1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #ifdef CONFIG_ZPOOL 111 /* 112 * The second least-significant bit in the object's header identifies if the 113 * value stored at the header is a deferred handle from the last reclaim 114 * attempt. 115 * 116 * As noted above, this is valid because we have room for two bits. 117 */ 118 #define OBJ_DEFERRED_HANDLE_TAG 2 119 #define OBJ_TAG_BITS 2 120 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG) 121 #else 122 #define OBJ_TAG_BITS 1 123 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 124 #endif /* CONFIG_ZPOOL */ 125 126 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 127 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 128 129 #define HUGE_BITS 1 130 #define FULLNESS_BITS 4 131 #define CLASS_BITS 8 132 #define ISOLATED_BITS 5 133 #define MAGIC_VAL_BITS 8 134 135 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 136 137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 138 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 /* each chunk includes extra space to keep handle */ 143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 144 145 /* 146 * On systems with 4K page size, this gives 255 size classes! There is a 147 * trader-off here: 148 * - Large number of size classes is potentially wasteful as free page are 149 * spread across these classes 150 * - Small number of size classes causes large internal fragmentation 151 * - Probably its better to use specific size classes (empirically 152 * determined). NOTE: all those class sizes must be set as multiple of 153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 154 * 155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 156 * (reason above) 157 */ 158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 160 ZS_SIZE_CLASS_DELTA) + 1) 161 162 /* 163 * Pages are distinguished by the ratio of used memory (that is the ratio 164 * of ->inuse objects to all objects that page can store). For example, 165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 166 * 167 * The number of fullness groups is not random. It allows us to keep 168 * difference between the least busy page in the group (minimum permitted 169 * number of ->inuse objects) and the most busy page (maximum permitted 170 * number of ->inuse objects) at a reasonable value. 171 */ 172 enum fullness_group { 173 ZS_INUSE_RATIO_0, 174 ZS_INUSE_RATIO_10, 175 /* NOTE: 8 more fullness groups here */ 176 ZS_INUSE_RATIO_99 = 10, 177 ZS_INUSE_RATIO_100, 178 NR_FULLNESS_GROUPS, 179 }; 180 181 enum class_stat_type { 182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 184 ZS_OBJS_INUSE, 185 NR_CLASS_STAT_TYPES, 186 }; 187 188 struct zs_size_stat { 189 unsigned long objs[NR_CLASS_STAT_TYPES]; 190 }; 191 192 #ifdef CONFIG_ZSMALLOC_STAT 193 static struct dentry *zs_stat_root; 194 #endif 195 196 static size_t huge_class_size; 197 198 struct size_class { 199 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 200 /* 201 * Size of objects stored in this class. Must be multiple 202 * of ZS_ALIGN. 203 */ 204 int size; 205 int objs_per_zspage; 206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 207 int pages_per_zspage; 208 209 unsigned int index; 210 struct zs_size_stat stats; 211 }; 212 213 /* 214 * Placed within free objects to form a singly linked list. 215 * For every zspage, zspage->freeobj gives head of this list. 216 * 217 * This must be power of 2 and less than or equal to ZS_ALIGN 218 */ 219 struct link_free { 220 union { 221 /* 222 * Free object index; 223 * It's valid for non-allocated object 224 */ 225 unsigned long next; 226 /* 227 * Handle of allocated object. 228 */ 229 unsigned long handle; 230 #ifdef CONFIG_ZPOOL 231 /* 232 * Deferred handle of a reclaimed object. 233 */ 234 unsigned long deferred_handle; 235 #endif 236 }; 237 }; 238 239 struct zs_pool { 240 const char *name; 241 242 struct size_class *size_class[ZS_SIZE_CLASSES]; 243 struct kmem_cache *handle_cachep; 244 struct kmem_cache *zspage_cachep; 245 246 atomic_long_t pages_allocated; 247 248 struct zs_pool_stats stats; 249 250 /* Compact classes */ 251 struct shrinker shrinker; 252 253 #ifdef CONFIG_ZPOOL 254 /* List tracking the zspages in LRU order by most recently added object */ 255 struct list_head lru; 256 struct zpool *zpool; 257 const struct zpool_ops *zpool_ops; 258 #endif 259 260 #ifdef CONFIG_ZSMALLOC_STAT 261 struct dentry *stat_dentry; 262 #endif 263 #ifdef CONFIG_COMPACTION 264 struct work_struct free_work; 265 #endif 266 spinlock_t lock; 267 }; 268 269 struct zspage { 270 struct { 271 unsigned int huge:HUGE_BITS; 272 unsigned int fullness:FULLNESS_BITS; 273 unsigned int class:CLASS_BITS + 1; 274 unsigned int isolated:ISOLATED_BITS; 275 unsigned int magic:MAGIC_VAL_BITS; 276 }; 277 unsigned int inuse; 278 unsigned int freeobj; 279 struct page *first_page; 280 struct list_head list; /* fullness list */ 281 282 #ifdef CONFIG_ZPOOL 283 /* links the zspage to the lru list in the pool */ 284 struct list_head lru; 285 bool under_reclaim; 286 #endif 287 288 struct zs_pool *pool; 289 rwlock_t lock; 290 }; 291 292 struct mapping_area { 293 local_lock_t lock; 294 char *vm_buf; /* copy buffer for objects that span pages */ 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 300 static void SetZsHugePage(struct zspage *zspage) 301 { 302 zspage->huge = 1; 303 } 304 305 static bool ZsHugePage(struct zspage *zspage) 306 { 307 return zspage->huge; 308 } 309 310 static void migrate_lock_init(struct zspage *zspage); 311 static void migrate_read_lock(struct zspage *zspage); 312 static void migrate_read_unlock(struct zspage *zspage); 313 314 #ifdef CONFIG_COMPACTION 315 static void migrate_write_lock(struct zspage *zspage); 316 static void migrate_write_lock_nested(struct zspage *zspage); 317 static void migrate_write_unlock(struct zspage *zspage); 318 static void kick_deferred_free(struct zs_pool *pool); 319 static void init_deferred_free(struct zs_pool *pool); 320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 321 #else 322 static void migrate_write_lock(struct zspage *zspage) {} 323 static void migrate_write_lock_nested(struct zspage *zspage) {} 324 static void migrate_write_unlock(struct zspage *zspage) {} 325 static void kick_deferred_free(struct zs_pool *pool) {} 326 static void init_deferred_free(struct zs_pool *pool) {} 327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 328 #endif 329 330 static int create_cache(struct zs_pool *pool) 331 { 332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 333 0, 0, NULL); 334 if (!pool->handle_cachep) 335 return 1; 336 337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 338 0, 0, NULL); 339 if (!pool->zspage_cachep) { 340 kmem_cache_destroy(pool->handle_cachep); 341 pool->handle_cachep = NULL; 342 return 1; 343 } 344 345 return 0; 346 } 347 348 static void destroy_cache(struct zs_pool *pool) 349 { 350 kmem_cache_destroy(pool->handle_cachep); 351 kmem_cache_destroy(pool->zspage_cachep); 352 } 353 354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 355 { 356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 358 } 359 360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 361 { 362 kmem_cache_free(pool->handle_cachep, (void *)handle); 363 } 364 365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 366 { 367 return kmem_cache_zalloc(pool->zspage_cachep, 368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 369 } 370 371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 372 { 373 kmem_cache_free(pool->zspage_cachep, zspage); 374 } 375 376 /* pool->lock(which owns the handle) synchronizes races */ 377 static void record_obj(unsigned long handle, unsigned long obj) 378 { 379 *(unsigned long *)handle = obj; 380 } 381 382 /* zpool driver */ 383 384 #ifdef CONFIG_ZPOOL 385 386 static void *zs_zpool_create(const char *name, gfp_t gfp, 387 const struct zpool_ops *zpool_ops, 388 struct zpool *zpool) 389 { 390 /* 391 * Ignore global gfp flags: zs_malloc() may be invoked from 392 * different contexts and its caller must provide a valid 393 * gfp mask. 394 */ 395 struct zs_pool *pool = zs_create_pool(name); 396 397 if (pool) { 398 pool->zpool = zpool; 399 pool->zpool_ops = zpool_ops; 400 } 401 402 return pool; 403 } 404 405 static void zs_zpool_destroy(void *pool) 406 { 407 zs_destroy_pool(pool); 408 } 409 410 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 411 unsigned long *handle) 412 { 413 *handle = zs_malloc(pool, size, gfp); 414 415 if (IS_ERR_VALUE(*handle)) 416 return PTR_ERR((void *)*handle); 417 return 0; 418 } 419 static void zs_zpool_free(void *pool, unsigned long handle) 420 { 421 zs_free(pool, handle); 422 } 423 424 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 425 426 static int zs_zpool_shrink(void *pool, unsigned int pages, 427 unsigned int *reclaimed) 428 { 429 unsigned int total = 0; 430 int ret = -EINVAL; 431 432 while (total < pages) { 433 ret = zs_reclaim_page(pool, 8); 434 if (ret < 0) 435 break; 436 total++; 437 } 438 439 if (reclaimed) 440 *reclaimed = total; 441 442 return ret; 443 } 444 445 static void *zs_zpool_map(void *pool, unsigned long handle, 446 enum zpool_mapmode mm) 447 { 448 enum zs_mapmode zs_mm; 449 450 switch (mm) { 451 case ZPOOL_MM_RO: 452 zs_mm = ZS_MM_RO; 453 break; 454 case ZPOOL_MM_WO: 455 zs_mm = ZS_MM_WO; 456 break; 457 case ZPOOL_MM_RW: 458 default: 459 zs_mm = ZS_MM_RW; 460 break; 461 } 462 463 return zs_map_object(pool, handle, zs_mm); 464 } 465 static void zs_zpool_unmap(void *pool, unsigned long handle) 466 { 467 zs_unmap_object(pool, handle); 468 } 469 470 static u64 zs_zpool_total_size(void *pool) 471 { 472 return zs_get_total_pages(pool) << PAGE_SHIFT; 473 } 474 475 static struct zpool_driver zs_zpool_driver = { 476 .type = "zsmalloc", 477 .owner = THIS_MODULE, 478 .create = zs_zpool_create, 479 .destroy = zs_zpool_destroy, 480 .malloc_support_movable = true, 481 .malloc = zs_zpool_malloc, 482 .free = zs_zpool_free, 483 .shrink = zs_zpool_shrink, 484 .map = zs_zpool_map, 485 .unmap = zs_zpool_unmap, 486 .total_size = zs_zpool_total_size, 487 }; 488 489 MODULE_ALIAS("zpool-zsmalloc"); 490 #endif /* CONFIG_ZPOOL */ 491 492 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 493 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 494 .lock = INIT_LOCAL_LOCK(lock), 495 }; 496 497 static __maybe_unused int is_first_page(struct page *page) 498 { 499 return PagePrivate(page); 500 } 501 502 /* Protected by pool->lock */ 503 static inline int get_zspage_inuse(struct zspage *zspage) 504 { 505 return zspage->inuse; 506 } 507 508 509 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 510 { 511 zspage->inuse += val; 512 } 513 514 static inline struct page *get_first_page(struct zspage *zspage) 515 { 516 struct page *first_page = zspage->first_page; 517 518 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 519 return first_page; 520 } 521 522 static inline unsigned int get_first_obj_offset(struct page *page) 523 { 524 return page->page_type; 525 } 526 527 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 528 { 529 page->page_type = offset; 530 } 531 532 static inline unsigned int get_freeobj(struct zspage *zspage) 533 { 534 return zspage->freeobj; 535 } 536 537 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 538 { 539 zspage->freeobj = obj; 540 } 541 542 static void get_zspage_mapping(struct zspage *zspage, 543 unsigned int *class_idx, 544 int *fullness) 545 { 546 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 547 548 *fullness = zspage->fullness; 549 *class_idx = zspage->class; 550 } 551 552 static struct size_class *zspage_class(struct zs_pool *pool, 553 struct zspage *zspage) 554 { 555 return pool->size_class[zspage->class]; 556 } 557 558 static void set_zspage_mapping(struct zspage *zspage, 559 unsigned int class_idx, 560 int fullness) 561 { 562 zspage->class = class_idx; 563 zspage->fullness = fullness; 564 } 565 566 /* 567 * zsmalloc divides the pool into various size classes where each 568 * class maintains a list of zspages where each zspage is divided 569 * into equal sized chunks. Each allocation falls into one of these 570 * classes depending on its size. This function returns index of the 571 * size class which has chunk size big enough to hold the given size. 572 */ 573 static int get_size_class_index(int size) 574 { 575 int idx = 0; 576 577 if (likely(size > ZS_MIN_ALLOC_SIZE)) 578 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 579 ZS_SIZE_CLASS_DELTA); 580 581 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 582 } 583 584 static inline void class_stat_inc(struct size_class *class, 585 int type, unsigned long cnt) 586 { 587 class->stats.objs[type] += cnt; 588 } 589 590 static inline void class_stat_dec(struct size_class *class, 591 int type, unsigned long cnt) 592 { 593 class->stats.objs[type] -= cnt; 594 } 595 596 static inline unsigned long zs_stat_get(struct size_class *class, int type) 597 { 598 return class->stats.objs[type]; 599 } 600 601 #ifdef CONFIG_ZSMALLOC_STAT 602 603 static void __init zs_stat_init(void) 604 { 605 if (!debugfs_initialized()) { 606 pr_warn("debugfs not available, stat dir not created\n"); 607 return; 608 } 609 610 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 611 } 612 613 static void __exit zs_stat_exit(void) 614 { 615 debugfs_remove_recursive(zs_stat_root); 616 } 617 618 static unsigned long zs_can_compact(struct size_class *class); 619 620 static int zs_stats_size_show(struct seq_file *s, void *v) 621 { 622 int i, fg; 623 struct zs_pool *pool = s->private; 624 struct size_class *class; 625 int objs_per_zspage; 626 unsigned long obj_allocated, obj_used, pages_used, freeable; 627 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 628 unsigned long total_freeable = 0; 629 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 630 631 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 632 "class", "size", "10%", "20%", "30%", "40%", 633 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 634 "obj_allocated", "obj_used", "pages_used", 635 "pages_per_zspage", "freeable"); 636 637 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 638 639 class = pool->size_class[i]; 640 641 if (class->index != i) 642 continue; 643 644 spin_lock(&pool->lock); 645 646 seq_printf(s, " %5u %5u ", i, class->size); 647 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 648 inuse_totals[fg] += zs_stat_get(class, fg); 649 seq_printf(s, "%9lu ", zs_stat_get(class, fg)); 650 } 651 652 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 653 obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 654 freeable = zs_can_compact(class); 655 spin_unlock(&pool->lock); 656 657 objs_per_zspage = class->objs_per_zspage; 658 pages_used = obj_allocated / objs_per_zspage * 659 class->pages_per_zspage; 660 661 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 662 obj_allocated, obj_used, pages_used, 663 class->pages_per_zspage, freeable); 664 665 total_objs += obj_allocated; 666 total_used_objs += obj_used; 667 total_pages += pages_used; 668 total_freeable += freeable; 669 } 670 671 seq_puts(s, "\n"); 672 seq_printf(s, " %5s %5s ", "Total", ""); 673 674 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 675 seq_printf(s, "%9lu ", inuse_totals[fg]); 676 677 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 678 total_objs, total_used_objs, total_pages, "", 679 total_freeable); 680 681 return 0; 682 } 683 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 684 685 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 686 { 687 if (!zs_stat_root) { 688 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 689 return; 690 } 691 692 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 693 694 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 695 &zs_stats_size_fops); 696 } 697 698 static void zs_pool_stat_destroy(struct zs_pool *pool) 699 { 700 debugfs_remove_recursive(pool->stat_dentry); 701 } 702 703 #else /* CONFIG_ZSMALLOC_STAT */ 704 static void __init zs_stat_init(void) 705 { 706 } 707 708 static void __exit zs_stat_exit(void) 709 { 710 } 711 712 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 713 { 714 } 715 716 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 717 { 718 } 719 #endif 720 721 722 /* 723 * For each size class, zspages are divided into different groups 724 * depending on their usage ratio. This function returns fullness 725 * status of the given page. 726 */ 727 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 728 { 729 int inuse, objs_per_zspage, ratio; 730 731 inuse = get_zspage_inuse(zspage); 732 objs_per_zspage = class->objs_per_zspage; 733 734 if (inuse == 0) 735 return ZS_INUSE_RATIO_0; 736 if (inuse == objs_per_zspage) 737 return ZS_INUSE_RATIO_100; 738 739 ratio = 100 * inuse / objs_per_zspage; 740 /* 741 * Take integer division into consideration: a page with one inuse 742 * object out of 127 possible, will end up having 0 usage ratio, 743 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 744 */ 745 return ratio / 10 + 1; 746 } 747 748 /* 749 * Each size class maintains various freelists and zspages are assigned 750 * to one of these freelists based on the number of live objects they 751 * have. This functions inserts the given zspage into the freelist 752 * identified by <class, fullness_group>. 753 */ 754 static void insert_zspage(struct size_class *class, 755 struct zspage *zspage, 756 int fullness) 757 { 758 class_stat_inc(class, fullness, 1); 759 list_add(&zspage->list, &class->fullness_list[fullness]); 760 } 761 762 /* 763 * This function removes the given zspage from the freelist identified 764 * by <class, fullness_group>. 765 */ 766 static void remove_zspage(struct size_class *class, 767 struct zspage *zspage, 768 int fullness) 769 { 770 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 771 772 list_del_init(&zspage->list); 773 class_stat_dec(class, fullness, 1); 774 } 775 776 /* 777 * Each size class maintains zspages in different fullness groups depending 778 * on the number of live objects they contain. When allocating or freeing 779 * objects, the fullness status of the page can change, for instance, from 780 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 781 * checks if such a status change has occurred for the given page and 782 * accordingly moves the page from the list of the old fullness group to that 783 * of the new fullness group. 784 */ 785 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 786 { 787 int class_idx; 788 int currfg, newfg; 789 790 get_zspage_mapping(zspage, &class_idx, &currfg); 791 newfg = get_fullness_group(class, zspage); 792 if (newfg == currfg) 793 goto out; 794 795 remove_zspage(class, zspage, currfg); 796 insert_zspage(class, zspage, newfg); 797 set_zspage_mapping(zspage, class_idx, newfg); 798 out: 799 return newfg; 800 } 801 802 static struct zspage *get_zspage(struct page *page) 803 { 804 struct zspage *zspage = (struct zspage *)page_private(page); 805 806 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 807 return zspage; 808 } 809 810 static struct page *get_next_page(struct page *page) 811 { 812 struct zspage *zspage = get_zspage(page); 813 814 if (unlikely(ZsHugePage(zspage))) 815 return NULL; 816 817 return (struct page *)page->index; 818 } 819 820 /** 821 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 822 * @obj: the encoded object value 823 * @page: page object resides in zspage 824 * @obj_idx: object index 825 */ 826 static void obj_to_location(unsigned long obj, struct page **page, 827 unsigned int *obj_idx) 828 { 829 obj >>= OBJ_TAG_BITS; 830 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 831 *obj_idx = (obj & OBJ_INDEX_MASK); 832 } 833 834 static void obj_to_page(unsigned long obj, struct page **page) 835 { 836 obj >>= OBJ_TAG_BITS; 837 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 838 } 839 840 /** 841 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 842 * @page: page object resides in zspage 843 * @obj_idx: object index 844 */ 845 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 846 { 847 unsigned long obj; 848 849 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 850 obj |= obj_idx & OBJ_INDEX_MASK; 851 obj <<= OBJ_TAG_BITS; 852 853 return obj; 854 } 855 856 static unsigned long handle_to_obj(unsigned long handle) 857 { 858 return *(unsigned long *)handle; 859 } 860 861 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, 862 int tag) 863 { 864 unsigned long handle; 865 struct zspage *zspage = get_zspage(page); 866 867 if (unlikely(ZsHugePage(zspage))) { 868 VM_BUG_ON_PAGE(!is_first_page(page), page); 869 handle = page->index; 870 } else 871 handle = *(unsigned long *)obj; 872 873 if (!(handle & tag)) 874 return false; 875 876 /* Clear all tags before returning the handle */ 877 *phandle = handle & ~OBJ_TAG_MASK; 878 return true; 879 } 880 881 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 882 { 883 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); 884 } 885 886 #ifdef CONFIG_ZPOOL 887 static bool obj_stores_deferred_handle(struct page *page, void *obj, 888 unsigned long *phandle) 889 { 890 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG); 891 } 892 #endif 893 894 static void reset_page(struct page *page) 895 { 896 __ClearPageMovable(page); 897 ClearPagePrivate(page); 898 set_page_private(page, 0); 899 page_mapcount_reset(page); 900 page->index = 0; 901 } 902 903 static int trylock_zspage(struct zspage *zspage) 904 { 905 struct page *cursor, *fail; 906 907 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 908 get_next_page(cursor)) { 909 if (!trylock_page(cursor)) { 910 fail = cursor; 911 goto unlock; 912 } 913 } 914 915 return 1; 916 unlock: 917 for (cursor = get_first_page(zspage); cursor != fail; cursor = 918 get_next_page(cursor)) 919 unlock_page(cursor); 920 921 return 0; 922 } 923 924 #ifdef CONFIG_ZPOOL 925 static unsigned long find_deferred_handle_obj(struct size_class *class, 926 struct page *page, int *obj_idx); 927 928 /* 929 * Free all the deferred handles whose objects are freed in zs_free. 930 */ 931 static void free_handles(struct zs_pool *pool, struct size_class *class, 932 struct zspage *zspage) 933 { 934 int obj_idx = 0; 935 struct page *page = get_first_page(zspage); 936 unsigned long handle; 937 938 while (1) { 939 handle = find_deferred_handle_obj(class, page, &obj_idx); 940 if (!handle) { 941 page = get_next_page(page); 942 if (!page) 943 break; 944 obj_idx = 0; 945 continue; 946 } 947 948 cache_free_handle(pool, handle); 949 obj_idx++; 950 } 951 } 952 #else 953 static inline void free_handles(struct zs_pool *pool, struct size_class *class, 954 struct zspage *zspage) {} 955 #endif 956 957 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 958 struct zspage *zspage) 959 { 960 struct page *page, *next; 961 int fg; 962 unsigned int class_idx; 963 964 get_zspage_mapping(zspage, &class_idx, &fg); 965 966 assert_spin_locked(&pool->lock); 967 968 VM_BUG_ON(get_zspage_inuse(zspage)); 969 VM_BUG_ON(fg != ZS_INUSE_RATIO_0); 970 971 /* Free all deferred handles from zs_free */ 972 free_handles(pool, class, zspage); 973 974 next = page = get_first_page(zspage); 975 do { 976 VM_BUG_ON_PAGE(!PageLocked(page), page); 977 next = get_next_page(page); 978 reset_page(page); 979 unlock_page(page); 980 dec_zone_page_state(page, NR_ZSPAGES); 981 put_page(page); 982 page = next; 983 } while (page != NULL); 984 985 cache_free_zspage(pool, zspage); 986 987 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 988 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 989 } 990 991 static void free_zspage(struct zs_pool *pool, struct size_class *class, 992 struct zspage *zspage) 993 { 994 VM_BUG_ON(get_zspage_inuse(zspage)); 995 VM_BUG_ON(list_empty(&zspage->list)); 996 997 /* 998 * Since zs_free couldn't be sleepable, this function cannot call 999 * lock_page. The page locks trylock_zspage got will be released 1000 * by __free_zspage. 1001 */ 1002 if (!trylock_zspage(zspage)) { 1003 kick_deferred_free(pool); 1004 return; 1005 } 1006 1007 remove_zspage(class, zspage, ZS_INUSE_RATIO_0); 1008 #ifdef CONFIG_ZPOOL 1009 list_del(&zspage->lru); 1010 #endif 1011 __free_zspage(pool, class, zspage); 1012 } 1013 1014 /* Initialize a newly allocated zspage */ 1015 static void init_zspage(struct size_class *class, struct zspage *zspage) 1016 { 1017 unsigned int freeobj = 1; 1018 unsigned long off = 0; 1019 struct page *page = get_first_page(zspage); 1020 1021 while (page) { 1022 struct page *next_page; 1023 struct link_free *link; 1024 void *vaddr; 1025 1026 set_first_obj_offset(page, off); 1027 1028 vaddr = kmap_atomic(page); 1029 link = (struct link_free *)vaddr + off / sizeof(*link); 1030 1031 while ((off += class->size) < PAGE_SIZE) { 1032 link->next = freeobj++ << OBJ_TAG_BITS; 1033 link += class->size / sizeof(*link); 1034 } 1035 1036 /* 1037 * We now come to the last (full or partial) object on this 1038 * page, which must point to the first object on the next 1039 * page (if present) 1040 */ 1041 next_page = get_next_page(page); 1042 if (next_page) { 1043 link->next = freeobj++ << OBJ_TAG_BITS; 1044 } else { 1045 /* 1046 * Reset OBJ_TAG_BITS bit to last link to tell 1047 * whether it's allocated object or not. 1048 */ 1049 link->next = -1UL << OBJ_TAG_BITS; 1050 } 1051 kunmap_atomic(vaddr); 1052 page = next_page; 1053 off %= PAGE_SIZE; 1054 } 1055 1056 #ifdef CONFIG_ZPOOL 1057 INIT_LIST_HEAD(&zspage->lru); 1058 zspage->under_reclaim = false; 1059 #endif 1060 1061 set_freeobj(zspage, 0); 1062 } 1063 1064 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1065 struct page *pages[]) 1066 { 1067 int i; 1068 struct page *page; 1069 struct page *prev_page = NULL; 1070 int nr_pages = class->pages_per_zspage; 1071 1072 /* 1073 * Allocate individual pages and link them together as: 1074 * 1. all pages are linked together using page->index 1075 * 2. each sub-page point to zspage using page->private 1076 * 1077 * we set PG_private to identify the first page (i.e. no other sub-page 1078 * has this flag set). 1079 */ 1080 for (i = 0; i < nr_pages; i++) { 1081 page = pages[i]; 1082 set_page_private(page, (unsigned long)zspage); 1083 page->index = 0; 1084 if (i == 0) { 1085 zspage->first_page = page; 1086 SetPagePrivate(page); 1087 if (unlikely(class->objs_per_zspage == 1 && 1088 class->pages_per_zspage == 1)) 1089 SetZsHugePage(zspage); 1090 } else { 1091 prev_page->index = (unsigned long)page; 1092 } 1093 prev_page = page; 1094 } 1095 } 1096 1097 /* 1098 * Allocate a zspage for the given size class 1099 */ 1100 static struct zspage *alloc_zspage(struct zs_pool *pool, 1101 struct size_class *class, 1102 gfp_t gfp) 1103 { 1104 int i; 1105 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1106 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1107 1108 if (!zspage) 1109 return NULL; 1110 1111 zspage->magic = ZSPAGE_MAGIC; 1112 migrate_lock_init(zspage); 1113 1114 for (i = 0; i < class->pages_per_zspage; i++) { 1115 struct page *page; 1116 1117 page = alloc_page(gfp); 1118 if (!page) { 1119 while (--i >= 0) { 1120 dec_zone_page_state(pages[i], NR_ZSPAGES); 1121 __free_page(pages[i]); 1122 } 1123 cache_free_zspage(pool, zspage); 1124 return NULL; 1125 } 1126 1127 inc_zone_page_state(page, NR_ZSPAGES); 1128 pages[i] = page; 1129 } 1130 1131 create_page_chain(class, zspage, pages); 1132 init_zspage(class, zspage); 1133 zspage->pool = pool; 1134 1135 return zspage; 1136 } 1137 1138 static struct zspage *find_get_zspage(struct size_class *class) 1139 { 1140 int i; 1141 struct zspage *zspage; 1142 1143 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1144 zspage = list_first_entry_or_null(&class->fullness_list[i], 1145 struct zspage, list); 1146 if (zspage) 1147 break; 1148 } 1149 1150 return zspage; 1151 } 1152 1153 static inline int __zs_cpu_up(struct mapping_area *area) 1154 { 1155 /* 1156 * Make sure we don't leak memory if a cpu UP notification 1157 * and zs_init() race and both call zs_cpu_up() on the same cpu 1158 */ 1159 if (area->vm_buf) 1160 return 0; 1161 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1162 if (!area->vm_buf) 1163 return -ENOMEM; 1164 return 0; 1165 } 1166 1167 static inline void __zs_cpu_down(struct mapping_area *area) 1168 { 1169 kfree(area->vm_buf); 1170 area->vm_buf = NULL; 1171 } 1172 1173 static void *__zs_map_object(struct mapping_area *area, 1174 struct page *pages[2], int off, int size) 1175 { 1176 int sizes[2]; 1177 void *addr; 1178 char *buf = area->vm_buf; 1179 1180 /* disable page faults to match kmap_atomic() return conditions */ 1181 pagefault_disable(); 1182 1183 /* no read fastpath */ 1184 if (area->vm_mm == ZS_MM_WO) 1185 goto out; 1186 1187 sizes[0] = PAGE_SIZE - off; 1188 sizes[1] = size - sizes[0]; 1189 1190 /* copy object to per-cpu buffer */ 1191 addr = kmap_atomic(pages[0]); 1192 memcpy(buf, addr + off, sizes[0]); 1193 kunmap_atomic(addr); 1194 addr = kmap_atomic(pages[1]); 1195 memcpy(buf + sizes[0], addr, sizes[1]); 1196 kunmap_atomic(addr); 1197 out: 1198 return area->vm_buf; 1199 } 1200 1201 static void __zs_unmap_object(struct mapping_area *area, 1202 struct page *pages[2], int off, int size) 1203 { 1204 int sizes[2]; 1205 void *addr; 1206 char *buf; 1207 1208 /* no write fastpath */ 1209 if (area->vm_mm == ZS_MM_RO) 1210 goto out; 1211 1212 buf = area->vm_buf; 1213 buf = buf + ZS_HANDLE_SIZE; 1214 size -= ZS_HANDLE_SIZE; 1215 off += ZS_HANDLE_SIZE; 1216 1217 sizes[0] = PAGE_SIZE - off; 1218 sizes[1] = size - sizes[0]; 1219 1220 /* copy per-cpu buffer to object */ 1221 addr = kmap_atomic(pages[0]); 1222 memcpy(addr + off, buf, sizes[0]); 1223 kunmap_atomic(addr); 1224 addr = kmap_atomic(pages[1]); 1225 memcpy(addr, buf + sizes[0], sizes[1]); 1226 kunmap_atomic(addr); 1227 1228 out: 1229 /* enable page faults to match kunmap_atomic() return conditions */ 1230 pagefault_enable(); 1231 } 1232 1233 static int zs_cpu_prepare(unsigned int cpu) 1234 { 1235 struct mapping_area *area; 1236 1237 area = &per_cpu(zs_map_area, cpu); 1238 return __zs_cpu_up(area); 1239 } 1240 1241 static int zs_cpu_dead(unsigned int cpu) 1242 { 1243 struct mapping_area *area; 1244 1245 area = &per_cpu(zs_map_area, cpu); 1246 __zs_cpu_down(area); 1247 return 0; 1248 } 1249 1250 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1251 int objs_per_zspage) 1252 { 1253 if (prev->pages_per_zspage == pages_per_zspage && 1254 prev->objs_per_zspage == objs_per_zspage) 1255 return true; 1256 1257 return false; 1258 } 1259 1260 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1261 { 1262 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1263 } 1264 1265 /** 1266 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1267 * that hold objects of the provided size. 1268 * @pool: zsmalloc pool to use 1269 * @size: object size 1270 * 1271 * Context: Any context. 1272 * 1273 * Return: the index of the zsmalloc &size_class that hold objects of the 1274 * provided size. 1275 */ 1276 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1277 { 1278 struct size_class *class; 1279 1280 class = pool->size_class[get_size_class_index(size)]; 1281 1282 return class->index; 1283 } 1284 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1285 1286 unsigned long zs_get_total_pages(struct zs_pool *pool) 1287 { 1288 return atomic_long_read(&pool->pages_allocated); 1289 } 1290 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1291 1292 /** 1293 * zs_map_object - get address of allocated object from handle. 1294 * @pool: pool from which the object was allocated 1295 * @handle: handle returned from zs_malloc 1296 * @mm: mapping mode to use 1297 * 1298 * Before using an object allocated from zs_malloc, it must be mapped using 1299 * this function. When done with the object, it must be unmapped using 1300 * zs_unmap_object. 1301 * 1302 * Only one object can be mapped per cpu at a time. There is no protection 1303 * against nested mappings. 1304 * 1305 * This function returns with preemption and page faults disabled. 1306 */ 1307 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1308 enum zs_mapmode mm) 1309 { 1310 struct zspage *zspage; 1311 struct page *page; 1312 unsigned long obj, off; 1313 unsigned int obj_idx; 1314 1315 struct size_class *class; 1316 struct mapping_area *area; 1317 struct page *pages[2]; 1318 void *ret; 1319 1320 /* 1321 * Because we use per-cpu mapping areas shared among the 1322 * pools/users, we can't allow mapping in interrupt context 1323 * because it can corrupt another users mappings. 1324 */ 1325 BUG_ON(in_interrupt()); 1326 1327 /* It guarantees it can get zspage from handle safely */ 1328 spin_lock(&pool->lock); 1329 obj = handle_to_obj(handle); 1330 obj_to_location(obj, &page, &obj_idx); 1331 zspage = get_zspage(page); 1332 1333 #ifdef CONFIG_ZPOOL 1334 /* 1335 * Move the zspage to front of pool's LRU. 1336 * 1337 * Note that this is swap-specific, so by definition there are no ongoing 1338 * accesses to the memory while the page is swapped out that would make 1339 * it "hot". A new entry is hot, then ages to the tail until it gets either 1340 * written back or swaps back in. 1341 * 1342 * Furthermore, map is also called during writeback. We must not put an 1343 * isolated page on the LRU mid-reclaim. 1344 * 1345 * As a result, only update the LRU when the page is mapped for write 1346 * when it's first instantiated. 1347 * 1348 * This is a deviation from the other backends, which perform this update 1349 * in the allocation function (zbud_alloc, z3fold_alloc). 1350 */ 1351 if (mm == ZS_MM_WO) { 1352 if (!list_empty(&zspage->lru)) 1353 list_del(&zspage->lru); 1354 list_add(&zspage->lru, &pool->lru); 1355 } 1356 #endif 1357 1358 /* 1359 * migration cannot move any zpages in this zspage. Here, pool->lock 1360 * is too heavy since callers would take some time until they calls 1361 * zs_unmap_object API so delegate the locking from class to zspage 1362 * which is smaller granularity. 1363 */ 1364 migrate_read_lock(zspage); 1365 spin_unlock(&pool->lock); 1366 1367 class = zspage_class(pool, zspage); 1368 off = (class->size * obj_idx) & ~PAGE_MASK; 1369 1370 local_lock(&zs_map_area.lock); 1371 area = this_cpu_ptr(&zs_map_area); 1372 area->vm_mm = mm; 1373 if (off + class->size <= PAGE_SIZE) { 1374 /* this object is contained entirely within a page */ 1375 area->vm_addr = kmap_atomic(page); 1376 ret = area->vm_addr + off; 1377 goto out; 1378 } 1379 1380 /* this object spans two pages */ 1381 pages[0] = page; 1382 pages[1] = get_next_page(page); 1383 BUG_ON(!pages[1]); 1384 1385 ret = __zs_map_object(area, pages, off, class->size); 1386 out: 1387 if (likely(!ZsHugePage(zspage))) 1388 ret += ZS_HANDLE_SIZE; 1389 1390 return ret; 1391 } 1392 EXPORT_SYMBOL_GPL(zs_map_object); 1393 1394 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1395 { 1396 struct zspage *zspage; 1397 struct page *page; 1398 unsigned long obj, off; 1399 unsigned int obj_idx; 1400 1401 struct size_class *class; 1402 struct mapping_area *area; 1403 1404 obj = handle_to_obj(handle); 1405 obj_to_location(obj, &page, &obj_idx); 1406 zspage = get_zspage(page); 1407 class = zspage_class(pool, zspage); 1408 off = (class->size * obj_idx) & ~PAGE_MASK; 1409 1410 area = this_cpu_ptr(&zs_map_area); 1411 if (off + class->size <= PAGE_SIZE) 1412 kunmap_atomic(area->vm_addr); 1413 else { 1414 struct page *pages[2]; 1415 1416 pages[0] = page; 1417 pages[1] = get_next_page(page); 1418 BUG_ON(!pages[1]); 1419 1420 __zs_unmap_object(area, pages, off, class->size); 1421 } 1422 local_unlock(&zs_map_area.lock); 1423 1424 migrate_read_unlock(zspage); 1425 } 1426 EXPORT_SYMBOL_GPL(zs_unmap_object); 1427 1428 /** 1429 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1430 * zsmalloc &size_class. 1431 * @pool: zsmalloc pool to use 1432 * 1433 * The function returns the size of the first huge class - any object of equal 1434 * or bigger size will be stored in zspage consisting of a single physical 1435 * page. 1436 * 1437 * Context: Any context. 1438 * 1439 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1440 */ 1441 size_t zs_huge_class_size(struct zs_pool *pool) 1442 { 1443 return huge_class_size; 1444 } 1445 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1446 1447 static unsigned long obj_malloc(struct zs_pool *pool, 1448 struct zspage *zspage, unsigned long handle) 1449 { 1450 int i, nr_page, offset; 1451 unsigned long obj; 1452 struct link_free *link; 1453 struct size_class *class; 1454 1455 struct page *m_page; 1456 unsigned long m_offset; 1457 void *vaddr; 1458 1459 class = pool->size_class[zspage->class]; 1460 handle |= OBJ_ALLOCATED_TAG; 1461 obj = get_freeobj(zspage); 1462 1463 offset = obj * class->size; 1464 nr_page = offset >> PAGE_SHIFT; 1465 m_offset = offset & ~PAGE_MASK; 1466 m_page = get_first_page(zspage); 1467 1468 for (i = 0; i < nr_page; i++) 1469 m_page = get_next_page(m_page); 1470 1471 vaddr = kmap_atomic(m_page); 1472 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1473 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1474 if (likely(!ZsHugePage(zspage))) 1475 /* record handle in the header of allocated chunk */ 1476 link->handle = handle; 1477 else 1478 /* record handle to page->index */ 1479 zspage->first_page->index = handle; 1480 1481 kunmap_atomic(vaddr); 1482 mod_zspage_inuse(zspage, 1); 1483 1484 obj = location_to_obj(m_page, obj); 1485 1486 return obj; 1487 } 1488 1489 1490 /** 1491 * zs_malloc - Allocate block of given size from pool. 1492 * @pool: pool to allocate from 1493 * @size: size of block to allocate 1494 * @gfp: gfp flags when allocating object 1495 * 1496 * On success, handle to the allocated object is returned, 1497 * otherwise an ERR_PTR(). 1498 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1499 */ 1500 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1501 { 1502 unsigned long handle, obj; 1503 struct size_class *class; 1504 int newfg; 1505 struct zspage *zspage; 1506 1507 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1508 return (unsigned long)ERR_PTR(-EINVAL); 1509 1510 handle = cache_alloc_handle(pool, gfp); 1511 if (!handle) 1512 return (unsigned long)ERR_PTR(-ENOMEM); 1513 1514 /* extra space in chunk to keep the handle */ 1515 size += ZS_HANDLE_SIZE; 1516 class = pool->size_class[get_size_class_index(size)]; 1517 1518 /* pool->lock effectively protects the zpage migration */ 1519 spin_lock(&pool->lock); 1520 zspage = find_get_zspage(class); 1521 if (likely(zspage)) { 1522 obj = obj_malloc(pool, zspage, handle); 1523 /* Now move the zspage to another fullness group, if required */ 1524 fix_fullness_group(class, zspage); 1525 record_obj(handle, obj); 1526 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1527 spin_unlock(&pool->lock); 1528 1529 return handle; 1530 } 1531 1532 spin_unlock(&pool->lock); 1533 1534 zspage = alloc_zspage(pool, class, gfp); 1535 if (!zspage) { 1536 cache_free_handle(pool, handle); 1537 return (unsigned long)ERR_PTR(-ENOMEM); 1538 } 1539 1540 spin_lock(&pool->lock); 1541 obj = obj_malloc(pool, zspage, handle); 1542 newfg = get_fullness_group(class, zspage); 1543 insert_zspage(class, zspage, newfg); 1544 set_zspage_mapping(zspage, class->index, newfg); 1545 record_obj(handle, obj); 1546 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1547 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1548 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1549 1550 /* We completely set up zspage so mark them as movable */ 1551 SetZsPageMovable(pool, zspage); 1552 spin_unlock(&pool->lock); 1553 1554 return handle; 1555 } 1556 EXPORT_SYMBOL_GPL(zs_malloc); 1557 1558 static void obj_free(int class_size, unsigned long obj, unsigned long *handle) 1559 { 1560 struct link_free *link; 1561 struct zspage *zspage; 1562 struct page *f_page; 1563 unsigned long f_offset; 1564 unsigned int f_objidx; 1565 void *vaddr; 1566 1567 obj_to_location(obj, &f_page, &f_objidx); 1568 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1569 zspage = get_zspage(f_page); 1570 1571 vaddr = kmap_atomic(f_page); 1572 link = (struct link_free *)(vaddr + f_offset); 1573 1574 if (handle) { 1575 #ifdef CONFIG_ZPOOL 1576 /* Stores the (deferred) handle in the object's header */ 1577 *handle |= OBJ_DEFERRED_HANDLE_TAG; 1578 *handle &= ~OBJ_ALLOCATED_TAG; 1579 1580 if (likely(!ZsHugePage(zspage))) 1581 link->deferred_handle = *handle; 1582 else 1583 f_page->index = *handle; 1584 #endif 1585 } else { 1586 /* Insert this object in containing zspage's freelist */ 1587 if (likely(!ZsHugePage(zspage))) 1588 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1589 else 1590 f_page->index = 0; 1591 set_freeobj(zspage, f_objidx); 1592 } 1593 1594 kunmap_atomic(vaddr); 1595 mod_zspage_inuse(zspage, -1); 1596 } 1597 1598 void zs_free(struct zs_pool *pool, unsigned long handle) 1599 { 1600 struct zspage *zspage; 1601 struct page *f_page; 1602 unsigned long obj; 1603 struct size_class *class; 1604 int fullness; 1605 1606 if (IS_ERR_OR_NULL((void *)handle)) 1607 return; 1608 1609 /* 1610 * The pool->lock protects the race with zpage's migration 1611 * so it's safe to get the page from handle. 1612 */ 1613 spin_lock(&pool->lock); 1614 obj = handle_to_obj(handle); 1615 obj_to_page(obj, &f_page); 1616 zspage = get_zspage(f_page); 1617 class = zspage_class(pool, zspage); 1618 1619 class_stat_dec(class, ZS_OBJS_INUSE, 1); 1620 1621 #ifdef CONFIG_ZPOOL 1622 if (zspage->under_reclaim) { 1623 /* 1624 * Reclaim needs the handles during writeback. It'll free 1625 * them along with the zspage when it's done with them. 1626 * 1627 * Record current deferred handle in the object's header. 1628 */ 1629 obj_free(class->size, obj, &handle); 1630 spin_unlock(&pool->lock); 1631 return; 1632 } 1633 #endif 1634 obj_free(class->size, obj, NULL); 1635 1636 fullness = fix_fullness_group(class, zspage); 1637 if (fullness == ZS_INUSE_RATIO_0) 1638 free_zspage(pool, class, zspage); 1639 1640 spin_unlock(&pool->lock); 1641 cache_free_handle(pool, handle); 1642 } 1643 EXPORT_SYMBOL_GPL(zs_free); 1644 1645 static void zs_object_copy(struct size_class *class, unsigned long dst, 1646 unsigned long src) 1647 { 1648 struct page *s_page, *d_page; 1649 unsigned int s_objidx, d_objidx; 1650 unsigned long s_off, d_off; 1651 void *s_addr, *d_addr; 1652 int s_size, d_size, size; 1653 int written = 0; 1654 1655 s_size = d_size = class->size; 1656 1657 obj_to_location(src, &s_page, &s_objidx); 1658 obj_to_location(dst, &d_page, &d_objidx); 1659 1660 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1661 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1662 1663 if (s_off + class->size > PAGE_SIZE) 1664 s_size = PAGE_SIZE - s_off; 1665 1666 if (d_off + class->size > PAGE_SIZE) 1667 d_size = PAGE_SIZE - d_off; 1668 1669 s_addr = kmap_atomic(s_page); 1670 d_addr = kmap_atomic(d_page); 1671 1672 while (1) { 1673 size = min(s_size, d_size); 1674 memcpy(d_addr + d_off, s_addr + s_off, size); 1675 written += size; 1676 1677 if (written == class->size) 1678 break; 1679 1680 s_off += size; 1681 s_size -= size; 1682 d_off += size; 1683 d_size -= size; 1684 1685 /* 1686 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1687 * calls must occurs in reverse order of calls to kmap_atomic(). 1688 * So, to call kunmap_atomic(s_addr) we should first call 1689 * kunmap_atomic(d_addr). For more details see 1690 * Documentation/mm/highmem.rst. 1691 */ 1692 if (s_off >= PAGE_SIZE) { 1693 kunmap_atomic(d_addr); 1694 kunmap_atomic(s_addr); 1695 s_page = get_next_page(s_page); 1696 s_addr = kmap_atomic(s_page); 1697 d_addr = kmap_atomic(d_page); 1698 s_size = class->size - written; 1699 s_off = 0; 1700 } 1701 1702 if (d_off >= PAGE_SIZE) { 1703 kunmap_atomic(d_addr); 1704 d_page = get_next_page(d_page); 1705 d_addr = kmap_atomic(d_page); 1706 d_size = class->size - written; 1707 d_off = 0; 1708 } 1709 } 1710 1711 kunmap_atomic(d_addr); 1712 kunmap_atomic(s_addr); 1713 } 1714 1715 /* 1716 * Find object with a certain tag in zspage from index object and 1717 * return handle. 1718 */ 1719 static unsigned long find_tagged_obj(struct size_class *class, 1720 struct page *page, int *obj_idx, int tag) 1721 { 1722 unsigned int offset; 1723 int index = *obj_idx; 1724 unsigned long handle = 0; 1725 void *addr = kmap_atomic(page); 1726 1727 offset = get_first_obj_offset(page); 1728 offset += class->size * index; 1729 1730 while (offset < PAGE_SIZE) { 1731 if (obj_tagged(page, addr + offset, &handle, tag)) 1732 break; 1733 1734 offset += class->size; 1735 index++; 1736 } 1737 1738 kunmap_atomic(addr); 1739 1740 *obj_idx = index; 1741 1742 return handle; 1743 } 1744 1745 /* 1746 * Find alloced object in zspage from index object and 1747 * return handle. 1748 */ 1749 static unsigned long find_alloced_obj(struct size_class *class, 1750 struct page *page, int *obj_idx) 1751 { 1752 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); 1753 } 1754 1755 #ifdef CONFIG_ZPOOL 1756 /* 1757 * Find object storing a deferred handle in header in zspage from index object 1758 * and return handle. 1759 */ 1760 static unsigned long find_deferred_handle_obj(struct size_class *class, 1761 struct page *page, int *obj_idx) 1762 { 1763 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG); 1764 } 1765 #endif 1766 1767 struct zs_compact_control { 1768 /* Source spage for migration which could be a subpage of zspage */ 1769 struct page *s_page; 1770 /* Destination page for migration which should be a first page 1771 * of zspage. */ 1772 struct page *d_page; 1773 /* Starting object index within @s_page which used for live object 1774 * in the subpage. */ 1775 int obj_idx; 1776 }; 1777 1778 static void migrate_zspage(struct zs_pool *pool, struct size_class *class, 1779 struct zs_compact_control *cc) 1780 { 1781 unsigned long used_obj, free_obj; 1782 unsigned long handle; 1783 struct page *s_page = cc->s_page; 1784 struct page *d_page = cc->d_page; 1785 int obj_idx = cc->obj_idx; 1786 1787 while (1) { 1788 handle = find_alloced_obj(class, s_page, &obj_idx); 1789 if (!handle) { 1790 s_page = get_next_page(s_page); 1791 if (!s_page) 1792 break; 1793 obj_idx = 0; 1794 continue; 1795 } 1796 1797 /* Stop if there is no more space */ 1798 if (zspage_full(class, get_zspage(d_page))) 1799 break; 1800 1801 used_obj = handle_to_obj(handle); 1802 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1803 zs_object_copy(class, free_obj, used_obj); 1804 obj_idx++; 1805 record_obj(handle, free_obj); 1806 obj_free(class->size, used_obj, NULL); 1807 } 1808 1809 /* Remember last position in this iteration */ 1810 cc->s_page = s_page; 1811 cc->obj_idx = obj_idx; 1812 } 1813 1814 static struct zspage *isolate_src_zspage(struct size_class *class) 1815 { 1816 struct zspage *zspage; 1817 int fg; 1818 1819 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1820 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1821 struct zspage, list); 1822 if (zspage) { 1823 remove_zspage(class, zspage, fg); 1824 return zspage; 1825 } 1826 } 1827 1828 return zspage; 1829 } 1830 1831 static struct zspage *isolate_dst_zspage(struct size_class *class) 1832 { 1833 struct zspage *zspage; 1834 int fg; 1835 1836 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1837 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1838 struct zspage, list); 1839 if (zspage) { 1840 remove_zspage(class, zspage, fg); 1841 return zspage; 1842 } 1843 } 1844 1845 return zspage; 1846 } 1847 1848 /* 1849 * putback_zspage - add @zspage into right class's fullness list 1850 * @class: destination class 1851 * @zspage: target page 1852 * 1853 * Return @zspage's fullness status 1854 */ 1855 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1856 { 1857 int fullness; 1858 1859 fullness = get_fullness_group(class, zspage); 1860 insert_zspage(class, zspage, fullness); 1861 set_zspage_mapping(zspage, class->index, fullness); 1862 1863 return fullness; 1864 } 1865 1866 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1867 /* 1868 * To prevent zspage destroy during migration, zspage freeing should 1869 * hold locks of all pages in the zspage. 1870 */ 1871 static void lock_zspage(struct zspage *zspage) 1872 { 1873 struct page *curr_page, *page; 1874 1875 /* 1876 * Pages we haven't locked yet can be migrated off the list while we're 1877 * trying to lock them, so we need to be careful and only attempt to 1878 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1879 * may no longer belong to the zspage. This means that we may wait for 1880 * the wrong page to unlock, so we must take a reference to the page 1881 * prior to waiting for it to unlock outside migrate_read_lock(). 1882 */ 1883 while (1) { 1884 migrate_read_lock(zspage); 1885 page = get_first_page(zspage); 1886 if (trylock_page(page)) 1887 break; 1888 get_page(page); 1889 migrate_read_unlock(zspage); 1890 wait_on_page_locked(page); 1891 put_page(page); 1892 } 1893 1894 curr_page = page; 1895 while ((page = get_next_page(curr_page))) { 1896 if (trylock_page(page)) { 1897 curr_page = page; 1898 } else { 1899 get_page(page); 1900 migrate_read_unlock(zspage); 1901 wait_on_page_locked(page); 1902 put_page(page); 1903 migrate_read_lock(zspage); 1904 } 1905 } 1906 migrate_read_unlock(zspage); 1907 } 1908 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1909 1910 #ifdef CONFIG_ZPOOL 1911 /* 1912 * Unlocks all the pages of the zspage. 1913 * 1914 * pool->lock must be held before this function is called 1915 * to prevent the underlying pages from migrating. 1916 */ 1917 static void unlock_zspage(struct zspage *zspage) 1918 { 1919 struct page *page = get_first_page(zspage); 1920 1921 do { 1922 unlock_page(page); 1923 } while ((page = get_next_page(page)) != NULL); 1924 } 1925 #endif /* CONFIG_ZPOOL */ 1926 1927 static void migrate_lock_init(struct zspage *zspage) 1928 { 1929 rwlock_init(&zspage->lock); 1930 } 1931 1932 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1933 { 1934 read_lock(&zspage->lock); 1935 } 1936 1937 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1938 { 1939 read_unlock(&zspage->lock); 1940 } 1941 1942 #ifdef CONFIG_COMPACTION 1943 static void migrate_write_lock(struct zspage *zspage) 1944 { 1945 write_lock(&zspage->lock); 1946 } 1947 1948 static void migrate_write_lock_nested(struct zspage *zspage) 1949 { 1950 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1951 } 1952 1953 static void migrate_write_unlock(struct zspage *zspage) 1954 { 1955 write_unlock(&zspage->lock); 1956 } 1957 1958 /* Number of isolated subpage for *page migration* in this zspage */ 1959 static void inc_zspage_isolation(struct zspage *zspage) 1960 { 1961 zspage->isolated++; 1962 } 1963 1964 static void dec_zspage_isolation(struct zspage *zspage) 1965 { 1966 VM_BUG_ON(zspage->isolated == 0); 1967 zspage->isolated--; 1968 } 1969 1970 static const struct movable_operations zsmalloc_mops; 1971 1972 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1973 struct page *newpage, struct page *oldpage) 1974 { 1975 struct page *page; 1976 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1977 int idx = 0; 1978 1979 page = get_first_page(zspage); 1980 do { 1981 if (page == oldpage) 1982 pages[idx] = newpage; 1983 else 1984 pages[idx] = page; 1985 idx++; 1986 } while ((page = get_next_page(page)) != NULL); 1987 1988 create_page_chain(class, zspage, pages); 1989 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1990 if (unlikely(ZsHugePage(zspage))) 1991 newpage->index = oldpage->index; 1992 __SetPageMovable(newpage, &zsmalloc_mops); 1993 } 1994 1995 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1996 { 1997 struct zspage *zspage; 1998 1999 /* 2000 * Page is locked so zspage couldn't be destroyed. For detail, look at 2001 * lock_zspage in free_zspage. 2002 */ 2003 VM_BUG_ON_PAGE(PageIsolated(page), page); 2004 2005 zspage = get_zspage(page); 2006 migrate_write_lock(zspage); 2007 inc_zspage_isolation(zspage); 2008 migrate_write_unlock(zspage); 2009 2010 return true; 2011 } 2012 2013 static int zs_page_migrate(struct page *newpage, struct page *page, 2014 enum migrate_mode mode) 2015 { 2016 struct zs_pool *pool; 2017 struct size_class *class; 2018 struct zspage *zspage; 2019 struct page *dummy; 2020 void *s_addr, *d_addr, *addr; 2021 unsigned int offset; 2022 unsigned long handle; 2023 unsigned long old_obj, new_obj; 2024 unsigned int obj_idx; 2025 2026 /* 2027 * We cannot support the _NO_COPY case here, because copy needs to 2028 * happen under the zs lock, which does not work with 2029 * MIGRATE_SYNC_NO_COPY workflow. 2030 */ 2031 if (mode == MIGRATE_SYNC_NO_COPY) 2032 return -EINVAL; 2033 2034 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2035 2036 /* The page is locked, so this pointer must remain valid */ 2037 zspage = get_zspage(page); 2038 pool = zspage->pool; 2039 2040 /* 2041 * The pool's lock protects the race between zpage migration 2042 * and zs_free. 2043 */ 2044 spin_lock(&pool->lock); 2045 class = zspage_class(pool, zspage); 2046 2047 /* the migrate_write_lock protects zpage access via zs_map_object */ 2048 migrate_write_lock(zspage); 2049 2050 offset = get_first_obj_offset(page); 2051 s_addr = kmap_atomic(page); 2052 2053 /* 2054 * Here, any user cannot access all objects in the zspage so let's move. 2055 */ 2056 d_addr = kmap_atomic(newpage); 2057 memcpy(d_addr, s_addr, PAGE_SIZE); 2058 kunmap_atomic(d_addr); 2059 2060 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2061 addr += class->size) { 2062 if (obj_allocated(page, addr, &handle)) { 2063 2064 old_obj = handle_to_obj(handle); 2065 obj_to_location(old_obj, &dummy, &obj_idx); 2066 new_obj = (unsigned long)location_to_obj(newpage, 2067 obj_idx); 2068 record_obj(handle, new_obj); 2069 } 2070 } 2071 kunmap_atomic(s_addr); 2072 2073 replace_sub_page(class, zspage, newpage, page); 2074 /* 2075 * Since we complete the data copy and set up new zspage structure, 2076 * it's okay to release the pool's lock. 2077 */ 2078 spin_unlock(&pool->lock); 2079 dec_zspage_isolation(zspage); 2080 migrate_write_unlock(zspage); 2081 2082 get_page(newpage); 2083 if (page_zone(newpage) != page_zone(page)) { 2084 dec_zone_page_state(page, NR_ZSPAGES); 2085 inc_zone_page_state(newpage, NR_ZSPAGES); 2086 } 2087 2088 reset_page(page); 2089 put_page(page); 2090 2091 return MIGRATEPAGE_SUCCESS; 2092 } 2093 2094 static void zs_page_putback(struct page *page) 2095 { 2096 struct zspage *zspage; 2097 2098 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2099 2100 zspage = get_zspage(page); 2101 migrate_write_lock(zspage); 2102 dec_zspage_isolation(zspage); 2103 migrate_write_unlock(zspage); 2104 } 2105 2106 static const struct movable_operations zsmalloc_mops = { 2107 .isolate_page = zs_page_isolate, 2108 .migrate_page = zs_page_migrate, 2109 .putback_page = zs_page_putback, 2110 }; 2111 2112 /* 2113 * Caller should hold page_lock of all pages in the zspage 2114 * In here, we cannot use zspage meta data. 2115 */ 2116 static void async_free_zspage(struct work_struct *work) 2117 { 2118 int i; 2119 struct size_class *class; 2120 unsigned int class_idx; 2121 int fullness; 2122 struct zspage *zspage, *tmp; 2123 LIST_HEAD(free_pages); 2124 struct zs_pool *pool = container_of(work, struct zs_pool, 2125 free_work); 2126 2127 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2128 class = pool->size_class[i]; 2129 if (class->index != i) 2130 continue; 2131 2132 spin_lock(&pool->lock); 2133 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 2134 &free_pages); 2135 spin_unlock(&pool->lock); 2136 } 2137 2138 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2139 list_del(&zspage->list); 2140 lock_zspage(zspage); 2141 2142 get_zspage_mapping(zspage, &class_idx, &fullness); 2143 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); 2144 class = pool->size_class[class_idx]; 2145 spin_lock(&pool->lock); 2146 #ifdef CONFIG_ZPOOL 2147 list_del(&zspage->lru); 2148 #endif 2149 __free_zspage(pool, class, zspage); 2150 spin_unlock(&pool->lock); 2151 } 2152 }; 2153 2154 static void kick_deferred_free(struct zs_pool *pool) 2155 { 2156 schedule_work(&pool->free_work); 2157 } 2158 2159 static void zs_flush_migration(struct zs_pool *pool) 2160 { 2161 flush_work(&pool->free_work); 2162 } 2163 2164 static void init_deferred_free(struct zs_pool *pool) 2165 { 2166 INIT_WORK(&pool->free_work, async_free_zspage); 2167 } 2168 2169 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2170 { 2171 struct page *page = get_first_page(zspage); 2172 2173 do { 2174 WARN_ON(!trylock_page(page)); 2175 __SetPageMovable(page, &zsmalloc_mops); 2176 unlock_page(page); 2177 } while ((page = get_next_page(page)) != NULL); 2178 } 2179 #else 2180 static inline void zs_flush_migration(struct zs_pool *pool) { } 2181 #endif 2182 2183 /* 2184 * 2185 * Based on the number of unused allocated objects calculate 2186 * and return the number of pages that we can free. 2187 */ 2188 static unsigned long zs_can_compact(struct size_class *class) 2189 { 2190 unsigned long obj_wasted; 2191 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 2192 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 2193 2194 if (obj_allocated <= obj_used) 2195 return 0; 2196 2197 obj_wasted = obj_allocated - obj_used; 2198 obj_wasted /= class->objs_per_zspage; 2199 2200 return obj_wasted * class->pages_per_zspage; 2201 } 2202 2203 static unsigned long __zs_compact(struct zs_pool *pool, 2204 struct size_class *class) 2205 { 2206 struct zs_compact_control cc; 2207 struct zspage *src_zspage = NULL; 2208 struct zspage *dst_zspage = NULL; 2209 unsigned long pages_freed = 0; 2210 2211 /* 2212 * protect the race between zpage migration and zs_free 2213 * as well as zpage allocation/free 2214 */ 2215 spin_lock(&pool->lock); 2216 while (zs_can_compact(class)) { 2217 int fg; 2218 2219 if (!dst_zspage) { 2220 dst_zspage = isolate_dst_zspage(class); 2221 if (!dst_zspage) 2222 break; 2223 migrate_write_lock(dst_zspage); 2224 cc.d_page = get_first_page(dst_zspage); 2225 } 2226 2227 src_zspage = isolate_src_zspage(class); 2228 if (!src_zspage) 2229 break; 2230 2231 migrate_write_lock_nested(src_zspage); 2232 2233 cc.obj_idx = 0; 2234 cc.s_page = get_first_page(src_zspage); 2235 migrate_zspage(pool, class, &cc); 2236 fg = putback_zspage(class, src_zspage); 2237 migrate_write_unlock(src_zspage); 2238 2239 if (fg == ZS_INUSE_RATIO_0) { 2240 free_zspage(pool, class, src_zspage); 2241 pages_freed += class->pages_per_zspage; 2242 } 2243 src_zspage = NULL; 2244 2245 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 2246 || spin_is_contended(&pool->lock)) { 2247 putback_zspage(class, dst_zspage); 2248 migrate_write_unlock(dst_zspage); 2249 dst_zspage = NULL; 2250 2251 spin_unlock(&pool->lock); 2252 cond_resched(); 2253 spin_lock(&pool->lock); 2254 } 2255 } 2256 2257 if (src_zspage) { 2258 putback_zspage(class, src_zspage); 2259 migrate_write_unlock(src_zspage); 2260 } 2261 2262 if (dst_zspage) { 2263 putback_zspage(class, dst_zspage); 2264 migrate_write_unlock(dst_zspage); 2265 } 2266 spin_unlock(&pool->lock); 2267 2268 return pages_freed; 2269 } 2270 2271 unsigned long zs_compact(struct zs_pool *pool) 2272 { 2273 int i; 2274 struct size_class *class; 2275 unsigned long pages_freed = 0; 2276 2277 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2278 class = pool->size_class[i]; 2279 if (class->index != i) 2280 continue; 2281 pages_freed += __zs_compact(pool, class); 2282 } 2283 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2284 2285 return pages_freed; 2286 } 2287 EXPORT_SYMBOL_GPL(zs_compact); 2288 2289 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2290 { 2291 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2292 } 2293 EXPORT_SYMBOL_GPL(zs_pool_stats); 2294 2295 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2296 struct shrink_control *sc) 2297 { 2298 unsigned long pages_freed; 2299 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2300 shrinker); 2301 2302 /* 2303 * Compact classes and calculate compaction delta. 2304 * Can run concurrently with a manually triggered 2305 * (by user) compaction. 2306 */ 2307 pages_freed = zs_compact(pool); 2308 2309 return pages_freed ? pages_freed : SHRINK_STOP; 2310 } 2311 2312 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2313 struct shrink_control *sc) 2314 { 2315 int i; 2316 struct size_class *class; 2317 unsigned long pages_to_free = 0; 2318 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2319 shrinker); 2320 2321 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2322 class = pool->size_class[i]; 2323 if (class->index != i) 2324 continue; 2325 2326 pages_to_free += zs_can_compact(class); 2327 } 2328 2329 return pages_to_free; 2330 } 2331 2332 static void zs_unregister_shrinker(struct zs_pool *pool) 2333 { 2334 unregister_shrinker(&pool->shrinker); 2335 } 2336 2337 static int zs_register_shrinker(struct zs_pool *pool) 2338 { 2339 pool->shrinker.scan_objects = zs_shrinker_scan; 2340 pool->shrinker.count_objects = zs_shrinker_count; 2341 pool->shrinker.batch = 0; 2342 pool->shrinker.seeks = DEFAULT_SEEKS; 2343 2344 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2345 pool->name); 2346 } 2347 2348 static int calculate_zspage_chain_size(int class_size) 2349 { 2350 int i, min_waste = INT_MAX; 2351 int chain_size = 1; 2352 2353 if (is_power_of_2(class_size)) 2354 return chain_size; 2355 2356 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2357 int waste; 2358 2359 waste = (i * PAGE_SIZE) % class_size; 2360 if (waste < min_waste) { 2361 min_waste = waste; 2362 chain_size = i; 2363 } 2364 } 2365 2366 return chain_size; 2367 } 2368 2369 /** 2370 * zs_create_pool - Creates an allocation pool to work from. 2371 * @name: pool name to be created 2372 * 2373 * This function must be called before anything when using 2374 * the zsmalloc allocator. 2375 * 2376 * On success, a pointer to the newly created pool is returned, 2377 * otherwise NULL. 2378 */ 2379 struct zs_pool *zs_create_pool(const char *name) 2380 { 2381 int i; 2382 struct zs_pool *pool; 2383 struct size_class *prev_class = NULL; 2384 2385 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2386 if (!pool) 2387 return NULL; 2388 2389 init_deferred_free(pool); 2390 spin_lock_init(&pool->lock); 2391 2392 pool->name = kstrdup(name, GFP_KERNEL); 2393 if (!pool->name) 2394 goto err; 2395 2396 if (create_cache(pool)) 2397 goto err; 2398 2399 /* 2400 * Iterate reversely, because, size of size_class that we want to use 2401 * for merging should be larger or equal to current size. 2402 */ 2403 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2404 int size; 2405 int pages_per_zspage; 2406 int objs_per_zspage; 2407 struct size_class *class; 2408 int fullness; 2409 2410 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2411 if (size > ZS_MAX_ALLOC_SIZE) 2412 size = ZS_MAX_ALLOC_SIZE; 2413 pages_per_zspage = calculate_zspage_chain_size(size); 2414 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2415 2416 /* 2417 * We iterate from biggest down to smallest classes, 2418 * so huge_class_size holds the size of the first huge 2419 * class. Any object bigger than or equal to that will 2420 * endup in the huge class. 2421 */ 2422 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2423 !huge_class_size) { 2424 huge_class_size = size; 2425 /* 2426 * The object uses ZS_HANDLE_SIZE bytes to store the 2427 * handle. We need to subtract it, because zs_malloc() 2428 * unconditionally adds handle size before it performs 2429 * size class search - so object may be smaller than 2430 * huge class size, yet it still can end up in the huge 2431 * class because it grows by ZS_HANDLE_SIZE extra bytes 2432 * right before class lookup. 2433 */ 2434 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2435 } 2436 2437 /* 2438 * size_class is used for normal zsmalloc operation such 2439 * as alloc/free for that size. Although it is natural that we 2440 * have one size_class for each size, there is a chance that we 2441 * can get more memory utilization if we use one size_class for 2442 * many different sizes whose size_class have same 2443 * characteristics. So, we makes size_class point to 2444 * previous size_class if possible. 2445 */ 2446 if (prev_class) { 2447 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2448 pool->size_class[i] = prev_class; 2449 continue; 2450 } 2451 } 2452 2453 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2454 if (!class) 2455 goto err; 2456 2457 class->size = size; 2458 class->index = i; 2459 class->pages_per_zspage = pages_per_zspage; 2460 class->objs_per_zspage = objs_per_zspage; 2461 pool->size_class[i] = class; 2462 2463 fullness = ZS_INUSE_RATIO_0; 2464 while (fullness < NR_FULLNESS_GROUPS) { 2465 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2466 fullness++; 2467 } 2468 2469 prev_class = class; 2470 } 2471 2472 /* debug only, don't abort if it fails */ 2473 zs_pool_stat_create(pool, name); 2474 2475 /* 2476 * Not critical since shrinker is only used to trigger internal 2477 * defragmentation of the pool which is pretty optional thing. If 2478 * registration fails we still can use the pool normally and user can 2479 * trigger compaction manually. Thus, ignore return code. 2480 */ 2481 zs_register_shrinker(pool); 2482 2483 #ifdef CONFIG_ZPOOL 2484 INIT_LIST_HEAD(&pool->lru); 2485 #endif 2486 2487 return pool; 2488 2489 err: 2490 zs_destroy_pool(pool); 2491 return NULL; 2492 } 2493 EXPORT_SYMBOL_GPL(zs_create_pool); 2494 2495 void zs_destroy_pool(struct zs_pool *pool) 2496 { 2497 int i; 2498 2499 zs_unregister_shrinker(pool); 2500 zs_flush_migration(pool); 2501 zs_pool_stat_destroy(pool); 2502 2503 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2504 int fg; 2505 struct size_class *class = pool->size_class[i]; 2506 2507 if (!class) 2508 continue; 2509 2510 if (class->index != i) 2511 continue; 2512 2513 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2514 if (list_empty(&class->fullness_list[fg])) 2515 continue; 2516 2517 pr_err("Class-%d fullness group %d is not empty\n", 2518 class->size, fg); 2519 } 2520 kfree(class); 2521 } 2522 2523 destroy_cache(pool); 2524 kfree(pool->name); 2525 kfree(pool); 2526 } 2527 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2528 2529 #ifdef CONFIG_ZPOOL 2530 static void restore_freelist(struct zs_pool *pool, struct size_class *class, 2531 struct zspage *zspage) 2532 { 2533 unsigned int obj_idx = 0; 2534 unsigned long handle, off = 0; /* off is within-page offset */ 2535 struct page *page = get_first_page(zspage); 2536 struct link_free *prev_free = NULL; 2537 void *prev_page_vaddr = NULL; 2538 2539 /* in case no free object found */ 2540 set_freeobj(zspage, (unsigned int)(-1UL)); 2541 2542 while (page) { 2543 void *vaddr = kmap_atomic(page); 2544 struct page *next_page; 2545 2546 while (off < PAGE_SIZE) { 2547 void *obj_addr = vaddr + off; 2548 2549 /* skip allocated object */ 2550 if (obj_allocated(page, obj_addr, &handle)) { 2551 obj_idx++; 2552 off += class->size; 2553 continue; 2554 } 2555 2556 /* free deferred handle from reclaim attempt */ 2557 if (obj_stores_deferred_handle(page, obj_addr, &handle)) 2558 cache_free_handle(pool, handle); 2559 2560 if (prev_free) 2561 prev_free->next = obj_idx << OBJ_TAG_BITS; 2562 else /* first free object found */ 2563 set_freeobj(zspage, obj_idx); 2564 2565 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free); 2566 /* if last free object in a previous page, need to unmap */ 2567 if (prev_page_vaddr) { 2568 kunmap_atomic(prev_page_vaddr); 2569 prev_page_vaddr = NULL; 2570 } 2571 2572 obj_idx++; 2573 off += class->size; 2574 } 2575 2576 /* 2577 * Handle the last (full or partial) object on this page. 2578 */ 2579 next_page = get_next_page(page); 2580 if (next_page) { 2581 if (!prev_free || prev_page_vaddr) { 2582 /* 2583 * There is no free object in this page, so we can safely 2584 * unmap it. 2585 */ 2586 kunmap_atomic(vaddr); 2587 } else { 2588 /* update prev_page_vaddr since prev_free is on this page */ 2589 prev_page_vaddr = vaddr; 2590 } 2591 } else { /* this is the last page */ 2592 if (prev_free) { 2593 /* 2594 * Reset OBJ_TAG_BITS bit to last link to tell 2595 * whether it's allocated object or not. 2596 */ 2597 prev_free->next = -1UL << OBJ_TAG_BITS; 2598 } 2599 2600 /* unmap previous page (if not done yet) */ 2601 if (prev_page_vaddr) { 2602 kunmap_atomic(prev_page_vaddr); 2603 prev_page_vaddr = NULL; 2604 } 2605 2606 kunmap_atomic(vaddr); 2607 } 2608 2609 page = next_page; 2610 off %= PAGE_SIZE; 2611 } 2612 } 2613 2614 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2615 { 2616 int i, obj_idx, ret = 0; 2617 unsigned long handle; 2618 struct zspage *zspage; 2619 struct page *page; 2620 int fullness; 2621 2622 /* Lock LRU and fullness list */ 2623 spin_lock(&pool->lock); 2624 if (list_empty(&pool->lru)) { 2625 spin_unlock(&pool->lock); 2626 return -EINVAL; 2627 } 2628 2629 for (i = 0; i < retries; i++) { 2630 struct size_class *class; 2631 2632 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2633 list_del(&zspage->lru); 2634 2635 /* zs_free may free objects, but not the zspage and handles */ 2636 zspage->under_reclaim = true; 2637 2638 class = zspage_class(pool, zspage); 2639 fullness = get_fullness_group(class, zspage); 2640 2641 /* Lock out object allocations and object compaction */ 2642 remove_zspage(class, zspage, fullness); 2643 2644 spin_unlock(&pool->lock); 2645 cond_resched(); 2646 2647 /* Lock backing pages into place */ 2648 lock_zspage(zspage); 2649 2650 obj_idx = 0; 2651 page = get_first_page(zspage); 2652 while (1) { 2653 handle = find_alloced_obj(class, page, &obj_idx); 2654 if (!handle) { 2655 page = get_next_page(page); 2656 if (!page) 2657 break; 2658 obj_idx = 0; 2659 continue; 2660 } 2661 2662 /* 2663 * This will write the object and call zs_free. 2664 * 2665 * zs_free will free the object, but the 2666 * under_reclaim flag prevents it from freeing 2667 * the zspage altogether. This is necessary so 2668 * that we can continue working with the 2669 * zspage potentially after the last object 2670 * has been freed. 2671 */ 2672 ret = pool->zpool_ops->evict(pool->zpool, handle); 2673 if (ret) 2674 goto next; 2675 2676 obj_idx++; 2677 } 2678 2679 next: 2680 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2681 spin_lock(&pool->lock); 2682 zspage->under_reclaim = false; 2683 2684 if (!get_zspage_inuse(zspage)) { 2685 /* 2686 * Fullness went stale as zs_free() won't touch it 2687 * while the page is removed from the pool. Fix it 2688 * up for the check in __free_zspage(). 2689 */ 2690 zspage->fullness = ZS_INUSE_RATIO_0; 2691 2692 __free_zspage(pool, class, zspage); 2693 spin_unlock(&pool->lock); 2694 return 0; 2695 } 2696 2697 /* 2698 * Eviction fails on one of the handles, so we need to restore zspage. 2699 * We need to rebuild its freelist (and free stored deferred handles), 2700 * put it back to the correct size class, and add it to the LRU list. 2701 */ 2702 restore_freelist(pool, class, zspage); 2703 putback_zspage(class, zspage); 2704 list_add(&zspage->lru, &pool->lru); 2705 unlock_zspage(zspage); 2706 } 2707 2708 spin_unlock(&pool->lock); 2709 return -EAGAIN; 2710 } 2711 #endif /* CONFIG_ZPOOL */ 2712 2713 static int __init zs_init(void) 2714 { 2715 int ret; 2716 2717 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2718 zs_cpu_prepare, zs_cpu_dead); 2719 if (ret) 2720 goto out; 2721 2722 #ifdef CONFIG_ZPOOL 2723 zpool_register_driver(&zs_zpool_driver); 2724 #endif 2725 2726 zs_stat_init(); 2727 2728 return 0; 2729 2730 out: 2731 return ret; 2732 } 2733 2734 static void __exit zs_exit(void) 2735 { 2736 #ifdef CONFIG_ZPOOL 2737 zpool_unregister_driver(&zs_zpool_driver); 2738 #endif 2739 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2740 2741 zs_stat_exit(); 2742 } 2743 2744 module_init(zs_init); 2745 module_exit(zs_exit); 2746 2747 MODULE_LICENSE("Dual BSD/GPL"); 2748 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2749