SIZE_CLASS_DELTA); 581 582 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 583 } 584 585 static inline void class_stat_inc(struct size_class *class, 586 int type, unsigned long cnt) 587 { 588 class->stats.objs[type] += cnt; 589 } 590 591 static inline void class_stat_dec(struct size_class *class, 592 int type, unsigned long cnt) 593 { 594 class->stats.objs[type] -= cnt; 595 } 596 597 static inline unsigned long zs_stat_get(struct size_class *class, int type) 598 { 599 return class->stats.objs[type]; 600 } 601 602 #ifdef CONFIG_ZSMALLOC_STAT 603 604 static void __init zs_stat_init(void) 605 { 606 if (!debugfs_initialized()) { 607 pr_warn("debugfs not available, stat dir not created\n"); 608 return; 609 } 610 611 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 612 } 613 614 static void __exit zs_stat_exit(void) 615 { 616 debugfs_remove_recursive(zs_stat_root); 617 } 618 619 static unsigned long zs_can_compact(struct size_class *class); 620 621 static int zs_stats_size_show(struct seq_file *s, void *v) 622 { 623 int i, fg; 624 struct zs_pool *pool = s->private; 625 struct size_class *class; 626 int objs_per_zspage; 627 unsigned long obj_allocated, obj_used, pages_used, freeable; 628 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 629 unsigned long total_freeable = 0; 630 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 631 632 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 633 "class", "size", "10%", "20%", "30%", "40%", 634 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 635 "obj_allocated", "obj_used", "pages_used", 636 "pages_per_zspage", "freeable"); 637 638 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 639 640 class = pool->size_class[i]; 641 642 if (class->index != i) 643 continue; 644 645 spin_lock(&pool->lock); 646 647 seq_printf(s, " %5u %5u ", i, class->size); 648 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 649 inuse_totals[fg] += zs_stat_get(class, fg); 650 seq_printf(s, "%9lu ", zs_stat_get(class, fg)); 651 } 652 653 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 654 obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 655 freeable = zs_can_compact(class); 656 spin_unlock(&pool->lock); 657 658 objs_per_zspage = class->objs_per_zspage; 659 pages_used = obj_allocated / objs_per_zspage * 660 class->pages_per_zspage; 661 662 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 663 obj_allocated, obj_used, pages_used, 664 class->pages_per_zspage, freeable); 665 666 total_objs += obj_allocated; 667 total_used_objs += obj_used; 668 total_pages += pages_used; 669 total_freeable += freeable; 670 } 671 672 seq_puts(s, "\n"); 673 seq_printf(s, " %5s %5s ", "Total", ""); 674 675 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 676 seq_printf(s, "%9lu ", inuse_totals[fg]); 677 678 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 679 total_objs, total_used_objs, total_pages, "", 680 total_freeable); 681 682 return 0; 683 } 684 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 685 686 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 687 { 688 if (!zs_stat_root) { 689 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 690 return; 691 } 692 693 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 694 695 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 696 &zs_stats_size_fops); 697 } 698 699 static void zs_pool_stat_destroy(struct zs_pool *pool) 700 { 701 debugfs_remove_recursive(pool->stat_dentry); 702 } 703 704 #else /* CONFIG_ZSMALLOC_STAT */ 705 static void __init zs_stat_init(void) 706 { 707 } 708 709 static void __exit zs_stat_exit(void) 710 { 711 } 712 713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 714 { 715 } 716 717 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 718 { 719 } 720 #endif 721 722 723 /* 724 * For each size class, zspages are divided into different groups 725 * depending on their usage ratio. This function returns fullness 726 * status of the given page. 727 */ 728 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 729 { 730 int inuse, objs_per_zspage, ratio; 731 732 inuse = get_zspage_inuse(zspage); 733 objs_per_zspage = class->objs_per_zspage; 734 735 if (inuse == 0) 736 return ZS_INUSE_RATIO_0; 737 if (inuse == objs_per_zspage) 738 return ZS_INUSE_RATIO_100; 739 740 ratio = 100 * inuse / objs_per_zspage; 741 /* 742 * Take integer division into consideration: a page with one inuse 743 * object out of 127 possible, will end up having 0 usage ratio, 744 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 745 */ 746 return ratio / 10 + 1; 747 } 748 749 /* 750 * Each size class maintains various freelists and zspages are assigned 751 * to one of these freelists based on the number of live objects they 752 * have. This functions inserts the given zspage into the freelist 753 * identified by <class, fullness_group>. 754 */ 755 static void insert_zspage(struct size_class *class, 756 struct zspage *zspage, 757 int fullness) 758 { 759 class_stat_inc(class, fullness, 1); 760 list_add(&zspage->list, &class->fullness_list[fullness]); 761 } 762 763 /* 764 * This function removes the given zspage from the freelist identified 765 * by <class, fullness_group>. 766 */ 767 static void remove_zspage(struct size_class *class, 768 struct zspage *zspage, 769 int fullness) 770 { 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 772 773 list_del_init(&zspage->list); 774 class_stat_dec(class, fullness, 1); 775 } 776 777 /* 778 * Each size class maintains zspages in different fullness groups depending 779 * on the number of live objects they contain. When allocating or freeing 780 * objects, the fullness status of the page can change, for instance, from 781 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 782 * checks if such a status change has occurred for the given page and 783 * accordingly moves the page from the list of the old fullness group to that 784 * of the new fullness group. 785 */ 786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 787 { 788 int class_idx; 789 int currfg, newfg; 790 791 get_zspage_mapping(zspage, &class_idx, &currfg); 792 newfg = get_fullness_group(class, zspage); 793 if (newfg == currfg) 794 goto out; 795 796 remove_zspage(class, zspage, currfg); 797 insert_zspage(class, zspage, newfg); 798 set_zspage_mapping(zspage, class_idx, newfg); 799 out: 800 return newfg; 801 } 802 803 static struct zspage *get_zspage(struct page *page) 804 { 805 struct zspage *zspage = (struct zspage *)page_private(page); 806 807 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 808 return zspage; 809 } 810 811 static struct page *get_next_page(struct page *page) 812 { 813 struct zspage *zspage = get_zspage(page); 814 815 if (unlikely(ZsHugePage(zspage))) 816 return NULL; 817 818 return (struct page *)page->index; 819 } 820 821 /** 822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 823 * @obj: the encoded object value 824 * @page: page object resides in zspage 825 * @obj_idx: object index 826 */ 827 static void obj_to_location(unsigned long obj, struct page **page, 828 unsigned int *obj_idx) 829 { 830 obj >>= OBJ_TAG_BITS; 831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 832 *obj_idx = (obj & OBJ_INDEX_MASK); 833 } 834 835 static void obj_to_page(unsigned long obj, struct page **page) 836 { 837 obj >>= OBJ_TAG_BITS; 838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 839 } 840 841 /** 842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 843 * @page: page object resides in zspage 844 * @obj_idx: object index 845 */ 846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 847 { 848 unsigned long obj; 849 850 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 851 obj |= obj_idx & OBJ_INDEX_MASK; 852 obj <<= OBJ_TAG_BITS; 853 854 return obj; 855 } 856 857 static unsigned long handle_to_obj(unsigned long handle) 858 { 859 return *(unsigned long *)handle; 860 } 861 862 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, 863 int tag) 864 { 865 unsigned long handle; 866 struct zspage *zspage = get_zspage(page); 867 868 if (unlikely(ZsHugePage(zspage))) { 869 VM_BUG_ON_PAGE(!is_first_page(page), page); 870 handle = page->index; 871 } else 872 handle = *(unsigned long *)obj; 873 874 if (!(handle & tag)) 875 return false; 876 877 /* Clear all tags before returning the handle */ 878 *phandle = handle & ~OBJ_TAG_MASK; 879 return true; 880 } 881 882 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 883 { 884 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); 885 } 886 887 #ifdef CONFIG_ZPOOL 888 static bool obj_stores_deferred_handle(struct page *page, void *obj, 889 unsigned long *phandle) 890 { 891 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG); 892 } 893 #endif 894 895 static void reset_page(struct page *page) 896 { 897 __ClearPageMovable(page); 898 ClearPagePrivate(page); 899 set_page_private(page, 0); 900 page_mapcount_reset(page); 901 page->index = 0; 902 } 903 904 static int trylock_zspage(struct zspage *zspage) 905 { 906 struct page *cursor, *fail; 907 908 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 909 get_next_page(cursor)) { 910 if (!trylock_page(cursor)) { 911 fail = cursor; 912 goto unlock; 913 } 914 } 915 916 return 1; 917 unlock: 918 for (cursor = get_first_page(zspage); cursor != fail; cursor = 919 get_next_page(cursor)) 920 unlock_page(cursor); 921 922 return 0; 923 } 924 925 #ifdef CONFIG_ZPOOL 926 static unsigned long find_deferred_handle_obj(struct size_class *class, 927 struct page *page, int *obj_idx); 928 929 /* 930 * Free all the deferred handles whose objects are freed in zs_free. 931 */ 932 static void free_handles(struct zs_pool *pool, struct size_class *class, 933 struct zspage *zspage) 934 { 935 int obj_idx = 0; 936 struct page *page = get_first_page(zspage); 937 unsigned long handle; 938 939 while (1) { 940 handle = find_deferred_handle_obj(class, page, &obj_idx); 941 if (!handle) { 942 page = get_next_page(page); 943 if (!page) 944 break; 945 obj_idx = 0; 946 continue; 947 } 948 949 cache_free_handle(pool, handle); 950 obj_idx++; 951 } 952 } 953 #else 954 static inline void free_handles(struct zs_pool *pool, struct size_class *class, 955 struct zspage *zspage) {} 956 #endif 957 958 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 959 struct zspage *zspage) 960 { 961 struct page *page, *next; 962 int fg; 963 unsigned int class_idx; 964 965 get_zspage_mapping(zspage, &class_idx, &fg); 966 967 assert_spin_locked(&pool->lock); 968 969 VM_BUG_ON(get_zspage_inuse(zspage)); 970 VM_BUG_ON(fg != ZS_INUSE_RATIO_0); 971 972 /* Free all deferred handles from zs_free */ 973 free_handles(pool, class, zspage); 974 975 next = page = get_first_page(zspage); 976 do { 977 VM_BUG_ON_PAGE(!PageLocked(page), page); 978 next = get_next_page(page); 979 reset_page(page); 980 unlock_page(page); 981 dec_zone_page_state(page, NR_ZSPAGES); 982 put_page(page); 983 page = next; 984 } while (page != NULL); 985 986 cache_free_zspage(pool, zspage); 987 988 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 989 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 990 } 991 992 static void free_zspage(struct zs_pool *pool, struct size_class *class, 993 struct zspage *zspage) 994 { 995 VM_BUG_ON(get_zspage_inuse(zspage)); 996 VM_BUG_ON(list_empty(&zspage->list)); 997 998 /* 999 * Since zs_free couldn't be sleepable, this function cannot call 1000 * lock_page. The page locks trylock_zspage got will be released 1001 * by __free_zspage. 1002 */ 1003 if (!trylock_zspage(zspage)) { 1004 kick_deferred_free(pool); 1005 return; 1006 } 1007 1008 remove_zspage(class, zspage, ZS_INUSE_RATIO_0); 1009 #ifdef CONFIG_ZPOOL 1010 list_del(&zspage->lru); 1011 #endif 1012 __free_zspage(pool, class, zspage); 1013 } 1014 1015 /* Initialize a newly allocated zspage */ 1016 static void init_zspage(struct size_class *class, struct zspage *zspage) 1017 { 1018 unsigned int freeobj = 1; 1019 unsigned long off = 0; 1020 struct page *page = get_first_page(zspage); 1021 1022 while (page) { 1023 struct page *next_page; 1024 struct link_free *link; 1025 void *vaddr; 1026 1027 set_first_obj_offset(page, off); 1028 1029 vaddr = kmap_atomic(page); 1030 link = (struct link_free *)vaddr + off / sizeof(*link); 1031 1032 while ((off += class->size) < PAGE_SIZE) { 1033 link->next = freeobj++ << OBJ_TAG_BITS; 1034 link += class->size / sizeof(*link); 1035 } 1036 1037 /* 1038 * We now come to the last (full or partial) object on this 1039 * page, which must point to the first object on the next 1040 * page (if present) 1041 */ 1042 next_page = get_next_page(page); 1043 if (next_page) { 1044 link->next = freeobj++ << OBJ_TAG_BITS; 1045 } else { 1046 /* 1047 * Reset OBJ_TAG_BITS bit to last link to tell 1048 * whether it's allocated object or not. 1049 */ 1050 link->next = -1UL << OBJ_TAG_BITS; 1051 } 1052 kunmap_atomic(vaddr); 1053 page = next_page; 1054 off %= PAGE_SIZE; 1055 } 1056 1057 #ifdef CONFIG_ZPOOL 1058 INIT_LIST_HEAD(&zspage->lru); 1059 zspage->under_reclaim = false; 1060 #endif 1061 1062 set_freeobj(zspage, 0); 1063 } 1064 1065 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1066 struct page *pages[]) 1067 { 1068 int i; 1069 struct page *page; 1070 struct page *prev_page = NULL; 1071 int nr_pages = class->pages_per_zspage; 1072 1073 /* 1074 * Allocate individual pages and link them together as: 1075 * 1. all pages are linked together using page->index 1076 * 2. each sub-page point to zspage using page->private 1077 * 1078 * we set PG_private to identify the first page (i.e. no other sub-page 1079 * has this flag set). 1080 */ 1081 for (i = 0; i < nr_pages; i++) { 1082 page = pages[i]; 1083 set_page_private(page, (unsigned long)zspage); 1084 page->index = 0; 1085 if (i == 0) { 1086 zspage->first_page = page; 1087 SetPagePrivate(page); 1088 if (unlikely(class->objs_per_zspage == 1 && 1089 class->pages_per_zspage == 1)) 1090 SetZsHugePage(zspage); 1091 } else { 1092 prev_page->index = (unsigned long)page; 1093 } 1094 prev_page = page; 1095 } 1096 } 1097 1098 /* 1099 * Allocate a zspage for the given size class 1100 */ 1101 static struct zspage *alloc_zspage(struct zs_pool *pool, 1102 struct size_class *class, 1103 gfp_t gfp) 1104 { 1105 int i; 1106 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1107 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1108 1109 if (!zspage) 1110 return NULL; 1111 1112 zspage->magic = ZSPAGE_MAGIC; 1113 migrate_lock_init(zspage); 1114 1115 for (i = 0; i < class->pages_per_zspage; i++) { 1116 struct page *page; 1117 1118 page = alloc_page(gfp); 1119 if (!page) { 1120 while (--i >= 0) { 1121 dec_zone_page_state(pages[i], NR_ZSPAGES); 1122 __free_page(pages[i]); 1123 } 1124 cache_free_zspage(pool, zspage); 1125 return NULL; 1126 } 1127 1128 inc_zone_page_state(page, NR_ZSPAGES); 1129 pages[i] = page; 1130 } 1131 1132 create_page_chain(class, zspage, pages); 1133 init_zspage(class, zspage); 1134 zspage->pool = pool; 1135 1136 return zspage; 1137 } 1138 1139 static struct zspage *find_get_zspage(struct size_class *class) 1140 { 1141 int i; 1142 struct zspage *zspage; 1143 1144 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1145 zspage = list_first_entry_or_null(&class->fullness_list[i], 1146 struct zspage, list); 1147 if (zspage) 1148 break; 1149 } 1150 1151 return zspage; 1152 } 1153 1154 static inline int __zs_cpu_up(struct mapping_area *area) 1155 { 1156 /* 1157 * Make sure we don't leak memory if a cpu UP notification 1158 * and zs_init() race and both call zs_cpu_up() on the same cpu 1159 */ 1160 if (area->vm_buf) 1161 return 0; 1162 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1163 if (!area->vm_buf) 1164 return -ENOMEM; 1165 return 0; 1166 } 1167 1168 static inline void __zs_cpu_down(struct mapping_area *area) 1169 { 1170 kfree(area->vm_buf); 1171 area->vm_buf = NULL; 1172 } 1173 1174 static void *__zs_map_object(struct mapping_area *area, 1175 struct page *pages[2], int off, int size) 1176 { 1177 int sizes[2]; 1178 void *addr; 1179 char *buf = area->vm_buf; 1180 1181 /* disable page faults to match kmap_atomic() return conditions */ 1182 pagefault_disable(); 1183 1184 /* no read fastpath */ 1185 if (area->vm_mm == ZS_MM_WO) 1186 goto out; 1187 1188 sizes[0] = PAGE_SIZE - off; 1189 sizes[1] = size - sizes[0]; 1190 1191 /* copy object to per-cpu buffer */ 1192 addr = kmap_atomic(pages[0]); 1193 memcpy(buf, addr + off, sizes[0]); 1194 kunmap_atomic(addr); 1195 addr = kmap_atomic(pages[1]); 1196 memcpy(buf + sizes[0], addr, sizes[1]); 1197 kunmap_atomic(addr); 1198 out: 1199 return area->vm_buf; 1200 } 1201 1202 static void __zs_unmap_object(struct mapping_area *area, 1203 struct page *pages[2], int off, int size) 1204 { 1205 int sizes[2]; 1206 void *addr; 1207 char *buf; 1208 1209 /* no write fastpath */ 1210 if (area->vm_mm == ZS_MM_RO) 1211 goto out; 1212 1213 buf = area->vm_buf; 1214 buf = buf + ZS_HANDLE_SIZE; 1215 size -= ZS_HANDLE_SIZE; 1216 off += ZS_HANDLE_SIZE; 1217 1218 sizes[0] = PAGE_SIZE - off; 1219 sizes[1] = size - sizes[0]; 1220 1221 /* copy per-cpu buffer to object */ 1222 addr = kmap_atomic(pages[0]); 1223 memcpy(addr + off, buf, sizes[0]); 1224 kunmap_atomic(addr); 1225 addr = kmap_atomic(pages[1]); 1226 memcpy(addr, buf + sizes[0], sizes[1]); 1227 kunmap_atomic(addr); 1228 1229 out: 1230 /* enable page faults to match kunmap_atomic() return conditions */ 1231 pagefault_enable(); 1232 } 1233 1234 static int zs_cpu_prepare(unsigned int cpu) 1235 { 1236 struct mapping_area *area; 1237 1238 area = &per_cpu(zs_map_area, cpu); 1239 return __zs_cpu_up(area); 1240 } 1241 1242 static int zs_cpu_dead(unsigned int cpu) 1243 { 1244 struct mapping_area *area; 1245 1246 area = &per_cpu(zs_map_area, cpu); 1247 __zs_cpu_down(area); 1248 return 0; 1249 } 1250 1251 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1252 int objs_per_zspage) 1253 { 1254 if (prev->pages_per_zspage == pages_per_zspage && 1255 prev->objs_per_zspage == objs_per_zspage) 1256 return true; 1257 1258 return false; 1259 } 1260 1261 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1262 { 1263 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1264 } 1265 1266 /** 1267 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1268 * that hold objects of the provided size. 1269 * @pool: zsmalloc pool to use 1270 * @size: object size 1271 * 1272 * Context: Any context. 1273 * 1274 * Return: the index of the zsmalloc &size_class that hold objects of the 1275 * provided size. 1276 */ 1277 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1278 { 1279 struct size_class *class; 1280 1281 class = pool->size_class[get_size_class_index(size)]; 1282 1283 return class->index; 1284 } 1285 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1286 1287 unsigned long zs_get_total_pages(struct zs_pool *pool) 1288 { 1289 return atomic_long_read(&pool->pages_allocated); 1290 } 1291 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1292 1293 /** 1294 * zs_map_object - get address of allocated object from handle. 1295 * @pool: pool from which the object was allocated 1296 * @handle: handle returned from zs_malloc 1297 * @mm: mapping mode to use 1298 * 1299 * Before using an object allocated from zs_malloc, it must be mapped using 1300 * this function. When done with the object, it must be unmapped using 1301 * zs_unmap_object. 1302 * 1303 * Only one object can be mapped per cpu at a time. There is no protection 1304 * against nested mappings. 1305 * 1306 * This function returns with preemption and page faults disabled. 1307 */ 1308 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1309 enum zs_mapmode mm) 1310 { 1311 struct zspage *zspage; 1312 struct page *page; 1313 unsigned long obj, off; 1314 unsigned int obj_idx; 1315 1316 struct size_class *class; 1317 struct mapping_area *area; 1318 struct page *pages[2]; 1319 void *ret; 1320 1321 /* 1322 * Because we use per-cpu mapping areas shared among the 1323 * pools/users, we can't allow mapping in interrupt context 1324 * because it can corrupt another users mappings. 1325 */ 1326 BUG_ON(in_interrupt()); 1327 1328 /* It guarantees it can get zspage from handle safely */ 1329 spin_lock(&pool->lock); 1330 obj = handle_to_obj(handle); 1331 obj_to_location(obj, &page, &obj_idx); 1332 zspage = get_zspage(page); 1333 1334 /* 1335 * migration cannot move any zpages in this zspage. Here, pool->lock 1336 * is too heavy since callers would take some time until they calls 1337 * zs_unmap_object API so delegate the locking from class to zspage 1338 * which is smaller granularity. 1339 */ 1340 migrate_read_lock(zspage); 1341 spin_unlock(&pool->lock); 1342 1343 class = zspage_class(pool, zspage); 1344 off = (class->size * obj_idx) & ~PAGE_MASK; 1345 1346 local_lock(&zs_map_area.lock); 1347 area = this_cpu_ptr(&zs_map_area); 1348 area->vm_mm = mm; 1349 if (off + class->size <= PAGE_SIZE) { 1350 /* this object is contained entirely within a page */ 1351 area->vm_addr = kmap_atomic(page); 1352 ret = area->vm_addr + off; 1353 goto out; 1354 } 1355 1356 /* this object spans two pages */ 1357 pages[0] = page; 1358 pages[1] = get_next_page(page); 1359 BUG_ON(!pages[1]); 1360 1361 ret = __zs_map_object(area, pages, off, class->size); 1362 out: 1363 if (likely(!ZsHugePage(zspage))) 1364 ret += ZS_HANDLE_SIZE; 1365 1366 return ret; 1367 } 1368 EXPORT_SYMBOL_GPL(zs_map_object); 1369 1370 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1371 { 1372 struct zspage *zspage; 1373 struct page *page; 1374 unsigned long obj, off; 1375 unsigned int obj_idx; 1376 1377 struct size_class *class; 1378 struct mapping_area *area; 1379 1380 obj = handle_to_obj(handle); 1381 obj_to_location(obj, &page, &obj_idx); 1382 zspage = get_zspage(page); 1383 class = zspage_class(pool, zspage); 1384 off = (class->size * obj_idx) & ~PAGE_MASK; 1385 1386 area = this_cpu_ptr(&zs_map_area); 1387 if (off + class->size <= PAGE_SIZE) 1388 kunmap_atomic(area->vm_addr); 1389 else { 1390 struct page *pages[2]; 1391 1392 pages[0] = page; 1393 pages[1] = get_next_page(page); 1394 BUG_ON(!pages[1]); 1395 1396 __zs_unmap_object(area, pages, off, class->size); 1397 } 1398 local_unlock(&zs_map_area.lock); 1399 1400 migrate_read_unlock(zspage); 1401 } 1402 EXPORT_SYMBOL_GPL(zs_unmap_object); 1403 1404 /** 1405 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1406 * zsmalloc &size_class. 1407 * @pool: zsmalloc pool to use 1408 * 1409 * The function returns the size of the first huge class - any object of equal 1410 * or bigger size will be stored in zspage consisting of a single physical 1411 * page. 1412 * 1413 * Context: Any context. 1414 * 1415 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1416 */ 1417 size_t zs_huge_class_size(struct zs_pool *pool) 1418 { 1419 return huge_class_size; 1420 } 1421 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1422 1423 static unsigned long obj_malloc(struct zs_pool *pool, 1424 struct zspage *zspage, unsigned long handle) 1425 { 1426 int i, nr_page, offset; 1427 unsigned long obj; 1428 struct link_free *link; 1429 struct size_class *class; 1430 1431 struct page *m_page; 1432 unsigned long m_offset; 1433 void *vaddr; 1434 1435 class = pool->size_class[zspage->class]; 1436 handle |= OBJ_ALLOCATED_TAG; 1437 obj = get_freeobj(zspage); 1438 1439 offset = obj * class->size; 1440 nr_page = offset >> PAGE_SHIFT; 1441 m_offset = offset & ~PAGE_MASK; 1442 m_page = get_first_page(zspage); 1443 1444 for (i = 0; i < nr_page; i++) 1445 m_page = get_next_page(m_page); 1446 1447 vaddr = kmap_atomic(m_page); 1448 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1449 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1450 if (likely(!ZsHugePage(zspage))) 1451 /* record handle in the header of allocated chunk */ 1452 link->handle = handle; 1453 else 1454 /* record handle to page->index */ 1455 zspage->first_page->index = handle; 1456 1457 kunmap_atomic(vaddr); 1458 mod_zspage_inuse(zspage, 1); 1459 1460 obj = location_to_obj(m_page, obj); 1461 1462 return obj; 1463 } 1464 1465 1466 /** 1467 * zs_malloc - Allocate block of given size from pool. 1468 * @pool: pool to allocate from 1469 * @size: size of block to allocate 1470 * @gfp: gfp flags when allocating object 1471 * 1472 * On success, handle to the allocated object is returned, 1473 * otherwise an ERR_PTR(). 1474 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1475 */ 1476 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1477 { 1478 unsigned long handle, obj; 1479 struct size_class *class; 1480 int newfg; 1481 struct zspage *zspage; 1482 1483 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1484 return (unsigned long)ERR_PTR(-EINVAL); 1485 1486 handle = cache_alloc_handle(pool, gfp); 1487 if (!handle) 1488 return (unsigned long)ERR_PTR(-ENOMEM); 1489 1490 /* extra space in chunk to keep the handle */ 1491 size += ZS_HANDLE_SIZE; 1492 class = pool->size_class[get_size_class_index(size)]; 1493 1494 /* pool->lock effectively protects the zpage migration */ 1495 spin_lock(&pool->lock); 1496 zspage = find_get_zspage(class); 1497 if (likely(zspage)) { 1498 obj = obj_malloc(pool, zspage, handle); 1499 /* Now move the zspage to another fullness group, if required */ 1500 fix_fullness_group(class, zspage); 1501 record_obj(handle, obj); 1502 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1503 1504 goto out; 1505 } 1506 1507 spin_unlock(&pool->lock); 1508 1509 zspage = alloc_zspage(pool, class, gfp); 1510 if (!zspage) { 1511 cache_free_handle(pool, handle); 1512 return (unsigned long)ERR_PTR(-ENOMEM); 1513 } 1514 1515 spin_lock(&pool->lock); 1516 obj = obj_malloc(pool, zspage, handle); 1517 newfg = get_fullness_group(class, zspage); 1518 insert_zspage(class, zspage, newfg); 1519 set_zspage_mapping(zspage, class->index, newfg); 1520 record_obj(handle, obj); 1521 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1522 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1523 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1524 1525 /* We completely set up zspage so mark them as movable */ 1526 SetZsPageMovable(pool, zspage); 1527 out: 1528 #ifdef CONFIG_ZPOOL 1529 /* Add/move zspage to beginning of LRU */ 1530 if (!list_empty(&zspage->lru)) 1531 list_del(&zspage->lru); 1532 list_add(&zspage->lru, &pool->lru); 1533 #endif 1534 1535 spin_unlock(&pool->lock); 1536 1537 return handle; 1538 } 1539 EXPORT_SYMBOL_GPL(zs_malloc); 1540 1541 static void obj_free(int class_size, unsigned long obj, unsigned long *handle) 1542 { 1543 struct link_free *link; 1544 struct zspage *zspage; 1545 struct page *f_page; 1546 unsigned long f_offset; 1547 unsigned int f_objidx; 1548 void *vaddr; 1549 1550 obj_to_location(obj, &f_page, &f_objidx); 1551 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1552 zspage = get_zspage(f_page); 1553 1554 vaddr = kmap_atomic(f_page); 1555 link = (struct link_free *)(vaddr + f_offset); 1556 1557 if (handle) { 1558 #ifdef CONFIG_ZPOOL 1559 /* Stores the (deferred) handle in the object's header */ 1560 *handle |= OBJ_DEFERRED_HANDLE_TAG; 1561 *handle &= ~OBJ_ALLOCATED_TAG; 1562 1563 if (likely(!ZsHugePage(zspage))) 1564 link->deferred_handle = *handle; 1565 else 1566 f_page->index = *handle; 1567 #endif 1568 } else { 1569 /* Insert this object in containing zspage's freelist */ 1570 if (likely(!ZsHugePage(zspage))) 1571 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1572 else 1573 f_page->index = 0; 1574 set_freeobj(zspage, f_objidx); 1575 } 1576 1577 kunmap_atomic(vaddr); 1578 mod_zspage_inuse(zspage, -1); 1579 } 1580 1581 void zs_free(struct zs_pool *pool, unsigned long handle) 1582 { 1583 struct zspage *zspage; 1584 struct page *f_page; 1585 unsigned long obj; 1586 struct size_class *class; 1587 int fullness; 1588 1589 if (IS_ERR_OR_NULL((void *)handle)) 1590 return; 1591 1592 /* 1593 * The pool->lock protects the race with zpage's migration 1594 * so it's safe to get the page from handle. 1595 */ 1596 spin_lock(&pool->lock); 1597 obj = handle_to_obj(handle); 1598 obj_to_page(obj, &f_page); 1599 zspage = get_zspage(f_page); 1600 class = zspage_class(pool, zspage); 1601 1602 class_stat_dec(class, ZS_OBJS_INUSE, 1); 1603 1604 #ifdef CONFIG_ZPOOL 1605 if (zspage->under_reclaim) { 1606 /* 1607 * Reclaim needs the handles during writeback. It'll free 1608 * them along with the zspage when it's done with them. 1609 * 1610 * Record current deferred handle in the object's header. 1611 */ 1612 obj_free(class->size, obj, &handle); 1613 spin_unlock(&pool->lock); 1614 return; 1615 } 1616 #endif 1617 obj_free(class->size, obj, NULL); 1618 1619 fullness = fix_fullness_group(class, zspage); 1620 if (fullness == ZS_INUSE_RATIO_0) 1621 free_zspage(pool, class, zspage); 1622 1623 spin_unlock(&pool->lock); 1624 cache_free_handle(pool, handle); 1625 } 1626 EXPORT_SYMBOL_GPL(zs_free); 1627 1628 static void zs_object_copy(struct size_class *class, unsigned long dst, 1629 unsigned long src) 1630 { 1631 struct page *s_page, *d_page; 1632 unsigned int s_objidx, d_objidx; 1633 unsigned long s_off, d_off; 1634 void *s_addr, *d_addr; 1635 int s_size, d_size, size; 1636 int written = 0; 1637 1638 s_size = d_size = class->size; 1639 1640 obj_to_location(src, &s_page, &s_objidx); 1641 obj_to_location(dst, &d_page, &d_objidx); 1642 1643 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1644 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1645 1646 if (s_off + class->size > PAGE_SIZE) 1647 s_size = PAGE_SIZE - s_off; 1648 1649 if (d_off + class->size > PAGE_SIZE) 1650 d_size = PAGE_SIZE - d_off; 1651 1652 s_addr = kmap_atomic(s_page); 1653 d_addr = kmap_atomic(d_page); 1654 1655 while (1) { 1656 size = min(s_size, d_size); 1657 memcpy(d_addr + d_off, s_addr + s_off, size); 1658 written += size; 1659 1660 if (written == class->size) 1661 break; 1662 1663 s_off += size; 1664 s_size -= size; 1665 d_off += size; 1666 d_size -= size; 1667 1668 /* 1669 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1670 * calls must occurs in reverse order of calls to kmap_atomic(). 1671 * So, to call kunmap_atomic(s_addr) we should first call 1672 * kunmap_atomic(d_addr). For more details see 1673 * Documentation/mm/highmem.rst. 1674 */ 1675 if (s_off >= PAGE_SIZE) { 1676 kunmap_atomic(d_addr); 1677 kunmap_atomic(s_addr); 1678 s_page = get_next_page(s_page); 1679 s_addr = kmap_atomic(s_page); 1680 d_addr = kmap_atomic(d_page); 1681 s_size = class->size - written; 1682 s_off = 0; 1683 } 1684 1685 if (d_off >= PAGE_SIZE) { 1686 kunmap_atomic(d_addr); 1687 d_page = get_next_page(d_page); 1688 d_addr = kmap_atomic(d_page); 1689 d_size = class->size - written; 1690 d_off = 0; 1691 } 1692 } 1693 1694 kunmap_atomic(d_addr); 1695 kunmap_atomic(s_addr); 1696 } 1697 1698 /* 1699 * Find object with a certain tag in zspage from index object and 1700 * return handle. 1701 */ 1702 static unsigned long find_tagged_obj(struct size_class *class, 1703 struct page *page, int *obj_idx, int tag) 1704 { 1705 unsigned int offset; 1706 int index = *obj_idx; 1707 unsigned long handle = 0; 1708 void *addr = kmap_atomic(page); 1709 1710 offset = get_first_obj_offset(page); 1711 offset += class->size * index; 1712 1713 while (offset < PAGE_SIZE) { 1714 if (obj_tagged(page, addr + offset, &handle, tag)) 1715 break; 1716 1717 offset += class->size; 1718 index++; 1719 } 1720 1721 kunmap_atomic(addr); 1722 1723 *obj_idx = index; 1724 1725 return handle; 1726 } 1727 1728 /* 1729 * Find alloced object in zspage from index object and 1730 * return handle. 1731 */ 1732 static unsigned long find_alloced_obj(struct size_class *class, 1733 struct page *page, int *obj_idx) 1734 { 1735 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); 1736 } 1737 1738 #ifdef CONFIG_ZPOOL 1739 /* 1740 * Find object storing a deferred handle in header in zspage from index object 1741 * and return handle. 1742 */ 1743 static unsigned long find_deferred_handle_obj(struct size_class *class, 1744 struct page *page, int *obj_idx) 1745 { 1746 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG); 1747 } 1748 #endif 1749 1750 struct zs_compact_control { 1751 /* Source spage for migration which could be a subpage of zspage */ 1752 struct page *s_page; 1753 /* Destination page for migration which should be a first page 1754 * of zspage. */ 1755 struct page *d_page; 1756 /* Starting object index within @s_page which used for live object 1757 * in the subpage. */ 1758 int obj_idx; 1759 }; 1760 1761 static void migrate_zspage(struct zs_pool *pool, struct size_class *class, 1762 struct zs_compact_control *cc) 1763 { 1764 unsigned long used_obj, free_obj; 1765 unsigned long handle; 1766 struct page *s_page = cc->s_page; 1767 struct page *d_page = cc->d_page; 1768 int obj_idx = cc->obj_idx; 1769 1770 while (1) { 1771 handle = find_alloced_obj(class, s_page, &obj_idx); 1772 if (!handle) { 1773 s_page = get_next_page(s_page); 1774 if (!s_page) 1775 break; 1776 obj_idx = 0; 1777 continue; 1778 } 1779 1780 /* Stop if there is no more space */ 1781 if (zspage_full(class, get_zspage(d_page))) 1782 break; 1783 1784 used_obj = handle_to_obj(handle); 1785 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1786 zs_object_copy(class, free_obj, used_obj); 1787 obj_idx++; 1788 record_obj(handle, free_obj); 1789 obj_free(class->size, used_obj, NULL); 1790 } 1791 1792 /* Remember last position in this iteration */ 1793 cc->s_page = s_page; 1794 cc->obj_idx = obj_idx; 1795 } 1796 1797 static struct zspage *isolate_src_zspage(struct size_class *class) 1798 { 1799 struct zspage *zspage; 1800 int fg; 1801 1802 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1803 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1804 struct zspage, list); 1805 if (zspage) { 1806 remove_zspage(class, zspage, fg); 1807 return zspage; 1808 } 1809 } 1810 1811 return zspage; 1812 } 1813 1814 static struct zspage *isolate_dst_zspage(struct size_class *class) 1815 { 1816 struct zspage *zspage; 1817 int fg; 1818 1819 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1820 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1821 struct zspage, list); 1822 if (zspage) { 1823 remove_zspage(class, zspage, fg); 1824 return zspage; 1825 } 1826 } 1827 1828 return zspage; 1829 } 1830 1831 /* 1832 * putback_zspage - add @zspage into right class's fullness list 1833 * @class: destination class 1834 * @zspage: target page 1835 * 1836 * Return @zspage's fullness status 1837 */ 1838 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1839 { 1840 int fullness; 1841 1842 fullness = get_fullness_group(class, zspage); 1843 insert_zspage(class, zspage, fullness); 1844 set_zspage_mapping(zspage, class->index, fullness); 1845 1846 return fullness; 1847 } 1848 1849 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1850 /* 1851 * To prevent zspage destroy during migration, zspage freeing should 1852 * hold locks of all pages in the zspage. 1853 */ 1854 static void lock_zspage(struct zspage *zspage) 1855 { 1856 struct page *curr_page, *page; 1857 1858 /* 1859 * Pages we haven't locked yet can be migrated off the list while we're 1860 * trying to lock them, so we need to be careful and only attempt to 1861 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1862 * may no longer belong to the zspage. This means that we may wait for 1863 * the wrong page to unlock, so we must take a reference to the page 1864 * prior to waiting for it to unlock outside migrate_read_lock(). 1865 */ 1866 while (1) { 1867 migrate_read_lock(zspage); 1868 page = get_first_page(zspage); 1869 if (trylock_page(page)) 1870 break; 1871 get_page(page); 1872 migrate_read_unlock(zspage); 1873 wait_on_page_locked(page); 1874 put_page(page); 1875 } 1876 1877 curr_page = page; 1878 while ((page = get_next_page(curr_page))) { 1879 if (trylock_page(page)) { 1880 curr_page = page; 1881 } else { 1882 get_page(page); 1883 migrate_read_unlock(zspage); 1884 wait_on_page_locked(page); 1885 put_page(page); 1886 migrate_read_lock(zspage); 1887 } 1888 } 1889 migrate_read_unlock(zspage); 1890 } 1891 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1892 1893 #ifdef CONFIG_ZPOOL 1894 /* 1895 * Unlocks all the pages of the zspage. 1896 * 1897 * pool->lock must be held before this function is called 1898 * to prevent the underlying pages from migrating. 1899 */ 1900 static void unlock_zspage(struct zspage *zspage) 1901 { 1902 struct page *page = get_first_page(zspage); 1903 1904 do { 1905 unlock_page(page); 1906 } while ((page = get_next_page(page)) != NULL); 1907 } 1908 #endif /* CONFIG_ZPOOL */ 1909 1910 static void migrate_lock_init(struct zspage *zspage) 1911 { 1912 rwlock_init(&zspage->lock); 1913 } 1914 1915 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1916 { 1917 read_lock(&zspage->lock); 1918 } 1919 1920 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1921 { 1922 read_unlock(&zspage->lock); 1923 } 1924 1925 #ifdef CONFIG_COMPACTION 1926 static void migrate_write_lock(struct zspage *zspage) 1927 { 1928 write_lock(&zspage->lock); 1929 } 1930 1931 static void migrate_write_lock_nested(struct zspage *zspage) 1932 { 1933 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1934 } 1935 1936 static void migrate_write_unlock(struct zspage *zspage) 1937 { 1938 write_unlock(&zspage->lock); 1939 } 1940 1941 /* Number of isolated subpage for *page migration* in this zspage */ 1942 static void inc_zspage_isolation(struct zspage *zspage) 1943 { 1944 zspage->isolated++; 1945 } 1946 1947 static void dec_zspage_isolation(struct zspage *zspage) 1948 { 1949 VM_BUG_ON(zspage->isolated == 0); 1950 zspage->isolated--; 1951 } 1952 1953 static const struct movable_operations zsmalloc_mops; 1954 1955 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1956 struct page *newpage, struct page *oldpage) 1957 { 1958 struct page *page; 1959 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1960 int idx = 0; 1961 1962 page = get_first_page(zspage); 1963 do { 1964 if (page == oldpage) 1965 pages[idx] = newpage; 1966 else 1967 pages[idx] = page; 1968 idx++; 1969 } while ((page = get_next_page(page)) != NULL); 1970 1971 create_page_chain(class, zspage, pages); 1972 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1973 if (unlikely(ZsHugePage(zspage))) 1974 newpage->index = oldpage->index; 1975 __SetPageMovable(newpage, &zsmalloc_mops); 1976 } 1977 1978 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1979 { 1980 struct zspage *zspage; 1981 1982 /* 1983 * Page is locked so zspage couldn't be destroyed. For detail, look at 1984 * lock_zspage in free_zspage. 1985 */ 1986 VM_BUG_ON_PAGE(PageIsolated(page), page); 1987 1988 zspage = get_zspage(page); 1989 migrate_write_lock(zspage); 1990 inc_zspage_isolation(zspage); 1991 migrate_write_unlock(zspage); 1992 1993 return true; 1994 } 1995 1996 static int zs_page_migrate(struct page *newpage, struct page *page, 1997 enum migrate_mode mode) 1998 { 1999 struct zs_pool *pool; 2000 struct size_class *class; 2001 struct zspage *zspage; 2002 struct page *dummy; 2003 void *s_addr, *d_addr, *addr; 2004 unsigned int offset; 2005 unsigned long handle; 2006 unsigned long old_obj, new_obj; 2007 unsigned int obj_idx; 2008 2009 /* 2010 * We cannot support the _NO_COPY case here, because copy needs to 2011 * happen under the zs lock, which does not work with 2012 * MIGRATE_SYNC_NO_COPY workflow. 2013 */ 2014 if (mode == MIGRATE_SYNC_NO_COPY) 2015 return -EINVAL; 2016 2017 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2018 2019 /* The page is locked, so this pointer must remain valid */ 2020 zspage = get_zspage(page); 2021 pool = zspage->pool; 2022 2023 /* 2024 * The pool's lock protects the race between zpage migration 2025 * and zs_free. 2026 */ 2027 spin_lock(&pool->lock); 2028 class = zspage_class(pool, zspage); 2029 2030 /* the migrate_write_lock protects zpage access via zs_map_object */ 2031 migrate_write_lock(zspage); 2032 2033 offset = get_first_obj_offset(page); 2034 s_addr = kmap_atomic(page); 2035 2036 /* 2037 * Here, any user cannot access all objects in the zspage so let's move. 2038 */ 2039 d_addr = kmap_atomic(newpage); 2040 memcpy(d_addr, s_addr, PAGE_SIZE); 2041 kunmap_atomic(d_addr); 2042 2043 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2044 addr += class->size) { 2045 if (obj_allocated(page, addr, &handle)) { 2046 2047 old_obj = handle_to_obj(handle); 2048 obj_to_location(old_obj, &dummy, &obj_idx); 2049 new_obj = (unsigned long)location_to_obj(newpage, 2050 obj_idx); 2051 record_obj(handle, new_obj); 2052 } 2053 } 2054 kunmap_atomic(s_addr); 2055 2056 replace_sub_page(class, zspage, newpage, page); 2057 /* 2058 * Since we complete the data copy and set up new zspage structure, 2059 * it's okay to release the pool's lock. 2060 */ 2061 spin_unlock(&pool->lock); 2062 dec_zspage_isolation(zspage); 2063 migrate_write_unlock(zspage); 2064 2065 get_page(newpage); 2066 if (page_zone(newpage) != page_zone(page)) { 2067 dec_zone_page_state(page, NR_ZSPAGES); 2068 inc_zone_page_state(newpage, NR_ZSPAGES); 2069 } 2070 2071 reset_page(page); 2072 put_page(page); 2073 2074 return MIGRATEPAGE_SUCCESS; 2075 } 2076 2077 static void zs_page_putback(struct page *page) 2078 { 2079 struct zspage *zspage; 2080 2081 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2082 2083 zspage = get_zspage(page); 2084 migrate_write_lock(zspage); 2085 dec_zspage_isolation(zspage); 2086 migrate_write_unlock(zspage); 2087 } 2088 2089 static const struct movable_operations zsmalloc_mops = { 2090 .isolate_page = zs_page_isolate, 2091 .migrate_page = zs_page_migrate, 2092 .putback_page = zs_page_putback, 2093 }; 2094 2095 /* 2096 * Caller should hold page_lock of all pages in the zspage 2097 * In here, we cannot use zspage meta data. 2098 */ 2099 static void async_free_zspage(struct work_struct *work) 2100 { 2101 int i; 2102 struct size_class *class; 2103 unsigned int class_idx; 2104 int fullness; 2105 struct zspage *zspage, *tmp; 2106 LIST_HEAD(free_pages); 2107 struct zs_pool *pool = container_of(work, struct zs_pool, 2108 free_work); 2109 2110 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2111 class = pool->size_class[i]; 2112 if (class->index != i) 2113 continue; 2114 2115 spin_lock(&pool->lock); 2116 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 2117 &free_pages); 2118 spin_unlock(&pool->lock); 2119 } 2120 2121 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2122 list_del(&zspage->list); 2123 lock_zspage(zspage); 2124 2125 get_zspage_mapping(zspage, &class_idx, &fullness); 2126 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); 2127 class = pool->size_class[class_idx]; 2128 spin_lock(&pool->lock); 2129 #ifdef CONFIG_ZPOOL 2130 list_del(&zspage->lru); 2131 #endif 2132 __free_zspage(pool, class, zspage); 2133 spin_unlock(&pool->lock); 2134 } 2135 }; 2136 2137 static void kick_deferred_free(struct zs_pool *pool) 2138 { 2139 schedule_work(&pool->free_work); 2140 } 2141 2142 static void zs_flush_migration(struct zs_pool *pool) 2143 { 2144 flush_work(&pool->free_work); 2145 } 2146 2147 static void init_deferred_free(struct zs_pool *pool) 2148 { 2149 INIT_WORK(&pool->free_work, async_free_zspage); 2150 } 2151 2152 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2153 { 2154 struct page *page = get_first_page(zspage); 2155 2156 do { 2157 WARN_ON(!trylock_page(page)); 2158 __SetPageMovable(page, &zsmalloc_mops); 2159 unlock_page(page); 2160 } while ((page = get_next_page(page)) != NULL); 2161 } 2162 #else 2163 static inline void zs_flush_migration(struct zs_pool *pool) { } 2164 #endif 2165 2166 /* 2167 * 2168 * Based on the number of unused allocated objects calculate 2169 * and return the number of pages that we can free. 2170 */ 2171 static unsigned long zs_can_compact(struct size_class *class) 2172 { 2173 unsigned long obj_wasted; 2174 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 2175 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 2176 2177 if (obj_allocated <= obj_used) 2178 return 0; 2179 2180 obj_wasted = obj_allocated - obj_used; 2181 obj_wasted /= class->objs_per_zspage; 2182 2183 return obj_wasted * class->pages_per_zspage; 2184 } 2185 2186 static unsigned long __zs_compact(struct zs_pool *pool, 2187 struct size_class *class) 2188 { 2189 struct zs_compact_control cc; 2190 struct zspage *src_zspage = NULL; 2191 struct zspage *dst_zspage = NULL; 2192 unsigned long pages_freed = 0; 2193 2194 /* 2195 * protect the race between zpage migration and zs_free 2196 * as well as zpage allocation/free 2197 */ 2198 spin_lock(&pool->lock); 2199 while (zs_can_compact(class)) { 2200 int fg; 2201 2202 if (!dst_zspage) { 2203 dst_zspage = isolate_dst_zspage(class); 2204 if (!dst_zspage) 2205 break; 2206 migrate_write_lock(dst_zspage); 2207 cc.d_page = get_first_page(dst_zspage); 2208 } 2209 2210 src_zspage = isolate_src_zspage(class); 2211 if (!src_zspage) 2212 break; 2213 2214 migrate_write_lock_nested(src_zspage); 2215 2216 cc.obj_idx = 0; 2217 cc.s_page = get_first_page(src_zspage); 2218 migrate_zspage(pool, class, &cc); 2219 fg = putback_zspage(class, src_zspage); 2220 migrate_write_unlock(src_zspage); 2221 2222 if (fg == ZS_INUSE_RATIO_0) { 2223 free_zspage(pool, class, src_zspage); 2224 pages_freed += class->pages_per_zspage; 2225 } 2226 src_zspage = NULL; 2227 2228 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 2229 || spin_is_contended(&pool->lock)) { 2230 putback_zspage(class, dst_zspage); 2231 migrate_write_unlock(dst_zspage); 2232 dst_zspage = NULL; 2233 2234 spin_unlock(&pool->lock); 2235 cond_resched(); 2236 spin_lock(&pool->lock); 2237 } 2238 } 2239 2240 if (src_zspage) { 2241 putback_zspage(class, src_zspage); 2242 migrate_write_unlock(src_zspage); 2243 } 2244 2245 if (dst_zspage) { 2246 putback_zspage(class, dst_zspage); 2247 migrate_write_unlock(dst_zspage); 2248 } 2249 spin_unlock(&pool->lock); 2250 2251 return pages_freed; 2252 } 2253 2254 unsigned long zs_compact(struct zs_pool *pool) 2255 { 2256 int i; 2257 struct size_class *class; 2258 unsigned long pages_freed = 0; 2259 2260 /* 2261 * Pool compaction is performed under pool->lock so it is basically 2262 * single-threaded. Having more than one thread in __zs_compact() 2263 * will increase pool->lock contention, which will impact other 2264 * zsmalloc operations that need pool->lock. 2265 */ 2266 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2267 return 0; 2268 2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2270 class = pool->size_class[i]; 2271 if (class->index != i) 2272 continue; 2273 pages_freed += __zs_compact(pool, class); 2274 } 2275 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2276 atomic_set(&pool->compaction_in_progress, 0); 2277 2278 return pages_freed; 2279 } 2280 EXPORT_SYMBOL_GPL(zs_compact); 2281 2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2283 { 2284 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2285 } 2286 EXPORT_SYMBOL_GPL(zs_pool_stats); 2287 2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2289 struct shrink_control *sc) 2290 { 2291 unsigned long pages_freed; 2292 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2293 shrinker); 2294 2295 /* 2296 * Compact classes and calculate compaction delta. 2297 * Can run concurrently with a manually triggered 2298 * (by user) compaction. 2299 */ 2300 pages_freed = zs_compact(pool); 2301 2302 return pages_freed ? pages_freed : SHRINK_STOP; 2303 } 2304 2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2306 struct shrink_control *sc) 2307 { 2308 int i; 2309 struct size_class *class; 2310 unsigned long pages_to_free = 0; 2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2312 shrinker); 2313 2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2315 class = pool->size_class[i]; 2316 if (class->index != i) 2317 continue; 2318 2319 pages_to_free += zs_can_compact(class); 2320 } 2321 2322 return pages_to_free; 2323 } 2324 2325 static void zs_unregister_shrinker(struct zs_pool *pool) 2326 { 2327 unregister_shrinker(&pool->shrinker); 2328 } 2329 2330 static int zs_register_shrinker(struct zs_pool *pool) 2331 { 2332 pool->shrinker.scan_objects = zs_shrinker_scan; 2333 pool->shrinker.count_objects = zs_shrinker_count; 2334 pool->shrinker.batch = 0; 2335 pool->shrinker.seeks = DEFAULT_SEEKS; 2336 2337 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2338 pool->name); 2339 } 2340 2341 static int calculate_zspage_chain_size(int class_size) 2342 { 2343 int i, min_waste = INT_MAX; 2344 int chain_size = 1; 2345 2346 if (is_power_of_2(class_size)) 2347 return chain_size; 2348 2349 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2350 int waste; 2351 2352 waste = (i * PAGE_SIZE) % class_size; 2353 if (waste < min_waste) { 2354 min_waste = waste; 2355 chain_size = i; 2356 } 2357 } 2358 2359 return chain_size; 2360 } 2361 2362 /** 2363 * zs_create_pool - Creates an allocation pool to work from. 2364 * @name: pool name to be created 2365 * 2366 * This function must be called before anything when using 2367 * the zsmalloc allocator. 2368 * 2369 * On success, a pointer to the newly created pool is returned, 2370 * otherwise NULL. 2371 */ 2372 struct zs_pool *zs_create_pool(const char *name) 2373 { 2374 int i; 2375 struct zs_pool *pool; 2376 struct size_class *prev_class = NULL; 2377 2378 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2379 if (!pool) 2380 return NULL; 2381 2382 init_deferred_free(pool); 2383 spin_lock_init(&pool->lock); 2384 atomic_set(&pool->compaction_in_progress, 0); 2385 2386 pool->name = kstrdup(name, GFP_KERNEL); 2387 if (!pool->name) 2388 goto err; 2389 2390 if (create_cache(pool)) 2391 goto err; 2392 2393 /* 2394 * Iterate reversely, because, size of size_class that we want to use 2395 * for merging should be larger or equal to current size. 2396 */ 2397 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2398 int size; 2399 int pages_per_zspage; 2400 int objs_per_zspage; 2401 struct size_class *class; 2402 int fullness; 2403 2404 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2405 if (size > ZS_MAX_ALLOC_SIZE) 2406 size = ZS_MAX_ALLOC_SIZE; 2407 pages_per_zspage = calculate_zspage_chain_size(size); 2408 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2409 2410 /* 2411 * We iterate from biggest down to smallest classes, 2412 * so huge_class_size holds the size of the first huge 2413 * class. Any object bigger than or equal to that will 2414 * endup in the huge class. 2415 */ 2416 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2417 !huge_class_size) { 2418 huge_class_size = size; 2419 /* 2420 * The object uses ZS_HANDLE_SIZE bytes to store the 2421 * handle. We need to subtract it, because zs_malloc() 2422 * unconditionally adds handle size before it performs 2423 * size class search - so object may be smaller than 2424 * huge class size, yet it still can end up in the huge 2425 * class because it grows by ZS_HANDLE_SIZE extra bytes 2426 * right before class lookup. 2427 */ 2428 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2429 } 2430 2431 /* 2432 * size_class is used for normal zsmalloc operation such 2433 * as alloc/free for that size. Although it is natural that we 2434 * have one size_class for each size, there is a chance that we 2435 * can get more memory utilization if we use one size_class for 2436 * many different sizes whose size_class have same 2437 * characteristics. So, we makes size_class point to 2438 * previous size_class if possible. 2439 */ 2440 if (prev_class) { 2441 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2442 pool->size_class[i] = prev_class; 2443 continue; 2444 } 2445 } 2446 2447 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2448 if (!class) 2449 goto err; 2450 2451 class->size = size; 2452 class->index = i; 2453 class->pages_per_zspage = pages_per_zspage; 2454 class->objs_per_zspage = objs_per_zspage; 2455 pool->size_class[i] = class; 2456 2457 fullness = ZS_INUSE_RATIO_0; 2458 while (fullness < NR_FULLNESS_GROUPS) { 2459 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2460 fullness++; 2461 } 2462 2463 prev_class = class; 2464 } 2465 2466 /* debug only, don't abort if it fails */ 2467 zs_pool_stat_create(pool, name); 2468 2469 /* 2470 * Not critical since shrinker is only used to trigger internal 2471 * defragmentation of the pool which is pretty optional thing. If 2472 * registration fails we still can use the pool normally and user can 2473 * trigger compaction manually. Thus, ignore return code. 2474 */ 2475 zs_register_shrinker(pool); 2476 2477 #ifdef CONFIG_ZPOOL 2478 INIT_LIST_HEAD(&pool->lru); 2479 #endif 2480 2481 return pool; 2482 2483 err: 2484 zs_destroy_pool(pool); 2485 return NULL; 2486 } 2487 EXPORT_SYMBOL_GPL(zs_create_pool); 2488 2489 void zs_destroy_pool(struct zs_pool *pool) 2490 { 2491 int i; 2492 2493 zs_unregister_shrinker(pool); 2494 zs_flush_migration(pool); 2495 zs_pool_stat_destroy(pool); 2496 2497 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2498 int fg; 2499 struct size_class *class = pool->size_class[i]; 2500 2501 if (!class) 2502 continue; 2503 2504 if (class->index != i) 2505 continue; 2506 2507 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2508 if (list_empty(&class->fullness_list[fg])) 2509 continue; 2510 2511 pr_err("Class-%d fullness group %d is not empty\n", 2512 class->size, fg); 2513 } 2514 kfree(class); 2515 } 2516 2517 destroy_cache(pool); 2518 kfree(pool->name); 2519 kfree(pool); 2520 } 2521 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2522 2523 #ifdef CONFIG_ZPOOL 2524 static void restore_freelist(struct zs_pool *pool, struct size_class *class, 2525 struct zspage *zspage) 2526 { 2527 unsigned int obj_idx = 0; 2528 unsigned long handle, off = 0; /* off is within-page offset */ 2529 struct page *page = get_first_page(zspage); 2530 struct link_free *prev_free = NULL; 2531 void *prev_page_vaddr = NULL; 2532 2533 /* in case no free object found */ 2534 set_freeobj(zspage, (unsigned int)(-1UL)); 2535 2536 while (page) { 2537 void *vaddr = kmap_atomic(page); 2538 struct page *next_page; 2539 2540 while (off < PAGE_SIZE) { 2541 void *obj_addr = vaddr + off; 2542 2543 /* skip allocated object */ 2544 if (obj_allocated(page, obj_addr, &handle)) { 2545 obj_idx++; 2546 off += class->size; 2547 continue; 2548 } 2549 2550 /* free deferred handle from reclaim attempt */ 2551 if (obj_stores_deferred_handle(page, obj_addr, &handle)) 2552 cache_free_handle(pool, handle); 2553 2554 if (prev_free) 2555 prev_free->next = obj_idx << OBJ_TAG_BITS; 2556 else /* first free object found */ 2557 set_freeobj(zspage, obj_idx); 2558 2559 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free); 2560 /* if last free object in a previous page, need to unmap */ 2561 if (prev_page_vaddr) { 2562 kunmap_atomic(prev_page_vaddr); 2563 prev_page_vaddr = NULL; 2564 } 2565 2566 obj_idx++; 2567 off += class->size; 2568 } 2569 2570 /* 2571 * Handle the last (full or partial) object on this page. 2572 */ 2573 next_page = get_next_page(page); 2574 if (next_page) { 2575 if (!prev_free || prev_page_vaddr) { 2576 /* 2577 * There is no free object in this page, so we can safely 2578 * unmap it. 2579 */ 2580 kunmap_atomic(vaddr); 2581 } else { 2582 /* update prev_page_vaddr since prev_free is on this page */ 2583 prev_page_vaddr = vaddr; 2584 } 2585 } else { /* this is the last page */ 2586 if (prev_free) { 2587 /* 2588 * Reset OBJ_TAG_BITS bit to last link to tell 2589 * whether it's allocated object or not. 2590 */ 2591 prev_free->next = -1UL << OBJ_TAG_BITS; 2592 } 2593 2594 /* unmap previous page (if not done yet) */ 2595 if (prev_page_vaddr) { 2596 kunmap_atomic(prev_page_vaddr); 2597 prev_page_vaddr = NULL; 2598 } 2599 2600 kunmap_atomic(vaddr); 2601 } 2602 2603 page = next_page; 2604 off %= PAGE_SIZE; 2605 } 2606 } 2607 2608 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2609 { 2610 int i, obj_idx, ret = 0; 2611 unsigned long handle; 2612 struct zspage *zspage; 2613 struct page *page; 2614 int fullness; 2615 2616 /* Lock LRU and fullness list */ 2617 spin_lock(&pool->lock); 2618 if (list_empty(&pool->lru)) { 2619 spin_unlock(&pool->lock); 2620 return -EINVAL; 2621 } 2622 2623 for (i = 0; i < retries; i++) { 2624 struct size_class *class; 2625 2626 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2627 list_del(&zspage->lru); 2628 2629 /* zs_free may free objects, but not the zspage and handles */ 2630 zspage->under_reclaim = true; 2631 2632 class = zspage_class(pool, zspage); 2633 fullness = get_fullness_group(class, zspage); 2634 2635 /* Lock out object allocations and object compaction */ 2636 remove_zspage(class, zspage, fullness); 2637 2638 spin_unlock(&pool->lock); 2639 cond_resched(); 2640 2641 /* Lock backing pages into place */ 2642 lock_zspage(zspage); 2643 2644 obj_idx = 0; 2645 page = get_first_page(zspage); 2646 while (1) { 2647 handle = find_alloced_obj(class, page, &obj_idx); 2648 if (!handle) { 2649 page = get_next_page(page); 2650 if (!page) 2651 break; 2652 obj_idx = 0; 2653 continue; 2654 } 2655 2656 /* 2657 * This will write the object and call zs_free. 2658 * 2659 * zs_free will free the object, but the 2660 * under_reclaim flag prevents it from freeing 2661 * the zspage altogether. This is necessary so 2662 * that we can continue working with the 2663 * zspage potentially after the last object 2664 * has been freed. 2665 */ 2666 ret = pool->zpool_ops->evict(pool->zpool, handle); 2667 if (ret) 2668 goto next; 2669 2670 obj_idx++; 2671 } 2672 2673 next: 2674 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2675 spin_lock(&pool->lock); 2676 zspage->under_reclaim = false; 2677 2678 if (!get_zspage_inuse(zspage)) { 2679 /* 2680 * Fullness went stale as zs_free() won't touch it 2681 * while the page is removed from the pool. Fix it 2682 * up for the check in __free_zspage(). 2683 */ 2684 zspage->fullness = ZS_INUSE_RATIO_0; 2685 2686 __free_zspage(pool, class, zspage); 2687 spin_unlock(&pool->lock); 2688 return 0; 2689 } 2690 2691 /* 2692 * Eviction fails on one of the handles, so we need to restore zspage. 2693 * We need to rebuild its freelist (and free stored deferred handles), 2694 * put it back to the correct size class, and add it to the LRU list. 2695 */ 2696 restore_freelist(pool, class, zspage); 2697 putback_zspage(class, zspage); 2698 list_add(&zspage->lru, &pool->lru); 2699 unlock_zspage(zspage); 2700 } 2701 2702 spin_unlock(&pool->lock); 2703 return -EAGAIN; 2704 } 2705 #endif /* CONFIG_ZPOOL */ 2706 2707 static int __init zs_init(void) 2708 { 2709 int ret; 2710 2711 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2712 zs_cpu_prepare, zs_cpu_dead); 2713 if (ret) 2714 goto out; 2715 2716 #ifdef CONFIG_ZPOOL 2717 zpool_register_driver(&zs_zpool_driver); 2718 #endif 2719 2720 zs_stat_init(); 2721 2722 return 0; 2723 2724 out: 2725 return ret; 2726 } 2727 2728 static void __exit zs_exit(void) 2729 { 2730 #ifdef CONFIG_ZPOOL 2731 zpool_unregister_driver(&zs_zpool_driver); 2732 #endif 2733 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2734 2735 zs_stat_exit(); 2736 } 2737 2738 module_init(zs_init); 2739 module_exit(zs_exit); 2740 2741 MODULE_LICENSE("Dual BSD/GPL"); 2742 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2743