xref: /openbmc/linux/mm/zsmalloc.c (revision ef54cf0c)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 #include <linux/fs.h>
57 
58 #define ZSPAGE_MAGIC	0x58
59 
60 /*
61  * This must be power of 2 and greater than of equal to sizeof(link_free).
62  * These two conditions ensure that any 'struct link_free' itself doesn't
63  * span more than 1 page which avoids complex case of mapping 2 pages simply
64  * to restore link_free pointer values.
65  */
66 #define ZS_ALIGN		8
67 
68 /*
69  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71  */
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
76 
77 /*
78  * Object location (<PFN>, <obj_idx>) is encoded as
79  * as single (unsigned long) handle value.
80  *
81  * Note that object index <obj_idx> starts from 0.
82  *
83  * This is made more complicated by various memory models and PAE.
84  */
85 
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
90 /*
91  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92  * be PAGE_SHIFT
93  */
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
98 
99 /*
100  * Memory for allocating for handle keeps object position by
101  * encoding <page, obj_idx> and the encoded value has a room
102  * in least bit(ie, look at obj_to_location).
103  * We use the bit to synchronize between object access by
104  * user and migration.
105  */
106 #define HANDLE_PIN_BIT	0
107 
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 
120 #define FULLNESS_BITS	2
121 #define CLASS_BITS	8
122 #define ISOLATED_BITS	3
123 #define MAGIC_VAL_BITS	8
124 
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
131 
132 /*
133  * On systems with 4K page size, this gives 255 size classes! There is a
134  * trader-off here:
135  *  - Large number of size classes is potentially wasteful as free page are
136  *    spread across these classes
137  *  - Small number of size classes causes large internal fragmentation
138  *  - Probably its better to use specific size classes (empirically
139  *    determined). NOTE: all those class sizes must be set as multiple of
140  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141  *
142  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143  *  (reason above)
144  */
145 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 				      ZS_SIZE_CLASS_DELTA) + 1)
148 
149 enum fullness_group {
150 	ZS_EMPTY,
151 	ZS_ALMOST_EMPTY,
152 	ZS_ALMOST_FULL,
153 	ZS_FULL,
154 	NR_ZS_FULLNESS,
155 };
156 
157 enum zs_stat_type {
158 	CLASS_EMPTY,
159 	CLASS_ALMOST_EMPTY,
160 	CLASS_ALMOST_FULL,
161 	CLASS_FULL,
162 	OBJ_ALLOCATED,
163 	OBJ_USED,
164 	NR_ZS_STAT_TYPE,
165 };
166 
167 struct zs_size_stat {
168 	unsigned long objs[NR_ZS_STAT_TYPE];
169 };
170 
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry *zs_stat_root;
173 #endif
174 
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount *zsmalloc_mnt;
177 #endif
178 
179 /*
180  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181  *	n <= N / f, where
182  * n = number of allocated objects
183  * N = total number of objects zspage can store
184  * f = fullness_threshold_frac
185  *
186  * Similarly, we assign zspage to:
187  *	ZS_ALMOST_FULL	when n > N / f
188  *	ZS_EMPTY	when n == 0
189  *	ZS_FULL		when n == N
190  *
191  * (see: fix_fullness_group())
192  */
193 static const int fullness_threshold_frac = 4;
194 
195 struct size_class {
196 	spinlock_t lock;
197 	struct list_head fullness_list[NR_ZS_FULLNESS];
198 	/*
199 	 * Size of objects stored in this class. Must be multiple
200 	 * of ZS_ALIGN.
201 	 */
202 	int size;
203 	int objs_per_zspage;
204 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 	int pages_per_zspage;
206 
207 	unsigned int index;
208 	struct zs_size_stat stats;
209 };
210 
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
213 {
214 	SetPageOwnerPriv1(page);
215 }
216 
217 static void ClearPageHugeObject(struct page *page)
218 {
219 	ClearPageOwnerPriv1(page);
220 }
221 
222 static int PageHugeObject(struct page *page)
223 {
224 	return PageOwnerPriv1(page);
225 }
226 
227 /*
228  * Placed within free objects to form a singly linked list.
229  * For every zspage, zspage->freeobj gives head of this list.
230  *
231  * This must be power of 2 and less than or equal to ZS_ALIGN
232  */
233 struct link_free {
234 	union {
235 		/*
236 		 * Free object index;
237 		 * It's valid for non-allocated object
238 		 */
239 		unsigned long next;
240 		/*
241 		 * Handle of allocated object.
242 		 */
243 		unsigned long handle;
244 	};
245 };
246 
247 struct zs_pool {
248 	const char *name;
249 
250 	struct size_class *size_class[ZS_SIZE_CLASSES];
251 	struct kmem_cache *handle_cachep;
252 	struct kmem_cache *zspage_cachep;
253 
254 	atomic_long_t pages_allocated;
255 
256 	struct zs_pool_stats stats;
257 
258 	/* Compact classes */
259 	struct shrinker shrinker;
260 	/*
261 	 * To signify that register_shrinker() was successful
262 	 * and unregister_shrinker() will not Oops.
263 	 */
264 	bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 	struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 	struct inode *inode;
270 	struct work_struct free_work;
271 #endif
272 };
273 
274 struct zspage {
275 	struct {
276 		unsigned int fullness:FULLNESS_BITS;
277 		unsigned int class:CLASS_BITS + 1;
278 		unsigned int isolated:ISOLATED_BITS;
279 		unsigned int magic:MAGIC_VAL_BITS;
280 	};
281 	unsigned int inuse;
282 	unsigned int freeobj;
283 	struct page *first_page;
284 	struct list_head list; /* fullness list */
285 #ifdef CONFIG_COMPACTION
286 	rwlock_t lock;
287 #endif
288 };
289 
290 struct mapping_area {
291 #ifdef CONFIG_PGTABLE_MAPPING
292 	struct vm_struct *vm; /* vm area for mapping object that span pages */
293 #else
294 	char *vm_buf; /* copy buffer for objects that span pages */
295 #endif
296 	char *vm_addr; /* address of kmap_atomic()'ed pages */
297 	enum zs_mapmode vm_mm; /* mapping mode */
298 };
299 
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool *pool);
302 static void zs_unregister_migration(struct zs_pool *pool);
303 static void migrate_lock_init(struct zspage *zspage);
304 static void migrate_read_lock(struct zspage *zspage);
305 static void migrate_read_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void kick_deferred_free(struct zs_pool *pool) {}
318 static void init_deferred_free(struct zs_pool *pool) {}
319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 #endif
321 
322 static int create_cache(struct zs_pool *pool)
323 {
324 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325 					0, 0, NULL);
326 	if (!pool->handle_cachep)
327 		return 1;
328 
329 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330 					0, 0, NULL);
331 	if (!pool->zspage_cachep) {
332 		kmem_cache_destroy(pool->handle_cachep);
333 		pool->handle_cachep = NULL;
334 		return 1;
335 	}
336 
337 	return 0;
338 }
339 
340 static void destroy_cache(struct zs_pool *pool)
341 {
342 	kmem_cache_destroy(pool->handle_cachep);
343 	kmem_cache_destroy(pool->zspage_cachep);
344 }
345 
346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 {
348 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
349 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 }
351 
352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 {
354 	kmem_cache_free(pool->handle_cachep, (void *)handle);
355 }
356 
357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 {
359 	return kmem_cache_alloc(pool->zspage_cachep,
360 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 }
362 
363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 {
365 	kmem_cache_free(pool->zspage_cachep, zspage);
366 }
367 
368 static void record_obj(unsigned long handle, unsigned long obj)
369 {
370 	/*
371 	 * lsb of @obj represents handle lock while other bits
372 	 * represent object value the handle is pointing so
373 	 * updating shouldn't do store tearing.
374 	 */
375 	WRITE_ONCE(*(unsigned long *)handle, obj);
376 }
377 
378 /* zpool driver */
379 
380 #ifdef CONFIG_ZPOOL
381 
382 static void *zs_zpool_create(const char *name, gfp_t gfp,
383 			     const struct zpool_ops *zpool_ops,
384 			     struct zpool *zpool)
385 {
386 	/*
387 	 * Ignore global gfp flags: zs_malloc() may be invoked from
388 	 * different contexts and its caller must provide a valid
389 	 * gfp mask.
390 	 */
391 	return zs_create_pool(name);
392 }
393 
394 static void zs_zpool_destroy(void *pool)
395 {
396 	zs_destroy_pool(pool);
397 }
398 
399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400 			unsigned long *handle)
401 {
402 	*handle = zs_malloc(pool, size, gfp);
403 	return *handle ? 0 : -1;
404 }
405 static void zs_zpool_free(void *pool, unsigned long handle)
406 {
407 	zs_free(pool, handle);
408 }
409 
410 static int zs_zpool_shrink(void *pool, unsigned int pages,
411 			unsigned int *reclaimed)
412 {
413 	return -EINVAL;
414 }
415 
416 static void *zs_zpool_map(void *pool, unsigned long handle,
417 			enum zpool_mapmode mm)
418 {
419 	enum zs_mapmode zs_mm;
420 
421 	switch (mm) {
422 	case ZPOOL_MM_RO:
423 		zs_mm = ZS_MM_RO;
424 		break;
425 	case ZPOOL_MM_WO:
426 		zs_mm = ZS_MM_WO;
427 		break;
428 	case ZPOOL_MM_RW: /* fallthru */
429 	default:
430 		zs_mm = ZS_MM_RW;
431 		break;
432 	}
433 
434 	return zs_map_object(pool, handle, zs_mm);
435 }
436 static void zs_zpool_unmap(void *pool, unsigned long handle)
437 {
438 	zs_unmap_object(pool, handle);
439 }
440 
441 static u64 zs_zpool_total_size(void *pool)
442 {
443 	return zs_get_total_pages(pool) << PAGE_SHIFT;
444 }
445 
446 static struct zpool_driver zs_zpool_driver = {
447 	.type =		"zsmalloc",
448 	.owner =	THIS_MODULE,
449 	.create =	zs_zpool_create,
450 	.destroy =	zs_zpool_destroy,
451 	.malloc =	zs_zpool_malloc,
452 	.free =		zs_zpool_free,
453 	.shrink =	zs_zpool_shrink,
454 	.map =		zs_zpool_map,
455 	.unmap =	zs_zpool_unmap,
456 	.total_size =	zs_zpool_total_size,
457 };
458 
459 MODULE_ALIAS("zpool-zsmalloc");
460 #endif /* CONFIG_ZPOOL */
461 
462 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
464 
465 static bool is_zspage_isolated(struct zspage *zspage)
466 {
467 	return zspage->isolated;
468 }
469 
470 static __maybe_unused int is_first_page(struct page *page)
471 {
472 	return PagePrivate(page);
473 }
474 
475 /* Protected by class->lock */
476 static inline int get_zspage_inuse(struct zspage *zspage)
477 {
478 	return zspage->inuse;
479 }
480 
481 static inline void set_zspage_inuse(struct zspage *zspage, int val)
482 {
483 	zspage->inuse = val;
484 }
485 
486 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
487 {
488 	zspage->inuse += val;
489 }
490 
491 static inline struct page *get_first_page(struct zspage *zspage)
492 {
493 	struct page *first_page = zspage->first_page;
494 
495 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496 	return first_page;
497 }
498 
499 static inline int get_first_obj_offset(struct page *page)
500 {
501 	return page->units;
502 }
503 
504 static inline void set_first_obj_offset(struct page *page, int offset)
505 {
506 	page->units = offset;
507 }
508 
509 static inline unsigned int get_freeobj(struct zspage *zspage)
510 {
511 	return zspage->freeobj;
512 }
513 
514 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
515 {
516 	zspage->freeobj = obj;
517 }
518 
519 static void get_zspage_mapping(struct zspage *zspage,
520 				unsigned int *class_idx,
521 				enum fullness_group *fullness)
522 {
523 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
524 
525 	*fullness = zspage->fullness;
526 	*class_idx = zspage->class;
527 }
528 
529 static void set_zspage_mapping(struct zspage *zspage,
530 				unsigned int class_idx,
531 				enum fullness_group fullness)
532 {
533 	zspage->class = class_idx;
534 	zspage->fullness = fullness;
535 }
536 
537 /*
538  * zsmalloc divides the pool into various size classes where each
539  * class maintains a list of zspages where each zspage is divided
540  * into equal sized chunks. Each allocation falls into one of these
541  * classes depending on its size. This function returns index of the
542  * size class which has chunk size big enough to hold the give size.
543  */
544 static int get_size_class_index(int size)
545 {
546 	int idx = 0;
547 
548 	if (likely(size > ZS_MIN_ALLOC_SIZE))
549 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
550 				ZS_SIZE_CLASS_DELTA);
551 
552 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
553 }
554 
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_inc(struct size_class *class,
557 				int type, unsigned long cnt)
558 {
559 	class->stats.objs[type] += cnt;
560 }
561 
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline void zs_stat_dec(struct size_class *class,
564 				int type, unsigned long cnt)
565 {
566 	class->stats.objs[type] -= cnt;
567 }
568 
569 /* type can be of enum type zs_stat_type or fullness_group */
570 static inline unsigned long zs_stat_get(struct size_class *class,
571 				int type)
572 {
573 	return class->stats.objs[type];
574 }
575 
576 #ifdef CONFIG_ZSMALLOC_STAT
577 
578 static void __init zs_stat_init(void)
579 {
580 	if (!debugfs_initialized()) {
581 		pr_warn("debugfs not available, stat dir not created\n");
582 		return;
583 	}
584 
585 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
586 	if (!zs_stat_root)
587 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
588 }
589 
590 static void __exit zs_stat_exit(void)
591 {
592 	debugfs_remove_recursive(zs_stat_root);
593 }
594 
595 static unsigned long zs_can_compact(struct size_class *class);
596 
597 static int zs_stats_size_show(struct seq_file *s, void *v)
598 {
599 	int i;
600 	struct zs_pool *pool = s->private;
601 	struct size_class *class;
602 	int objs_per_zspage;
603 	unsigned long class_almost_full, class_almost_empty;
604 	unsigned long obj_allocated, obj_used, pages_used, freeable;
605 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
606 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
607 	unsigned long total_freeable = 0;
608 
609 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
610 			"class", "size", "almost_full", "almost_empty",
611 			"obj_allocated", "obj_used", "pages_used",
612 			"pages_per_zspage", "freeable");
613 
614 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
615 		class = pool->size_class[i];
616 
617 		if (class->index != i)
618 			continue;
619 
620 		spin_lock(&class->lock);
621 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
622 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
623 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
624 		obj_used = zs_stat_get(class, OBJ_USED);
625 		freeable = zs_can_compact(class);
626 		spin_unlock(&class->lock);
627 
628 		objs_per_zspage = class->objs_per_zspage;
629 		pages_used = obj_allocated / objs_per_zspage *
630 				class->pages_per_zspage;
631 
632 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
633 				" %10lu %10lu %16d %8lu\n",
634 			i, class->size, class_almost_full, class_almost_empty,
635 			obj_allocated, obj_used, pages_used,
636 			class->pages_per_zspage, freeable);
637 
638 		total_class_almost_full += class_almost_full;
639 		total_class_almost_empty += class_almost_empty;
640 		total_objs += obj_allocated;
641 		total_used_objs += obj_used;
642 		total_pages += pages_used;
643 		total_freeable += freeable;
644 	}
645 
646 	seq_puts(s, "\n");
647 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
648 			"Total", "", total_class_almost_full,
649 			total_class_almost_empty, total_objs,
650 			total_used_objs, total_pages, "", total_freeable);
651 
652 	return 0;
653 }
654 
655 static int zs_stats_size_open(struct inode *inode, struct file *file)
656 {
657 	return single_open(file, zs_stats_size_show, inode->i_private);
658 }
659 
660 static const struct file_operations zs_stat_size_ops = {
661 	.open           = zs_stats_size_open,
662 	.read           = seq_read,
663 	.llseek         = seq_lseek,
664 	.release        = single_release,
665 };
666 
667 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
668 {
669 	struct dentry *entry;
670 
671 	if (!zs_stat_root) {
672 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
673 		return;
674 	}
675 
676 	entry = debugfs_create_dir(name, zs_stat_root);
677 	if (!entry) {
678 		pr_warn("debugfs dir <%s> creation failed\n", name);
679 		return;
680 	}
681 	pool->stat_dentry = entry;
682 
683 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
684 			pool->stat_dentry, pool, &zs_stat_size_ops);
685 	if (!entry) {
686 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 				name, "classes");
688 		debugfs_remove_recursive(pool->stat_dentry);
689 		pool->stat_dentry = NULL;
690 	}
691 }
692 
693 static void zs_pool_stat_destroy(struct zs_pool *pool)
694 {
695 	debugfs_remove_recursive(pool->stat_dentry);
696 }
697 
698 #else /* CONFIG_ZSMALLOC_STAT */
699 static void __init zs_stat_init(void)
700 {
701 }
702 
703 static void __exit zs_stat_exit(void)
704 {
705 }
706 
707 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
708 {
709 }
710 
711 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
712 {
713 }
714 #endif
715 
716 
717 /*
718  * For each size class, zspages are divided into different groups
719  * depending on how "full" they are. This was done so that we could
720  * easily find empty or nearly empty zspages when we try to shrink
721  * the pool (not yet implemented). This function returns fullness
722  * status of the given page.
723  */
724 static enum fullness_group get_fullness_group(struct size_class *class,
725 						struct zspage *zspage)
726 {
727 	int inuse, objs_per_zspage;
728 	enum fullness_group fg;
729 
730 	inuse = get_zspage_inuse(zspage);
731 	objs_per_zspage = class->objs_per_zspage;
732 
733 	if (inuse == 0)
734 		fg = ZS_EMPTY;
735 	else if (inuse == objs_per_zspage)
736 		fg = ZS_FULL;
737 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
738 		fg = ZS_ALMOST_EMPTY;
739 	else
740 		fg = ZS_ALMOST_FULL;
741 
742 	return fg;
743 }
744 
745 /*
746  * Each size class maintains various freelists and zspages are assigned
747  * to one of these freelists based on the number of live objects they
748  * have. This functions inserts the given zspage into the freelist
749  * identified by <class, fullness_group>.
750  */
751 static void insert_zspage(struct size_class *class,
752 				struct zspage *zspage,
753 				enum fullness_group fullness)
754 {
755 	struct zspage *head;
756 
757 	zs_stat_inc(class, fullness, 1);
758 	head = list_first_entry_or_null(&class->fullness_list[fullness],
759 					struct zspage, list);
760 	/*
761 	 * We want to see more ZS_FULL pages and less almost empty/full.
762 	 * Put pages with higher ->inuse first.
763 	 */
764 	if (head) {
765 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
766 			list_add(&zspage->list, &head->list);
767 			return;
768 		}
769 	}
770 	list_add(&zspage->list, &class->fullness_list[fullness]);
771 }
772 
773 /*
774  * This function removes the given zspage from the freelist identified
775  * by <class, fullness_group>.
776  */
777 static void remove_zspage(struct size_class *class,
778 				struct zspage *zspage,
779 				enum fullness_group fullness)
780 {
781 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
782 	VM_BUG_ON(is_zspage_isolated(zspage));
783 
784 	list_del_init(&zspage->list);
785 	zs_stat_dec(class, fullness, 1);
786 }
787 
788 /*
789  * Each size class maintains zspages in different fullness groups depending
790  * on the number of live objects they contain. When allocating or freeing
791  * objects, the fullness status of the page can change, say, from ALMOST_FULL
792  * to ALMOST_EMPTY when freeing an object. This function checks if such
793  * a status change has occurred for the given page and accordingly moves the
794  * page from the freelist of the old fullness group to that of the new
795  * fullness group.
796  */
797 static enum fullness_group fix_fullness_group(struct size_class *class,
798 						struct zspage *zspage)
799 {
800 	int class_idx;
801 	enum fullness_group currfg, newfg;
802 
803 	get_zspage_mapping(zspage, &class_idx, &currfg);
804 	newfg = get_fullness_group(class, zspage);
805 	if (newfg == currfg)
806 		goto out;
807 
808 	if (!is_zspage_isolated(zspage)) {
809 		remove_zspage(class, zspage, currfg);
810 		insert_zspage(class, zspage, newfg);
811 	}
812 
813 	set_zspage_mapping(zspage, class_idx, newfg);
814 
815 out:
816 	return newfg;
817 }
818 
819 /*
820  * We have to decide on how many pages to link together
821  * to form a zspage for each size class. This is important
822  * to reduce wastage due to unusable space left at end of
823  * each zspage which is given as:
824  *     wastage = Zp % class_size
825  *     usage = Zp - wastage
826  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827  *
828  * For example, for size class of 3/8 * PAGE_SIZE, we should
829  * link together 3 PAGE_SIZE sized pages to form a zspage
830  * since then we can perfectly fit in 8 such objects.
831  */
832 static int get_pages_per_zspage(int class_size)
833 {
834 	int i, max_usedpc = 0;
835 	/* zspage order which gives maximum used size per KB */
836 	int max_usedpc_order = 1;
837 
838 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
839 		int zspage_size;
840 		int waste, usedpc;
841 
842 		zspage_size = i * PAGE_SIZE;
843 		waste = zspage_size % class_size;
844 		usedpc = (zspage_size - waste) * 100 / zspage_size;
845 
846 		if (usedpc > max_usedpc) {
847 			max_usedpc = usedpc;
848 			max_usedpc_order = i;
849 		}
850 	}
851 
852 	return max_usedpc_order;
853 }
854 
855 static struct zspage *get_zspage(struct page *page)
856 {
857 	struct zspage *zspage = (struct zspage *)page->private;
858 
859 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
860 	return zspage;
861 }
862 
863 static struct page *get_next_page(struct page *page)
864 {
865 	if (unlikely(PageHugeObject(page)))
866 		return NULL;
867 
868 	return page->freelist;
869 }
870 
871 /**
872  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873  * @page: page object resides in zspage
874  * @obj_idx: object index
875  */
876 static void obj_to_location(unsigned long obj, struct page **page,
877 				unsigned int *obj_idx)
878 {
879 	obj >>= OBJ_TAG_BITS;
880 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
881 	*obj_idx = (obj & OBJ_INDEX_MASK);
882 }
883 
884 /**
885  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886  * @page: page object resides in zspage
887  * @obj_idx: object index
888  */
889 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
890 {
891 	unsigned long obj;
892 
893 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
894 	obj |= obj_idx & OBJ_INDEX_MASK;
895 	obj <<= OBJ_TAG_BITS;
896 
897 	return obj;
898 }
899 
900 static unsigned long handle_to_obj(unsigned long handle)
901 {
902 	return *(unsigned long *)handle;
903 }
904 
905 static unsigned long obj_to_head(struct page *page, void *obj)
906 {
907 	if (unlikely(PageHugeObject(page))) {
908 		VM_BUG_ON_PAGE(!is_first_page(page), page);
909 		return page->index;
910 	} else
911 		return *(unsigned long *)obj;
912 }
913 
914 static inline int testpin_tag(unsigned long handle)
915 {
916 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
917 }
918 
919 static inline int trypin_tag(unsigned long handle)
920 {
921 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
922 }
923 
924 static void pin_tag(unsigned long handle)
925 {
926 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
927 }
928 
929 static void unpin_tag(unsigned long handle)
930 {
931 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
932 }
933 
934 static void reset_page(struct page *page)
935 {
936 	__ClearPageMovable(page);
937 	ClearPagePrivate(page);
938 	set_page_private(page, 0);
939 	page_mapcount_reset(page);
940 	ClearPageHugeObject(page);
941 	page->freelist = NULL;
942 }
943 
944 /*
945  * To prevent zspage destroy during migration, zspage freeing should
946  * hold locks of all pages in the zspage.
947  */
948 void lock_zspage(struct zspage *zspage)
949 {
950 	struct page *page = get_first_page(zspage);
951 
952 	do {
953 		lock_page(page);
954 	} while ((page = get_next_page(page)) != NULL);
955 }
956 
957 int trylock_zspage(struct zspage *zspage)
958 {
959 	struct page *cursor, *fail;
960 
961 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
962 					get_next_page(cursor)) {
963 		if (!trylock_page(cursor)) {
964 			fail = cursor;
965 			goto unlock;
966 		}
967 	}
968 
969 	return 1;
970 unlock:
971 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
972 					get_next_page(cursor))
973 		unlock_page(cursor);
974 
975 	return 0;
976 }
977 
978 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
979 				struct zspage *zspage)
980 {
981 	struct page *page, *next;
982 	enum fullness_group fg;
983 	unsigned int class_idx;
984 
985 	get_zspage_mapping(zspage, &class_idx, &fg);
986 
987 	assert_spin_locked(&class->lock);
988 
989 	VM_BUG_ON(get_zspage_inuse(zspage));
990 	VM_BUG_ON(fg != ZS_EMPTY);
991 
992 	next = page = get_first_page(zspage);
993 	do {
994 		VM_BUG_ON_PAGE(!PageLocked(page), page);
995 		next = get_next_page(page);
996 		reset_page(page);
997 		unlock_page(page);
998 		dec_zone_page_state(page, NR_ZSPAGES);
999 		put_page(page);
1000 		page = next;
1001 	} while (page != NULL);
1002 
1003 	cache_free_zspage(pool, zspage);
1004 
1005 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1006 	atomic_long_sub(class->pages_per_zspage,
1007 					&pool->pages_allocated);
1008 }
1009 
1010 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1011 				struct zspage *zspage)
1012 {
1013 	VM_BUG_ON(get_zspage_inuse(zspage));
1014 	VM_BUG_ON(list_empty(&zspage->list));
1015 
1016 	if (!trylock_zspage(zspage)) {
1017 		kick_deferred_free(pool);
1018 		return;
1019 	}
1020 
1021 	remove_zspage(class, zspage, ZS_EMPTY);
1022 	__free_zspage(pool, class, zspage);
1023 }
1024 
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class *class, struct zspage *zspage)
1027 {
1028 	unsigned int freeobj = 1;
1029 	unsigned long off = 0;
1030 	struct page *page = get_first_page(zspage);
1031 
1032 	while (page) {
1033 		struct page *next_page;
1034 		struct link_free *link;
1035 		void *vaddr;
1036 
1037 		set_first_obj_offset(page, off);
1038 
1039 		vaddr = kmap_atomic(page);
1040 		link = (struct link_free *)vaddr + off / sizeof(*link);
1041 
1042 		while ((off += class->size) < PAGE_SIZE) {
1043 			link->next = freeobj++ << OBJ_TAG_BITS;
1044 			link += class->size / sizeof(*link);
1045 		}
1046 
1047 		/*
1048 		 * We now come to the last (full or partial) object on this
1049 		 * page, which must point to the first object on the next
1050 		 * page (if present)
1051 		 */
1052 		next_page = get_next_page(page);
1053 		if (next_page) {
1054 			link->next = freeobj++ << OBJ_TAG_BITS;
1055 		} else {
1056 			/*
1057 			 * Reset OBJ_TAG_BITS bit to last link to tell
1058 			 * whether it's allocated object or not.
1059 			 */
1060 			link->next = -1 << OBJ_TAG_BITS;
1061 		}
1062 		kunmap_atomic(vaddr);
1063 		page = next_page;
1064 		off %= PAGE_SIZE;
1065 	}
1066 
1067 	set_freeobj(zspage, 0);
1068 }
1069 
1070 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1071 				struct page *pages[])
1072 {
1073 	int i;
1074 	struct page *page;
1075 	struct page *prev_page = NULL;
1076 	int nr_pages = class->pages_per_zspage;
1077 
1078 	/*
1079 	 * Allocate individual pages and link them together as:
1080 	 * 1. all pages are linked together using page->freelist
1081 	 * 2. each sub-page point to zspage using page->private
1082 	 *
1083 	 * we set PG_private to identify the first page (i.e. no other sub-page
1084 	 * has this flag set).
1085 	 */
1086 	for (i = 0; i < nr_pages; i++) {
1087 		page = pages[i];
1088 		set_page_private(page, (unsigned long)zspage);
1089 		page->freelist = NULL;
1090 		if (i == 0) {
1091 			zspage->first_page = page;
1092 			SetPagePrivate(page);
1093 			if (unlikely(class->objs_per_zspage == 1 &&
1094 					class->pages_per_zspage == 1))
1095 				SetPageHugeObject(page);
1096 		} else {
1097 			prev_page->freelist = page;
1098 		}
1099 		prev_page = page;
1100 	}
1101 }
1102 
1103 /*
1104  * Allocate a zspage for the given size class
1105  */
1106 static struct zspage *alloc_zspage(struct zs_pool *pool,
1107 					struct size_class *class,
1108 					gfp_t gfp)
1109 {
1110 	int i;
1111 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1112 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1113 
1114 	if (!zspage)
1115 		return NULL;
1116 
1117 	memset(zspage, 0, sizeof(struct zspage));
1118 	zspage->magic = ZSPAGE_MAGIC;
1119 	migrate_lock_init(zspage);
1120 
1121 	for (i = 0; i < class->pages_per_zspage; i++) {
1122 		struct page *page;
1123 
1124 		page = alloc_page(gfp);
1125 		if (!page) {
1126 			while (--i >= 0) {
1127 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1128 				__free_page(pages[i]);
1129 			}
1130 			cache_free_zspage(pool, zspage);
1131 			return NULL;
1132 		}
1133 
1134 		inc_zone_page_state(page, NR_ZSPAGES);
1135 		pages[i] = page;
1136 	}
1137 
1138 	create_page_chain(class, zspage, pages);
1139 	init_zspage(class, zspage);
1140 
1141 	return zspage;
1142 }
1143 
1144 static struct zspage *find_get_zspage(struct size_class *class)
1145 {
1146 	int i;
1147 	struct zspage *zspage;
1148 
1149 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1150 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1151 				struct zspage, list);
1152 		if (zspage)
1153 			break;
1154 	}
1155 
1156 	return zspage;
1157 }
1158 
1159 #ifdef CONFIG_PGTABLE_MAPPING
1160 static inline int __zs_cpu_up(struct mapping_area *area)
1161 {
1162 	/*
1163 	 * Make sure we don't leak memory if a cpu UP notification
1164 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1165 	 */
1166 	if (area->vm)
1167 		return 0;
1168 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1169 	if (!area->vm)
1170 		return -ENOMEM;
1171 	return 0;
1172 }
1173 
1174 static inline void __zs_cpu_down(struct mapping_area *area)
1175 {
1176 	if (area->vm)
1177 		free_vm_area(area->vm);
1178 	area->vm = NULL;
1179 }
1180 
1181 static inline void *__zs_map_object(struct mapping_area *area,
1182 				struct page *pages[2], int off, int size)
1183 {
1184 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1185 	area->vm_addr = area->vm->addr;
1186 	return area->vm_addr + off;
1187 }
1188 
1189 static inline void __zs_unmap_object(struct mapping_area *area,
1190 				struct page *pages[2], int off, int size)
1191 {
1192 	unsigned long addr = (unsigned long)area->vm_addr;
1193 
1194 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1195 }
1196 
1197 #else /* CONFIG_PGTABLE_MAPPING */
1198 
1199 static inline int __zs_cpu_up(struct mapping_area *area)
1200 {
1201 	/*
1202 	 * Make sure we don't leak memory if a cpu UP notification
1203 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1204 	 */
1205 	if (area->vm_buf)
1206 		return 0;
1207 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1208 	if (!area->vm_buf)
1209 		return -ENOMEM;
1210 	return 0;
1211 }
1212 
1213 static inline void __zs_cpu_down(struct mapping_area *area)
1214 {
1215 	kfree(area->vm_buf);
1216 	area->vm_buf = NULL;
1217 }
1218 
1219 static void *__zs_map_object(struct mapping_area *area,
1220 			struct page *pages[2], int off, int size)
1221 {
1222 	int sizes[2];
1223 	void *addr;
1224 	char *buf = area->vm_buf;
1225 
1226 	/* disable page faults to match kmap_atomic() return conditions */
1227 	pagefault_disable();
1228 
1229 	/* no read fastpath */
1230 	if (area->vm_mm == ZS_MM_WO)
1231 		goto out;
1232 
1233 	sizes[0] = PAGE_SIZE - off;
1234 	sizes[1] = size - sizes[0];
1235 
1236 	/* copy object to per-cpu buffer */
1237 	addr = kmap_atomic(pages[0]);
1238 	memcpy(buf, addr + off, sizes[0]);
1239 	kunmap_atomic(addr);
1240 	addr = kmap_atomic(pages[1]);
1241 	memcpy(buf + sizes[0], addr, sizes[1]);
1242 	kunmap_atomic(addr);
1243 out:
1244 	return area->vm_buf;
1245 }
1246 
1247 static void __zs_unmap_object(struct mapping_area *area,
1248 			struct page *pages[2], int off, int size)
1249 {
1250 	int sizes[2];
1251 	void *addr;
1252 	char *buf;
1253 
1254 	/* no write fastpath */
1255 	if (area->vm_mm == ZS_MM_RO)
1256 		goto out;
1257 
1258 	buf = area->vm_buf;
1259 	buf = buf + ZS_HANDLE_SIZE;
1260 	size -= ZS_HANDLE_SIZE;
1261 	off += ZS_HANDLE_SIZE;
1262 
1263 	sizes[0] = PAGE_SIZE - off;
1264 	sizes[1] = size - sizes[0];
1265 
1266 	/* copy per-cpu buffer to object */
1267 	addr = kmap_atomic(pages[0]);
1268 	memcpy(addr + off, buf, sizes[0]);
1269 	kunmap_atomic(addr);
1270 	addr = kmap_atomic(pages[1]);
1271 	memcpy(addr, buf + sizes[0], sizes[1]);
1272 	kunmap_atomic(addr);
1273 
1274 out:
1275 	/* enable page faults to match kunmap_atomic() return conditions */
1276 	pagefault_enable();
1277 }
1278 
1279 #endif /* CONFIG_PGTABLE_MAPPING */
1280 
1281 static int zs_cpu_prepare(unsigned int cpu)
1282 {
1283 	struct mapping_area *area;
1284 
1285 	area = &per_cpu(zs_map_area, cpu);
1286 	return __zs_cpu_up(area);
1287 }
1288 
1289 static int zs_cpu_dead(unsigned int cpu)
1290 {
1291 	struct mapping_area *area;
1292 
1293 	area = &per_cpu(zs_map_area, cpu);
1294 	__zs_cpu_down(area);
1295 	return 0;
1296 }
1297 
1298 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1299 					int objs_per_zspage)
1300 {
1301 	if (prev->pages_per_zspage == pages_per_zspage &&
1302 		prev->objs_per_zspage == objs_per_zspage)
1303 		return true;
1304 
1305 	return false;
1306 }
1307 
1308 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1309 {
1310 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1311 }
1312 
1313 unsigned long zs_get_total_pages(struct zs_pool *pool)
1314 {
1315 	return atomic_long_read(&pool->pages_allocated);
1316 }
1317 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1318 
1319 /**
1320  * zs_map_object - get address of allocated object from handle.
1321  * @pool: pool from which the object was allocated
1322  * @handle: handle returned from zs_malloc
1323  *
1324  * Before using an object allocated from zs_malloc, it must be mapped using
1325  * this function. When done with the object, it must be unmapped using
1326  * zs_unmap_object.
1327  *
1328  * Only one object can be mapped per cpu at a time. There is no protection
1329  * against nested mappings.
1330  *
1331  * This function returns with preemption and page faults disabled.
1332  */
1333 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1334 			enum zs_mapmode mm)
1335 {
1336 	struct zspage *zspage;
1337 	struct page *page;
1338 	unsigned long obj, off;
1339 	unsigned int obj_idx;
1340 
1341 	unsigned int class_idx;
1342 	enum fullness_group fg;
1343 	struct size_class *class;
1344 	struct mapping_area *area;
1345 	struct page *pages[2];
1346 	void *ret;
1347 
1348 	/*
1349 	 * Because we use per-cpu mapping areas shared among the
1350 	 * pools/users, we can't allow mapping in interrupt context
1351 	 * because it can corrupt another users mappings.
1352 	 */
1353 	BUG_ON(in_interrupt());
1354 
1355 	/* From now on, migration cannot move the object */
1356 	pin_tag(handle);
1357 
1358 	obj = handle_to_obj(handle);
1359 	obj_to_location(obj, &page, &obj_idx);
1360 	zspage = get_zspage(page);
1361 
1362 	/* migration cannot move any subpage in this zspage */
1363 	migrate_read_lock(zspage);
1364 
1365 	get_zspage_mapping(zspage, &class_idx, &fg);
1366 	class = pool->size_class[class_idx];
1367 	off = (class->size * obj_idx) & ~PAGE_MASK;
1368 
1369 	area = &get_cpu_var(zs_map_area);
1370 	area->vm_mm = mm;
1371 	if (off + class->size <= PAGE_SIZE) {
1372 		/* this object is contained entirely within a page */
1373 		area->vm_addr = kmap_atomic(page);
1374 		ret = area->vm_addr + off;
1375 		goto out;
1376 	}
1377 
1378 	/* this object spans two pages */
1379 	pages[0] = page;
1380 	pages[1] = get_next_page(page);
1381 	BUG_ON(!pages[1]);
1382 
1383 	ret = __zs_map_object(area, pages, off, class->size);
1384 out:
1385 	if (likely(!PageHugeObject(page)))
1386 		ret += ZS_HANDLE_SIZE;
1387 
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(zs_map_object);
1391 
1392 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1393 {
1394 	struct zspage *zspage;
1395 	struct page *page;
1396 	unsigned long obj, off;
1397 	unsigned int obj_idx;
1398 
1399 	unsigned int class_idx;
1400 	enum fullness_group fg;
1401 	struct size_class *class;
1402 	struct mapping_area *area;
1403 
1404 	obj = handle_to_obj(handle);
1405 	obj_to_location(obj, &page, &obj_idx);
1406 	zspage = get_zspage(page);
1407 	get_zspage_mapping(zspage, &class_idx, &fg);
1408 	class = pool->size_class[class_idx];
1409 	off = (class->size * obj_idx) & ~PAGE_MASK;
1410 
1411 	area = this_cpu_ptr(&zs_map_area);
1412 	if (off + class->size <= PAGE_SIZE)
1413 		kunmap_atomic(area->vm_addr);
1414 	else {
1415 		struct page *pages[2];
1416 
1417 		pages[0] = page;
1418 		pages[1] = get_next_page(page);
1419 		BUG_ON(!pages[1]);
1420 
1421 		__zs_unmap_object(area, pages, off, class->size);
1422 	}
1423 	put_cpu_var(zs_map_area);
1424 
1425 	migrate_read_unlock(zspage);
1426 	unpin_tag(handle);
1427 }
1428 EXPORT_SYMBOL_GPL(zs_unmap_object);
1429 
1430 static unsigned long obj_malloc(struct size_class *class,
1431 				struct zspage *zspage, unsigned long handle)
1432 {
1433 	int i, nr_page, offset;
1434 	unsigned long obj;
1435 	struct link_free *link;
1436 
1437 	struct page *m_page;
1438 	unsigned long m_offset;
1439 	void *vaddr;
1440 
1441 	handle |= OBJ_ALLOCATED_TAG;
1442 	obj = get_freeobj(zspage);
1443 
1444 	offset = obj * class->size;
1445 	nr_page = offset >> PAGE_SHIFT;
1446 	m_offset = offset & ~PAGE_MASK;
1447 	m_page = get_first_page(zspage);
1448 
1449 	for (i = 0; i < nr_page; i++)
1450 		m_page = get_next_page(m_page);
1451 
1452 	vaddr = kmap_atomic(m_page);
1453 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1454 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1455 	if (likely(!PageHugeObject(m_page)))
1456 		/* record handle in the header of allocated chunk */
1457 		link->handle = handle;
1458 	else
1459 		/* record handle to page->index */
1460 		zspage->first_page->index = handle;
1461 
1462 	kunmap_atomic(vaddr);
1463 	mod_zspage_inuse(zspage, 1);
1464 	zs_stat_inc(class, OBJ_USED, 1);
1465 
1466 	obj = location_to_obj(m_page, obj);
1467 
1468 	return obj;
1469 }
1470 
1471 
1472 /**
1473  * zs_malloc - Allocate block of given size from pool.
1474  * @pool: pool to allocate from
1475  * @size: size of block to allocate
1476  * @gfp: gfp flags when allocating object
1477  *
1478  * On success, handle to the allocated object is returned,
1479  * otherwise 0.
1480  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481  */
1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1483 {
1484 	unsigned long handle, obj;
1485 	struct size_class *class;
1486 	enum fullness_group newfg;
1487 	struct zspage *zspage;
1488 
1489 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1490 		return 0;
1491 
1492 	handle = cache_alloc_handle(pool, gfp);
1493 	if (!handle)
1494 		return 0;
1495 
1496 	/* extra space in chunk to keep the handle */
1497 	size += ZS_HANDLE_SIZE;
1498 	class = pool->size_class[get_size_class_index(size)];
1499 
1500 	spin_lock(&class->lock);
1501 	zspage = find_get_zspage(class);
1502 	if (likely(zspage)) {
1503 		obj = obj_malloc(class, zspage, handle);
1504 		/* Now move the zspage to another fullness group, if required */
1505 		fix_fullness_group(class, zspage);
1506 		record_obj(handle, obj);
1507 		spin_unlock(&class->lock);
1508 
1509 		return handle;
1510 	}
1511 
1512 	spin_unlock(&class->lock);
1513 
1514 	zspage = alloc_zspage(pool, class, gfp);
1515 	if (!zspage) {
1516 		cache_free_handle(pool, handle);
1517 		return 0;
1518 	}
1519 
1520 	spin_lock(&class->lock);
1521 	obj = obj_malloc(class, zspage, handle);
1522 	newfg = get_fullness_group(class, zspage);
1523 	insert_zspage(class, zspage, newfg);
1524 	set_zspage_mapping(zspage, class->index, newfg);
1525 	record_obj(handle, obj);
1526 	atomic_long_add(class->pages_per_zspage,
1527 				&pool->pages_allocated);
1528 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1529 
1530 	/* We completely set up zspage so mark them as movable */
1531 	SetZsPageMovable(pool, zspage);
1532 	spin_unlock(&class->lock);
1533 
1534 	return handle;
1535 }
1536 EXPORT_SYMBOL_GPL(zs_malloc);
1537 
1538 static void obj_free(struct size_class *class, unsigned long obj)
1539 {
1540 	struct link_free *link;
1541 	struct zspage *zspage;
1542 	struct page *f_page;
1543 	unsigned long f_offset;
1544 	unsigned int f_objidx;
1545 	void *vaddr;
1546 
1547 	obj &= ~OBJ_ALLOCATED_TAG;
1548 	obj_to_location(obj, &f_page, &f_objidx);
1549 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1550 	zspage = get_zspage(f_page);
1551 
1552 	vaddr = kmap_atomic(f_page);
1553 
1554 	/* Insert this object in containing zspage's freelist */
1555 	link = (struct link_free *)(vaddr + f_offset);
1556 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1557 	kunmap_atomic(vaddr);
1558 	set_freeobj(zspage, f_objidx);
1559 	mod_zspage_inuse(zspage, -1);
1560 	zs_stat_dec(class, OBJ_USED, 1);
1561 }
1562 
1563 void zs_free(struct zs_pool *pool, unsigned long handle)
1564 {
1565 	struct zspage *zspage;
1566 	struct page *f_page;
1567 	unsigned long obj;
1568 	unsigned int f_objidx;
1569 	int class_idx;
1570 	struct size_class *class;
1571 	enum fullness_group fullness;
1572 	bool isolated;
1573 
1574 	if (unlikely(!handle))
1575 		return;
1576 
1577 	pin_tag(handle);
1578 	obj = handle_to_obj(handle);
1579 	obj_to_location(obj, &f_page, &f_objidx);
1580 	zspage = get_zspage(f_page);
1581 
1582 	migrate_read_lock(zspage);
1583 
1584 	get_zspage_mapping(zspage, &class_idx, &fullness);
1585 	class = pool->size_class[class_idx];
1586 
1587 	spin_lock(&class->lock);
1588 	obj_free(class, obj);
1589 	fullness = fix_fullness_group(class, zspage);
1590 	if (fullness != ZS_EMPTY) {
1591 		migrate_read_unlock(zspage);
1592 		goto out;
1593 	}
1594 
1595 	isolated = is_zspage_isolated(zspage);
1596 	migrate_read_unlock(zspage);
1597 	/* If zspage is isolated, zs_page_putback will free the zspage */
1598 	if (likely(!isolated))
1599 		free_zspage(pool, class, zspage);
1600 out:
1601 
1602 	spin_unlock(&class->lock);
1603 	unpin_tag(handle);
1604 	cache_free_handle(pool, handle);
1605 }
1606 EXPORT_SYMBOL_GPL(zs_free);
1607 
1608 static void zs_object_copy(struct size_class *class, unsigned long dst,
1609 				unsigned long src)
1610 {
1611 	struct page *s_page, *d_page;
1612 	unsigned int s_objidx, d_objidx;
1613 	unsigned long s_off, d_off;
1614 	void *s_addr, *d_addr;
1615 	int s_size, d_size, size;
1616 	int written = 0;
1617 
1618 	s_size = d_size = class->size;
1619 
1620 	obj_to_location(src, &s_page, &s_objidx);
1621 	obj_to_location(dst, &d_page, &d_objidx);
1622 
1623 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1625 
1626 	if (s_off + class->size > PAGE_SIZE)
1627 		s_size = PAGE_SIZE - s_off;
1628 
1629 	if (d_off + class->size > PAGE_SIZE)
1630 		d_size = PAGE_SIZE - d_off;
1631 
1632 	s_addr = kmap_atomic(s_page);
1633 	d_addr = kmap_atomic(d_page);
1634 
1635 	while (1) {
1636 		size = min(s_size, d_size);
1637 		memcpy(d_addr + d_off, s_addr + s_off, size);
1638 		written += size;
1639 
1640 		if (written == class->size)
1641 			break;
1642 
1643 		s_off += size;
1644 		s_size -= size;
1645 		d_off += size;
1646 		d_size -= size;
1647 
1648 		if (s_off >= PAGE_SIZE) {
1649 			kunmap_atomic(d_addr);
1650 			kunmap_atomic(s_addr);
1651 			s_page = get_next_page(s_page);
1652 			s_addr = kmap_atomic(s_page);
1653 			d_addr = kmap_atomic(d_page);
1654 			s_size = class->size - written;
1655 			s_off = 0;
1656 		}
1657 
1658 		if (d_off >= PAGE_SIZE) {
1659 			kunmap_atomic(d_addr);
1660 			d_page = get_next_page(d_page);
1661 			d_addr = kmap_atomic(d_page);
1662 			d_size = class->size - written;
1663 			d_off = 0;
1664 		}
1665 	}
1666 
1667 	kunmap_atomic(d_addr);
1668 	kunmap_atomic(s_addr);
1669 }
1670 
1671 /*
1672  * Find alloced object in zspage from index object and
1673  * return handle.
1674  */
1675 static unsigned long find_alloced_obj(struct size_class *class,
1676 					struct page *page, int *obj_idx)
1677 {
1678 	unsigned long head;
1679 	int offset = 0;
1680 	int index = *obj_idx;
1681 	unsigned long handle = 0;
1682 	void *addr = kmap_atomic(page);
1683 
1684 	offset = get_first_obj_offset(page);
1685 	offset += class->size * index;
1686 
1687 	while (offset < PAGE_SIZE) {
1688 		head = obj_to_head(page, addr + offset);
1689 		if (head & OBJ_ALLOCATED_TAG) {
1690 			handle = head & ~OBJ_ALLOCATED_TAG;
1691 			if (trypin_tag(handle))
1692 				break;
1693 			handle = 0;
1694 		}
1695 
1696 		offset += class->size;
1697 		index++;
1698 	}
1699 
1700 	kunmap_atomic(addr);
1701 
1702 	*obj_idx = index;
1703 
1704 	return handle;
1705 }
1706 
1707 struct zs_compact_control {
1708 	/* Source spage for migration which could be a subpage of zspage */
1709 	struct page *s_page;
1710 	/* Destination page for migration which should be a first page
1711 	 * of zspage. */
1712 	struct page *d_page;
1713 	 /* Starting object index within @s_page which used for live object
1714 	  * in the subpage. */
1715 	int obj_idx;
1716 };
1717 
1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719 				struct zs_compact_control *cc)
1720 {
1721 	unsigned long used_obj, free_obj;
1722 	unsigned long handle;
1723 	struct page *s_page = cc->s_page;
1724 	struct page *d_page = cc->d_page;
1725 	int obj_idx = cc->obj_idx;
1726 	int ret = 0;
1727 
1728 	while (1) {
1729 		handle = find_alloced_obj(class, s_page, &obj_idx);
1730 		if (!handle) {
1731 			s_page = get_next_page(s_page);
1732 			if (!s_page)
1733 				break;
1734 			obj_idx = 0;
1735 			continue;
1736 		}
1737 
1738 		/* Stop if there is no more space */
1739 		if (zspage_full(class, get_zspage(d_page))) {
1740 			unpin_tag(handle);
1741 			ret = -ENOMEM;
1742 			break;
1743 		}
1744 
1745 		used_obj = handle_to_obj(handle);
1746 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1747 		zs_object_copy(class, free_obj, used_obj);
1748 		obj_idx++;
1749 		/*
1750 		 * record_obj updates handle's value to free_obj and it will
1751 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 		 * let's keep the lock bit.
1754 		 */
1755 		free_obj |= BIT(HANDLE_PIN_BIT);
1756 		record_obj(handle, free_obj);
1757 		unpin_tag(handle);
1758 		obj_free(class, used_obj);
1759 	}
1760 
1761 	/* Remember last position in this iteration */
1762 	cc->s_page = s_page;
1763 	cc->obj_idx = obj_idx;
1764 
1765 	return ret;
1766 }
1767 
1768 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1769 {
1770 	int i;
1771 	struct zspage *zspage;
1772 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1773 
1774 	if (!source) {
1775 		fg[0] = ZS_ALMOST_FULL;
1776 		fg[1] = ZS_ALMOST_EMPTY;
1777 	}
1778 
1779 	for (i = 0; i < 2; i++) {
1780 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781 							struct zspage, list);
1782 		if (zspage) {
1783 			VM_BUG_ON(is_zspage_isolated(zspage));
1784 			remove_zspage(class, zspage, fg[i]);
1785 			return zspage;
1786 		}
1787 	}
1788 
1789 	return zspage;
1790 }
1791 
1792 /*
1793  * putback_zspage - add @zspage into right class's fullness list
1794  * @class: destination class
1795  * @zspage: target page
1796  *
1797  * Return @zspage's fullness_group
1798  */
1799 static enum fullness_group putback_zspage(struct size_class *class,
1800 			struct zspage *zspage)
1801 {
1802 	enum fullness_group fullness;
1803 
1804 	VM_BUG_ON(is_zspage_isolated(zspage));
1805 
1806 	fullness = get_fullness_group(class, zspage);
1807 	insert_zspage(class, zspage, fullness);
1808 	set_zspage_mapping(zspage, class->index, fullness);
1809 
1810 	return fullness;
1811 }
1812 
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry *zs_mount(struct file_system_type *fs_type,
1815 				int flags, const char *dev_name, void *data)
1816 {
1817 	static const struct dentry_operations ops = {
1818 		.d_dname = simple_dname,
1819 	};
1820 
1821 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822 }
1823 
1824 static struct file_system_type zsmalloc_fs = {
1825 	.name		= "zsmalloc",
1826 	.mount		= zs_mount,
1827 	.kill_sb	= kill_anon_super,
1828 };
1829 
1830 static int zsmalloc_mount(void)
1831 {
1832 	int ret = 0;
1833 
1834 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835 	if (IS_ERR(zsmalloc_mnt))
1836 		ret = PTR_ERR(zsmalloc_mnt);
1837 
1838 	return ret;
1839 }
1840 
1841 static void zsmalloc_unmount(void)
1842 {
1843 	kern_unmount(zsmalloc_mnt);
1844 }
1845 
1846 static void migrate_lock_init(struct zspage *zspage)
1847 {
1848 	rwlock_init(&zspage->lock);
1849 }
1850 
1851 static void migrate_read_lock(struct zspage *zspage)
1852 {
1853 	read_lock(&zspage->lock);
1854 }
1855 
1856 static void migrate_read_unlock(struct zspage *zspage)
1857 {
1858 	read_unlock(&zspage->lock);
1859 }
1860 
1861 static void migrate_write_lock(struct zspage *zspage)
1862 {
1863 	write_lock(&zspage->lock);
1864 }
1865 
1866 static void migrate_write_unlock(struct zspage *zspage)
1867 {
1868 	write_unlock(&zspage->lock);
1869 }
1870 
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage *zspage)
1873 {
1874 	zspage->isolated++;
1875 }
1876 
1877 static void dec_zspage_isolation(struct zspage *zspage)
1878 {
1879 	zspage->isolated--;
1880 }
1881 
1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883 				struct page *newpage, struct page *oldpage)
1884 {
1885 	struct page *page;
1886 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887 	int idx = 0;
1888 
1889 	page = get_first_page(zspage);
1890 	do {
1891 		if (page == oldpage)
1892 			pages[idx] = newpage;
1893 		else
1894 			pages[idx] = page;
1895 		idx++;
1896 	} while ((page = get_next_page(page)) != NULL);
1897 
1898 	create_page_chain(class, zspage, pages);
1899 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900 	if (unlikely(PageHugeObject(oldpage)))
1901 		newpage->index = oldpage->index;
1902 	__SetPageMovable(newpage, page_mapping(oldpage));
1903 }
1904 
1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906 {
1907 	struct zs_pool *pool;
1908 	struct size_class *class;
1909 	int class_idx;
1910 	enum fullness_group fullness;
1911 	struct zspage *zspage;
1912 	struct address_space *mapping;
1913 
1914 	/*
1915 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 	 * lock_zspage in free_zspage.
1917 	 */
1918 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1919 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1920 
1921 	zspage = get_zspage(page);
1922 
1923 	/*
1924 	 * Without class lock, fullness could be stale while class_idx is okay
1925 	 * because class_idx is constant unless page is freed so we should get
1926 	 * fullness again under class lock.
1927 	 */
1928 	get_zspage_mapping(zspage, &class_idx, &fullness);
1929 	mapping = page_mapping(page);
1930 	pool = mapping->private_data;
1931 	class = pool->size_class[class_idx];
1932 
1933 	spin_lock(&class->lock);
1934 	if (get_zspage_inuse(zspage) == 0) {
1935 		spin_unlock(&class->lock);
1936 		return false;
1937 	}
1938 
1939 	/* zspage is isolated for object migration */
1940 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 		spin_unlock(&class->lock);
1942 		return false;
1943 	}
1944 
1945 	/*
1946 	 * If this is first time isolation for the zspage, isolate zspage from
1947 	 * size_class to prevent further object allocation from the zspage.
1948 	 */
1949 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 		get_zspage_mapping(zspage, &class_idx, &fullness);
1951 		remove_zspage(class, zspage, fullness);
1952 	}
1953 
1954 	inc_zspage_isolation(zspage);
1955 	spin_unlock(&class->lock);
1956 
1957 	return true;
1958 }
1959 
1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961 		struct page *page, enum migrate_mode mode)
1962 {
1963 	struct zs_pool *pool;
1964 	struct size_class *class;
1965 	int class_idx;
1966 	enum fullness_group fullness;
1967 	struct zspage *zspage;
1968 	struct page *dummy;
1969 	void *s_addr, *d_addr, *addr;
1970 	int offset, pos;
1971 	unsigned long handle, head;
1972 	unsigned long old_obj, new_obj;
1973 	unsigned int obj_idx;
1974 	int ret = -EAGAIN;
1975 
1976 	/*
1977 	 * We cannot support the _NO_COPY case here, because copy needs to
1978 	 * happen under the zs lock, which does not work with
1979 	 * MIGRATE_SYNC_NO_COPY workflow.
1980 	 */
1981 	if (mode == MIGRATE_SYNC_NO_COPY)
1982 		return -EINVAL;
1983 
1984 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1985 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986 
1987 	zspage = get_zspage(page);
1988 
1989 	/* Concurrent compactor cannot migrate any subpage in zspage */
1990 	migrate_write_lock(zspage);
1991 	get_zspage_mapping(zspage, &class_idx, &fullness);
1992 	pool = mapping->private_data;
1993 	class = pool->size_class[class_idx];
1994 	offset = get_first_obj_offset(page);
1995 
1996 	spin_lock(&class->lock);
1997 	if (!get_zspage_inuse(zspage)) {
1998 		/*
1999 		 * Set "offset" to end of the page so that every loops
2000 		 * skips unnecessary object scanning.
2001 		 */
2002 		offset = PAGE_SIZE;
2003 	}
2004 
2005 	pos = offset;
2006 	s_addr = kmap_atomic(page);
2007 	while (pos < PAGE_SIZE) {
2008 		head = obj_to_head(page, s_addr + pos);
2009 		if (head & OBJ_ALLOCATED_TAG) {
2010 			handle = head & ~OBJ_ALLOCATED_TAG;
2011 			if (!trypin_tag(handle))
2012 				goto unpin_objects;
2013 		}
2014 		pos += class->size;
2015 	}
2016 
2017 	/*
2018 	 * Here, any user cannot access all objects in the zspage so let's move.
2019 	 */
2020 	d_addr = kmap_atomic(newpage);
2021 	memcpy(d_addr, s_addr, PAGE_SIZE);
2022 	kunmap_atomic(d_addr);
2023 
2024 	for (addr = s_addr + offset; addr < s_addr + pos;
2025 					addr += class->size) {
2026 		head = obj_to_head(page, addr);
2027 		if (head & OBJ_ALLOCATED_TAG) {
2028 			handle = head & ~OBJ_ALLOCATED_TAG;
2029 			if (!testpin_tag(handle))
2030 				BUG();
2031 
2032 			old_obj = handle_to_obj(handle);
2033 			obj_to_location(old_obj, &dummy, &obj_idx);
2034 			new_obj = (unsigned long)location_to_obj(newpage,
2035 								obj_idx);
2036 			new_obj |= BIT(HANDLE_PIN_BIT);
2037 			record_obj(handle, new_obj);
2038 		}
2039 	}
2040 
2041 	replace_sub_page(class, zspage, newpage, page);
2042 	get_page(newpage);
2043 
2044 	dec_zspage_isolation(zspage);
2045 
2046 	/*
2047 	 * Page migration is done so let's putback isolated zspage to
2048 	 * the list if @page is final isolated subpage in the zspage.
2049 	 */
2050 	if (!is_zspage_isolated(zspage))
2051 		putback_zspage(class, zspage);
2052 
2053 	reset_page(page);
2054 	put_page(page);
2055 	page = newpage;
2056 
2057 	ret = MIGRATEPAGE_SUCCESS;
2058 unpin_objects:
2059 	for (addr = s_addr + offset; addr < s_addr + pos;
2060 						addr += class->size) {
2061 		head = obj_to_head(page, addr);
2062 		if (head & OBJ_ALLOCATED_TAG) {
2063 			handle = head & ~OBJ_ALLOCATED_TAG;
2064 			if (!testpin_tag(handle))
2065 				BUG();
2066 			unpin_tag(handle);
2067 		}
2068 	}
2069 	kunmap_atomic(s_addr);
2070 	spin_unlock(&class->lock);
2071 	migrate_write_unlock(zspage);
2072 
2073 	return ret;
2074 }
2075 
2076 void zs_page_putback(struct page *page)
2077 {
2078 	struct zs_pool *pool;
2079 	struct size_class *class;
2080 	int class_idx;
2081 	enum fullness_group fg;
2082 	struct address_space *mapping;
2083 	struct zspage *zspage;
2084 
2085 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087 
2088 	zspage = get_zspage(page);
2089 	get_zspage_mapping(zspage, &class_idx, &fg);
2090 	mapping = page_mapping(page);
2091 	pool = mapping->private_data;
2092 	class = pool->size_class[class_idx];
2093 
2094 	spin_lock(&class->lock);
2095 	dec_zspage_isolation(zspage);
2096 	if (!is_zspage_isolated(zspage)) {
2097 		fg = putback_zspage(class, zspage);
2098 		/*
2099 		 * Due to page_lock, we cannot free zspage immediately
2100 		 * so let's defer.
2101 		 */
2102 		if (fg == ZS_EMPTY)
2103 			schedule_work(&pool->free_work);
2104 	}
2105 	spin_unlock(&class->lock);
2106 }
2107 
2108 const struct address_space_operations zsmalloc_aops = {
2109 	.isolate_page = zs_page_isolate,
2110 	.migratepage = zs_page_migrate,
2111 	.putback_page = zs_page_putback,
2112 };
2113 
2114 static int zs_register_migration(struct zs_pool *pool)
2115 {
2116 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 	if (IS_ERR(pool->inode)) {
2118 		pool->inode = NULL;
2119 		return 1;
2120 	}
2121 
2122 	pool->inode->i_mapping->private_data = pool;
2123 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 	return 0;
2125 }
2126 
2127 static void zs_unregister_migration(struct zs_pool *pool)
2128 {
2129 	flush_work(&pool->free_work);
2130 	iput(pool->inode);
2131 }
2132 
2133 /*
2134  * Caller should hold page_lock of all pages in the zspage
2135  * In here, we cannot use zspage meta data.
2136  */
2137 static void async_free_zspage(struct work_struct *work)
2138 {
2139 	int i;
2140 	struct size_class *class;
2141 	unsigned int class_idx;
2142 	enum fullness_group fullness;
2143 	struct zspage *zspage, *tmp;
2144 	LIST_HEAD(free_pages);
2145 	struct zs_pool *pool = container_of(work, struct zs_pool,
2146 					free_work);
2147 
2148 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149 		class = pool->size_class[i];
2150 		if (class->index != i)
2151 			continue;
2152 
2153 		spin_lock(&class->lock);
2154 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 		spin_unlock(&class->lock);
2156 	}
2157 
2158 
2159 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 		list_del(&zspage->list);
2161 		lock_zspage(zspage);
2162 
2163 		get_zspage_mapping(zspage, &class_idx, &fullness);
2164 		VM_BUG_ON(fullness != ZS_EMPTY);
2165 		class = pool->size_class[class_idx];
2166 		spin_lock(&class->lock);
2167 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2168 		spin_unlock(&class->lock);
2169 	}
2170 };
2171 
2172 static void kick_deferred_free(struct zs_pool *pool)
2173 {
2174 	schedule_work(&pool->free_work);
2175 }
2176 
2177 static void init_deferred_free(struct zs_pool *pool)
2178 {
2179 	INIT_WORK(&pool->free_work, async_free_zspage);
2180 }
2181 
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183 {
2184 	struct page *page = get_first_page(zspage);
2185 
2186 	do {
2187 		WARN_ON(!trylock_page(page));
2188 		__SetPageMovable(page, pool->inode->i_mapping);
2189 		unlock_page(page);
2190 	} while ((page = get_next_page(page)) != NULL);
2191 }
2192 #endif
2193 
2194 /*
2195  *
2196  * Based on the number of unused allocated objects calculate
2197  * and return the number of pages that we can free.
2198  */
2199 static unsigned long zs_can_compact(struct size_class *class)
2200 {
2201 	unsigned long obj_wasted;
2202 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2204 
2205 	if (obj_allocated <= obj_used)
2206 		return 0;
2207 
2208 	obj_wasted = obj_allocated - obj_used;
2209 	obj_wasted /= class->objs_per_zspage;
2210 
2211 	return obj_wasted * class->pages_per_zspage;
2212 }
2213 
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2215 {
2216 	struct zs_compact_control cc;
2217 	struct zspage *src_zspage;
2218 	struct zspage *dst_zspage = NULL;
2219 
2220 	spin_lock(&class->lock);
2221 	while ((src_zspage = isolate_zspage(class, true))) {
2222 
2223 		if (!zs_can_compact(class))
2224 			break;
2225 
2226 		cc.obj_idx = 0;
2227 		cc.s_page = get_first_page(src_zspage);
2228 
2229 		while ((dst_zspage = isolate_zspage(class, false))) {
2230 			cc.d_page = get_first_page(dst_zspage);
2231 			/*
2232 			 * If there is no more space in dst_page, resched
2233 			 * and see if anyone had allocated another zspage.
2234 			 */
2235 			if (!migrate_zspage(pool, class, &cc))
2236 				break;
2237 
2238 			putback_zspage(class, dst_zspage);
2239 		}
2240 
2241 		/* Stop if we couldn't find slot */
2242 		if (dst_zspage == NULL)
2243 			break;
2244 
2245 		putback_zspage(class, dst_zspage);
2246 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 			free_zspage(pool, class, src_zspage);
2248 			pool->stats.pages_compacted += class->pages_per_zspage;
2249 		}
2250 		spin_unlock(&class->lock);
2251 		cond_resched();
2252 		spin_lock(&class->lock);
2253 	}
2254 
2255 	if (src_zspage)
2256 		putback_zspage(class, src_zspage);
2257 
2258 	spin_unlock(&class->lock);
2259 }
2260 
2261 unsigned long zs_compact(struct zs_pool *pool)
2262 {
2263 	int i;
2264 	struct size_class *class;
2265 
2266 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2267 		class = pool->size_class[i];
2268 		if (!class)
2269 			continue;
2270 		if (class->index != i)
2271 			continue;
2272 		__zs_compact(pool, class);
2273 	}
2274 
2275 	return pool->stats.pages_compacted;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278 
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284 
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 		struct shrink_control *sc)
2287 {
2288 	unsigned long pages_freed;
2289 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 			shrinker);
2291 
2292 	pages_freed = pool->stats.pages_compacted;
2293 	/*
2294 	 * Compact classes and calculate compaction delta.
2295 	 * Can run concurrently with a manually triggered
2296 	 * (by user) compaction.
2297 	 */
2298 	pages_freed = zs_compact(pool) - pages_freed;
2299 
2300 	return pages_freed ? pages_freed : SHRINK_STOP;
2301 }
2302 
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 		struct shrink_control *sc)
2305 {
2306 	int i;
2307 	struct size_class *class;
2308 	unsigned long pages_to_free = 0;
2309 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 			shrinker);
2311 
2312 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313 		class = pool->size_class[i];
2314 		if (!class)
2315 			continue;
2316 		if (class->index != i)
2317 			continue;
2318 
2319 		pages_to_free += zs_can_compact(class);
2320 	}
2321 
2322 	return pages_to_free;
2323 }
2324 
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327 	if (pool->shrinker_enabled) {
2328 		unregister_shrinker(&pool->shrinker);
2329 		pool->shrinker_enabled = false;
2330 	}
2331 }
2332 
2333 static int zs_register_shrinker(struct zs_pool *pool)
2334 {
2335 	pool->shrinker.scan_objects = zs_shrinker_scan;
2336 	pool->shrinker.count_objects = zs_shrinker_count;
2337 	pool->shrinker.batch = 0;
2338 	pool->shrinker.seeks = DEFAULT_SEEKS;
2339 
2340 	return register_shrinker(&pool->shrinker);
2341 }
2342 
2343 /**
2344  * zs_create_pool - Creates an allocation pool to work from.
2345  * @name: pool name to be created
2346  *
2347  * This function must be called before anything when using
2348  * the zsmalloc allocator.
2349  *
2350  * On success, a pointer to the newly created pool is returned,
2351  * otherwise NULL.
2352  */
2353 struct zs_pool *zs_create_pool(const char *name)
2354 {
2355 	int i;
2356 	struct zs_pool *pool;
2357 	struct size_class *prev_class = NULL;
2358 
2359 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 	if (!pool)
2361 		return NULL;
2362 
2363 	init_deferred_free(pool);
2364 
2365 	pool->name = kstrdup(name, GFP_KERNEL);
2366 	if (!pool->name)
2367 		goto err;
2368 
2369 	if (create_cache(pool))
2370 		goto err;
2371 
2372 	/*
2373 	 * Iterate reversely, because, size of size_class that we want to use
2374 	 * for merging should be larger or equal to current size.
2375 	 */
2376 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377 		int size;
2378 		int pages_per_zspage;
2379 		int objs_per_zspage;
2380 		struct size_class *class;
2381 		int fullness = 0;
2382 
2383 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384 		if (size > ZS_MAX_ALLOC_SIZE)
2385 			size = ZS_MAX_ALLOC_SIZE;
2386 		pages_per_zspage = get_pages_per_zspage(size);
2387 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2388 
2389 		/*
2390 		 * size_class is used for normal zsmalloc operation such
2391 		 * as alloc/free for that size. Although it is natural that we
2392 		 * have one size_class for each size, there is a chance that we
2393 		 * can get more memory utilization if we use one size_class for
2394 		 * many different sizes whose size_class have same
2395 		 * characteristics. So, we makes size_class point to
2396 		 * previous size_class if possible.
2397 		 */
2398 		if (prev_class) {
2399 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2400 				pool->size_class[i] = prev_class;
2401 				continue;
2402 			}
2403 		}
2404 
2405 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2406 		if (!class)
2407 			goto err;
2408 
2409 		class->size = size;
2410 		class->index = i;
2411 		class->pages_per_zspage = pages_per_zspage;
2412 		class->objs_per_zspage = objs_per_zspage;
2413 		spin_lock_init(&class->lock);
2414 		pool->size_class[i] = class;
2415 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2416 							fullness++)
2417 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2418 
2419 		prev_class = class;
2420 	}
2421 
2422 	/* debug only, don't abort if it fails */
2423 	zs_pool_stat_create(pool, name);
2424 
2425 	if (zs_register_migration(pool))
2426 		goto err;
2427 
2428 	/*
2429 	 * Not critical, we still can use the pool
2430 	 * and user can trigger compaction manually.
2431 	 */
2432 	if (zs_register_shrinker(pool) == 0)
2433 		pool->shrinker_enabled = true;
2434 	return pool;
2435 
2436 err:
2437 	zs_destroy_pool(pool);
2438 	return NULL;
2439 }
2440 EXPORT_SYMBOL_GPL(zs_create_pool);
2441 
2442 void zs_destroy_pool(struct zs_pool *pool)
2443 {
2444 	int i;
2445 
2446 	zs_unregister_shrinker(pool);
2447 	zs_unregister_migration(pool);
2448 	zs_pool_stat_destroy(pool);
2449 
2450 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2451 		int fg;
2452 		struct size_class *class = pool->size_class[i];
2453 
2454 		if (!class)
2455 			continue;
2456 
2457 		if (class->index != i)
2458 			continue;
2459 
2460 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2461 			if (!list_empty(&class->fullness_list[fg])) {
2462 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2463 					class->size, fg);
2464 			}
2465 		}
2466 		kfree(class);
2467 	}
2468 
2469 	destroy_cache(pool);
2470 	kfree(pool->name);
2471 	kfree(pool);
2472 }
2473 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2474 
2475 static int __init zs_init(void)
2476 {
2477 	int ret;
2478 
2479 	ret = zsmalloc_mount();
2480 	if (ret)
2481 		goto out;
2482 
2483 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2484 				zs_cpu_prepare, zs_cpu_dead);
2485 	if (ret)
2486 		goto hp_setup_fail;
2487 
2488 #ifdef CONFIG_ZPOOL
2489 	zpool_register_driver(&zs_zpool_driver);
2490 #endif
2491 
2492 	zs_stat_init();
2493 
2494 	return 0;
2495 
2496 hp_setup_fail:
2497 	zsmalloc_unmount();
2498 out:
2499 	return ret;
2500 }
2501 
2502 static void __exit zs_exit(void)
2503 {
2504 #ifdef CONFIG_ZPOOL
2505 	zpool_unregister_driver(&zs_zpool_driver);
2506 #endif
2507 	zsmalloc_unmount();
2508 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2509 
2510 	zs_stat_exit();
2511 }
2512 
2513 module_init(zs_init);
2514 module_exit(zs_exit);
2515 
2516 MODULE_LICENSE("Dual BSD/GPL");
2517 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2518