1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/pagemap.h> 58 #include <linux/fs.h> 59 60 #define ZSPAGE_MAGIC 0x58 61 62 /* 63 * This must be power of 2 and greater than of equal to sizeof(link_free). 64 * These two conditions ensure that any 'struct link_free' itself doesn't 65 * span more than 1 page which avoids complex case of mapping 2 pages simply 66 * to restore link_free pointer values. 67 */ 68 #define ZS_ALIGN 8 69 70 /* 71 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 72 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 73 */ 74 #define ZS_MAX_ZSPAGE_ORDER 2 75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 76 77 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 78 79 /* 80 * Object location (<PFN>, <obj_idx>) is encoded as 81 * as single (unsigned long) handle value. 82 * 83 * Note that object index <obj_idx> starts from 0. 84 * 85 * This is made more complicated by various memory models and PAE. 86 */ 87 88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 89 #ifdef MAX_PHYSMEM_BITS 90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 91 #else 92 /* 93 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 94 * be PAGE_SHIFT 95 */ 96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 97 #endif 98 #endif 99 100 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 101 102 /* 103 * Memory for allocating for handle keeps object position by 104 * encoding <page, obj_idx> and the encoded value has a room 105 * in least bit(ie, look at obj_to_location). 106 * We use the bit to synchronize between object access by 107 * user and migration. 108 */ 109 #define HANDLE_PIN_BIT 0 110 111 /* 112 * Head in allocated object should have OBJ_ALLOCATED_TAG 113 * to identify the object was allocated or not. 114 * It's okay to add the status bit in the least bit because 115 * header keeps handle which is 4byte-aligned address so we 116 * have room for two bit at least. 117 */ 118 #define OBJ_ALLOCATED_TAG 1 119 #define OBJ_TAG_BITS 1 120 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 121 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 122 123 #define FULLNESS_BITS 2 124 #define CLASS_BITS 8 125 #define ISOLATED_BITS 3 126 #define MAGIC_VAL_BITS 8 127 128 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 130 #define ZS_MIN_ALLOC_SIZE \ 131 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 132 /* each chunk includes extra space to keep handle */ 133 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 134 135 /* 136 * On systems with 4K page size, this gives 255 size classes! There is a 137 * trader-off here: 138 * - Large number of size classes is potentially wasteful as free page are 139 * spread across these classes 140 * - Small number of size classes causes large internal fragmentation 141 * - Probably its better to use specific size classes (empirically 142 * determined). NOTE: all those class sizes must be set as multiple of 143 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 144 * 145 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 146 * (reason above) 147 */ 148 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 149 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 150 ZS_SIZE_CLASS_DELTA) + 1) 151 152 enum fullness_group { 153 ZS_EMPTY, 154 ZS_ALMOST_EMPTY, 155 ZS_ALMOST_FULL, 156 ZS_FULL, 157 NR_ZS_FULLNESS, 158 }; 159 160 enum zs_stat_type { 161 CLASS_EMPTY, 162 CLASS_ALMOST_EMPTY, 163 CLASS_ALMOST_FULL, 164 CLASS_FULL, 165 OBJ_ALLOCATED, 166 OBJ_USED, 167 NR_ZS_STAT_TYPE, 168 }; 169 170 struct zs_size_stat { 171 unsigned long objs[NR_ZS_STAT_TYPE]; 172 }; 173 174 #ifdef CONFIG_ZSMALLOC_STAT 175 static struct dentry *zs_stat_root; 176 #endif 177 178 #ifdef CONFIG_COMPACTION 179 static struct vfsmount *zsmalloc_mnt; 180 #endif 181 182 /* 183 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 184 * n <= N / f, where 185 * n = number of allocated objects 186 * N = total number of objects zspage can store 187 * f = fullness_threshold_frac 188 * 189 * Similarly, we assign zspage to: 190 * ZS_ALMOST_FULL when n > N / f 191 * ZS_EMPTY when n == 0 192 * ZS_FULL when n == N 193 * 194 * (see: fix_fullness_group()) 195 */ 196 static const int fullness_threshold_frac = 4; 197 static size_t huge_class_size; 198 199 struct size_class { 200 spinlock_t lock; 201 struct list_head fullness_list[NR_ZS_FULLNESS]; 202 /* 203 * Size of objects stored in this class. Must be multiple 204 * of ZS_ALIGN. 205 */ 206 int size; 207 int objs_per_zspage; 208 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 209 int pages_per_zspage; 210 211 unsigned int index; 212 struct zs_size_stat stats; 213 }; 214 215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 216 static void SetPageHugeObject(struct page *page) 217 { 218 SetPageOwnerPriv1(page); 219 } 220 221 static void ClearPageHugeObject(struct page *page) 222 { 223 ClearPageOwnerPriv1(page); 224 } 225 226 static int PageHugeObject(struct page *page) 227 { 228 return PageOwnerPriv1(page); 229 } 230 231 /* 232 * Placed within free objects to form a singly linked list. 233 * For every zspage, zspage->freeobj gives head of this list. 234 * 235 * This must be power of 2 and less than or equal to ZS_ALIGN 236 */ 237 struct link_free { 238 union { 239 /* 240 * Free object index; 241 * It's valid for non-allocated object 242 */ 243 unsigned long next; 244 /* 245 * Handle of allocated object. 246 */ 247 unsigned long handle; 248 }; 249 }; 250 251 struct zs_pool { 252 const char *name; 253 254 struct size_class *size_class[ZS_SIZE_CLASSES]; 255 struct kmem_cache *handle_cachep; 256 struct kmem_cache *zspage_cachep; 257 258 atomic_long_t pages_allocated; 259 260 struct zs_pool_stats stats; 261 262 /* Compact classes */ 263 struct shrinker shrinker; 264 265 #ifdef CONFIG_ZSMALLOC_STAT 266 struct dentry *stat_dentry; 267 #endif 268 #ifdef CONFIG_COMPACTION 269 struct inode *inode; 270 struct work_struct free_work; 271 #endif 272 }; 273 274 struct zspage { 275 struct { 276 unsigned int fullness:FULLNESS_BITS; 277 unsigned int class:CLASS_BITS + 1; 278 unsigned int isolated:ISOLATED_BITS; 279 unsigned int magic:MAGIC_VAL_BITS; 280 }; 281 unsigned int inuse; 282 unsigned int freeobj; 283 struct page *first_page; 284 struct list_head list; /* fullness list */ 285 #ifdef CONFIG_COMPACTION 286 rwlock_t lock; 287 #endif 288 }; 289 290 struct mapping_area { 291 #ifdef CONFIG_PGTABLE_MAPPING 292 struct vm_struct *vm; /* vm area for mapping object that span pages */ 293 #else 294 char *vm_buf; /* copy buffer for objects that span pages */ 295 #endif 296 char *vm_addr; /* address of kmap_atomic()'ed pages */ 297 enum zs_mapmode vm_mm; /* mapping mode */ 298 }; 299 300 #ifdef CONFIG_COMPACTION 301 static int zs_register_migration(struct zs_pool *pool); 302 static void zs_unregister_migration(struct zs_pool *pool); 303 static void migrate_lock_init(struct zspage *zspage); 304 static void migrate_read_lock(struct zspage *zspage); 305 static void migrate_read_unlock(struct zspage *zspage); 306 static void kick_deferred_free(struct zs_pool *pool); 307 static void init_deferred_free(struct zs_pool *pool); 308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 309 #else 310 static int zsmalloc_mount(void) { return 0; } 311 static void zsmalloc_unmount(void) {} 312 static int zs_register_migration(struct zs_pool *pool) { return 0; } 313 static void zs_unregister_migration(struct zs_pool *pool) {} 314 static void migrate_lock_init(struct zspage *zspage) {} 315 static void migrate_read_lock(struct zspage *zspage) {} 316 static void migrate_read_unlock(struct zspage *zspage) {} 317 static void kick_deferred_free(struct zs_pool *pool) {} 318 static void init_deferred_free(struct zs_pool *pool) {} 319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 320 #endif 321 322 static int create_cache(struct zs_pool *pool) 323 { 324 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 325 0, 0, NULL); 326 if (!pool->handle_cachep) 327 return 1; 328 329 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 330 0, 0, NULL); 331 if (!pool->zspage_cachep) { 332 kmem_cache_destroy(pool->handle_cachep); 333 pool->handle_cachep = NULL; 334 return 1; 335 } 336 337 return 0; 338 } 339 340 static void destroy_cache(struct zs_pool *pool) 341 { 342 kmem_cache_destroy(pool->handle_cachep); 343 kmem_cache_destroy(pool->zspage_cachep); 344 } 345 346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 347 { 348 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 349 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 350 } 351 352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 353 { 354 kmem_cache_free(pool->handle_cachep, (void *)handle); 355 } 356 357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 358 { 359 return kmem_cache_alloc(pool->zspage_cachep, 360 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 361 } 362 363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 364 { 365 kmem_cache_free(pool->zspage_cachep, zspage); 366 } 367 368 static void record_obj(unsigned long handle, unsigned long obj) 369 { 370 /* 371 * lsb of @obj represents handle lock while other bits 372 * represent object value the handle is pointing so 373 * updating shouldn't do store tearing. 374 */ 375 WRITE_ONCE(*(unsigned long *)handle, obj); 376 } 377 378 /* zpool driver */ 379 380 #ifdef CONFIG_ZPOOL 381 382 static void *zs_zpool_create(const char *name, gfp_t gfp, 383 const struct zpool_ops *zpool_ops, 384 struct zpool *zpool) 385 { 386 /* 387 * Ignore global gfp flags: zs_malloc() may be invoked from 388 * different contexts and its caller must provide a valid 389 * gfp mask. 390 */ 391 return zs_create_pool(name); 392 } 393 394 static void zs_zpool_destroy(void *pool) 395 { 396 zs_destroy_pool(pool); 397 } 398 399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 400 unsigned long *handle) 401 { 402 *handle = zs_malloc(pool, size, gfp); 403 return *handle ? 0 : -1; 404 } 405 static void zs_zpool_free(void *pool, unsigned long handle) 406 { 407 zs_free(pool, handle); 408 } 409 410 static void *zs_zpool_map(void *pool, unsigned long handle, 411 enum zpool_mapmode mm) 412 { 413 enum zs_mapmode zs_mm; 414 415 switch (mm) { 416 case ZPOOL_MM_RO: 417 zs_mm = ZS_MM_RO; 418 break; 419 case ZPOOL_MM_WO: 420 zs_mm = ZS_MM_WO; 421 break; 422 case ZPOOL_MM_RW: /* fall through */ 423 default: 424 zs_mm = ZS_MM_RW; 425 break; 426 } 427 428 return zs_map_object(pool, handle, zs_mm); 429 } 430 static void zs_zpool_unmap(void *pool, unsigned long handle) 431 { 432 zs_unmap_object(pool, handle); 433 } 434 435 static u64 zs_zpool_total_size(void *pool) 436 { 437 return zs_get_total_pages(pool) << PAGE_SHIFT; 438 } 439 440 static struct zpool_driver zs_zpool_driver = { 441 .type = "zsmalloc", 442 .owner = THIS_MODULE, 443 .create = zs_zpool_create, 444 .destroy = zs_zpool_destroy, 445 .malloc = zs_zpool_malloc, 446 .free = zs_zpool_free, 447 .map = zs_zpool_map, 448 .unmap = zs_zpool_unmap, 449 .total_size = zs_zpool_total_size, 450 }; 451 452 MODULE_ALIAS("zpool-zsmalloc"); 453 #endif /* CONFIG_ZPOOL */ 454 455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 457 458 static bool is_zspage_isolated(struct zspage *zspage) 459 { 460 return zspage->isolated; 461 } 462 463 static __maybe_unused int is_first_page(struct page *page) 464 { 465 return PagePrivate(page); 466 } 467 468 /* Protected by class->lock */ 469 static inline int get_zspage_inuse(struct zspage *zspage) 470 { 471 return zspage->inuse; 472 } 473 474 static inline void set_zspage_inuse(struct zspage *zspage, int val) 475 { 476 zspage->inuse = val; 477 } 478 479 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 480 { 481 zspage->inuse += val; 482 } 483 484 static inline struct page *get_first_page(struct zspage *zspage) 485 { 486 struct page *first_page = zspage->first_page; 487 488 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 489 return first_page; 490 } 491 492 static inline int get_first_obj_offset(struct page *page) 493 { 494 return page->units; 495 } 496 497 static inline void set_first_obj_offset(struct page *page, int offset) 498 { 499 page->units = offset; 500 } 501 502 static inline unsigned int get_freeobj(struct zspage *zspage) 503 { 504 return zspage->freeobj; 505 } 506 507 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 508 { 509 zspage->freeobj = obj; 510 } 511 512 static void get_zspage_mapping(struct zspage *zspage, 513 unsigned int *class_idx, 514 enum fullness_group *fullness) 515 { 516 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 517 518 *fullness = zspage->fullness; 519 *class_idx = zspage->class; 520 } 521 522 static void set_zspage_mapping(struct zspage *zspage, 523 unsigned int class_idx, 524 enum fullness_group fullness) 525 { 526 zspage->class = class_idx; 527 zspage->fullness = fullness; 528 } 529 530 /* 531 * zsmalloc divides the pool into various size classes where each 532 * class maintains a list of zspages where each zspage is divided 533 * into equal sized chunks. Each allocation falls into one of these 534 * classes depending on its size. This function returns index of the 535 * size class which has chunk size big enough to hold the give size. 536 */ 537 static int get_size_class_index(int size) 538 { 539 int idx = 0; 540 541 if (likely(size > ZS_MIN_ALLOC_SIZE)) 542 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 543 ZS_SIZE_CLASS_DELTA); 544 545 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 546 } 547 548 /* type can be of enum type zs_stat_type or fullness_group */ 549 static inline void zs_stat_inc(struct size_class *class, 550 int type, unsigned long cnt) 551 { 552 class->stats.objs[type] += cnt; 553 } 554 555 /* type can be of enum type zs_stat_type or fullness_group */ 556 static inline void zs_stat_dec(struct size_class *class, 557 int type, unsigned long cnt) 558 { 559 class->stats.objs[type] -= cnt; 560 } 561 562 /* type can be of enum type zs_stat_type or fullness_group */ 563 static inline unsigned long zs_stat_get(struct size_class *class, 564 int type) 565 { 566 return class->stats.objs[type]; 567 } 568 569 #ifdef CONFIG_ZSMALLOC_STAT 570 571 static void __init zs_stat_init(void) 572 { 573 if (!debugfs_initialized()) { 574 pr_warn("debugfs not available, stat dir not created\n"); 575 return; 576 } 577 578 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 579 } 580 581 static void __exit zs_stat_exit(void) 582 { 583 debugfs_remove_recursive(zs_stat_root); 584 } 585 586 static unsigned long zs_can_compact(struct size_class *class); 587 588 static int zs_stats_size_show(struct seq_file *s, void *v) 589 { 590 int i; 591 struct zs_pool *pool = s->private; 592 struct size_class *class; 593 int objs_per_zspage; 594 unsigned long class_almost_full, class_almost_empty; 595 unsigned long obj_allocated, obj_used, pages_used, freeable; 596 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 597 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 598 unsigned long total_freeable = 0; 599 600 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 601 "class", "size", "almost_full", "almost_empty", 602 "obj_allocated", "obj_used", "pages_used", 603 "pages_per_zspage", "freeable"); 604 605 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 606 class = pool->size_class[i]; 607 608 if (class->index != i) 609 continue; 610 611 spin_lock(&class->lock); 612 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 613 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 614 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 615 obj_used = zs_stat_get(class, OBJ_USED); 616 freeable = zs_can_compact(class); 617 spin_unlock(&class->lock); 618 619 objs_per_zspage = class->objs_per_zspage; 620 pages_used = obj_allocated / objs_per_zspage * 621 class->pages_per_zspage; 622 623 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 624 " %10lu %10lu %16d %8lu\n", 625 i, class->size, class_almost_full, class_almost_empty, 626 obj_allocated, obj_used, pages_used, 627 class->pages_per_zspage, freeable); 628 629 total_class_almost_full += class_almost_full; 630 total_class_almost_empty += class_almost_empty; 631 total_objs += obj_allocated; 632 total_used_objs += obj_used; 633 total_pages += pages_used; 634 total_freeable += freeable; 635 } 636 637 seq_puts(s, "\n"); 638 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 639 "Total", "", total_class_almost_full, 640 total_class_almost_empty, total_objs, 641 total_used_objs, total_pages, "", total_freeable); 642 643 return 0; 644 } 645 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 646 647 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 648 { 649 if (!zs_stat_root) { 650 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 651 return; 652 } 653 654 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 655 656 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 657 &zs_stats_size_fops); 658 } 659 660 static void zs_pool_stat_destroy(struct zs_pool *pool) 661 { 662 debugfs_remove_recursive(pool->stat_dentry); 663 } 664 665 #else /* CONFIG_ZSMALLOC_STAT */ 666 static void __init zs_stat_init(void) 667 { 668 } 669 670 static void __exit zs_stat_exit(void) 671 { 672 } 673 674 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 675 { 676 } 677 678 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 679 { 680 } 681 #endif 682 683 684 /* 685 * For each size class, zspages are divided into different groups 686 * depending on how "full" they are. This was done so that we could 687 * easily find empty or nearly empty zspages when we try to shrink 688 * the pool (not yet implemented). This function returns fullness 689 * status of the given page. 690 */ 691 static enum fullness_group get_fullness_group(struct size_class *class, 692 struct zspage *zspage) 693 { 694 int inuse, objs_per_zspage; 695 enum fullness_group fg; 696 697 inuse = get_zspage_inuse(zspage); 698 objs_per_zspage = class->objs_per_zspage; 699 700 if (inuse == 0) 701 fg = ZS_EMPTY; 702 else if (inuse == objs_per_zspage) 703 fg = ZS_FULL; 704 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 705 fg = ZS_ALMOST_EMPTY; 706 else 707 fg = ZS_ALMOST_FULL; 708 709 return fg; 710 } 711 712 /* 713 * Each size class maintains various freelists and zspages are assigned 714 * to one of these freelists based on the number of live objects they 715 * have. This functions inserts the given zspage into the freelist 716 * identified by <class, fullness_group>. 717 */ 718 static void insert_zspage(struct size_class *class, 719 struct zspage *zspage, 720 enum fullness_group fullness) 721 { 722 struct zspage *head; 723 724 zs_stat_inc(class, fullness, 1); 725 head = list_first_entry_or_null(&class->fullness_list[fullness], 726 struct zspage, list); 727 /* 728 * We want to see more ZS_FULL pages and less almost empty/full. 729 * Put pages with higher ->inuse first. 730 */ 731 if (head) { 732 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 733 list_add(&zspage->list, &head->list); 734 return; 735 } 736 } 737 list_add(&zspage->list, &class->fullness_list[fullness]); 738 } 739 740 /* 741 * This function removes the given zspage from the freelist identified 742 * by <class, fullness_group>. 743 */ 744 static void remove_zspage(struct size_class *class, 745 struct zspage *zspage, 746 enum fullness_group fullness) 747 { 748 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 749 VM_BUG_ON(is_zspage_isolated(zspage)); 750 751 list_del_init(&zspage->list); 752 zs_stat_dec(class, fullness, 1); 753 } 754 755 /* 756 * Each size class maintains zspages in different fullness groups depending 757 * on the number of live objects they contain. When allocating or freeing 758 * objects, the fullness status of the page can change, say, from ALMOST_FULL 759 * to ALMOST_EMPTY when freeing an object. This function checks if such 760 * a status change has occurred for the given page and accordingly moves the 761 * page from the freelist of the old fullness group to that of the new 762 * fullness group. 763 */ 764 static enum fullness_group fix_fullness_group(struct size_class *class, 765 struct zspage *zspage) 766 { 767 int class_idx; 768 enum fullness_group currfg, newfg; 769 770 get_zspage_mapping(zspage, &class_idx, &currfg); 771 newfg = get_fullness_group(class, zspage); 772 if (newfg == currfg) 773 goto out; 774 775 if (!is_zspage_isolated(zspage)) { 776 remove_zspage(class, zspage, currfg); 777 insert_zspage(class, zspage, newfg); 778 } 779 780 set_zspage_mapping(zspage, class_idx, newfg); 781 782 out: 783 return newfg; 784 } 785 786 /* 787 * We have to decide on how many pages to link together 788 * to form a zspage for each size class. This is important 789 * to reduce wastage due to unusable space left at end of 790 * each zspage which is given as: 791 * wastage = Zp % class_size 792 * usage = Zp - wastage 793 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 794 * 795 * For example, for size class of 3/8 * PAGE_SIZE, we should 796 * link together 3 PAGE_SIZE sized pages to form a zspage 797 * since then we can perfectly fit in 8 such objects. 798 */ 799 static int get_pages_per_zspage(int class_size) 800 { 801 int i, max_usedpc = 0; 802 /* zspage order which gives maximum used size per KB */ 803 int max_usedpc_order = 1; 804 805 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 806 int zspage_size; 807 int waste, usedpc; 808 809 zspage_size = i * PAGE_SIZE; 810 waste = zspage_size % class_size; 811 usedpc = (zspage_size - waste) * 100 / zspage_size; 812 813 if (usedpc > max_usedpc) { 814 max_usedpc = usedpc; 815 max_usedpc_order = i; 816 } 817 } 818 819 return max_usedpc_order; 820 } 821 822 static struct zspage *get_zspage(struct page *page) 823 { 824 struct zspage *zspage = (struct zspage *)page->private; 825 826 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 827 return zspage; 828 } 829 830 static struct page *get_next_page(struct page *page) 831 { 832 if (unlikely(PageHugeObject(page))) 833 return NULL; 834 835 return page->freelist; 836 } 837 838 /** 839 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 840 * @obj: the encoded object value 841 * @page: page object resides in zspage 842 * @obj_idx: object index 843 */ 844 static void obj_to_location(unsigned long obj, struct page **page, 845 unsigned int *obj_idx) 846 { 847 obj >>= OBJ_TAG_BITS; 848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 849 *obj_idx = (obj & OBJ_INDEX_MASK); 850 } 851 852 /** 853 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 854 * @page: page object resides in zspage 855 * @obj_idx: object index 856 */ 857 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 858 { 859 unsigned long obj; 860 861 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 862 obj |= obj_idx & OBJ_INDEX_MASK; 863 obj <<= OBJ_TAG_BITS; 864 865 return obj; 866 } 867 868 static unsigned long handle_to_obj(unsigned long handle) 869 { 870 return *(unsigned long *)handle; 871 } 872 873 static unsigned long obj_to_head(struct page *page, void *obj) 874 { 875 if (unlikely(PageHugeObject(page))) { 876 VM_BUG_ON_PAGE(!is_first_page(page), page); 877 return page->index; 878 } else 879 return *(unsigned long *)obj; 880 } 881 882 static inline int testpin_tag(unsigned long handle) 883 { 884 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 885 } 886 887 static inline int trypin_tag(unsigned long handle) 888 { 889 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 890 } 891 892 static void pin_tag(unsigned long handle) 893 { 894 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 895 } 896 897 static void unpin_tag(unsigned long handle) 898 { 899 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 900 } 901 902 static void reset_page(struct page *page) 903 { 904 __ClearPageMovable(page); 905 ClearPagePrivate(page); 906 set_page_private(page, 0); 907 page_mapcount_reset(page); 908 ClearPageHugeObject(page); 909 page->freelist = NULL; 910 } 911 912 static int trylock_zspage(struct zspage *zspage) 913 { 914 struct page *cursor, *fail; 915 916 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 917 get_next_page(cursor)) { 918 if (!trylock_page(cursor)) { 919 fail = cursor; 920 goto unlock; 921 } 922 } 923 924 return 1; 925 unlock: 926 for (cursor = get_first_page(zspage); cursor != fail; cursor = 927 get_next_page(cursor)) 928 unlock_page(cursor); 929 930 return 0; 931 } 932 933 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 934 struct zspage *zspage) 935 { 936 struct page *page, *next; 937 enum fullness_group fg; 938 unsigned int class_idx; 939 940 get_zspage_mapping(zspage, &class_idx, &fg); 941 942 assert_spin_locked(&class->lock); 943 944 VM_BUG_ON(get_zspage_inuse(zspage)); 945 VM_BUG_ON(fg != ZS_EMPTY); 946 947 next = page = get_first_page(zspage); 948 do { 949 VM_BUG_ON_PAGE(!PageLocked(page), page); 950 next = get_next_page(page); 951 reset_page(page); 952 unlock_page(page); 953 dec_zone_page_state(page, NR_ZSPAGES); 954 put_page(page); 955 page = next; 956 } while (page != NULL); 957 958 cache_free_zspage(pool, zspage); 959 960 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 961 atomic_long_sub(class->pages_per_zspage, 962 &pool->pages_allocated); 963 } 964 965 static void free_zspage(struct zs_pool *pool, struct size_class *class, 966 struct zspage *zspage) 967 { 968 VM_BUG_ON(get_zspage_inuse(zspage)); 969 VM_BUG_ON(list_empty(&zspage->list)); 970 971 if (!trylock_zspage(zspage)) { 972 kick_deferred_free(pool); 973 return; 974 } 975 976 remove_zspage(class, zspage, ZS_EMPTY); 977 __free_zspage(pool, class, zspage); 978 } 979 980 /* Initialize a newly allocated zspage */ 981 static void init_zspage(struct size_class *class, struct zspage *zspage) 982 { 983 unsigned int freeobj = 1; 984 unsigned long off = 0; 985 struct page *page = get_first_page(zspage); 986 987 while (page) { 988 struct page *next_page; 989 struct link_free *link; 990 void *vaddr; 991 992 set_first_obj_offset(page, off); 993 994 vaddr = kmap_atomic(page); 995 link = (struct link_free *)vaddr + off / sizeof(*link); 996 997 while ((off += class->size) < PAGE_SIZE) { 998 link->next = freeobj++ << OBJ_TAG_BITS; 999 link += class->size / sizeof(*link); 1000 } 1001 1002 /* 1003 * We now come to the last (full or partial) object on this 1004 * page, which must point to the first object on the next 1005 * page (if present) 1006 */ 1007 next_page = get_next_page(page); 1008 if (next_page) { 1009 link->next = freeobj++ << OBJ_TAG_BITS; 1010 } else { 1011 /* 1012 * Reset OBJ_TAG_BITS bit to last link to tell 1013 * whether it's allocated object or not. 1014 */ 1015 link->next = -1UL << OBJ_TAG_BITS; 1016 } 1017 kunmap_atomic(vaddr); 1018 page = next_page; 1019 off %= PAGE_SIZE; 1020 } 1021 1022 set_freeobj(zspage, 0); 1023 } 1024 1025 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1026 struct page *pages[]) 1027 { 1028 int i; 1029 struct page *page; 1030 struct page *prev_page = NULL; 1031 int nr_pages = class->pages_per_zspage; 1032 1033 /* 1034 * Allocate individual pages and link them together as: 1035 * 1. all pages are linked together using page->freelist 1036 * 2. each sub-page point to zspage using page->private 1037 * 1038 * we set PG_private to identify the first page (i.e. no other sub-page 1039 * has this flag set). 1040 */ 1041 for (i = 0; i < nr_pages; i++) { 1042 page = pages[i]; 1043 set_page_private(page, (unsigned long)zspage); 1044 page->freelist = NULL; 1045 if (i == 0) { 1046 zspage->first_page = page; 1047 SetPagePrivate(page); 1048 if (unlikely(class->objs_per_zspage == 1 && 1049 class->pages_per_zspage == 1)) 1050 SetPageHugeObject(page); 1051 } else { 1052 prev_page->freelist = page; 1053 } 1054 prev_page = page; 1055 } 1056 } 1057 1058 /* 1059 * Allocate a zspage for the given size class 1060 */ 1061 static struct zspage *alloc_zspage(struct zs_pool *pool, 1062 struct size_class *class, 1063 gfp_t gfp) 1064 { 1065 int i; 1066 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1067 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1068 1069 if (!zspage) 1070 return NULL; 1071 1072 memset(zspage, 0, sizeof(struct zspage)); 1073 zspage->magic = ZSPAGE_MAGIC; 1074 migrate_lock_init(zspage); 1075 1076 for (i = 0; i < class->pages_per_zspage; i++) { 1077 struct page *page; 1078 1079 page = alloc_page(gfp); 1080 if (!page) { 1081 while (--i >= 0) { 1082 dec_zone_page_state(pages[i], NR_ZSPAGES); 1083 __free_page(pages[i]); 1084 } 1085 cache_free_zspage(pool, zspage); 1086 return NULL; 1087 } 1088 1089 inc_zone_page_state(page, NR_ZSPAGES); 1090 pages[i] = page; 1091 } 1092 1093 create_page_chain(class, zspage, pages); 1094 init_zspage(class, zspage); 1095 1096 return zspage; 1097 } 1098 1099 static struct zspage *find_get_zspage(struct size_class *class) 1100 { 1101 int i; 1102 struct zspage *zspage; 1103 1104 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1105 zspage = list_first_entry_or_null(&class->fullness_list[i], 1106 struct zspage, list); 1107 if (zspage) 1108 break; 1109 } 1110 1111 return zspage; 1112 } 1113 1114 #ifdef CONFIG_PGTABLE_MAPPING 1115 static inline int __zs_cpu_up(struct mapping_area *area) 1116 { 1117 /* 1118 * Make sure we don't leak memory if a cpu UP notification 1119 * and zs_init() race and both call zs_cpu_up() on the same cpu 1120 */ 1121 if (area->vm) 1122 return 0; 1123 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1124 if (!area->vm) 1125 return -ENOMEM; 1126 return 0; 1127 } 1128 1129 static inline void __zs_cpu_down(struct mapping_area *area) 1130 { 1131 if (area->vm) 1132 free_vm_area(area->vm); 1133 area->vm = NULL; 1134 } 1135 1136 static inline void *__zs_map_object(struct mapping_area *area, 1137 struct page *pages[2], int off, int size) 1138 { 1139 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1140 area->vm_addr = area->vm->addr; 1141 return area->vm_addr + off; 1142 } 1143 1144 static inline void __zs_unmap_object(struct mapping_area *area, 1145 struct page *pages[2], int off, int size) 1146 { 1147 unsigned long addr = (unsigned long)area->vm_addr; 1148 1149 unmap_kernel_range(addr, PAGE_SIZE * 2); 1150 } 1151 1152 #else /* CONFIG_PGTABLE_MAPPING */ 1153 1154 static inline int __zs_cpu_up(struct mapping_area *area) 1155 { 1156 /* 1157 * Make sure we don't leak memory if a cpu UP notification 1158 * and zs_init() race and both call zs_cpu_up() on the same cpu 1159 */ 1160 if (area->vm_buf) 1161 return 0; 1162 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1163 if (!area->vm_buf) 1164 return -ENOMEM; 1165 return 0; 1166 } 1167 1168 static inline void __zs_cpu_down(struct mapping_area *area) 1169 { 1170 kfree(area->vm_buf); 1171 area->vm_buf = NULL; 1172 } 1173 1174 static void *__zs_map_object(struct mapping_area *area, 1175 struct page *pages[2], int off, int size) 1176 { 1177 int sizes[2]; 1178 void *addr; 1179 char *buf = area->vm_buf; 1180 1181 /* disable page faults to match kmap_atomic() return conditions */ 1182 pagefault_disable(); 1183 1184 /* no read fastpath */ 1185 if (area->vm_mm == ZS_MM_WO) 1186 goto out; 1187 1188 sizes[0] = PAGE_SIZE - off; 1189 sizes[1] = size - sizes[0]; 1190 1191 /* copy object to per-cpu buffer */ 1192 addr = kmap_atomic(pages[0]); 1193 memcpy(buf, addr + off, sizes[0]); 1194 kunmap_atomic(addr); 1195 addr = kmap_atomic(pages[1]); 1196 memcpy(buf + sizes[0], addr, sizes[1]); 1197 kunmap_atomic(addr); 1198 out: 1199 return area->vm_buf; 1200 } 1201 1202 static void __zs_unmap_object(struct mapping_area *area, 1203 struct page *pages[2], int off, int size) 1204 { 1205 int sizes[2]; 1206 void *addr; 1207 char *buf; 1208 1209 /* no write fastpath */ 1210 if (area->vm_mm == ZS_MM_RO) 1211 goto out; 1212 1213 buf = area->vm_buf; 1214 buf = buf + ZS_HANDLE_SIZE; 1215 size -= ZS_HANDLE_SIZE; 1216 off += ZS_HANDLE_SIZE; 1217 1218 sizes[0] = PAGE_SIZE - off; 1219 sizes[1] = size - sizes[0]; 1220 1221 /* copy per-cpu buffer to object */ 1222 addr = kmap_atomic(pages[0]); 1223 memcpy(addr + off, buf, sizes[0]); 1224 kunmap_atomic(addr); 1225 addr = kmap_atomic(pages[1]); 1226 memcpy(addr, buf + sizes[0], sizes[1]); 1227 kunmap_atomic(addr); 1228 1229 out: 1230 /* enable page faults to match kunmap_atomic() return conditions */ 1231 pagefault_enable(); 1232 } 1233 1234 #endif /* CONFIG_PGTABLE_MAPPING */ 1235 1236 static int zs_cpu_prepare(unsigned int cpu) 1237 { 1238 struct mapping_area *area; 1239 1240 area = &per_cpu(zs_map_area, cpu); 1241 return __zs_cpu_up(area); 1242 } 1243 1244 static int zs_cpu_dead(unsigned int cpu) 1245 { 1246 struct mapping_area *area; 1247 1248 area = &per_cpu(zs_map_area, cpu); 1249 __zs_cpu_down(area); 1250 return 0; 1251 } 1252 1253 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1254 int objs_per_zspage) 1255 { 1256 if (prev->pages_per_zspage == pages_per_zspage && 1257 prev->objs_per_zspage == objs_per_zspage) 1258 return true; 1259 1260 return false; 1261 } 1262 1263 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1264 { 1265 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1266 } 1267 1268 unsigned long zs_get_total_pages(struct zs_pool *pool) 1269 { 1270 return atomic_long_read(&pool->pages_allocated); 1271 } 1272 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1273 1274 /** 1275 * zs_map_object - get address of allocated object from handle. 1276 * @pool: pool from which the object was allocated 1277 * @handle: handle returned from zs_malloc 1278 * @mm: maping mode to use 1279 * 1280 * Before using an object allocated from zs_malloc, it must be mapped using 1281 * this function. When done with the object, it must be unmapped using 1282 * zs_unmap_object. 1283 * 1284 * Only one object can be mapped per cpu at a time. There is no protection 1285 * against nested mappings. 1286 * 1287 * This function returns with preemption and page faults disabled. 1288 */ 1289 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1290 enum zs_mapmode mm) 1291 { 1292 struct zspage *zspage; 1293 struct page *page; 1294 unsigned long obj, off; 1295 unsigned int obj_idx; 1296 1297 unsigned int class_idx; 1298 enum fullness_group fg; 1299 struct size_class *class; 1300 struct mapping_area *area; 1301 struct page *pages[2]; 1302 void *ret; 1303 1304 /* 1305 * Because we use per-cpu mapping areas shared among the 1306 * pools/users, we can't allow mapping in interrupt context 1307 * because it can corrupt another users mappings. 1308 */ 1309 BUG_ON(in_interrupt()); 1310 1311 /* From now on, migration cannot move the object */ 1312 pin_tag(handle); 1313 1314 obj = handle_to_obj(handle); 1315 obj_to_location(obj, &page, &obj_idx); 1316 zspage = get_zspage(page); 1317 1318 /* migration cannot move any subpage in this zspage */ 1319 migrate_read_lock(zspage); 1320 1321 get_zspage_mapping(zspage, &class_idx, &fg); 1322 class = pool->size_class[class_idx]; 1323 off = (class->size * obj_idx) & ~PAGE_MASK; 1324 1325 area = &get_cpu_var(zs_map_area); 1326 area->vm_mm = mm; 1327 if (off + class->size <= PAGE_SIZE) { 1328 /* this object is contained entirely within a page */ 1329 area->vm_addr = kmap_atomic(page); 1330 ret = area->vm_addr + off; 1331 goto out; 1332 } 1333 1334 /* this object spans two pages */ 1335 pages[0] = page; 1336 pages[1] = get_next_page(page); 1337 BUG_ON(!pages[1]); 1338 1339 ret = __zs_map_object(area, pages, off, class->size); 1340 out: 1341 if (likely(!PageHugeObject(page))) 1342 ret += ZS_HANDLE_SIZE; 1343 1344 return ret; 1345 } 1346 EXPORT_SYMBOL_GPL(zs_map_object); 1347 1348 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1349 { 1350 struct zspage *zspage; 1351 struct page *page; 1352 unsigned long obj, off; 1353 unsigned int obj_idx; 1354 1355 unsigned int class_idx; 1356 enum fullness_group fg; 1357 struct size_class *class; 1358 struct mapping_area *area; 1359 1360 obj = handle_to_obj(handle); 1361 obj_to_location(obj, &page, &obj_idx); 1362 zspage = get_zspage(page); 1363 get_zspage_mapping(zspage, &class_idx, &fg); 1364 class = pool->size_class[class_idx]; 1365 off = (class->size * obj_idx) & ~PAGE_MASK; 1366 1367 area = this_cpu_ptr(&zs_map_area); 1368 if (off + class->size <= PAGE_SIZE) 1369 kunmap_atomic(area->vm_addr); 1370 else { 1371 struct page *pages[2]; 1372 1373 pages[0] = page; 1374 pages[1] = get_next_page(page); 1375 BUG_ON(!pages[1]); 1376 1377 __zs_unmap_object(area, pages, off, class->size); 1378 } 1379 put_cpu_var(zs_map_area); 1380 1381 migrate_read_unlock(zspage); 1382 unpin_tag(handle); 1383 } 1384 EXPORT_SYMBOL_GPL(zs_unmap_object); 1385 1386 /** 1387 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1388 * zsmalloc &size_class. 1389 * @pool: zsmalloc pool to use 1390 * 1391 * The function returns the size of the first huge class - any object of equal 1392 * or bigger size will be stored in zspage consisting of a single physical 1393 * page. 1394 * 1395 * Context: Any context. 1396 * 1397 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1398 */ 1399 size_t zs_huge_class_size(struct zs_pool *pool) 1400 { 1401 return huge_class_size; 1402 } 1403 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1404 1405 static unsigned long obj_malloc(struct size_class *class, 1406 struct zspage *zspage, unsigned long handle) 1407 { 1408 int i, nr_page, offset; 1409 unsigned long obj; 1410 struct link_free *link; 1411 1412 struct page *m_page; 1413 unsigned long m_offset; 1414 void *vaddr; 1415 1416 handle |= OBJ_ALLOCATED_TAG; 1417 obj = get_freeobj(zspage); 1418 1419 offset = obj * class->size; 1420 nr_page = offset >> PAGE_SHIFT; 1421 m_offset = offset & ~PAGE_MASK; 1422 m_page = get_first_page(zspage); 1423 1424 for (i = 0; i < nr_page; i++) 1425 m_page = get_next_page(m_page); 1426 1427 vaddr = kmap_atomic(m_page); 1428 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1429 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1430 if (likely(!PageHugeObject(m_page))) 1431 /* record handle in the header of allocated chunk */ 1432 link->handle = handle; 1433 else 1434 /* record handle to page->index */ 1435 zspage->first_page->index = handle; 1436 1437 kunmap_atomic(vaddr); 1438 mod_zspage_inuse(zspage, 1); 1439 zs_stat_inc(class, OBJ_USED, 1); 1440 1441 obj = location_to_obj(m_page, obj); 1442 1443 return obj; 1444 } 1445 1446 1447 /** 1448 * zs_malloc - Allocate block of given size from pool. 1449 * @pool: pool to allocate from 1450 * @size: size of block to allocate 1451 * @gfp: gfp flags when allocating object 1452 * 1453 * On success, handle to the allocated object is returned, 1454 * otherwise 0. 1455 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1456 */ 1457 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1458 { 1459 unsigned long handle, obj; 1460 struct size_class *class; 1461 enum fullness_group newfg; 1462 struct zspage *zspage; 1463 1464 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1465 return 0; 1466 1467 handle = cache_alloc_handle(pool, gfp); 1468 if (!handle) 1469 return 0; 1470 1471 /* extra space in chunk to keep the handle */ 1472 size += ZS_HANDLE_SIZE; 1473 class = pool->size_class[get_size_class_index(size)]; 1474 1475 spin_lock(&class->lock); 1476 zspage = find_get_zspage(class); 1477 if (likely(zspage)) { 1478 obj = obj_malloc(class, zspage, handle); 1479 /* Now move the zspage to another fullness group, if required */ 1480 fix_fullness_group(class, zspage); 1481 record_obj(handle, obj); 1482 spin_unlock(&class->lock); 1483 1484 return handle; 1485 } 1486 1487 spin_unlock(&class->lock); 1488 1489 zspage = alloc_zspage(pool, class, gfp); 1490 if (!zspage) { 1491 cache_free_handle(pool, handle); 1492 return 0; 1493 } 1494 1495 spin_lock(&class->lock); 1496 obj = obj_malloc(class, zspage, handle); 1497 newfg = get_fullness_group(class, zspage); 1498 insert_zspage(class, zspage, newfg); 1499 set_zspage_mapping(zspage, class->index, newfg); 1500 record_obj(handle, obj); 1501 atomic_long_add(class->pages_per_zspage, 1502 &pool->pages_allocated); 1503 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1504 1505 /* We completely set up zspage so mark them as movable */ 1506 SetZsPageMovable(pool, zspage); 1507 spin_unlock(&class->lock); 1508 1509 return handle; 1510 } 1511 EXPORT_SYMBOL_GPL(zs_malloc); 1512 1513 static void obj_free(struct size_class *class, unsigned long obj) 1514 { 1515 struct link_free *link; 1516 struct zspage *zspage; 1517 struct page *f_page; 1518 unsigned long f_offset; 1519 unsigned int f_objidx; 1520 void *vaddr; 1521 1522 obj &= ~OBJ_ALLOCATED_TAG; 1523 obj_to_location(obj, &f_page, &f_objidx); 1524 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1525 zspage = get_zspage(f_page); 1526 1527 vaddr = kmap_atomic(f_page); 1528 1529 /* Insert this object in containing zspage's freelist */ 1530 link = (struct link_free *)(vaddr + f_offset); 1531 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1532 kunmap_atomic(vaddr); 1533 set_freeobj(zspage, f_objidx); 1534 mod_zspage_inuse(zspage, -1); 1535 zs_stat_dec(class, OBJ_USED, 1); 1536 } 1537 1538 void zs_free(struct zs_pool *pool, unsigned long handle) 1539 { 1540 struct zspage *zspage; 1541 struct page *f_page; 1542 unsigned long obj; 1543 unsigned int f_objidx; 1544 int class_idx; 1545 struct size_class *class; 1546 enum fullness_group fullness; 1547 bool isolated; 1548 1549 if (unlikely(!handle)) 1550 return; 1551 1552 pin_tag(handle); 1553 obj = handle_to_obj(handle); 1554 obj_to_location(obj, &f_page, &f_objidx); 1555 zspage = get_zspage(f_page); 1556 1557 migrate_read_lock(zspage); 1558 1559 get_zspage_mapping(zspage, &class_idx, &fullness); 1560 class = pool->size_class[class_idx]; 1561 1562 spin_lock(&class->lock); 1563 obj_free(class, obj); 1564 fullness = fix_fullness_group(class, zspage); 1565 if (fullness != ZS_EMPTY) { 1566 migrate_read_unlock(zspage); 1567 goto out; 1568 } 1569 1570 isolated = is_zspage_isolated(zspage); 1571 migrate_read_unlock(zspage); 1572 /* If zspage is isolated, zs_page_putback will free the zspage */ 1573 if (likely(!isolated)) 1574 free_zspage(pool, class, zspage); 1575 out: 1576 1577 spin_unlock(&class->lock); 1578 unpin_tag(handle); 1579 cache_free_handle(pool, handle); 1580 } 1581 EXPORT_SYMBOL_GPL(zs_free); 1582 1583 static void zs_object_copy(struct size_class *class, unsigned long dst, 1584 unsigned long src) 1585 { 1586 struct page *s_page, *d_page; 1587 unsigned int s_objidx, d_objidx; 1588 unsigned long s_off, d_off; 1589 void *s_addr, *d_addr; 1590 int s_size, d_size, size; 1591 int written = 0; 1592 1593 s_size = d_size = class->size; 1594 1595 obj_to_location(src, &s_page, &s_objidx); 1596 obj_to_location(dst, &d_page, &d_objidx); 1597 1598 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1599 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1600 1601 if (s_off + class->size > PAGE_SIZE) 1602 s_size = PAGE_SIZE - s_off; 1603 1604 if (d_off + class->size > PAGE_SIZE) 1605 d_size = PAGE_SIZE - d_off; 1606 1607 s_addr = kmap_atomic(s_page); 1608 d_addr = kmap_atomic(d_page); 1609 1610 while (1) { 1611 size = min(s_size, d_size); 1612 memcpy(d_addr + d_off, s_addr + s_off, size); 1613 written += size; 1614 1615 if (written == class->size) 1616 break; 1617 1618 s_off += size; 1619 s_size -= size; 1620 d_off += size; 1621 d_size -= size; 1622 1623 if (s_off >= PAGE_SIZE) { 1624 kunmap_atomic(d_addr); 1625 kunmap_atomic(s_addr); 1626 s_page = get_next_page(s_page); 1627 s_addr = kmap_atomic(s_page); 1628 d_addr = kmap_atomic(d_page); 1629 s_size = class->size - written; 1630 s_off = 0; 1631 } 1632 1633 if (d_off >= PAGE_SIZE) { 1634 kunmap_atomic(d_addr); 1635 d_page = get_next_page(d_page); 1636 d_addr = kmap_atomic(d_page); 1637 d_size = class->size - written; 1638 d_off = 0; 1639 } 1640 } 1641 1642 kunmap_atomic(d_addr); 1643 kunmap_atomic(s_addr); 1644 } 1645 1646 /* 1647 * Find alloced object in zspage from index object and 1648 * return handle. 1649 */ 1650 static unsigned long find_alloced_obj(struct size_class *class, 1651 struct page *page, int *obj_idx) 1652 { 1653 unsigned long head; 1654 int offset = 0; 1655 int index = *obj_idx; 1656 unsigned long handle = 0; 1657 void *addr = kmap_atomic(page); 1658 1659 offset = get_first_obj_offset(page); 1660 offset += class->size * index; 1661 1662 while (offset < PAGE_SIZE) { 1663 head = obj_to_head(page, addr + offset); 1664 if (head & OBJ_ALLOCATED_TAG) { 1665 handle = head & ~OBJ_ALLOCATED_TAG; 1666 if (trypin_tag(handle)) 1667 break; 1668 handle = 0; 1669 } 1670 1671 offset += class->size; 1672 index++; 1673 } 1674 1675 kunmap_atomic(addr); 1676 1677 *obj_idx = index; 1678 1679 return handle; 1680 } 1681 1682 struct zs_compact_control { 1683 /* Source spage for migration which could be a subpage of zspage */ 1684 struct page *s_page; 1685 /* Destination page for migration which should be a first page 1686 * of zspage. */ 1687 struct page *d_page; 1688 /* Starting object index within @s_page which used for live object 1689 * in the subpage. */ 1690 int obj_idx; 1691 }; 1692 1693 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1694 struct zs_compact_control *cc) 1695 { 1696 unsigned long used_obj, free_obj; 1697 unsigned long handle; 1698 struct page *s_page = cc->s_page; 1699 struct page *d_page = cc->d_page; 1700 int obj_idx = cc->obj_idx; 1701 int ret = 0; 1702 1703 while (1) { 1704 handle = find_alloced_obj(class, s_page, &obj_idx); 1705 if (!handle) { 1706 s_page = get_next_page(s_page); 1707 if (!s_page) 1708 break; 1709 obj_idx = 0; 1710 continue; 1711 } 1712 1713 /* Stop if there is no more space */ 1714 if (zspage_full(class, get_zspage(d_page))) { 1715 unpin_tag(handle); 1716 ret = -ENOMEM; 1717 break; 1718 } 1719 1720 used_obj = handle_to_obj(handle); 1721 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1722 zs_object_copy(class, free_obj, used_obj); 1723 obj_idx++; 1724 /* 1725 * record_obj updates handle's value to free_obj and it will 1726 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1727 * breaks synchronization using pin_tag(e,g, zs_free) so 1728 * let's keep the lock bit. 1729 */ 1730 free_obj |= BIT(HANDLE_PIN_BIT); 1731 record_obj(handle, free_obj); 1732 unpin_tag(handle); 1733 obj_free(class, used_obj); 1734 } 1735 1736 /* Remember last position in this iteration */ 1737 cc->s_page = s_page; 1738 cc->obj_idx = obj_idx; 1739 1740 return ret; 1741 } 1742 1743 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1744 { 1745 int i; 1746 struct zspage *zspage; 1747 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1748 1749 if (!source) { 1750 fg[0] = ZS_ALMOST_FULL; 1751 fg[1] = ZS_ALMOST_EMPTY; 1752 } 1753 1754 for (i = 0; i < 2; i++) { 1755 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1756 struct zspage, list); 1757 if (zspage) { 1758 VM_BUG_ON(is_zspage_isolated(zspage)); 1759 remove_zspage(class, zspage, fg[i]); 1760 return zspage; 1761 } 1762 } 1763 1764 return zspage; 1765 } 1766 1767 /* 1768 * putback_zspage - add @zspage into right class's fullness list 1769 * @class: destination class 1770 * @zspage: target page 1771 * 1772 * Return @zspage's fullness_group 1773 */ 1774 static enum fullness_group putback_zspage(struct size_class *class, 1775 struct zspage *zspage) 1776 { 1777 enum fullness_group fullness; 1778 1779 VM_BUG_ON(is_zspage_isolated(zspage)); 1780 1781 fullness = get_fullness_group(class, zspage); 1782 insert_zspage(class, zspage, fullness); 1783 set_zspage_mapping(zspage, class->index, fullness); 1784 1785 return fullness; 1786 } 1787 1788 #ifdef CONFIG_COMPACTION 1789 /* 1790 * To prevent zspage destroy during migration, zspage freeing should 1791 * hold locks of all pages in the zspage. 1792 */ 1793 static void lock_zspage(struct zspage *zspage) 1794 { 1795 struct page *page = get_first_page(zspage); 1796 1797 do { 1798 lock_page(page); 1799 } while ((page = get_next_page(page)) != NULL); 1800 } 1801 1802 static int zs_init_fs_context(struct fs_context *fc) 1803 { 1804 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1805 } 1806 1807 static struct file_system_type zsmalloc_fs = { 1808 .name = "zsmalloc", 1809 .init_fs_context = zs_init_fs_context, 1810 .kill_sb = kill_anon_super, 1811 }; 1812 1813 static int zsmalloc_mount(void) 1814 { 1815 int ret = 0; 1816 1817 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1818 if (IS_ERR(zsmalloc_mnt)) 1819 ret = PTR_ERR(zsmalloc_mnt); 1820 1821 return ret; 1822 } 1823 1824 static void zsmalloc_unmount(void) 1825 { 1826 kern_unmount(zsmalloc_mnt); 1827 } 1828 1829 static void migrate_lock_init(struct zspage *zspage) 1830 { 1831 rwlock_init(&zspage->lock); 1832 } 1833 1834 static void migrate_read_lock(struct zspage *zspage) 1835 { 1836 read_lock(&zspage->lock); 1837 } 1838 1839 static void migrate_read_unlock(struct zspage *zspage) 1840 { 1841 read_unlock(&zspage->lock); 1842 } 1843 1844 static void migrate_write_lock(struct zspage *zspage) 1845 { 1846 write_lock(&zspage->lock); 1847 } 1848 1849 static void migrate_write_unlock(struct zspage *zspage) 1850 { 1851 write_unlock(&zspage->lock); 1852 } 1853 1854 /* Number of isolated subpage for *page migration* in this zspage */ 1855 static void inc_zspage_isolation(struct zspage *zspage) 1856 { 1857 zspage->isolated++; 1858 } 1859 1860 static void dec_zspage_isolation(struct zspage *zspage) 1861 { 1862 zspage->isolated--; 1863 } 1864 1865 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1866 struct page *newpage, struct page *oldpage) 1867 { 1868 struct page *page; 1869 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1870 int idx = 0; 1871 1872 page = get_first_page(zspage); 1873 do { 1874 if (page == oldpage) 1875 pages[idx] = newpage; 1876 else 1877 pages[idx] = page; 1878 idx++; 1879 } while ((page = get_next_page(page)) != NULL); 1880 1881 create_page_chain(class, zspage, pages); 1882 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1883 if (unlikely(PageHugeObject(oldpage))) 1884 newpage->index = oldpage->index; 1885 __SetPageMovable(newpage, page_mapping(oldpage)); 1886 } 1887 1888 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1889 { 1890 struct zs_pool *pool; 1891 struct size_class *class; 1892 int class_idx; 1893 enum fullness_group fullness; 1894 struct zspage *zspage; 1895 struct address_space *mapping; 1896 1897 /* 1898 * Page is locked so zspage couldn't be destroyed. For detail, look at 1899 * lock_zspage in free_zspage. 1900 */ 1901 VM_BUG_ON_PAGE(!PageMovable(page), page); 1902 VM_BUG_ON_PAGE(PageIsolated(page), page); 1903 1904 zspage = get_zspage(page); 1905 1906 /* 1907 * Without class lock, fullness could be stale while class_idx is okay 1908 * because class_idx is constant unless page is freed so we should get 1909 * fullness again under class lock. 1910 */ 1911 get_zspage_mapping(zspage, &class_idx, &fullness); 1912 mapping = page_mapping(page); 1913 pool = mapping->private_data; 1914 class = pool->size_class[class_idx]; 1915 1916 spin_lock(&class->lock); 1917 if (get_zspage_inuse(zspage) == 0) { 1918 spin_unlock(&class->lock); 1919 return false; 1920 } 1921 1922 /* zspage is isolated for object migration */ 1923 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1924 spin_unlock(&class->lock); 1925 return false; 1926 } 1927 1928 /* 1929 * If this is first time isolation for the zspage, isolate zspage from 1930 * size_class to prevent further object allocation from the zspage. 1931 */ 1932 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1933 get_zspage_mapping(zspage, &class_idx, &fullness); 1934 remove_zspage(class, zspage, fullness); 1935 } 1936 1937 inc_zspage_isolation(zspage); 1938 spin_unlock(&class->lock); 1939 1940 return true; 1941 } 1942 1943 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1944 struct page *page, enum migrate_mode mode) 1945 { 1946 struct zs_pool *pool; 1947 struct size_class *class; 1948 int class_idx; 1949 enum fullness_group fullness; 1950 struct zspage *zspage; 1951 struct page *dummy; 1952 void *s_addr, *d_addr, *addr; 1953 int offset, pos; 1954 unsigned long handle, head; 1955 unsigned long old_obj, new_obj; 1956 unsigned int obj_idx; 1957 int ret = -EAGAIN; 1958 1959 /* 1960 * We cannot support the _NO_COPY case here, because copy needs to 1961 * happen under the zs lock, which does not work with 1962 * MIGRATE_SYNC_NO_COPY workflow. 1963 */ 1964 if (mode == MIGRATE_SYNC_NO_COPY) 1965 return -EINVAL; 1966 1967 VM_BUG_ON_PAGE(!PageMovable(page), page); 1968 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1969 1970 zspage = get_zspage(page); 1971 1972 /* Concurrent compactor cannot migrate any subpage in zspage */ 1973 migrate_write_lock(zspage); 1974 get_zspage_mapping(zspage, &class_idx, &fullness); 1975 pool = mapping->private_data; 1976 class = pool->size_class[class_idx]; 1977 offset = get_first_obj_offset(page); 1978 1979 spin_lock(&class->lock); 1980 if (!get_zspage_inuse(zspage)) { 1981 /* 1982 * Set "offset" to end of the page so that every loops 1983 * skips unnecessary object scanning. 1984 */ 1985 offset = PAGE_SIZE; 1986 } 1987 1988 pos = offset; 1989 s_addr = kmap_atomic(page); 1990 while (pos < PAGE_SIZE) { 1991 head = obj_to_head(page, s_addr + pos); 1992 if (head & OBJ_ALLOCATED_TAG) { 1993 handle = head & ~OBJ_ALLOCATED_TAG; 1994 if (!trypin_tag(handle)) 1995 goto unpin_objects; 1996 } 1997 pos += class->size; 1998 } 1999 2000 /* 2001 * Here, any user cannot access all objects in the zspage so let's move. 2002 */ 2003 d_addr = kmap_atomic(newpage); 2004 memcpy(d_addr, s_addr, PAGE_SIZE); 2005 kunmap_atomic(d_addr); 2006 2007 for (addr = s_addr + offset; addr < s_addr + pos; 2008 addr += class->size) { 2009 head = obj_to_head(page, addr); 2010 if (head & OBJ_ALLOCATED_TAG) { 2011 handle = head & ~OBJ_ALLOCATED_TAG; 2012 if (!testpin_tag(handle)) 2013 BUG(); 2014 2015 old_obj = handle_to_obj(handle); 2016 obj_to_location(old_obj, &dummy, &obj_idx); 2017 new_obj = (unsigned long)location_to_obj(newpage, 2018 obj_idx); 2019 new_obj |= BIT(HANDLE_PIN_BIT); 2020 record_obj(handle, new_obj); 2021 } 2022 } 2023 2024 replace_sub_page(class, zspage, newpage, page); 2025 get_page(newpage); 2026 2027 dec_zspage_isolation(zspage); 2028 2029 /* 2030 * Page migration is done so let's putback isolated zspage to 2031 * the list if @page is final isolated subpage in the zspage. 2032 */ 2033 if (!is_zspage_isolated(zspage)) 2034 putback_zspage(class, zspage); 2035 2036 reset_page(page); 2037 put_page(page); 2038 page = newpage; 2039 2040 ret = MIGRATEPAGE_SUCCESS; 2041 unpin_objects: 2042 for (addr = s_addr + offset; addr < s_addr + pos; 2043 addr += class->size) { 2044 head = obj_to_head(page, addr); 2045 if (head & OBJ_ALLOCATED_TAG) { 2046 handle = head & ~OBJ_ALLOCATED_TAG; 2047 if (!testpin_tag(handle)) 2048 BUG(); 2049 unpin_tag(handle); 2050 } 2051 } 2052 kunmap_atomic(s_addr); 2053 spin_unlock(&class->lock); 2054 migrate_write_unlock(zspage); 2055 2056 return ret; 2057 } 2058 2059 static void zs_page_putback(struct page *page) 2060 { 2061 struct zs_pool *pool; 2062 struct size_class *class; 2063 int class_idx; 2064 enum fullness_group fg; 2065 struct address_space *mapping; 2066 struct zspage *zspage; 2067 2068 VM_BUG_ON_PAGE(!PageMovable(page), page); 2069 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2070 2071 zspage = get_zspage(page); 2072 get_zspage_mapping(zspage, &class_idx, &fg); 2073 mapping = page_mapping(page); 2074 pool = mapping->private_data; 2075 class = pool->size_class[class_idx]; 2076 2077 spin_lock(&class->lock); 2078 dec_zspage_isolation(zspage); 2079 if (!is_zspage_isolated(zspage)) { 2080 fg = putback_zspage(class, zspage); 2081 /* 2082 * Due to page_lock, we cannot free zspage immediately 2083 * so let's defer. 2084 */ 2085 if (fg == ZS_EMPTY) 2086 schedule_work(&pool->free_work); 2087 } 2088 spin_unlock(&class->lock); 2089 } 2090 2091 static const struct address_space_operations zsmalloc_aops = { 2092 .isolate_page = zs_page_isolate, 2093 .migratepage = zs_page_migrate, 2094 .putback_page = zs_page_putback, 2095 }; 2096 2097 static int zs_register_migration(struct zs_pool *pool) 2098 { 2099 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2100 if (IS_ERR(pool->inode)) { 2101 pool->inode = NULL; 2102 return 1; 2103 } 2104 2105 pool->inode->i_mapping->private_data = pool; 2106 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2107 return 0; 2108 } 2109 2110 static void zs_unregister_migration(struct zs_pool *pool) 2111 { 2112 flush_work(&pool->free_work); 2113 iput(pool->inode); 2114 } 2115 2116 /* 2117 * Caller should hold page_lock of all pages in the zspage 2118 * In here, we cannot use zspage meta data. 2119 */ 2120 static void async_free_zspage(struct work_struct *work) 2121 { 2122 int i; 2123 struct size_class *class; 2124 unsigned int class_idx; 2125 enum fullness_group fullness; 2126 struct zspage *zspage, *tmp; 2127 LIST_HEAD(free_pages); 2128 struct zs_pool *pool = container_of(work, struct zs_pool, 2129 free_work); 2130 2131 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2132 class = pool->size_class[i]; 2133 if (class->index != i) 2134 continue; 2135 2136 spin_lock(&class->lock); 2137 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2138 spin_unlock(&class->lock); 2139 } 2140 2141 2142 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2143 list_del(&zspage->list); 2144 lock_zspage(zspage); 2145 2146 get_zspage_mapping(zspage, &class_idx, &fullness); 2147 VM_BUG_ON(fullness != ZS_EMPTY); 2148 class = pool->size_class[class_idx]; 2149 spin_lock(&class->lock); 2150 __free_zspage(pool, pool->size_class[class_idx], zspage); 2151 spin_unlock(&class->lock); 2152 } 2153 }; 2154 2155 static void kick_deferred_free(struct zs_pool *pool) 2156 { 2157 schedule_work(&pool->free_work); 2158 } 2159 2160 static void init_deferred_free(struct zs_pool *pool) 2161 { 2162 INIT_WORK(&pool->free_work, async_free_zspage); 2163 } 2164 2165 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2166 { 2167 struct page *page = get_first_page(zspage); 2168 2169 do { 2170 WARN_ON(!trylock_page(page)); 2171 __SetPageMovable(page, pool->inode->i_mapping); 2172 unlock_page(page); 2173 } while ((page = get_next_page(page)) != NULL); 2174 } 2175 #endif 2176 2177 /* 2178 * 2179 * Based on the number of unused allocated objects calculate 2180 * and return the number of pages that we can free. 2181 */ 2182 static unsigned long zs_can_compact(struct size_class *class) 2183 { 2184 unsigned long obj_wasted; 2185 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2186 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2187 2188 if (obj_allocated <= obj_used) 2189 return 0; 2190 2191 obj_wasted = obj_allocated - obj_used; 2192 obj_wasted /= class->objs_per_zspage; 2193 2194 return obj_wasted * class->pages_per_zspage; 2195 } 2196 2197 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2198 { 2199 struct zs_compact_control cc; 2200 struct zspage *src_zspage; 2201 struct zspage *dst_zspage = NULL; 2202 2203 spin_lock(&class->lock); 2204 while ((src_zspage = isolate_zspage(class, true))) { 2205 2206 if (!zs_can_compact(class)) 2207 break; 2208 2209 cc.obj_idx = 0; 2210 cc.s_page = get_first_page(src_zspage); 2211 2212 while ((dst_zspage = isolate_zspage(class, false))) { 2213 cc.d_page = get_first_page(dst_zspage); 2214 /* 2215 * If there is no more space in dst_page, resched 2216 * and see if anyone had allocated another zspage. 2217 */ 2218 if (!migrate_zspage(pool, class, &cc)) 2219 break; 2220 2221 putback_zspage(class, dst_zspage); 2222 } 2223 2224 /* Stop if we couldn't find slot */ 2225 if (dst_zspage == NULL) 2226 break; 2227 2228 putback_zspage(class, dst_zspage); 2229 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2230 free_zspage(pool, class, src_zspage); 2231 pool->stats.pages_compacted += class->pages_per_zspage; 2232 } 2233 spin_unlock(&class->lock); 2234 cond_resched(); 2235 spin_lock(&class->lock); 2236 } 2237 2238 if (src_zspage) 2239 putback_zspage(class, src_zspage); 2240 2241 spin_unlock(&class->lock); 2242 } 2243 2244 unsigned long zs_compact(struct zs_pool *pool) 2245 { 2246 int i; 2247 struct size_class *class; 2248 2249 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2250 class = pool->size_class[i]; 2251 if (!class) 2252 continue; 2253 if (class->index != i) 2254 continue; 2255 __zs_compact(pool, class); 2256 } 2257 2258 return pool->stats.pages_compacted; 2259 } 2260 EXPORT_SYMBOL_GPL(zs_compact); 2261 2262 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2263 { 2264 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2265 } 2266 EXPORT_SYMBOL_GPL(zs_pool_stats); 2267 2268 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2269 struct shrink_control *sc) 2270 { 2271 unsigned long pages_freed; 2272 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2273 shrinker); 2274 2275 pages_freed = pool->stats.pages_compacted; 2276 /* 2277 * Compact classes and calculate compaction delta. 2278 * Can run concurrently with a manually triggered 2279 * (by user) compaction. 2280 */ 2281 pages_freed = zs_compact(pool) - pages_freed; 2282 2283 return pages_freed ? pages_freed : SHRINK_STOP; 2284 } 2285 2286 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2287 struct shrink_control *sc) 2288 { 2289 int i; 2290 struct size_class *class; 2291 unsigned long pages_to_free = 0; 2292 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2293 shrinker); 2294 2295 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2296 class = pool->size_class[i]; 2297 if (!class) 2298 continue; 2299 if (class->index != i) 2300 continue; 2301 2302 pages_to_free += zs_can_compact(class); 2303 } 2304 2305 return pages_to_free; 2306 } 2307 2308 static void zs_unregister_shrinker(struct zs_pool *pool) 2309 { 2310 unregister_shrinker(&pool->shrinker); 2311 } 2312 2313 static int zs_register_shrinker(struct zs_pool *pool) 2314 { 2315 pool->shrinker.scan_objects = zs_shrinker_scan; 2316 pool->shrinker.count_objects = zs_shrinker_count; 2317 pool->shrinker.batch = 0; 2318 pool->shrinker.seeks = DEFAULT_SEEKS; 2319 2320 return register_shrinker(&pool->shrinker); 2321 } 2322 2323 /** 2324 * zs_create_pool - Creates an allocation pool to work from. 2325 * @name: pool name to be created 2326 * 2327 * This function must be called before anything when using 2328 * the zsmalloc allocator. 2329 * 2330 * On success, a pointer to the newly created pool is returned, 2331 * otherwise NULL. 2332 */ 2333 struct zs_pool *zs_create_pool(const char *name) 2334 { 2335 int i; 2336 struct zs_pool *pool; 2337 struct size_class *prev_class = NULL; 2338 2339 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2340 if (!pool) 2341 return NULL; 2342 2343 init_deferred_free(pool); 2344 2345 pool->name = kstrdup(name, GFP_KERNEL); 2346 if (!pool->name) 2347 goto err; 2348 2349 if (create_cache(pool)) 2350 goto err; 2351 2352 /* 2353 * Iterate reversely, because, size of size_class that we want to use 2354 * for merging should be larger or equal to current size. 2355 */ 2356 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2357 int size; 2358 int pages_per_zspage; 2359 int objs_per_zspage; 2360 struct size_class *class; 2361 int fullness = 0; 2362 2363 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2364 if (size > ZS_MAX_ALLOC_SIZE) 2365 size = ZS_MAX_ALLOC_SIZE; 2366 pages_per_zspage = get_pages_per_zspage(size); 2367 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2368 2369 /* 2370 * We iterate from biggest down to smallest classes, 2371 * so huge_class_size holds the size of the first huge 2372 * class. Any object bigger than or equal to that will 2373 * endup in the huge class. 2374 */ 2375 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2376 !huge_class_size) { 2377 huge_class_size = size; 2378 /* 2379 * The object uses ZS_HANDLE_SIZE bytes to store the 2380 * handle. We need to subtract it, because zs_malloc() 2381 * unconditionally adds handle size before it performs 2382 * size class search - so object may be smaller than 2383 * huge class size, yet it still can end up in the huge 2384 * class because it grows by ZS_HANDLE_SIZE extra bytes 2385 * right before class lookup. 2386 */ 2387 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2388 } 2389 2390 /* 2391 * size_class is used for normal zsmalloc operation such 2392 * as alloc/free for that size. Although it is natural that we 2393 * have one size_class for each size, there is a chance that we 2394 * can get more memory utilization if we use one size_class for 2395 * many different sizes whose size_class have same 2396 * characteristics. So, we makes size_class point to 2397 * previous size_class if possible. 2398 */ 2399 if (prev_class) { 2400 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2401 pool->size_class[i] = prev_class; 2402 continue; 2403 } 2404 } 2405 2406 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2407 if (!class) 2408 goto err; 2409 2410 class->size = size; 2411 class->index = i; 2412 class->pages_per_zspage = pages_per_zspage; 2413 class->objs_per_zspage = objs_per_zspage; 2414 spin_lock_init(&class->lock); 2415 pool->size_class[i] = class; 2416 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2417 fullness++) 2418 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2419 2420 prev_class = class; 2421 } 2422 2423 /* debug only, don't abort if it fails */ 2424 zs_pool_stat_create(pool, name); 2425 2426 if (zs_register_migration(pool)) 2427 goto err; 2428 2429 /* 2430 * Not critical since shrinker is only used to trigger internal 2431 * defragmentation of the pool which is pretty optional thing. If 2432 * registration fails we still can use the pool normally and user can 2433 * trigger compaction manually. Thus, ignore return code. 2434 */ 2435 zs_register_shrinker(pool); 2436 2437 return pool; 2438 2439 err: 2440 zs_destroy_pool(pool); 2441 return NULL; 2442 } 2443 EXPORT_SYMBOL_GPL(zs_create_pool); 2444 2445 void zs_destroy_pool(struct zs_pool *pool) 2446 { 2447 int i; 2448 2449 zs_unregister_shrinker(pool); 2450 zs_unregister_migration(pool); 2451 zs_pool_stat_destroy(pool); 2452 2453 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2454 int fg; 2455 struct size_class *class = pool->size_class[i]; 2456 2457 if (!class) 2458 continue; 2459 2460 if (class->index != i) 2461 continue; 2462 2463 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2464 if (!list_empty(&class->fullness_list[fg])) { 2465 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2466 class->size, fg); 2467 } 2468 } 2469 kfree(class); 2470 } 2471 2472 destroy_cache(pool); 2473 kfree(pool->name); 2474 kfree(pool); 2475 } 2476 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2477 2478 static int __init zs_init(void) 2479 { 2480 int ret; 2481 2482 ret = zsmalloc_mount(); 2483 if (ret) 2484 goto out; 2485 2486 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2487 zs_cpu_prepare, zs_cpu_dead); 2488 if (ret) 2489 goto hp_setup_fail; 2490 2491 #ifdef CONFIG_ZPOOL 2492 zpool_register_driver(&zs_zpool_driver); 2493 #endif 2494 2495 zs_stat_init(); 2496 2497 return 0; 2498 2499 hp_setup_fail: 2500 zsmalloc_unmount(); 2501 out: 2502 return ret; 2503 } 2504 2505 static void __exit zs_exit(void) 2506 { 2507 #ifdef CONFIG_ZPOOL 2508 zpool_unregister_driver(&zs_zpool_driver); 2509 #endif 2510 zsmalloc_unmount(); 2511 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2512 2513 zs_stat_exit(); 2514 } 2515 2516 module_init(zs_init); 2517 module_exit(zs_exit); 2518 2519 MODULE_LICENSE("Dual BSD/GPL"); 2520 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2521