xref: /openbmc/linux/mm/zsmalloc.c (revision e961cc56)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109 
110 #ifdef CONFIG_ZPOOL
111 /*
112  * The second least-significant bit in the object's header identifies if the
113  * value stored at the header is a deferred handle from the last reclaim
114  * attempt.
115  *
116  * As noted above, this is valid because we have room for two bits.
117  */
118 #define OBJ_DEFERRED_HANDLE_TAG	2
119 #define OBJ_TAG_BITS	2
120 #define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121 #else
122 #define OBJ_TAG_BITS	1
123 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
125 
126 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128 
129 #define HUGE_BITS	1
130 #define FULLNESS_BITS	4
131 #define CLASS_BITS	8
132 #define ISOLATED_BITS	5
133 #define MAGIC_VAL_BITS	8
134 
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136 
137 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138 
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
144 
145 /*
146  * On systems with 4K page size, this gives 255 size classes! There is a
147  * trader-off here:
148  *  - Large number of size classes is potentially wasteful as free page are
149  *    spread across these classes
150  *  - Small number of size classes causes large internal fragmentation
151  *  - Probably its better to use specific size classes (empirically
152  *    determined). NOTE: all those class sizes must be set as multiple of
153  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154  *
155  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156  *  (reason above)
157  */
158 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 				      ZS_SIZE_CLASS_DELTA) + 1)
161 
162 /*
163  * Pages are distinguished by the ratio of used memory (that is the ratio
164  * of ->inuse objects to all objects that page can store). For example,
165  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
166  *
167  * The number of fullness groups is not random. It allows us to keep
168  * difference between the least busy page in the group (minimum permitted
169  * number of ->inuse objects) and the most busy page (maximum permitted
170  * number of ->inuse objects) at a reasonable value.
171  */
172 enum fullness_group {
173 	ZS_INUSE_RATIO_0,
174 	ZS_INUSE_RATIO_10,
175 	/* NOTE: 8 more fullness groups here */
176 	ZS_INUSE_RATIO_99       = 10,
177 	ZS_INUSE_RATIO_100,
178 	NR_FULLNESS_GROUPS,
179 };
180 
181 enum class_stat_type {
182 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
184 	ZS_OBJS_INUSE,
185 	NR_CLASS_STAT_TYPES,
186 };
187 
188 struct zs_size_stat {
189 	unsigned long objs[NR_CLASS_STAT_TYPES];
190 };
191 
192 #ifdef CONFIG_ZSMALLOC_STAT
193 static struct dentry *zs_stat_root;
194 #endif
195 
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
200 	/*
201 	 * Size of objects stored in this class. Must be multiple
202 	 * of ZS_ALIGN.
203 	 */
204 	int size;
205 	int objs_per_zspage;
206 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 	int pages_per_zspage;
208 
209 	unsigned int index;
210 	struct zs_size_stat stats;
211 };
212 
213 /*
214  * Placed within free objects to form a singly linked list.
215  * For every zspage, zspage->freeobj gives head of this list.
216  *
217  * This must be power of 2 and less than or equal to ZS_ALIGN
218  */
219 struct link_free {
220 	union {
221 		/*
222 		 * Free object index;
223 		 * It's valid for non-allocated object
224 		 */
225 		unsigned long next;
226 		/*
227 		 * Handle of allocated object.
228 		 */
229 		unsigned long handle;
230 #ifdef CONFIG_ZPOOL
231 		/*
232 		 * Deferred handle of a reclaimed object.
233 		 */
234 		unsigned long deferred_handle;
235 #endif
236 	};
237 };
238 
239 struct zs_pool {
240 	const char *name;
241 
242 	struct size_class *size_class[ZS_SIZE_CLASSES];
243 	struct kmem_cache *handle_cachep;
244 	struct kmem_cache *zspage_cachep;
245 
246 	atomic_long_t pages_allocated;
247 
248 	struct zs_pool_stats stats;
249 
250 	/* Compact classes */
251 	struct shrinker shrinker;
252 
253 #ifdef CONFIG_ZPOOL
254 	/* List tracking the zspages in LRU order by most recently added object */
255 	struct list_head lru;
256 	struct zpool *zpool;
257 	const struct zpool_ops *zpool_ops;
258 #endif
259 
260 #ifdef CONFIG_ZSMALLOC_STAT
261 	struct dentry *stat_dentry;
262 #endif
263 #ifdef CONFIG_COMPACTION
264 	struct work_struct free_work;
265 #endif
266 	spinlock_t lock;
267 };
268 
269 struct zspage {
270 	struct {
271 		unsigned int huge:HUGE_BITS;
272 		unsigned int fullness:FULLNESS_BITS;
273 		unsigned int class:CLASS_BITS + 1;
274 		unsigned int isolated:ISOLATED_BITS;
275 		unsigned int magic:MAGIC_VAL_BITS;
276 	};
277 	unsigned int inuse;
278 	unsigned int freeobj;
279 	struct page *first_page;
280 	struct list_head list; /* fullness list */
281 
282 #ifdef CONFIG_ZPOOL
283 	/* links the zspage to the lru list in the pool */
284 	struct list_head lru;
285 	bool under_reclaim;
286 #endif
287 
288 	struct zs_pool *pool;
289 	rwlock_t lock;
290 };
291 
292 struct mapping_area {
293 	local_lock_t lock;
294 	char *vm_buf; /* copy buffer for objects that span pages */
295 	char *vm_addr; /* address of kmap_atomic()'ed pages */
296 	enum zs_mapmode vm_mm; /* mapping mode */
297 };
298 
299 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
300 static void SetZsHugePage(struct zspage *zspage)
301 {
302 	zspage->huge = 1;
303 }
304 
305 static bool ZsHugePage(struct zspage *zspage)
306 {
307 	return zspage->huge;
308 }
309 
310 static void migrate_lock_init(struct zspage *zspage);
311 static void migrate_read_lock(struct zspage *zspage);
312 static void migrate_read_unlock(struct zspage *zspage);
313 
314 #ifdef CONFIG_COMPACTION
315 static void migrate_write_lock(struct zspage *zspage);
316 static void migrate_write_lock_nested(struct zspage *zspage);
317 static void migrate_write_unlock(struct zspage *zspage);
318 static void kick_deferred_free(struct zs_pool *pool);
319 static void init_deferred_free(struct zs_pool *pool);
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
321 #else
322 static void migrate_write_lock(struct zspage *zspage) {}
323 static void migrate_write_lock_nested(struct zspage *zspage) {}
324 static void migrate_write_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329 
330 static int create_cache(struct zs_pool *pool)
331 {
332 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 					0, 0, NULL);
334 	if (!pool->handle_cachep)
335 		return 1;
336 
337 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 					0, 0, NULL);
339 	if (!pool->zspage_cachep) {
340 		kmem_cache_destroy(pool->handle_cachep);
341 		pool->handle_cachep = NULL;
342 		return 1;
343 	}
344 
345 	return 0;
346 }
347 
348 static void destroy_cache(struct zs_pool *pool)
349 {
350 	kmem_cache_destroy(pool->handle_cachep);
351 	kmem_cache_destroy(pool->zspage_cachep);
352 }
353 
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359 
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362 	kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364 
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367 	return kmem_cache_zalloc(pool->zspage_cachep,
368 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 }
370 
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373 	kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375 
376 /* pool->lock(which owns the handle) synchronizes races */
377 static void record_obj(unsigned long handle, unsigned long obj)
378 {
379 	*(unsigned long *)handle = obj;
380 }
381 
382 /* zpool driver */
383 
384 #ifdef CONFIG_ZPOOL
385 
386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387 			     const struct zpool_ops *zpool_ops,
388 			     struct zpool *zpool)
389 {
390 	/*
391 	 * Ignore global gfp flags: zs_malloc() may be invoked from
392 	 * different contexts and its caller must provide a valid
393 	 * gfp mask.
394 	 */
395 	struct zs_pool *pool = zs_create_pool(name);
396 
397 	if (pool) {
398 		pool->zpool = zpool;
399 		pool->zpool_ops = zpool_ops;
400 	}
401 
402 	return pool;
403 }
404 
405 static void zs_zpool_destroy(void *pool)
406 {
407 	zs_destroy_pool(pool);
408 }
409 
410 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
411 			unsigned long *handle)
412 {
413 	*handle = zs_malloc(pool, size, gfp);
414 
415 	if (IS_ERR_VALUE(*handle))
416 		return PTR_ERR((void *)*handle);
417 	return 0;
418 }
419 static void zs_zpool_free(void *pool, unsigned long handle)
420 {
421 	zs_free(pool, handle);
422 }
423 
424 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
425 
426 static int zs_zpool_shrink(void *pool, unsigned int pages,
427 			unsigned int *reclaimed)
428 {
429 	unsigned int total = 0;
430 	int ret = -EINVAL;
431 
432 	while (total < pages) {
433 		ret = zs_reclaim_page(pool, 8);
434 		if (ret < 0)
435 			break;
436 		total++;
437 	}
438 
439 	if (reclaimed)
440 		*reclaimed = total;
441 
442 	return ret;
443 }
444 
445 static void *zs_zpool_map(void *pool, unsigned long handle,
446 			enum zpool_mapmode mm)
447 {
448 	enum zs_mapmode zs_mm;
449 
450 	switch (mm) {
451 	case ZPOOL_MM_RO:
452 		zs_mm = ZS_MM_RO;
453 		break;
454 	case ZPOOL_MM_WO:
455 		zs_mm = ZS_MM_WO;
456 		break;
457 	case ZPOOL_MM_RW:
458 	default:
459 		zs_mm = ZS_MM_RW;
460 		break;
461 	}
462 
463 	return zs_map_object(pool, handle, zs_mm);
464 }
465 static void zs_zpool_unmap(void *pool, unsigned long handle)
466 {
467 	zs_unmap_object(pool, handle);
468 }
469 
470 static u64 zs_zpool_total_size(void *pool)
471 {
472 	return zs_get_total_pages(pool) << PAGE_SHIFT;
473 }
474 
475 static struct zpool_driver zs_zpool_driver = {
476 	.type =			  "zsmalloc",
477 	.owner =		  THIS_MODULE,
478 	.create =		  zs_zpool_create,
479 	.destroy =		  zs_zpool_destroy,
480 	.malloc_support_movable = true,
481 	.malloc =		  zs_zpool_malloc,
482 	.free =			  zs_zpool_free,
483 	.shrink =		  zs_zpool_shrink,
484 	.map =			  zs_zpool_map,
485 	.unmap =		  zs_zpool_unmap,
486 	.total_size =		  zs_zpool_total_size,
487 };
488 
489 MODULE_ALIAS("zpool-zsmalloc");
490 #endif /* CONFIG_ZPOOL */
491 
492 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
493 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
494 	.lock	= INIT_LOCAL_LOCK(lock),
495 };
496 
497 static __maybe_unused int is_first_page(struct page *page)
498 {
499 	return PagePrivate(page);
500 }
501 
502 /* Protected by pool->lock */
503 static inline int get_zspage_inuse(struct zspage *zspage)
504 {
505 	return zspage->inuse;
506 }
507 
508 
509 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
510 {
511 	zspage->inuse += val;
512 }
513 
514 static inline struct page *get_first_page(struct zspage *zspage)
515 {
516 	struct page *first_page = zspage->first_page;
517 
518 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
519 	return first_page;
520 }
521 
522 static inline unsigned int get_first_obj_offset(struct page *page)
523 {
524 	return page->page_type;
525 }
526 
527 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
528 {
529 	page->page_type = offset;
530 }
531 
532 static inline unsigned int get_freeobj(struct zspage *zspage)
533 {
534 	return zspage->freeobj;
535 }
536 
537 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
538 {
539 	zspage->freeobj = obj;
540 }
541 
542 static void get_zspage_mapping(struct zspage *zspage,
543 			       unsigned int *class_idx,
544 			       int *fullness)
545 {
546 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
547 
548 	*fullness = zspage->fullness;
549 	*class_idx = zspage->class;
550 }
551 
552 static struct size_class *zspage_class(struct zs_pool *pool,
553 				       struct zspage *zspage)
554 {
555 	return pool->size_class[zspage->class];
556 }
557 
558 static void set_zspage_mapping(struct zspage *zspage,
559 			       unsigned int class_idx,
560 			       int fullness)
561 {
562 	zspage->class = class_idx;
563 	zspage->fullness = fullness;
564 }
565 
566 /*
567  * zsmalloc divides the pool into various size classes where each
568  * class maintains a list of zspages where each zspage is divided
569  * into equal sized chunks. Each allocation falls into one of these
570  * classes depending on its size. This function returns index of the
571  * size class which has chunk size big enough to hold the given size.
572  */
573 static int get_size_class_index(int size)
574 {
575 	int idx = 0;
576 
577 	if (likely(size > ZS_MIN_ALLOC_SIZE))
578 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
579 				ZS_SIZE_CLASS_DELTA);
580 
581 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
582 }
583 
584 static inline void class_stat_inc(struct size_class *class,
585 				int type, unsigned long cnt)
586 {
587 	class->stats.objs[type] += cnt;
588 }
589 
590 static inline void class_stat_dec(struct size_class *class,
591 				int type, unsigned long cnt)
592 {
593 	class->stats.objs[type] -= cnt;
594 }
595 
596 static inline unsigned long zs_stat_get(struct size_class *class, int type)
597 {
598 	return class->stats.objs[type];
599 }
600 
601 #ifdef CONFIG_ZSMALLOC_STAT
602 
603 static void __init zs_stat_init(void)
604 {
605 	if (!debugfs_initialized()) {
606 		pr_warn("debugfs not available, stat dir not created\n");
607 		return;
608 	}
609 
610 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
611 }
612 
613 static void __exit zs_stat_exit(void)
614 {
615 	debugfs_remove_recursive(zs_stat_root);
616 }
617 
618 static unsigned long zs_can_compact(struct size_class *class);
619 
620 static int zs_stats_size_show(struct seq_file *s, void *v)
621 {
622 	int i, fg;
623 	struct zs_pool *pool = s->private;
624 	struct size_class *class;
625 	int objs_per_zspage;
626 	unsigned long obj_allocated, obj_used, pages_used, freeable;
627 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
628 	unsigned long total_freeable = 0;
629 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
630 
631 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
632 			"class", "size", "10%", "20%", "30%", "40%",
633 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
634 			"obj_allocated", "obj_used", "pages_used",
635 			"pages_per_zspage", "freeable");
636 
637 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
638 
639 		class = pool->size_class[i];
640 
641 		if (class->index != i)
642 			continue;
643 
644 		spin_lock(&pool->lock);
645 
646 		seq_printf(s, " %5u %5u ", i, class->size);
647 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
648 			inuse_totals[fg] += zs_stat_get(class, fg);
649 			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
650 		}
651 
652 		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
653 		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
654 		freeable = zs_can_compact(class);
655 		spin_unlock(&pool->lock);
656 
657 		objs_per_zspage = class->objs_per_zspage;
658 		pages_used = obj_allocated / objs_per_zspage *
659 				class->pages_per_zspage;
660 
661 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
662 			   obj_allocated, obj_used, pages_used,
663 			   class->pages_per_zspage, freeable);
664 
665 		total_objs += obj_allocated;
666 		total_used_objs += obj_used;
667 		total_pages += pages_used;
668 		total_freeable += freeable;
669 	}
670 
671 	seq_puts(s, "\n");
672 	seq_printf(s, " %5s %5s ", "Total", "");
673 
674 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
675 		seq_printf(s, "%9lu ", inuse_totals[fg]);
676 
677 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
678 		   total_objs, total_used_objs, total_pages, "",
679 		   total_freeable);
680 
681 	return 0;
682 }
683 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
684 
685 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
686 {
687 	if (!zs_stat_root) {
688 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
689 		return;
690 	}
691 
692 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
693 
694 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
695 			    &zs_stats_size_fops);
696 }
697 
698 static void zs_pool_stat_destroy(struct zs_pool *pool)
699 {
700 	debugfs_remove_recursive(pool->stat_dentry);
701 }
702 
703 #else /* CONFIG_ZSMALLOC_STAT */
704 static void __init zs_stat_init(void)
705 {
706 }
707 
708 static void __exit zs_stat_exit(void)
709 {
710 }
711 
712 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
713 {
714 }
715 
716 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
717 {
718 }
719 #endif
720 
721 
722 /*
723  * For each size class, zspages are divided into different groups
724  * depending on their usage ratio. This function returns fullness
725  * status of the given page.
726  */
727 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
728 {
729 	int inuse, objs_per_zspage, ratio;
730 
731 	inuse = get_zspage_inuse(zspage);
732 	objs_per_zspage = class->objs_per_zspage;
733 
734 	if (inuse == 0)
735 		return ZS_INUSE_RATIO_0;
736 	if (inuse == objs_per_zspage)
737 		return ZS_INUSE_RATIO_100;
738 
739 	ratio = 100 * inuse / objs_per_zspage;
740 	/*
741 	 * Take integer division into consideration: a page with one inuse
742 	 * object out of 127 possible, will end up having 0 usage ratio,
743 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
744 	 */
745 	return ratio / 10 + 1;
746 }
747 
748 /*
749  * Each size class maintains various freelists and zspages are assigned
750  * to one of these freelists based on the number of live objects they
751  * have. This functions inserts the given zspage into the freelist
752  * identified by <class, fullness_group>.
753  */
754 static void insert_zspage(struct size_class *class,
755 				struct zspage *zspage,
756 				int fullness)
757 {
758 	class_stat_inc(class, fullness, 1);
759 	list_add(&zspage->list, &class->fullness_list[fullness]);
760 }
761 
762 /*
763  * This function removes the given zspage from the freelist identified
764  * by <class, fullness_group>.
765  */
766 static void remove_zspage(struct size_class *class,
767 				struct zspage *zspage,
768 				int fullness)
769 {
770 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
771 
772 	list_del_init(&zspage->list);
773 	class_stat_dec(class, fullness, 1);
774 }
775 
776 /*
777  * Each size class maintains zspages in different fullness groups depending
778  * on the number of live objects they contain. When allocating or freeing
779  * objects, the fullness status of the page can change, for instance, from
780  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
781  * checks if such a status change has occurred for the given page and
782  * accordingly moves the page from the list of the old fullness group to that
783  * of the new fullness group.
784  */
785 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
786 {
787 	int class_idx;
788 	int currfg, newfg;
789 
790 	get_zspage_mapping(zspage, &class_idx, &currfg);
791 	newfg = get_fullness_group(class, zspage);
792 	if (newfg == currfg)
793 		goto out;
794 
795 	remove_zspage(class, zspage, currfg);
796 	insert_zspage(class, zspage, newfg);
797 	set_zspage_mapping(zspage, class_idx, newfg);
798 out:
799 	return newfg;
800 }
801 
802 static struct zspage *get_zspage(struct page *page)
803 {
804 	struct zspage *zspage = (struct zspage *)page_private(page);
805 
806 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
807 	return zspage;
808 }
809 
810 static struct page *get_next_page(struct page *page)
811 {
812 	struct zspage *zspage = get_zspage(page);
813 
814 	if (unlikely(ZsHugePage(zspage)))
815 		return NULL;
816 
817 	return (struct page *)page->index;
818 }
819 
820 /**
821  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
822  * @obj: the encoded object value
823  * @page: page object resides in zspage
824  * @obj_idx: object index
825  */
826 static void obj_to_location(unsigned long obj, struct page **page,
827 				unsigned int *obj_idx)
828 {
829 	obj >>= OBJ_TAG_BITS;
830 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
831 	*obj_idx = (obj & OBJ_INDEX_MASK);
832 }
833 
834 static void obj_to_page(unsigned long obj, struct page **page)
835 {
836 	obj >>= OBJ_TAG_BITS;
837 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
838 }
839 
840 /**
841  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
842  * @page: page object resides in zspage
843  * @obj_idx: object index
844  */
845 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
846 {
847 	unsigned long obj;
848 
849 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
850 	obj |= obj_idx & OBJ_INDEX_MASK;
851 	obj <<= OBJ_TAG_BITS;
852 
853 	return obj;
854 }
855 
856 static unsigned long handle_to_obj(unsigned long handle)
857 {
858 	return *(unsigned long *)handle;
859 }
860 
861 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
862 		int tag)
863 {
864 	unsigned long handle;
865 	struct zspage *zspage = get_zspage(page);
866 
867 	if (unlikely(ZsHugePage(zspage))) {
868 		VM_BUG_ON_PAGE(!is_first_page(page), page);
869 		handle = page->index;
870 	} else
871 		handle = *(unsigned long *)obj;
872 
873 	if (!(handle & tag))
874 		return false;
875 
876 	/* Clear all tags before returning the handle */
877 	*phandle = handle & ~OBJ_TAG_MASK;
878 	return true;
879 }
880 
881 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
882 {
883 	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
884 }
885 
886 #ifdef CONFIG_ZPOOL
887 static bool obj_stores_deferred_handle(struct page *page, void *obj,
888 		unsigned long *phandle)
889 {
890 	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
891 }
892 #endif
893 
894 static void reset_page(struct page *page)
895 {
896 	__ClearPageMovable(page);
897 	ClearPagePrivate(page);
898 	set_page_private(page, 0);
899 	page_mapcount_reset(page);
900 	page->index = 0;
901 }
902 
903 static int trylock_zspage(struct zspage *zspage)
904 {
905 	struct page *cursor, *fail;
906 
907 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
908 					get_next_page(cursor)) {
909 		if (!trylock_page(cursor)) {
910 			fail = cursor;
911 			goto unlock;
912 		}
913 	}
914 
915 	return 1;
916 unlock:
917 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
918 					get_next_page(cursor))
919 		unlock_page(cursor);
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_ZPOOL
925 static unsigned long find_deferred_handle_obj(struct size_class *class,
926 		struct page *page, int *obj_idx);
927 
928 /*
929  * Free all the deferred handles whose objects are freed in zs_free.
930  */
931 static void free_handles(struct zs_pool *pool, struct size_class *class,
932 		struct zspage *zspage)
933 {
934 	int obj_idx = 0;
935 	struct page *page = get_first_page(zspage);
936 	unsigned long handle;
937 
938 	while (1) {
939 		handle = find_deferred_handle_obj(class, page, &obj_idx);
940 		if (!handle) {
941 			page = get_next_page(page);
942 			if (!page)
943 				break;
944 			obj_idx = 0;
945 			continue;
946 		}
947 
948 		cache_free_handle(pool, handle);
949 		obj_idx++;
950 	}
951 }
952 #else
953 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
954 		struct zspage *zspage) {}
955 #endif
956 
957 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
958 				struct zspage *zspage)
959 {
960 	struct page *page, *next;
961 	int fg;
962 	unsigned int class_idx;
963 
964 	get_zspage_mapping(zspage, &class_idx, &fg);
965 
966 	assert_spin_locked(&pool->lock);
967 
968 	VM_BUG_ON(get_zspage_inuse(zspage));
969 	VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
970 
971 	/* Free all deferred handles from zs_free */
972 	free_handles(pool, class, zspage);
973 
974 	next = page = get_first_page(zspage);
975 	do {
976 		VM_BUG_ON_PAGE(!PageLocked(page), page);
977 		next = get_next_page(page);
978 		reset_page(page);
979 		unlock_page(page);
980 		dec_zone_page_state(page, NR_ZSPAGES);
981 		put_page(page);
982 		page = next;
983 	} while (page != NULL);
984 
985 	cache_free_zspage(pool, zspage);
986 
987 	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
988 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
989 }
990 
991 static void free_zspage(struct zs_pool *pool, struct size_class *class,
992 				struct zspage *zspage)
993 {
994 	VM_BUG_ON(get_zspage_inuse(zspage));
995 	VM_BUG_ON(list_empty(&zspage->list));
996 
997 	/*
998 	 * Since zs_free couldn't be sleepable, this function cannot call
999 	 * lock_page. The page locks trylock_zspage got will be released
1000 	 * by __free_zspage.
1001 	 */
1002 	if (!trylock_zspage(zspage)) {
1003 		kick_deferred_free(pool);
1004 		return;
1005 	}
1006 
1007 	remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
1008 #ifdef CONFIG_ZPOOL
1009 	list_del(&zspage->lru);
1010 #endif
1011 	__free_zspage(pool, class, zspage);
1012 }
1013 
1014 /* Initialize a newly allocated zspage */
1015 static void init_zspage(struct size_class *class, struct zspage *zspage)
1016 {
1017 	unsigned int freeobj = 1;
1018 	unsigned long off = 0;
1019 	struct page *page = get_first_page(zspage);
1020 
1021 	while (page) {
1022 		struct page *next_page;
1023 		struct link_free *link;
1024 		void *vaddr;
1025 
1026 		set_first_obj_offset(page, off);
1027 
1028 		vaddr = kmap_atomic(page);
1029 		link = (struct link_free *)vaddr + off / sizeof(*link);
1030 
1031 		while ((off += class->size) < PAGE_SIZE) {
1032 			link->next = freeobj++ << OBJ_TAG_BITS;
1033 			link += class->size / sizeof(*link);
1034 		}
1035 
1036 		/*
1037 		 * We now come to the last (full or partial) object on this
1038 		 * page, which must point to the first object on the next
1039 		 * page (if present)
1040 		 */
1041 		next_page = get_next_page(page);
1042 		if (next_page) {
1043 			link->next = freeobj++ << OBJ_TAG_BITS;
1044 		} else {
1045 			/*
1046 			 * Reset OBJ_TAG_BITS bit to last link to tell
1047 			 * whether it's allocated object or not.
1048 			 */
1049 			link->next = -1UL << OBJ_TAG_BITS;
1050 		}
1051 		kunmap_atomic(vaddr);
1052 		page = next_page;
1053 		off %= PAGE_SIZE;
1054 	}
1055 
1056 #ifdef CONFIG_ZPOOL
1057 	INIT_LIST_HEAD(&zspage->lru);
1058 	zspage->under_reclaim = false;
1059 #endif
1060 
1061 	set_freeobj(zspage, 0);
1062 }
1063 
1064 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1065 				struct page *pages[])
1066 {
1067 	int i;
1068 	struct page *page;
1069 	struct page *prev_page = NULL;
1070 	int nr_pages = class->pages_per_zspage;
1071 
1072 	/*
1073 	 * Allocate individual pages and link them together as:
1074 	 * 1. all pages are linked together using page->index
1075 	 * 2. each sub-page point to zspage using page->private
1076 	 *
1077 	 * we set PG_private to identify the first page (i.e. no other sub-page
1078 	 * has this flag set).
1079 	 */
1080 	for (i = 0; i < nr_pages; i++) {
1081 		page = pages[i];
1082 		set_page_private(page, (unsigned long)zspage);
1083 		page->index = 0;
1084 		if (i == 0) {
1085 			zspage->first_page = page;
1086 			SetPagePrivate(page);
1087 			if (unlikely(class->objs_per_zspage == 1 &&
1088 					class->pages_per_zspage == 1))
1089 				SetZsHugePage(zspage);
1090 		} else {
1091 			prev_page->index = (unsigned long)page;
1092 		}
1093 		prev_page = page;
1094 	}
1095 }
1096 
1097 /*
1098  * Allocate a zspage for the given size class
1099  */
1100 static struct zspage *alloc_zspage(struct zs_pool *pool,
1101 					struct size_class *class,
1102 					gfp_t gfp)
1103 {
1104 	int i;
1105 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1106 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1107 
1108 	if (!zspage)
1109 		return NULL;
1110 
1111 	zspage->magic = ZSPAGE_MAGIC;
1112 	migrate_lock_init(zspage);
1113 
1114 	for (i = 0; i < class->pages_per_zspage; i++) {
1115 		struct page *page;
1116 
1117 		page = alloc_page(gfp);
1118 		if (!page) {
1119 			while (--i >= 0) {
1120 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1121 				__free_page(pages[i]);
1122 			}
1123 			cache_free_zspage(pool, zspage);
1124 			return NULL;
1125 		}
1126 
1127 		inc_zone_page_state(page, NR_ZSPAGES);
1128 		pages[i] = page;
1129 	}
1130 
1131 	create_page_chain(class, zspage, pages);
1132 	init_zspage(class, zspage);
1133 	zspage->pool = pool;
1134 
1135 	return zspage;
1136 }
1137 
1138 static struct zspage *find_get_zspage(struct size_class *class)
1139 {
1140 	int i;
1141 	struct zspage *zspage;
1142 
1143 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1144 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1145 						  struct zspage, list);
1146 		if (zspage)
1147 			break;
1148 	}
1149 
1150 	return zspage;
1151 }
1152 
1153 static inline int __zs_cpu_up(struct mapping_area *area)
1154 {
1155 	/*
1156 	 * Make sure we don't leak memory if a cpu UP notification
1157 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1158 	 */
1159 	if (area->vm_buf)
1160 		return 0;
1161 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1162 	if (!area->vm_buf)
1163 		return -ENOMEM;
1164 	return 0;
1165 }
1166 
1167 static inline void __zs_cpu_down(struct mapping_area *area)
1168 {
1169 	kfree(area->vm_buf);
1170 	area->vm_buf = NULL;
1171 }
1172 
1173 static void *__zs_map_object(struct mapping_area *area,
1174 			struct page *pages[2], int off, int size)
1175 {
1176 	int sizes[2];
1177 	void *addr;
1178 	char *buf = area->vm_buf;
1179 
1180 	/* disable page faults to match kmap_atomic() return conditions */
1181 	pagefault_disable();
1182 
1183 	/* no read fastpath */
1184 	if (area->vm_mm == ZS_MM_WO)
1185 		goto out;
1186 
1187 	sizes[0] = PAGE_SIZE - off;
1188 	sizes[1] = size - sizes[0];
1189 
1190 	/* copy object to per-cpu buffer */
1191 	addr = kmap_atomic(pages[0]);
1192 	memcpy(buf, addr + off, sizes[0]);
1193 	kunmap_atomic(addr);
1194 	addr = kmap_atomic(pages[1]);
1195 	memcpy(buf + sizes[0], addr, sizes[1]);
1196 	kunmap_atomic(addr);
1197 out:
1198 	return area->vm_buf;
1199 }
1200 
1201 static void __zs_unmap_object(struct mapping_area *area,
1202 			struct page *pages[2], int off, int size)
1203 {
1204 	int sizes[2];
1205 	void *addr;
1206 	char *buf;
1207 
1208 	/* no write fastpath */
1209 	if (area->vm_mm == ZS_MM_RO)
1210 		goto out;
1211 
1212 	buf = area->vm_buf;
1213 	buf = buf + ZS_HANDLE_SIZE;
1214 	size -= ZS_HANDLE_SIZE;
1215 	off += ZS_HANDLE_SIZE;
1216 
1217 	sizes[0] = PAGE_SIZE - off;
1218 	sizes[1] = size - sizes[0];
1219 
1220 	/* copy per-cpu buffer to object */
1221 	addr = kmap_atomic(pages[0]);
1222 	memcpy(addr + off, buf, sizes[0]);
1223 	kunmap_atomic(addr);
1224 	addr = kmap_atomic(pages[1]);
1225 	memcpy(addr, buf + sizes[0], sizes[1]);
1226 	kunmap_atomic(addr);
1227 
1228 out:
1229 	/* enable page faults to match kunmap_atomic() return conditions */
1230 	pagefault_enable();
1231 }
1232 
1233 static int zs_cpu_prepare(unsigned int cpu)
1234 {
1235 	struct mapping_area *area;
1236 
1237 	area = &per_cpu(zs_map_area, cpu);
1238 	return __zs_cpu_up(area);
1239 }
1240 
1241 static int zs_cpu_dead(unsigned int cpu)
1242 {
1243 	struct mapping_area *area;
1244 
1245 	area = &per_cpu(zs_map_area, cpu);
1246 	__zs_cpu_down(area);
1247 	return 0;
1248 }
1249 
1250 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1251 					int objs_per_zspage)
1252 {
1253 	if (prev->pages_per_zspage == pages_per_zspage &&
1254 		prev->objs_per_zspage == objs_per_zspage)
1255 		return true;
1256 
1257 	return false;
1258 }
1259 
1260 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1261 {
1262 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1263 }
1264 
1265 /**
1266  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1267  * that hold objects of the provided size.
1268  * @pool: zsmalloc pool to use
1269  * @size: object size
1270  *
1271  * Context: Any context.
1272  *
1273  * Return: the index of the zsmalloc &size_class that hold objects of the
1274  * provided size.
1275  */
1276 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1277 {
1278 	struct size_class *class;
1279 
1280 	class = pool->size_class[get_size_class_index(size)];
1281 
1282 	return class->index;
1283 }
1284 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1285 
1286 unsigned long zs_get_total_pages(struct zs_pool *pool)
1287 {
1288 	return atomic_long_read(&pool->pages_allocated);
1289 }
1290 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1291 
1292 /**
1293  * zs_map_object - get address of allocated object from handle.
1294  * @pool: pool from which the object was allocated
1295  * @handle: handle returned from zs_malloc
1296  * @mm: mapping mode to use
1297  *
1298  * Before using an object allocated from zs_malloc, it must be mapped using
1299  * this function. When done with the object, it must be unmapped using
1300  * zs_unmap_object.
1301  *
1302  * Only one object can be mapped per cpu at a time. There is no protection
1303  * against nested mappings.
1304  *
1305  * This function returns with preemption and page faults disabled.
1306  */
1307 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1308 			enum zs_mapmode mm)
1309 {
1310 	struct zspage *zspage;
1311 	struct page *page;
1312 	unsigned long obj, off;
1313 	unsigned int obj_idx;
1314 
1315 	struct size_class *class;
1316 	struct mapping_area *area;
1317 	struct page *pages[2];
1318 	void *ret;
1319 
1320 	/*
1321 	 * Because we use per-cpu mapping areas shared among the
1322 	 * pools/users, we can't allow mapping in interrupt context
1323 	 * because it can corrupt another users mappings.
1324 	 */
1325 	BUG_ON(in_interrupt());
1326 
1327 	/* It guarantees it can get zspage from handle safely */
1328 	spin_lock(&pool->lock);
1329 	obj = handle_to_obj(handle);
1330 	obj_to_location(obj, &page, &obj_idx);
1331 	zspage = get_zspage(page);
1332 
1333 #ifdef CONFIG_ZPOOL
1334 	/*
1335 	 * Move the zspage to front of pool's LRU.
1336 	 *
1337 	 * Note that this is swap-specific, so by definition there are no ongoing
1338 	 * accesses to the memory while the page is swapped out that would make
1339 	 * it "hot". A new entry is hot, then ages to the tail until it gets either
1340 	 * written back or swaps back in.
1341 	 *
1342 	 * Furthermore, map is also called during writeback. We must not put an
1343 	 * isolated page on the LRU mid-reclaim.
1344 	 *
1345 	 * As a result, only update the LRU when the page is mapped for write
1346 	 * when it's first instantiated.
1347 	 *
1348 	 * This is a deviation from the other backends, which perform this update
1349 	 * in the allocation function (zbud_alloc, z3fold_alloc).
1350 	 */
1351 	if (mm == ZS_MM_WO) {
1352 		if (!list_empty(&zspage->lru))
1353 			list_del(&zspage->lru);
1354 		list_add(&zspage->lru, &pool->lru);
1355 	}
1356 #endif
1357 
1358 	/*
1359 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1360 	 * is too heavy since callers would take some time until they calls
1361 	 * zs_unmap_object API so delegate the locking from class to zspage
1362 	 * which is smaller granularity.
1363 	 */
1364 	migrate_read_lock(zspage);
1365 	spin_unlock(&pool->lock);
1366 
1367 	class = zspage_class(pool, zspage);
1368 	off = (class->size * obj_idx) & ~PAGE_MASK;
1369 
1370 	local_lock(&zs_map_area.lock);
1371 	area = this_cpu_ptr(&zs_map_area);
1372 	area->vm_mm = mm;
1373 	if (off + class->size <= PAGE_SIZE) {
1374 		/* this object is contained entirely within a page */
1375 		area->vm_addr = kmap_atomic(page);
1376 		ret = area->vm_addr + off;
1377 		goto out;
1378 	}
1379 
1380 	/* this object spans two pages */
1381 	pages[0] = page;
1382 	pages[1] = get_next_page(page);
1383 	BUG_ON(!pages[1]);
1384 
1385 	ret = __zs_map_object(area, pages, off, class->size);
1386 out:
1387 	if (likely(!ZsHugePage(zspage)))
1388 		ret += ZS_HANDLE_SIZE;
1389 
1390 	return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(zs_map_object);
1393 
1394 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1395 {
1396 	struct zspage *zspage;
1397 	struct page *page;
1398 	unsigned long obj, off;
1399 	unsigned int obj_idx;
1400 
1401 	struct size_class *class;
1402 	struct mapping_area *area;
1403 
1404 	obj = handle_to_obj(handle);
1405 	obj_to_location(obj, &page, &obj_idx);
1406 	zspage = get_zspage(page);
1407 	class = zspage_class(pool, zspage);
1408 	off = (class->size * obj_idx) & ~PAGE_MASK;
1409 
1410 	area = this_cpu_ptr(&zs_map_area);
1411 	if (off + class->size <= PAGE_SIZE)
1412 		kunmap_atomic(area->vm_addr);
1413 	else {
1414 		struct page *pages[2];
1415 
1416 		pages[0] = page;
1417 		pages[1] = get_next_page(page);
1418 		BUG_ON(!pages[1]);
1419 
1420 		__zs_unmap_object(area, pages, off, class->size);
1421 	}
1422 	local_unlock(&zs_map_area.lock);
1423 
1424 	migrate_read_unlock(zspage);
1425 }
1426 EXPORT_SYMBOL_GPL(zs_unmap_object);
1427 
1428 /**
1429  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1430  *                        zsmalloc &size_class.
1431  * @pool: zsmalloc pool to use
1432  *
1433  * The function returns the size of the first huge class - any object of equal
1434  * or bigger size will be stored in zspage consisting of a single physical
1435  * page.
1436  *
1437  * Context: Any context.
1438  *
1439  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1440  */
1441 size_t zs_huge_class_size(struct zs_pool *pool)
1442 {
1443 	return huge_class_size;
1444 }
1445 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1446 
1447 static unsigned long obj_malloc(struct zs_pool *pool,
1448 				struct zspage *zspage, unsigned long handle)
1449 {
1450 	int i, nr_page, offset;
1451 	unsigned long obj;
1452 	struct link_free *link;
1453 	struct size_class *class;
1454 
1455 	struct page *m_page;
1456 	unsigned long m_offset;
1457 	void *vaddr;
1458 
1459 	class = pool->size_class[zspage->class];
1460 	handle |= OBJ_ALLOCATED_TAG;
1461 	obj = get_freeobj(zspage);
1462 
1463 	offset = obj * class->size;
1464 	nr_page = offset >> PAGE_SHIFT;
1465 	m_offset = offset & ~PAGE_MASK;
1466 	m_page = get_first_page(zspage);
1467 
1468 	for (i = 0; i < nr_page; i++)
1469 		m_page = get_next_page(m_page);
1470 
1471 	vaddr = kmap_atomic(m_page);
1472 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1473 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1474 	if (likely(!ZsHugePage(zspage)))
1475 		/* record handle in the header of allocated chunk */
1476 		link->handle = handle;
1477 	else
1478 		/* record handle to page->index */
1479 		zspage->first_page->index = handle;
1480 
1481 	kunmap_atomic(vaddr);
1482 	mod_zspage_inuse(zspage, 1);
1483 
1484 	obj = location_to_obj(m_page, obj);
1485 
1486 	return obj;
1487 }
1488 
1489 
1490 /**
1491  * zs_malloc - Allocate block of given size from pool.
1492  * @pool: pool to allocate from
1493  * @size: size of block to allocate
1494  * @gfp: gfp flags when allocating object
1495  *
1496  * On success, handle to the allocated object is returned,
1497  * otherwise an ERR_PTR().
1498  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1499  */
1500 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1501 {
1502 	unsigned long handle, obj;
1503 	struct size_class *class;
1504 	int newfg;
1505 	struct zspage *zspage;
1506 
1507 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1508 		return (unsigned long)ERR_PTR(-EINVAL);
1509 
1510 	handle = cache_alloc_handle(pool, gfp);
1511 	if (!handle)
1512 		return (unsigned long)ERR_PTR(-ENOMEM);
1513 
1514 	/* extra space in chunk to keep the handle */
1515 	size += ZS_HANDLE_SIZE;
1516 	class = pool->size_class[get_size_class_index(size)];
1517 
1518 	/* pool->lock effectively protects the zpage migration */
1519 	spin_lock(&pool->lock);
1520 	zspage = find_get_zspage(class);
1521 	if (likely(zspage)) {
1522 		obj = obj_malloc(pool, zspage, handle);
1523 		/* Now move the zspage to another fullness group, if required */
1524 		fix_fullness_group(class, zspage);
1525 		record_obj(handle, obj);
1526 		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1527 		spin_unlock(&pool->lock);
1528 
1529 		return handle;
1530 	}
1531 
1532 	spin_unlock(&pool->lock);
1533 
1534 	zspage = alloc_zspage(pool, class, gfp);
1535 	if (!zspage) {
1536 		cache_free_handle(pool, handle);
1537 		return (unsigned long)ERR_PTR(-ENOMEM);
1538 	}
1539 
1540 	spin_lock(&pool->lock);
1541 	obj = obj_malloc(pool, zspage, handle);
1542 	newfg = get_fullness_group(class, zspage);
1543 	insert_zspage(class, zspage, newfg);
1544 	set_zspage_mapping(zspage, class->index, newfg);
1545 	record_obj(handle, obj);
1546 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1547 	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1548 	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1549 
1550 	/* We completely set up zspage so mark them as movable */
1551 	SetZsPageMovable(pool, zspage);
1552 	spin_unlock(&pool->lock);
1553 
1554 	return handle;
1555 }
1556 EXPORT_SYMBOL_GPL(zs_malloc);
1557 
1558 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1559 {
1560 	struct link_free *link;
1561 	struct zspage *zspage;
1562 	struct page *f_page;
1563 	unsigned long f_offset;
1564 	unsigned int f_objidx;
1565 	void *vaddr;
1566 
1567 	obj_to_location(obj, &f_page, &f_objidx);
1568 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1569 	zspage = get_zspage(f_page);
1570 
1571 	vaddr = kmap_atomic(f_page);
1572 	link = (struct link_free *)(vaddr + f_offset);
1573 
1574 	if (handle) {
1575 #ifdef CONFIG_ZPOOL
1576 		/* Stores the (deferred) handle in the object's header */
1577 		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1578 		*handle &= ~OBJ_ALLOCATED_TAG;
1579 
1580 		if (likely(!ZsHugePage(zspage)))
1581 			link->deferred_handle = *handle;
1582 		else
1583 			f_page->index = *handle;
1584 #endif
1585 	} else {
1586 		/* Insert this object in containing zspage's freelist */
1587 		if (likely(!ZsHugePage(zspage)))
1588 			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1589 		else
1590 			f_page->index = 0;
1591 		set_freeobj(zspage, f_objidx);
1592 	}
1593 
1594 	kunmap_atomic(vaddr);
1595 	mod_zspage_inuse(zspage, -1);
1596 }
1597 
1598 void zs_free(struct zs_pool *pool, unsigned long handle)
1599 {
1600 	struct zspage *zspage;
1601 	struct page *f_page;
1602 	unsigned long obj;
1603 	struct size_class *class;
1604 	int fullness;
1605 
1606 	if (IS_ERR_OR_NULL((void *)handle))
1607 		return;
1608 
1609 	/*
1610 	 * The pool->lock protects the race with zpage's migration
1611 	 * so it's safe to get the page from handle.
1612 	 */
1613 	spin_lock(&pool->lock);
1614 	obj = handle_to_obj(handle);
1615 	obj_to_page(obj, &f_page);
1616 	zspage = get_zspage(f_page);
1617 	class = zspage_class(pool, zspage);
1618 
1619 	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1620 
1621 #ifdef CONFIG_ZPOOL
1622 	if (zspage->under_reclaim) {
1623 		/*
1624 		 * Reclaim needs the handles during writeback. It'll free
1625 		 * them along with the zspage when it's done with them.
1626 		 *
1627 		 * Record current deferred handle in the object's header.
1628 		 */
1629 		obj_free(class->size, obj, &handle);
1630 		spin_unlock(&pool->lock);
1631 		return;
1632 	}
1633 #endif
1634 	obj_free(class->size, obj, NULL);
1635 
1636 	fullness = fix_fullness_group(class, zspage);
1637 	if (fullness == ZS_INUSE_RATIO_0)
1638 		free_zspage(pool, class, zspage);
1639 
1640 	spin_unlock(&pool->lock);
1641 	cache_free_handle(pool, handle);
1642 }
1643 EXPORT_SYMBOL_GPL(zs_free);
1644 
1645 static void zs_object_copy(struct size_class *class, unsigned long dst,
1646 				unsigned long src)
1647 {
1648 	struct page *s_page, *d_page;
1649 	unsigned int s_objidx, d_objidx;
1650 	unsigned long s_off, d_off;
1651 	void *s_addr, *d_addr;
1652 	int s_size, d_size, size;
1653 	int written = 0;
1654 
1655 	s_size = d_size = class->size;
1656 
1657 	obj_to_location(src, &s_page, &s_objidx);
1658 	obj_to_location(dst, &d_page, &d_objidx);
1659 
1660 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1661 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1662 
1663 	if (s_off + class->size > PAGE_SIZE)
1664 		s_size = PAGE_SIZE - s_off;
1665 
1666 	if (d_off + class->size > PAGE_SIZE)
1667 		d_size = PAGE_SIZE - d_off;
1668 
1669 	s_addr = kmap_atomic(s_page);
1670 	d_addr = kmap_atomic(d_page);
1671 
1672 	while (1) {
1673 		size = min(s_size, d_size);
1674 		memcpy(d_addr + d_off, s_addr + s_off, size);
1675 		written += size;
1676 
1677 		if (written == class->size)
1678 			break;
1679 
1680 		s_off += size;
1681 		s_size -= size;
1682 		d_off += size;
1683 		d_size -= size;
1684 
1685 		/*
1686 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1687 		 * calls must occurs in reverse order of calls to kmap_atomic().
1688 		 * So, to call kunmap_atomic(s_addr) we should first call
1689 		 * kunmap_atomic(d_addr). For more details see
1690 		 * Documentation/mm/highmem.rst.
1691 		 */
1692 		if (s_off >= PAGE_SIZE) {
1693 			kunmap_atomic(d_addr);
1694 			kunmap_atomic(s_addr);
1695 			s_page = get_next_page(s_page);
1696 			s_addr = kmap_atomic(s_page);
1697 			d_addr = kmap_atomic(d_page);
1698 			s_size = class->size - written;
1699 			s_off = 0;
1700 		}
1701 
1702 		if (d_off >= PAGE_SIZE) {
1703 			kunmap_atomic(d_addr);
1704 			d_page = get_next_page(d_page);
1705 			d_addr = kmap_atomic(d_page);
1706 			d_size = class->size - written;
1707 			d_off = 0;
1708 		}
1709 	}
1710 
1711 	kunmap_atomic(d_addr);
1712 	kunmap_atomic(s_addr);
1713 }
1714 
1715 /*
1716  * Find object with a certain tag in zspage from index object and
1717  * return handle.
1718  */
1719 static unsigned long find_tagged_obj(struct size_class *class,
1720 					struct page *page, int *obj_idx, int tag)
1721 {
1722 	unsigned int offset;
1723 	int index = *obj_idx;
1724 	unsigned long handle = 0;
1725 	void *addr = kmap_atomic(page);
1726 
1727 	offset = get_first_obj_offset(page);
1728 	offset += class->size * index;
1729 
1730 	while (offset < PAGE_SIZE) {
1731 		if (obj_tagged(page, addr + offset, &handle, tag))
1732 			break;
1733 
1734 		offset += class->size;
1735 		index++;
1736 	}
1737 
1738 	kunmap_atomic(addr);
1739 
1740 	*obj_idx = index;
1741 
1742 	return handle;
1743 }
1744 
1745 /*
1746  * Find alloced object in zspage from index object and
1747  * return handle.
1748  */
1749 static unsigned long find_alloced_obj(struct size_class *class,
1750 					struct page *page, int *obj_idx)
1751 {
1752 	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1753 }
1754 
1755 #ifdef CONFIG_ZPOOL
1756 /*
1757  * Find object storing a deferred handle in header in zspage from index object
1758  * and return handle.
1759  */
1760 static unsigned long find_deferred_handle_obj(struct size_class *class,
1761 		struct page *page, int *obj_idx)
1762 {
1763 	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1764 }
1765 #endif
1766 
1767 struct zs_compact_control {
1768 	/* Source spage for migration which could be a subpage of zspage */
1769 	struct page *s_page;
1770 	/* Destination page for migration which should be a first page
1771 	 * of zspage. */
1772 	struct page *d_page;
1773 	 /* Starting object index within @s_page which used for live object
1774 	  * in the subpage. */
1775 	int obj_idx;
1776 };
1777 
1778 static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1779 			   struct zs_compact_control *cc)
1780 {
1781 	unsigned long used_obj, free_obj;
1782 	unsigned long handle;
1783 	struct page *s_page = cc->s_page;
1784 	struct page *d_page = cc->d_page;
1785 	int obj_idx = cc->obj_idx;
1786 
1787 	while (1) {
1788 		handle = find_alloced_obj(class, s_page, &obj_idx);
1789 		if (!handle) {
1790 			s_page = get_next_page(s_page);
1791 			if (!s_page)
1792 				break;
1793 			obj_idx = 0;
1794 			continue;
1795 		}
1796 
1797 		/* Stop if there is no more space */
1798 		if (zspage_full(class, get_zspage(d_page)))
1799 			break;
1800 
1801 		used_obj = handle_to_obj(handle);
1802 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1803 		zs_object_copy(class, free_obj, used_obj);
1804 		obj_idx++;
1805 		record_obj(handle, free_obj);
1806 		obj_free(class->size, used_obj, NULL);
1807 	}
1808 
1809 	/* Remember last position in this iteration */
1810 	cc->s_page = s_page;
1811 	cc->obj_idx = obj_idx;
1812 }
1813 
1814 static struct zspage *isolate_src_zspage(struct size_class *class)
1815 {
1816 	struct zspage *zspage;
1817 	int fg;
1818 
1819 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1820 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1821 						  struct zspage, list);
1822 		if (zspage) {
1823 			remove_zspage(class, zspage, fg);
1824 			return zspage;
1825 		}
1826 	}
1827 
1828 	return zspage;
1829 }
1830 
1831 static struct zspage *isolate_dst_zspage(struct size_class *class)
1832 {
1833 	struct zspage *zspage;
1834 	int fg;
1835 
1836 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1837 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1838 						  struct zspage, list);
1839 		if (zspage) {
1840 			remove_zspage(class, zspage, fg);
1841 			return zspage;
1842 		}
1843 	}
1844 
1845 	return zspage;
1846 }
1847 
1848 /*
1849  * putback_zspage - add @zspage into right class's fullness list
1850  * @class: destination class
1851  * @zspage: target page
1852  *
1853  * Return @zspage's fullness status
1854  */
1855 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1856 {
1857 	int fullness;
1858 
1859 	fullness = get_fullness_group(class, zspage);
1860 	insert_zspage(class, zspage, fullness);
1861 	set_zspage_mapping(zspage, class->index, fullness);
1862 
1863 	return fullness;
1864 }
1865 
1866 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1867 /*
1868  * To prevent zspage destroy during migration, zspage freeing should
1869  * hold locks of all pages in the zspage.
1870  */
1871 static void lock_zspage(struct zspage *zspage)
1872 {
1873 	struct page *curr_page, *page;
1874 
1875 	/*
1876 	 * Pages we haven't locked yet can be migrated off the list while we're
1877 	 * trying to lock them, so we need to be careful and only attempt to
1878 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1879 	 * may no longer belong to the zspage. This means that we may wait for
1880 	 * the wrong page to unlock, so we must take a reference to the page
1881 	 * prior to waiting for it to unlock outside migrate_read_lock().
1882 	 */
1883 	while (1) {
1884 		migrate_read_lock(zspage);
1885 		page = get_first_page(zspage);
1886 		if (trylock_page(page))
1887 			break;
1888 		get_page(page);
1889 		migrate_read_unlock(zspage);
1890 		wait_on_page_locked(page);
1891 		put_page(page);
1892 	}
1893 
1894 	curr_page = page;
1895 	while ((page = get_next_page(curr_page))) {
1896 		if (trylock_page(page)) {
1897 			curr_page = page;
1898 		} else {
1899 			get_page(page);
1900 			migrate_read_unlock(zspage);
1901 			wait_on_page_locked(page);
1902 			put_page(page);
1903 			migrate_read_lock(zspage);
1904 		}
1905 	}
1906 	migrate_read_unlock(zspage);
1907 }
1908 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1909 
1910 #ifdef CONFIG_ZPOOL
1911 /*
1912  * Unlocks all the pages of the zspage.
1913  *
1914  * pool->lock must be held before this function is called
1915  * to prevent the underlying pages from migrating.
1916  */
1917 static void unlock_zspage(struct zspage *zspage)
1918 {
1919 	struct page *page = get_first_page(zspage);
1920 
1921 	do {
1922 		unlock_page(page);
1923 	} while ((page = get_next_page(page)) != NULL);
1924 }
1925 #endif /* CONFIG_ZPOOL */
1926 
1927 static void migrate_lock_init(struct zspage *zspage)
1928 {
1929 	rwlock_init(&zspage->lock);
1930 }
1931 
1932 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1933 {
1934 	read_lock(&zspage->lock);
1935 }
1936 
1937 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1938 {
1939 	read_unlock(&zspage->lock);
1940 }
1941 
1942 #ifdef CONFIG_COMPACTION
1943 static void migrate_write_lock(struct zspage *zspage)
1944 {
1945 	write_lock(&zspage->lock);
1946 }
1947 
1948 static void migrate_write_lock_nested(struct zspage *zspage)
1949 {
1950 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1951 }
1952 
1953 static void migrate_write_unlock(struct zspage *zspage)
1954 {
1955 	write_unlock(&zspage->lock);
1956 }
1957 
1958 /* Number of isolated subpage for *page migration* in this zspage */
1959 static void inc_zspage_isolation(struct zspage *zspage)
1960 {
1961 	zspage->isolated++;
1962 }
1963 
1964 static void dec_zspage_isolation(struct zspage *zspage)
1965 {
1966 	VM_BUG_ON(zspage->isolated == 0);
1967 	zspage->isolated--;
1968 }
1969 
1970 static const struct movable_operations zsmalloc_mops;
1971 
1972 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1973 				struct page *newpage, struct page *oldpage)
1974 {
1975 	struct page *page;
1976 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1977 	int idx = 0;
1978 
1979 	page = get_first_page(zspage);
1980 	do {
1981 		if (page == oldpage)
1982 			pages[idx] = newpage;
1983 		else
1984 			pages[idx] = page;
1985 		idx++;
1986 	} while ((page = get_next_page(page)) != NULL);
1987 
1988 	create_page_chain(class, zspage, pages);
1989 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1990 	if (unlikely(ZsHugePage(zspage)))
1991 		newpage->index = oldpage->index;
1992 	__SetPageMovable(newpage, &zsmalloc_mops);
1993 }
1994 
1995 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1996 {
1997 	struct zspage *zspage;
1998 
1999 	/*
2000 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
2001 	 * lock_zspage in free_zspage.
2002 	 */
2003 	VM_BUG_ON_PAGE(PageIsolated(page), page);
2004 
2005 	zspage = get_zspage(page);
2006 	migrate_write_lock(zspage);
2007 	inc_zspage_isolation(zspage);
2008 	migrate_write_unlock(zspage);
2009 
2010 	return true;
2011 }
2012 
2013 static int zs_page_migrate(struct page *newpage, struct page *page,
2014 		enum migrate_mode mode)
2015 {
2016 	struct zs_pool *pool;
2017 	struct size_class *class;
2018 	struct zspage *zspage;
2019 	struct page *dummy;
2020 	void *s_addr, *d_addr, *addr;
2021 	unsigned int offset;
2022 	unsigned long handle;
2023 	unsigned long old_obj, new_obj;
2024 	unsigned int obj_idx;
2025 
2026 	/*
2027 	 * We cannot support the _NO_COPY case here, because copy needs to
2028 	 * happen under the zs lock, which does not work with
2029 	 * MIGRATE_SYNC_NO_COPY workflow.
2030 	 */
2031 	if (mode == MIGRATE_SYNC_NO_COPY)
2032 		return -EINVAL;
2033 
2034 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2035 
2036 	/* The page is locked, so this pointer must remain valid */
2037 	zspage = get_zspage(page);
2038 	pool = zspage->pool;
2039 
2040 	/*
2041 	 * The pool's lock protects the race between zpage migration
2042 	 * and zs_free.
2043 	 */
2044 	spin_lock(&pool->lock);
2045 	class = zspage_class(pool, zspage);
2046 
2047 	/* the migrate_write_lock protects zpage access via zs_map_object */
2048 	migrate_write_lock(zspage);
2049 
2050 	offset = get_first_obj_offset(page);
2051 	s_addr = kmap_atomic(page);
2052 
2053 	/*
2054 	 * Here, any user cannot access all objects in the zspage so let's move.
2055 	 */
2056 	d_addr = kmap_atomic(newpage);
2057 	memcpy(d_addr, s_addr, PAGE_SIZE);
2058 	kunmap_atomic(d_addr);
2059 
2060 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2061 					addr += class->size) {
2062 		if (obj_allocated(page, addr, &handle)) {
2063 
2064 			old_obj = handle_to_obj(handle);
2065 			obj_to_location(old_obj, &dummy, &obj_idx);
2066 			new_obj = (unsigned long)location_to_obj(newpage,
2067 								obj_idx);
2068 			record_obj(handle, new_obj);
2069 		}
2070 	}
2071 	kunmap_atomic(s_addr);
2072 
2073 	replace_sub_page(class, zspage, newpage, page);
2074 	/*
2075 	 * Since we complete the data copy and set up new zspage structure,
2076 	 * it's okay to release the pool's lock.
2077 	 */
2078 	spin_unlock(&pool->lock);
2079 	dec_zspage_isolation(zspage);
2080 	migrate_write_unlock(zspage);
2081 
2082 	get_page(newpage);
2083 	if (page_zone(newpage) != page_zone(page)) {
2084 		dec_zone_page_state(page, NR_ZSPAGES);
2085 		inc_zone_page_state(newpage, NR_ZSPAGES);
2086 	}
2087 
2088 	reset_page(page);
2089 	put_page(page);
2090 
2091 	return MIGRATEPAGE_SUCCESS;
2092 }
2093 
2094 static void zs_page_putback(struct page *page)
2095 {
2096 	struct zspage *zspage;
2097 
2098 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2099 
2100 	zspage = get_zspage(page);
2101 	migrate_write_lock(zspage);
2102 	dec_zspage_isolation(zspage);
2103 	migrate_write_unlock(zspage);
2104 }
2105 
2106 static const struct movable_operations zsmalloc_mops = {
2107 	.isolate_page = zs_page_isolate,
2108 	.migrate_page = zs_page_migrate,
2109 	.putback_page = zs_page_putback,
2110 };
2111 
2112 /*
2113  * Caller should hold page_lock of all pages in the zspage
2114  * In here, we cannot use zspage meta data.
2115  */
2116 static void async_free_zspage(struct work_struct *work)
2117 {
2118 	int i;
2119 	struct size_class *class;
2120 	unsigned int class_idx;
2121 	int fullness;
2122 	struct zspage *zspage, *tmp;
2123 	LIST_HEAD(free_pages);
2124 	struct zs_pool *pool = container_of(work, struct zs_pool,
2125 					free_work);
2126 
2127 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2128 		class = pool->size_class[i];
2129 		if (class->index != i)
2130 			continue;
2131 
2132 		spin_lock(&pool->lock);
2133 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2134 				 &free_pages);
2135 		spin_unlock(&pool->lock);
2136 	}
2137 
2138 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2139 		list_del(&zspage->list);
2140 		lock_zspage(zspage);
2141 
2142 		get_zspage_mapping(zspage, &class_idx, &fullness);
2143 		VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
2144 		class = pool->size_class[class_idx];
2145 		spin_lock(&pool->lock);
2146 #ifdef CONFIG_ZPOOL
2147 		list_del(&zspage->lru);
2148 #endif
2149 		__free_zspage(pool, class, zspage);
2150 		spin_unlock(&pool->lock);
2151 	}
2152 };
2153 
2154 static void kick_deferred_free(struct zs_pool *pool)
2155 {
2156 	schedule_work(&pool->free_work);
2157 }
2158 
2159 static void zs_flush_migration(struct zs_pool *pool)
2160 {
2161 	flush_work(&pool->free_work);
2162 }
2163 
2164 static void init_deferred_free(struct zs_pool *pool)
2165 {
2166 	INIT_WORK(&pool->free_work, async_free_zspage);
2167 }
2168 
2169 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2170 {
2171 	struct page *page = get_first_page(zspage);
2172 
2173 	do {
2174 		WARN_ON(!trylock_page(page));
2175 		__SetPageMovable(page, &zsmalloc_mops);
2176 		unlock_page(page);
2177 	} while ((page = get_next_page(page)) != NULL);
2178 }
2179 #else
2180 static inline void zs_flush_migration(struct zs_pool *pool) { }
2181 #endif
2182 
2183 /*
2184  *
2185  * Based on the number of unused allocated objects calculate
2186  * and return the number of pages that we can free.
2187  */
2188 static unsigned long zs_can_compact(struct size_class *class)
2189 {
2190 	unsigned long obj_wasted;
2191 	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2192 	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
2193 
2194 	if (obj_allocated <= obj_used)
2195 		return 0;
2196 
2197 	obj_wasted = obj_allocated - obj_used;
2198 	obj_wasted /= class->objs_per_zspage;
2199 
2200 	return obj_wasted * class->pages_per_zspage;
2201 }
2202 
2203 static unsigned long __zs_compact(struct zs_pool *pool,
2204 				  struct size_class *class)
2205 {
2206 	struct zs_compact_control cc;
2207 	struct zspage *src_zspage = NULL;
2208 	struct zspage *dst_zspage = NULL;
2209 	unsigned long pages_freed = 0;
2210 
2211 	/*
2212 	 * protect the race between zpage migration and zs_free
2213 	 * as well as zpage allocation/free
2214 	 */
2215 	spin_lock(&pool->lock);
2216 	while (zs_can_compact(class)) {
2217 		int fg;
2218 
2219 		if (!dst_zspage) {
2220 			dst_zspage = isolate_dst_zspage(class);
2221 			if (!dst_zspage)
2222 				break;
2223 			migrate_write_lock(dst_zspage);
2224 			cc.d_page = get_first_page(dst_zspage);
2225 		}
2226 
2227 		src_zspage = isolate_src_zspage(class);
2228 		if (!src_zspage)
2229 			break;
2230 
2231 		migrate_write_lock_nested(src_zspage);
2232 
2233 		cc.obj_idx = 0;
2234 		cc.s_page = get_first_page(src_zspage);
2235 		migrate_zspage(pool, class, &cc);
2236 		fg = putback_zspage(class, src_zspage);
2237 		migrate_write_unlock(src_zspage);
2238 
2239 		if (fg == ZS_INUSE_RATIO_0) {
2240 			free_zspage(pool, class, src_zspage);
2241 			pages_freed += class->pages_per_zspage;
2242 		}
2243 		src_zspage = NULL;
2244 
2245 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2246 		    || spin_is_contended(&pool->lock)) {
2247 			putback_zspage(class, dst_zspage);
2248 			migrate_write_unlock(dst_zspage);
2249 			dst_zspage = NULL;
2250 
2251 			spin_unlock(&pool->lock);
2252 			cond_resched();
2253 			spin_lock(&pool->lock);
2254 		}
2255 	}
2256 
2257 	if (src_zspage) {
2258 		putback_zspage(class, src_zspage);
2259 		migrate_write_unlock(src_zspage);
2260 	}
2261 
2262 	if (dst_zspage) {
2263 		putback_zspage(class, dst_zspage);
2264 		migrate_write_unlock(dst_zspage);
2265 	}
2266 	spin_unlock(&pool->lock);
2267 
2268 	return pages_freed;
2269 }
2270 
2271 unsigned long zs_compact(struct zs_pool *pool)
2272 {
2273 	int i;
2274 	struct size_class *class;
2275 	unsigned long pages_freed = 0;
2276 
2277 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2278 		class = pool->size_class[i];
2279 		if (class->index != i)
2280 			continue;
2281 		pages_freed += __zs_compact(pool, class);
2282 	}
2283 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2284 
2285 	return pages_freed;
2286 }
2287 EXPORT_SYMBOL_GPL(zs_compact);
2288 
2289 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2290 {
2291 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2292 }
2293 EXPORT_SYMBOL_GPL(zs_pool_stats);
2294 
2295 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2296 		struct shrink_control *sc)
2297 {
2298 	unsigned long pages_freed;
2299 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2300 			shrinker);
2301 
2302 	/*
2303 	 * Compact classes and calculate compaction delta.
2304 	 * Can run concurrently with a manually triggered
2305 	 * (by user) compaction.
2306 	 */
2307 	pages_freed = zs_compact(pool);
2308 
2309 	return pages_freed ? pages_freed : SHRINK_STOP;
2310 }
2311 
2312 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2313 		struct shrink_control *sc)
2314 {
2315 	int i;
2316 	struct size_class *class;
2317 	unsigned long pages_to_free = 0;
2318 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2319 			shrinker);
2320 
2321 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2322 		class = pool->size_class[i];
2323 		if (class->index != i)
2324 			continue;
2325 
2326 		pages_to_free += zs_can_compact(class);
2327 	}
2328 
2329 	return pages_to_free;
2330 }
2331 
2332 static void zs_unregister_shrinker(struct zs_pool *pool)
2333 {
2334 	unregister_shrinker(&pool->shrinker);
2335 }
2336 
2337 static int zs_register_shrinker(struct zs_pool *pool)
2338 {
2339 	pool->shrinker.scan_objects = zs_shrinker_scan;
2340 	pool->shrinker.count_objects = zs_shrinker_count;
2341 	pool->shrinker.batch = 0;
2342 	pool->shrinker.seeks = DEFAULT_SEEKS;
2343 
2344 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2345 				 pool->name);
2346 }
2347 
2348 static int calculate_zspage_chain_size(int class_size)
2349 {
2350 	int i, min_waste = INT_MAX;
2351 	int chain_size = 1;
2352 
2353 	if (is_power_of_2(class_size))
2354 		return chain_size;
2355 
2356 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2357 		int waste;
2358 
2359 		waste = (i * PAGE_SIZE) % class_size;
2360 		if (waste < min_waste) {
2361 			min_waste = waste;
2362 			chain_size = i;
2363 		}
2364 	}
2365 
2366 	return chain_size;
2367 }
2368 
2369 /**
2370  * zs_create_pool - Creates an allocation pool to work from.
2371  * @name: pool name to be created
2372  *
2373  * This function must be called before anything when using
2374  * the zsmalloc allocator.
2375  *
2376  * On success, a pointer to the newly created pool is returned,
2377  * otherwise NULL.
2378  */
2379 struct zs_pool *zs_create_pool(const char *name)
2380 {
2381 	int i;
2382 	struct zs_pool *pool;
2383 	struct size_class *prev_class = NULL;
2384 
2385 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2386 	if (!pool)
2387 		return NULL;
2388 
2389 	init_deferred_free(pool);
2390 	spin_lock_init(&pool->lock);
2391 
2392 	pool->name = kstrdup(name, GFP_KERNEL);
2393 	if (!pool->name)
2394 		goto err;
2395 
2396 	if (create_cache(pool))
2397 		goto err;
2398 
2399 	/*
2400 	 * Iterate reversely, because, size of size_class that we want to use
2401 	 * for merging should be larger or equal to current size.
2402 	 */
2403 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2404 		int size;
2405 		int pages_per_zspage;
2406 		int objs_per_zspage;
2407 		struct size_class *class;
2408 		int fullness;
2409 
2410 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2411 		if (size > ZS_MAX_ALLOC_SIZE)
2412 			size = ZS_MAX_ALLOC_SIZE;
2413 		pages_per_zspage = calculate_zspage_chain_size(size);
2414 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2415 
2416 		/*
2417 		 * We iterate from biggest down to smallest classes,
2418 		 * so huge_class_size holds the size of the first huge
2419 		 * class. Any object bigger than or equal to that will
2420 		 * endup in the huge class.
2421 		 */
2422 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2423 				!huge_class_size) {
2424 			huge_class_size = size;
2425 			/*
2426 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2427 			 * handle. We need to subtract it, because zs_malloc()
2428 			 * unconditionally adds handle size before it performs
2429 			 * size class search - so object may be smaller than
2430 			 * huge class size, yet it still can end up in the huge
2431 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2432 			 * right before class lookup.
2433 			 */
2434 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2435 		}
2436 
2437 		/*
2438 		 * size_class is used for normal zsmalloc operation such
2439 		 * as alloc/free for that size. Although it is natural that we
2440 		 * have one size_class for each size, there is a chance that we
2441 		 * can get more memory utilization if we use one size_class for
2442 		 * many different sizes whose size_class have same
2443 		 * characteristics. So, we makes size_class point to
2444 		 * previous size_class if possible.
2445 		 */
2446 		if (prev_class) {
2447 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2448 				pool->size_class[i] = prev_class;
2449 				continue;
2450 			}
2451 		}
2452 
2453 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2454 		if (!class)
2455 			goto err;
2456 
2457 		class->size = size;
2458 		class->index = i;
2459 		class->pages_per_zspage = pages_per_zspage;
2460 		class->objs_per_zspage = objs_per_zspage;
2461 		pool->size_class[i] = class;
2462 
2463 		fullness = ZS_INUSE_RATIO_0;
2464 		while (fullness < NR_FULLNESS_GROUPS) {
2465 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2466 			fullness++;
2467 		}
2468 
2469 		prev_class = class;
2470 	}
2471 
2472 	/* debug only, don't abort if it fails */
2473 	zs_pool_stat_create(pool, name);
2474 
2475 	/*
2476 	 * Not critical since shrinker is only used to trigger internal
2477 	 * defragmentation of the pool which is pretty optional thing.  If
2478 	 * registration fails we still can use the pool normally and user can
2479 	 * trigger compaction manually. Thus, ignore return code.
2480 	 */
2481 	zs_register_shrinker(pool);
2482 
2483 #ifdef CONFIG_ZPOOL
2484 	INIT_LIST_HEAD(&pool->lru);
2485 #endif
2486 
2487 	return pool;
2488 
2489 err:
2490 	zs_destroy_pool(pool);
2491 	return NULL;
2492 }
2493 EXPORT_SYMBOL_GPL(zs_create_pool);
2494 
2495 void zs_destroy_pool(struct zs_pool *pool)
2496 {
2497 	int i;
2498 
2499 	zs_unregister_shrinker(pool);
2500 	zs_flush_migration(pool);
2501 	zs_pool_stat_destroy(pool);
2502 
2503 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2504 		int fg;
2505 		struct size_class *class = pool->size_class[i];
2506 
2507 		if (!class)
2508 			continue;
2509 
2510 		if (class->index != i)
2511 			continue;
2512 
2513 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2514 			if (list_empty(&class->fullness_list[fg]))
2515 				continue;
2516 
2517 			pr_err("Class-%d fullness group %d is not empty\n",
2518 			       class->size, fg);
2519 		}
2520 		kfree(class);
2521 	}
2522 
2523 	destroy_cache(pool);
2524 	kfree(pool->name);
2525 	kfree(pool);
2526 }
2527 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2528 
2529 #ifdef CONFIG_ZPOOL
2530 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2531 		struct zspage *zspage)
2532 {
2533 	unsigned int obj_idx = 0;
2534 	unsigned long handle, off = 0; /* off is within-page offset */
2535 	struct page *page = get_first_page(zspage);
2536 	struct link_free *prev_free = NULL;
2537 	void *prev_page_vaddr = NULL;
2538 
2539 	/* in case no free object found */
2540 	set_freeobj(zspage, (unsigned int)(-1UL));
2541 
2542 	while (page) {
2543 		void *vaddr = kmap_atomic(page);
2544 		struct page *next_page;
2545 
2546 		while (off < PAGE_SIZE) {
2547 			void *obj_addr = vaddr + off;
2548 
2549 			/* skip allocated object */
2550 			if (obj_allocated(page, obj_addr, &handle)) {
2551 				obj_idx++;
2552 				off += class->size;
2553 				continue;
2554 			}
2555 
2556 			/* free deferred handle from reclaim attempt */
2557 			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2558 				cache_free_handle(pool, handle);
2559 
2560 			if (prev_free)
2561 				prev_free->next = obj_idx << OBJ_TAG_BITS;
2562 			else /* first free object found */
2563 				set_freeobj(zspage, obj_idx);
2564 
2565 			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2566 			/* if last free object in a previous page, need to unmap */
2567 			if (prev_page_vaddr) {
2568 				kunmap_atomic(prev_page_vaddr);
2569 				prev_page_vaddr = NULL;
2570 			}
2571 
2572 			obj_idx++;
2573 			off += class->size;
2574 		}
2575 
2576 		/*
2577 		 * Handle the last (full or partial) object on this page.
2578 		 */
2579 		next_page = get_next_page(page);
2580 		if (next_page) {
2581 			if (!prev_free || prev_page_vaddr) {
2582 				/*
2583 				 * There is no free object in this page, so we can safely
2584 				 * unmap it.
2585 				 */
2586 				kunmap_atomic(vaddr);
2587 			} else {
2588 				/* update prev_page_vaddr since prev_free is on this page */
2589 				prev_page_vaddr = vaddr;
2590 			}
2591 		} else { /* this is the last page */
2592 			if (prev_free) {
2593 				/*
2594 				 * Reset OBJ_TAG_BITS bit to last link to tell
2595 				 * whether it's allocated object or not.
2596 				 */
2597 				prev_free->next = -1UL << OBJ_TAG_BITS;
2598 			}
2599 
2600 			/* unmap previous page (if not done yet) */
2601 			if (prev_page_vaddr) {
2602 				kunmap_atomic(prev_page_vaddr);
2603 				prev_page_vaddr = NULL;
2604 			}
2605 
2606 			kunmap_atomic(vaddr);
2607 		}
2608 
2609 		page = next_page;
2610 		off %= PAGE_SIZE;
2611 	}
2612 }
2613 
2614 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2615 {
2616 	int i, obj_idx, ret = 0;
2617 	unsigned long handle;
2618 	struct zspage *zspage;
2619 	struct page *page;
2620 	int fullness;
2621 
2622 	/* Lock LRU and fullness list */
2623 	spin_lock(&pool->lock);
2624 	if (list_empty(&pool->lru)) {
2625 		spin_unlock(&pool->lock);
2626 		return -EINVAL;
2627 	}
2628 
2629 	for (i = 0; i < retries; i++) {
2630 		struct size_class *class;
2631 
2632 		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2633 		list_del(&zspage->lru);
2634 
2635 		/* zs_free may free objects, but not the zspage and handles */
2636 		zspage->under_reclaim = true;
2637 
2638 		class = zspage_class(pool, zspage);
2639 		fullness = get_fullness_group(class, zspage);
2640 
2641 		/* Lock out object allocations and object compaction */
2642 		remove_zspage(class, zspage, fullness);
2643 
2644 		spin_unlock(&pool->lock);
2645 		cond_resched();
2646 
2647 		/* Lock backing pages into place */
2648 		lock_zspage(zspage);
2649 
2650 		obj_idx = 0;
2651 		page = get_first_page(zspage);
2652 		while (1) {
2653 			handle = find_alloced_obj(class, page, &obj_idx);
2654 			if (!handle) {
2655 				page = get_next_page(page);
2656 				if (!page)
2657 					break;
2658 				obj_idx = 0;
2659 				continue;
2660 			}
2661 
2662 			/*
2663 			 * This will write the object and call zs_free.
2664 			 *
2665 			 * zs_free will free the object, but the
2666 			 * under_reclaim flag prevents it from freeing
2667 			 * the zspage altogether. This is necessary so
2668 			 * that we can continue working with the
2669 			 * zspage potentially after the last object
2670 			 * has been freed.
2671 			 */
2672 			ret = pool->zpool_ops->evict(pool->zpool, handle);
2673 			if (ret)
2674 				goto next;
2675 
2676 			obj_idx++;
2677 		}
2678 
2679 next:
2680 		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2681 		spin_lock(&pool->lock);
2682 		zspage->under_reclaim = false;
2683 
2684 		if (!get_zspage_inuse(zspage)) {
2685 			/*
2686 			 * Fullness went stale as zs_free() won't touch it
2687 			 * while the page is removed from the pool. Fix it
2688 			 * up for the check in __free_zspage().
2689 			 */
2690 			zspage->fullness = ZS_INUSE_RATIO_0;
2691 
2692 			__free_zspage(pool, class, zspage);
2693 			spin_unlock(&pool->lock);
2694 			return 0;
2695 		}
2696 
2697 		/*
2698 		 * Eviction fails on one of the handles, so we need to restore zspage.
2699 		 * We need to rebuild its freelist (and free stored deferred handles),
2700 		 * put it back to the correct size class, and add it to the LRU list.
2701 		 */
2702 		restore_freelist(pool, class, zspage);
2703 		putback_zspage(class, zspage);
2704 		list_add(&zspage->lru, &pool->lru);
2705 		unlock_zspage(zspage);
2706 	}
2707 
2708 	spin_unlock(&pool->lock);
2709 	return -EAGAIN;
2710 }
2711 #endif /* CONFIG_ZPOOL */
2712 
2713 static int __init zs_init(void)
2714 {
2715 	int ret;
2716 
2717 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2718 				zs_cpu_prepare, zs_cpu_dead);
2719 	if (ret)
2720 		goto out;
2721 
2722 #ifdef CONFIG_ZPOOL
2723 	zpool_register_driver(&zs_zpool_driver);
2724 #endif
2725 
2726 	zs_stat_init();
2727 
2728 	return 0;
2729 
2730 out:
2731 	return ret;
2732 }
2733 
2734 static void __exit zs_exit(void)
2735 {
2736 #ifdef CONFIG_ZPOOL
2737 	zpool_unregister_driver(&zs_zpool_driver);
2738 #endif
2739 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2740 
2741 	zs_stat_exit();
2742 }
2743 
2744 module_init(zs_init);
2745 module_exit(zs_exit);
2746 
2747 MODULE_LICENSE("Dual BSD/GPL");
2748 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2749