xref: /openbmc/linux/mm/zsmalloc.c (revision e2f1cf25)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->first_page: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private (union with page->first_page): refers to the
30  *		component page after the first page
31  *		If the page is first_page for huge object, it stores handle.
32  *		Look at size_class->huge.
33  *	page->freelist: points to the first free object in zspage.
34  *		Free objects are linked together using in-place
35  *		metadata.
36  *	page->objects: maximum number of objects we can store in this
37  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
38  *	page->lru: links together first pages of various zspages.
39  *		Basically forming list of zspages in a fullness group.
40  *	page->mapping: class index and fullness group of the zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67 
68 /*
69  * This must be power of 2 and greater than of equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * as single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> is relative to system
90  * page <PFN> it is stored in, so for each sub-page belonging
91  * to a zspage, obj_idx starts with 0.
92  *
93  * This is made more complicated by various memory models and PAE.
94  */
95 
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102  * be PAGE_SHIFT
103  */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Memory for allocating for handle keeps object position by
111  * encoding <page, obj_idx> and the encoded value has a room
112  * in least bit(ie, look at obj_to_location).
113  * We use the bit to synchronize between object access by
114  * user and migration.
115  */
116 #define HANDLE_PIN_BIT	0
117 
118 /*
119  * Head in allocated object should have OBJ_ALLOCATED_TAG
120  * to identify the object was allocated or not.
121  * It's okay to add the status bit in the least bit because
122  * header keeps handle which is 4byte-aligned address so we
123  * have room for two bit at least.
124  */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 
152 /*
153  * We do not maintain any list for completely empty or full pages
154  */
155 enum fullness_group {
156 	ZS_ALMOST_FULL,
157 	ZS_ALMOST_EMPTY,
158 	_ZS_NR_FULLNESS_GROUPS,
159 
160 	ZS_EMPTY,
161 	ZS_FULL
162 };
163 
164 enum zs_stat_type {
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	CLASS_ALMOST_FULL,
168 	CLASS_ALMOST_EMPTY,
169 	NR_ZS_STAT_TYPE,
170 };
171 
172 #ifdef CONFIG_ZSMALLOC_STAT
173 
174 static struct dentry *zs_stat_root;
175 
176 struct zs_size_stat {
177 	unsigned long objs[NR_ZS_STAT_TYPE];
178 };
179 
180 #endif
181 
182 /*
183  * number of size_classes
184  */
185 static int zs_size_classes;
186 
187 /*
188  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
189  *	n <= N / f, where
190  * n = number of allocated objects
191  * N = total number of objects zspage can store
192  * f = fullness_threshold_frac
193  *
194  * Similarly, we assign zspage to:
195  *	ZS_ALMOST_FULL	when n > N / f
196  *	ZS_EMPTY	when n == 0
197  *	ZS_FULL		when n == N
198  *
199  * (see: fix_fullness_group())
200  */
201 static const int fullness_threshold_frac = 4;
202 
203 struct size_class {
204 	/*
205 	 * Size of objects stored in this class. Must be multiple
206 	 * of ZS_ALIGN.
207 	 */
208 	int size;
209 	unsigned int index;
210 
211 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 	int pages_per_zspage;
213 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 	bool huge;
215 
216 #ifdef CONFIG_ZSMALLOC_STAT
217 	struct zs_size_stat stats;
218 #endif
219 
220 	spinlock_t lock;
221 
222 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
223 };
224 
225 /*
226  * Placed within free objects to form a singly linked list.
227  * For every zspage, first_page->freelist gives head of this list.
228  *
229  * This must be power of 2 and less than or equal to ZS_ALIGN
230  */
231 struct link_free {
232 	union {
233 		/*
234 		 * Position of next free chunk (encodes <PFN, obj_idx>)
235 		 * It's valid for non-allocated object
236 		 */
237 		void *next;
238 		/*
239 		 * Handle of allocated object.
240 		 */
241 		unsigned long handle;
242 	};
243 };
244 
245 struct zs_pool {
246 	char *name;
247 
248 	struct size_class **size_class;
249 	struct kmem_cache *handle_cachep;
250 
251 	gfp_t flags;	/* allocation flags used when growing pool */
252 	atomic_long_t pages_allocated;
253 
254 #ifdef CONFIG_ZSMALLOC_STAT
255 	struct dentry *stat_dentry;
256 #endif
257 };
258 
259 /*
260  * A zspage's class index and fullness group
261  * are encoded in its (first)page->mapping
262  */
263 #define CLASS_IDX_BITS	28
264 #define FULLNESS_BITS	4
265 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
266 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
267 
268 struct mapping_area {
269 #ifdef CONFIG_PGTABLE_MAPPING
270 	struct vm_struct *vm; /* vm area for mapping object that span pages */
271 #else
272 	char *vm_buf; /* copy buffer for objects that span pages */
273 #endif
274 	char *vm_addr; /* address of kmap_atomic()'ed pages */
275 	enum zs_mapmode vm_mm; /* mapping mode */
276 	bool huge;
277 };
278 
279 static int create_handle_cache(struct zs_pool *pool)
280 {
281 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282 					0, 0, NULL);
283 	return pool->handle_cachep ? 0 : 1;
284 }
285 
286 static void destroy_handle_cache(struct zs_pool *pool)
287 {
288 	if (pool->handle_cachep)
289 		kmem_cache_destroy(pool->handle_cachep);
290 }
291 
292 static unsigned long alloc_handle(struct zs_pool *pool)
293 {
294 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
295 		pool->flags & ~__GFP_HIGHMEM);
296 }
297 
298 static void free_handle(struct zs_pool *pool, unsigned long handle)
299 {
300 	kmem_cache_free(pool->handle_cachep, (void *)handle);
301 }
302 
303 static void record_obj(unsigned long handle, unsigned long obj)
304 {
305 	*(unsigned long *)handle = obj;
306 }
307 
308 /* zpool driver */
309 
310 #ifdef CONFIG_ZPOOL
311 
312 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
313 			     struct zpool *zpool)
314 {
315 	return zs_create_pool(name, gfp);
316 }
317 
318 static void zs_zpool_destroy(void *pool)
319 {
320 	zs_destroy_pool(pool);
321 }
322 
323 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
324 			unsigned long *handle)
325 {
326 	*handle = zs_malloc(pool, size);
327 	return *handle ? 0 : -1;
328 }
329 static void zs_zpool_free(void *pool, unsigned long handle)
330 {
331 	zs_free(pool, handle);
332 }
333 
334 static int zs_zpool_shrink(void *pool, unsigned int pages,
335 			unsigned int *reclaimed)
336 {
337 	return -EINVAL;
338 }
339 
340 static void *zs_zpool_map(void *pool, unsigned long handle,
341 			enum zpool_mapmode mm)
342 {
343 	enum zs_mapmode zs_mm;
344 
345 	switch (mm) {
346 	case ZPOOL_MM_RO:
347 		zs_mm = ZS_MM_RO;
348 		break;
349 	case ZPOOL_MM_WO:
350 		zs_mm = ZS_MM_WO;
351 		break;
352 	case ZPOOL_MM_RW: /* fallthru */
353 	default:
354 		zs_mm = ZS_MM_RW;
355 		break;
356 	}
357 
358 	return zs_map_object(pool, handle, zs_mm);
359 }
360 static void zs_zpool_unmap(void *pool, unsigned long handle)
361 {
362 	zs_unmap_object(pool, handle);
363 }
364 
365 static u64 zs_zpool_total_size(void *pool)
366 {
367 	return zs_get_total_pages(pool) << PAGE_SHIFT;
368 }
369 
370 static struct zpool_driver zs_zpool_driver = {
371 	.type =		"zsmalloc",
372 	.owner =	THIS_MODULE,
373 	.create =	zs_zpool_create,
374 	.destroy =	zs_zpool_destroy,
375 	.malloc =	zs_zpool_malloc,
376 	.free =		zs_zpool_free,
377 	.shrink =	zs_zpool_shrink,
378 	.map =		zs_zpool_map,
379 	.unmap =	zs_zpool_unmap,
380 	.total_size =	zs_zpool_total_size,
381 };
382 
383 MODULE_ALIAS("zpool-zsmalloc");
384 #endif /* CONFIG_ZPOOL */
385 
386 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
387 {
388 	return pages_per_zspage * PAGE_SIZE / size;
389 }
390 
391 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
392 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
393 
394 static int is_first_page(struct page *page)
395 {
396 	return PagePrivate(page);
397 }
398 
399 static int is_last_page(struct page *page)
400 {
401 	return PagePrivate2(page);
402 }
403 
404 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
405 				enum fullness_group *fullness)
406 {
407 	unsigned long m;
408 	BUG_ON(!is_first_page(page));
409 
410 	m = (unsigned long)page->mapping;
411 	*fullness = m & FULLNESS_MASK;
412 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
413 }
414 
415 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
416 				enum fullness_group fullness)
417 {
418 	unsigned long m;
419 	BUG_ON(!is_first_page(page));
420 
421 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
422 			(fullness & FULLNESS_MASK);
423 	page->mapping = (struct address_space *)m;
424 }
425 
426 /*
427  * zsmalloc divides the pool into various size classes where each
428  * class maintains a list of zspages where each zspage is divided
429  * into equal sized chunks. Each allocation falls into one of these
430  * classes depending on its size. This function returns index of the
431  * size class which has chunk size big enough to hold the give size.
432  */
433 static int get_size_class_index(int size)
434 {
435 	int idx = 0;
436 
437 	if (likely(size > ZS_MIN_ALLOC_SIZE))
438 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
439 				ZS_SIZE_CLASS_DELTA);
440 
441 	return min(zs_size_classes - 1, idx);
442 }
443 
444 #ifdef CONFIG_ZSMALLOC_STAT
445 
446 static inline void zs_stat_inc(struct size_class *class,
447 				enum zs_stat_type type, unsigned long cnt)
448 {
449 	class->stats.objs[type] += cnt;
450 }
451 
452 static inline void zs_stat_dec(struct size_class *class,
453 				enum zs_stat_type type, unsigned long cnt)
454 {
455 	class->stats.objs[type] -= cnt;
456 }
457 
458 static inline unsigned long zs_stat_get(struct size_class *class,
459 				enum zs_stat_type type)
460 {
461 	return class->stats.objs[type];
462 }
463 
464 static int __init zs_stat_init(void)
465 {
466 	if (!debugfs_initialized())
467 		return -ENODEV;
468 
469 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
470 	if (!zs_stat_root)
471 		return -ENOMEM;
472 
473 	return 0;
474 }
475 
476 static void __exit zs_stat_exit(void)
477 {
478 	debugfs_remove_recursive(zs_stat_root);
479 }
480 
481 static int zs_stats_size_show(struct seq_file *s, void *v)
482 {
483 	int i;
484 	struct zs_pool *pool = s->private;
485 	struct size_class *class;
486 	int objs_per_zspage;
487 	unsigned long class_almost_full, class_almost_empty;
488 	unsigned long obj_allocated, obj_used, pages_used;
489 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
490 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
491 
492 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
493 			"class", "size", "almost_full", "almost_empty",
494 			"obj_allocated", "obj_used", "pages_used",
495 			"pages_per_zspage");
496 
497 	for (i = 0; i < zs_size_classes; i++) {
498 		class = pool->size_class[i];
499 
500 		if (class->index != i)
501 			continue;
502 
503 		spin_lock(&class->lock);
504 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
505 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
506 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
507 		obj_used = zs_stat_get(class, OBJ_USED);
508 		spin_unlock(&class->lock);
509 
510 		objs_per_zspage = get_maxobj_per_zspage(class->size,
511 				class->pages_per_zspage);
512 		pages_used = obj_allocated / objs_per_zspage *
513 				class->pages_per_zspage;
514 
515 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
516 			i, class->size, class_almost_full, class_almost_empty,
517 			obj_allocated, obj_used, pages_used,
518 			class->pages_per_zspage);
519 
520 		total_class_almost_full += class_almost_full;
521 		total_class_almost_empty += class_almost_empty;
522 		total_objs += obj_allocated;
523 		total_used_objs += obj_used;
524 		total_pages += pages_used;
525 	}
526 
527 	seq_puts(s, "\n");
528 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
529 			"Total", "", total_class_almost_full,
530 			total_class_almost_empty, total_objs,
531 			total_used_objs, total_pages);
532 
533 	return 0;
534 }
535 
536 static int zs_stats_size_open(struct inode *inode, struct file *file)
537 {
538 	return single_open(file, zs_stats_size_show, inode->i_private);
539 }
540 
541 static const struct file_operations zs_stat_size_ops = {
542 	.open           = zs_stats_size_open,
543 	.read           = seq_read,
544 	.llseek         = seq_lseek,
545 	.release        = single_release,
546 };
547 
548 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
549 {
550 	struct dentry *entry;
551 
552 	if (!zs_stat_root)
553 		return -ENODEV;
554 
555 	entry = debugfs_create_dir(name, zs_stat_root);
556 	if (!entry) {
557 		pr_warn("debugfs dir <%s> creation failed\n", name);
558 		return -ENOMEM;
559 	}
560 	pool->stat_dentry = entry;
561 
562 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
563 			pool->stat_dentry, pool, &zs_stat_size_ops);
564 	if (!entry) {
565 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
566 				name, "classes");
567 		return -ENOMEM;
568 	}
569 
570 	return 0;
571 }
572 
573 static void zs_pool_stat_destroy(struct zs_pool *pool)
574 {
575 	debugfs_remove_recursive(pool->stat_dentry);
576 }
577 
578 #else /* CONFIG_ZSMALLOC_STAT */
579 
580 static inline void zs_stat_inc(struct size_class *class,
581 				enum zs_stat_type type, unsigned long cnt)
582 {
583 }
584 
585 static inline void zs_stat_dec(struct size_class *class,
586 				enum zs_stat_type type, unsigned long cnt)
587 {
588 }
589 
590 static inline unsigned long zs_stat_get(struct size_class *class,
591 				enum zs_stat_type type)
592 {
593 	return 0;
594 }
595 
596 static int __init zs_stat_init(void)
597 {
598 	return 0;
599 }
600 
601 static void __exit zs_stat_exit(void)
602 {
603 }
604 
605 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
606 {
607 	return 0;
608 }
609 
610 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
611 {
612 }
613 
614 #endif
615 
616 
617 /*
618  * For each size class, zspages are divided into different groups
619  * depending on how "full" they are. This was done so that we could
620  * easily find empty or nearly empty zspages when we try to shrink
621  * the pool (not yet implemented). This function returns fullness
622  * status of the given page.
623  */
624 static enum fullness_group get_fullness_group(struct page *page)
625 {
626 	int inuse, max_objects;
627 	enum fullness_group fg;
628 	BUG_ON(!is_first_page(page));
629 
630 	inuse = page->inuse;
631 	max_objects = page->objects;
632 
633 	if (inuse == 0)
634 		fg = ZS_EMPTY;
635 	else if (inuse == max_objects)
636 		fg = ZS_FULL;
637 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
638 		fg = ZS_ALMOST_EMPTY;
639 	else
640 		fg = ZS_ALMOST_FULL;
641 
642 	return fg;
643 }
644 
645 /*
646  * Each size class maintains various freelists and zspages are assigned
647  * to one of these freelists based on the number of live objects they
648  * have. This functions inserts the given zspage into the freelist
649  * identified by <class, fullness_group>.
650  */
651 static void insert_zspage(struct page *page, struct size_class *class,
652 				enum fullness_group fullness)
653 {
654 	struct page **head;
655 
656 	BUG_ON(!is_first_page(page));
657 
658 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
659 		return;
660 
661 	head = &class->fullness_list[fullness];
662 	if (*head)
663 		list_add_tail(&page->lru, &(*head)->lru);
664 
665 	*head = page;
666 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
667 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
668 }
669 
670 /*
671  * This function removes the given zspage from the freelist identified
672  * by <class, fullness_group>.
673  */
674 static void remove_zspage(struct page *page, struct size_class *class,
675 				enum fullness_group fullness)
676 {
677 	struct page **head;
678 
679 	BUG_ON(!is_first_page(page));
680 
681 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
682 		return;
683 
684 	head = &class->fullness_list[fullness];
685 	BUG_ON(!*head);
686 	if (list_empty(&(*head)->lru))
687 		*head = NULL;
688 	else if (*head == page)
689 		*head = (struct page *)list_entry((*head)->lru.next,
690 					struct page, lru);
691 
692 	list_del_init(&page->lru);
693 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
694 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
695 }
696 
697 /*
698  * Each size class maintains zspages in different fullness groups depending
699  * on the number of live objects they contain. When allocating or freeing
700  * objects, the fullness status of the page can change, say, from ALMOST_FULL
701  * to ALMOST_EMPTY when freeing an object. This function checks if such
702  * a status change has occurred for the given page and accordingly moves the
703  * page from the freelist of the old fullness group to that of the new
704  * fullness group.
705  */
706 static enum fullness_group fix_fullness_group(struct size_class *class,
707 						struct page *page)
708 {
709 	int class_idx;
710 	enum fullness_group currfg, newfg;
711 
712 	BUG_ON(!is_first_page(page));
713 
714 	get_zspage_mapping(page, &class_idx, &currfg);
715 	newfg = get_fullness_group(page);
716 	if (newfg == currfg)
717 		goto out;
718 
719 	remove_zspage(page, class, currfg);
720 	insert_zspage(page, class, newfg);
721 	set_zspage_mapping(page, class_idx, newfg);
722 
723 out:
724 	return newfg;
725 }
726 
727 /*
728  * We have to decide on how many pages to link together
729  * to form a zspage for each size class. This is important
730  * to reduce wastage due to unusable space left at end of
731  * each zspage which is given as:
732  *     wastage = Zp % class_size
733  *     usage = Zp - wastage
734  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
735  *
736  * For example, for size class of 3/8 * PAGE_SIZE, we should
737  * link together 3 PAGE_SIZE sized pages to form a zspage
738  * since then we can perfectly fit in 8 such objects.
739  */
740 static int get_pages_per_zspage(int class_size)
741 {
742 	int i, max_usedpc = 0;
743 	/* zspage order which gives maximum used size per KB */
744 	int max_usedpc_order = 1;
745 
746 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
747 		int zspage_size;
748 		int waste, usedpc;
749 
750 		zspage_size = i * PAGE_SIZE;
751 		waste = zspage_size % class_size;
752 		usedpc = (zspage_size - waste) * 100 / zspage_size;
753 
754 		if (usedpc > max_usedpc) {
755 			max_usedpc = usedpc;
756 			max_usedpc_order = i;
757 		}
758 	}
759 
760 	return max_usedpc_order;
761 }
762 
763 /*
764  * A single 'zspage' is composed of many system pages which are
765  * linked together using fields in struct page. This function finds
766  * the first/head page, given any component page of a zspage.
767  */
768 static struct page *get_first_page(struct page *page)
769 {
770 	if (is_first_page(page))
771 		return page;
772 	else
773 		return page->first_page;
774 }
775 
776 static struct page *get_next_page(struct page *page)
777 {
778 	struct page *next;
779 
780 	if (is_last_page(page))
781 		next = NULL;
782 	else if (is_first_page(page))
783 		next = (struct page *)page_private(page);
784 	else
785 		next = list_entry(page->lru.next, struct page, lru);
786 
787 	return next;
788 }
789 
790 /*
791  * Encode <page, obj_idx> as a single handle value.
792  * We use the least bit of handle for tagging.
793  */
794 static void *location_to_obj(struct page *page, unsigned long obj_idx)
795 {
796 	unsigned long obj;
797 
798 	if (!page) {
799 		BUG_ON(obj_idx);
800 		return NULL;
801 	}
802 
803 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
804 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
805 	obj <<= OBJ_TAG_BITS;
806 
807 	return (void *)obj;
808 }
809 
810 /*
811  * Decode <page, obj_idx> pair from the given object handle. We adjust the
812  * decoded obj_idx back to its original value since it was adjusted in
813  * location_to_obj().
814  */
815 static void obj_to_location(unsigned long obj, struct page **page,
816 				unsigned long *obj_idx)
817 {
818 	obj >>= OBJ_TAG_BITS;
819 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
820 	*obj_idx = (obj & OBJ_INDEX_MASK);
821 }
822 
823 static unsigned long handle_to_obj(unsigned long handle)
824 {
825 	return *(unsigned long *)handle;
826 }
827 
828 static unsigned long obj_to_head(struct size_class *class, struct page *page,
829 			void *obj)
830 {
831 	if (class->huge) {
832 		VM_BUG_ON(!is_first_page(page));
833 		return *(unsigned long *)page_private(page);
834 	} else
835 		return *(unsigned long *)obj;
836 }
837 
838 static unsigned long obj_idx_to_offset(struct page *page,
839 				unsigned long obj_idx, int class_size)
840 {
841 	unsigned long off = 0;
842 
843 	if (!is_first_page(page))
844 		off = page->index;
845 
846 	return off + obj_idx * class_size;
847 }
848 
849 static inline int trypin_tag(unsigned long handle)
850 {
851 	unsigned long *ptr = (unsigned long *)handle;
852 
853 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
854 }
855 
856 static void pin_tag(unsigned long handle)
857 {
858 	while (!trypin_tag(handle));
859 }
860 
861 static void unpin_tag(unsigned long handle)
862 {
863 	unsigned long *ptr = (unsigned long *)handle;
864 
865 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
866 }
867 
868 static void reset_page(struct page *page)
869 {
870 	clear_bit(PG_private, &page->flags);
871 	clear_bit(PG_private_2, &page->flags);
872 	set_page_private(page, 0);
873 	page->mapping = NULL;
874 	page->freelist = NULL;
875 	page_mapcount_reset(page);
876 }
877 
878 static void free_zspage(struct page *first_page)
879 {
880 	struct page *nextp, *tmp, *head_extra;
881 
882 	BUG_ON(!is_first_page(first_page));
883 	BUG_ON(first_page->inuse);
884 
885 	head_extra = (struct page *)page_private(first_page);
886 
887 	reset_page(first_page);
888 	__free_page(first_page);
889 
890 	/* zspage with only 1 system page */
891 	if (!head_extra)
892 		return;
893 
894 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
895 		list_del(&nextp->lru);
896 		reset_page(nextp);
897 		__free_page(nextp);
898 	}
899 	reset_page(head_extra);
900 	__free_page(head_extra);
901 }
902 
903 /* Initialize a newly allocated zspage */
904 static void init_zspage(struct page *first_page, struct size_class *class)
905 {
906 	unsigned long off = 0;
907 	struct page *page = first_page;
908 
909 	BUG_ON(!is_first_page(first_page));
910 	while (page) {
911 		struct page *next_page;
912 		struct link_free *link;
913 		unsigned int i = 1;
914 		void *vaddr;
915 
916 		/*
917 		 * page->index stores offset of first object starting
918 		 * in the page. For the first page, this is always 0,
919 		 * so we use first_page->index (aka ->freelist) to store
920 		 * head of corresponding zspage's freelist.
921 		 */
922 		if (page != first_page)
923 			page->index = off;
924 
925 		vaddr = kmap_atomic(page);
926 		link = (struct link_free *)vaddr + off / sizeof(*link);
927 
928 		while ((off += class->size) < PAGE_SIZE) {
929 			link->next = location_to_obj(page, i++);
930 			link += class->size / sizeof(*link);
931 		}
932 
933 		/*
934 		 * We now come to the last (full or partial) object on this
935 		 * page, which must point to the first object on the next
936 		 * page (if present)
937 		 */
938 		next_page = get_next_page(page);
939 		link->next = location_to_obj(next_page, 0);
940 		kunmap_atomic(vaddr);
941 		page = next_page;
942 		off %= PAGE_SIZE;
943 	}
944 }
945 
946 /*
947  * Allocate a zspage for the given size class
948  */
949 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
950 {
951 	int i, error;
952 	struct page *first_page = NULL, *uninitialized_var(prev_page);
953 
954 	/*
955 	 * Allocate individual pages and link them together as:
956 	 * 1. first page->private = first sub-page
957 	 * 2. all sub-pages are linked together using page->lru
958 	 * 3. each sub-page is linked to the first page using page->first_page
959 	 *
960 	 * For each size class, First/Head pages are linked together using
961 	 * page->lru. Also, we set PG_private to identify the first page
962 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
963 	 * identify the last page.
964 	 */
965 	error = -ENOMEM;
966 	for (i = 0; i < class->pages_per_zspage; i++) {
967 		struct page *page;
968 
969 		page = alloc_page(flags);
970 		if (!page)
971 			goto cleanup;
972 
973 		INIT_LIST_HEAD(&page->lru);
974 		if (i == 0) {	/* first page */
975 			SetPagePrivate(page);
976 			set_page_private(page, 0);
977 			first_page = page;
978 			first_page->inuse = 0;
979 		}
980 		if (i == 1)
981 			set_page_private(first_page, (unsigned long)page);
982 		if (i >= 1)
983 			page->first_page = first_page;
984 		if (i >= 2)
985 			list_add(&page->lru, &prev_page->lru);
986 		if (i == class->pages_per_zspage - 1)	/* last page */
987 			SetPagePrivate2(page);
988 		prev_page = page;
989 	}
990 
991 	init_zspage(first_page, class);
992 
993 	first_page->freelist = location_to_obj(first_page, 0);
994 	/* Maximum number of objects we can store in this zspage */
995 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
996 
997 	error = 0; /* Success */
998 
999 cleanup:
1000 	if (unlikely(error) && first_page) {
1001 		free_zspage(first_page);
1002 		first_page = NULL;
1003 	}
1004 
1005 	return first_page;
1006 }
1007 
1008 static struct page *find_get_zspage(struct size_class *class)
1009 {
1010 	int i;
1011 	struct page *page;
1012 
1013 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1014 		page = class->fullness_list[i];
1015 		if (page)
1016 			break;
1017 	}
1018 
1019 	return page;
1020 }
1021 
1022 #ifdef CONFIG_PGTABLE_MAPPING
1023 static inline int __zs_cpu_up(struct mapping_area *area)
1024 {
1025 	/*
1026 	 * Make sure we don't leak memory if a cpu UP notification
1027 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1028 	 */
1029 	if (area->vm)
1030 		return 0;
1031 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1032 	if (!area->vm)
1033 		return -ENOMEM;
1034 	return 0;
1035 }
1036 
1037 static inline void __zs_cpu_down(struct mapping_area *area)
1038 {
1039 	if (area->vm)
1040 		free_vm_area(area->vm);
1041 	area->vm = NULL;
1042 }
1043 
1044 static inline void *__zs_map_object(struct mapping_area *area,
1045 				struct page *pages[2], int off, int size)
1046 {
1047 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1048 	area->vm_addr = area->vm->addr;
1049 	return area->vm_addr + off;
1050 }
1051 
1052 static inline void __zs_unmap_object(struct mapping_area *area,
1053 				struct page *pages[2], int off, int size)
1054 {
1055 	unsigned long addr = (unsigned long)area->vm_addr;
1056 
1057 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1058 }
1059 
1060 #else /* CONFIG_PGTABLE_MAPPING */
1061 
1062 static inline int __zs_cpu_up(struct mapping_area *area)
1063 {
1064 	/*
1065 	 * Make sure we don't leak memory if a cpu UP notification
1066 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1067 	 */
1068 	if (area->vm_buf)
1069 		return 0;
1070 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1071 	if (!area->vm_buf)
1072 		return -ENOMEM;
1073 	return 0;
1074 }
1075 
1076 static inline void __zs_cpu_down(struct mapping_area *area)
1077 {
1078 	kfree(area->vm_buf);
1079 	area->vm_buf = NULL;
1080 }
1081 
1082 static void *__zs_map_object(struct mapping_area *area,
1083 			struct page *pages[2], int off, int size)
1084 {
1085 	int sizes[2];
1086 	void *addr;
1087 	char *buf = area->vm_buf;
1088 
1089 	/* disable page faults to match kmap_atomic() return conditions */
1090 	pagefault_disable();
1091 
1092 	/* no read fastpath */
1093 	if (area->vm_mm == ZS_MM_WO)
1094 		goto out;
1095 
1096 	sizes[0] = PAGE_SIZE - off;
1097 	sizes[1] = size - sizes[0];
1098 
1099 	/* copy object to per-cpu buffer */
1100 	addr = kmap_atomic(pages[0]);
1101 	memcpy(buf, addr + off, sizes[0]);
1102 	kunmap_atomic(addr);
1103 	addr = kmap_atomic(pages[1]);
1104 	memcpy(buf + sizes[0], addr, sizes[1]);
1105 	kunmap_atomic(addr);
1106 out:
1107 	return area->vm_buf;
1108 }
1109 
1110 static void __zs_unmap_object(struct mapping_area *area,
1111 			struct page *pages[2], int off, int size)
1112 {
1113 	int sizes[2];
1114 	void *addr;
1115 	char *buf;
1116 
1117 	/* no write fastpath */
1118 	if (area->vm_mm == ZS_MM_RO)
1119 		goto out;
1120 
1121 	buf = area->vm_buf;
1122 	if (!area->huge) {
1123 		buf = buf + ZS_HANDLE_SIZE;
1124 		size -= ZS_HANDLE_SIZE;
1125 		off += ZS_HANDLE_SIZE;
1126 	}
1127 
1128 	sizes[0] = PAGE_SIZE - off;
1129 	sizes[1] = size - sizes[0];
1130 
1131 	/* copy per-cpu buffer to object */
1132 	addr = kmap_atomic(pages[0]);
1133 	memcpy(addr + off, buf, sizes[0]);
1134 	kunmap_atomic(addr);
1135 	addr = kmap_atomic(pages[1]);
1136 	memcpy(addr, buf + sizes[0], sizes[1]);
1137 	kunmap_atomic(addr);
1138 
1139 out:
1140 	/* enable page faults to match kunmap_atomic() return conditions */
1141 	pagefault_enable();
1142 }
1143 
1144 #endif /* CONFIG_PGTABLE_MAPPING */
1145 
1146 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1147 				void *pcpu)
1148 {
1149 	int ret, cpu = (long)pcpu;
1150 	struct mapping_area *area;
1151 
1152 	switch (action) {
1153 	case CPU_UP_PREPARE:
1154 		area = &per_cpu(zs_map_area, cpu);
1155 		ret = __zs_cpu_up(area);
1156 		if (ret)
1157 			return notifier_from_errno(ret);
1158 		break;
1159 	case CPU_DEAD:
1160 	case CPU_UP_CANCELED:
1161 		area = &per_cpu(zs_map_area, cpu);
1162 		__zs_cpu_down(area);
1163 		break;
1164 	}
1165 
1166 	return NOTIFY_OK;
1167 }
1168 
1169 static struct notifier_block zs_cpu_nb = {
1170 	.notifier_call = zs_cpu_notifier
1171 };
1172 
1173 static int zs_register_cpu_notifier(void)
1174 {
1175 	int cpu, uninitialized_var(ret);
1176 
1177 	cpu_notifier_register_begin();
1178 
1179 	__register_cpu_notifier(&zs_cpu_nb);
1180 	for_each_online_cpu(cpu) {
1181 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1182 		if (notifier_to_errno(ret))
1183 			break;
1184 	}
1185 
1186 	cpu_notifier_register_done();
1187 	return notifier_to_errno(ret);
1188 }
1189 
1190 static void zs_unregister_cpu_notifier(void)
1191 {
1192 	int cpu;
1193 
1194 	cpu_notifier_register_begin();
1195 
1196 	for_each_online_cpu(cpu)
1197 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1198 	__unregister_cpu_notifier(&zs_cpu_nb);
1199 
1200 	cpu_notifier_register_done();
1201 }
1202 
1203 static void init_zs_size_classes(void)
1204 {
1205 	int nr;
1206 
1207 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1208 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1209 		nr += 1;
1210 
1211 	zs_size_classes = nr;
1212 }
1213 
1214 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1215 {
1216 	if (prev->pages_per_zspage != pages_per_zspage)
1217 		return false;
1218 
1219 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1220 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1221 		return false;
1222 
1223 	return true;
1224 }
1225 
1226 static bool zspage_full(struct page *page)
1227 {
1228 	BUG_ON(!is_first_page(page));
1229 
1230 	return page->inuse == page->objects;
1231 }
1232 
1233 unsigned long zs_get_total_pages(struct zs_pool *pool)
1234 {
1235 	return atomic_long_read(&pool->pages_allocated);
1236 }
1237 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1238 
1239 /**
1240  * zs_map_object - get address of allocated object from handle.
1241  * @pool: pool from which the object was allocated
1242  * @handle: handle returned from zs_malloc
1243  *
1244  * Before using an object allocated from zs_malloc, it must be mapped using
1245  * this function. When done with the object, it must be unmapped using
1246  * zs_unmap_object.
1247  *
1248  * Only one object can be mapped per cpu at a time. There is no protection
1249  * against nested mappings.
1250  *
1251  * This function returns with preemption and page faults disabled.
1252  */
1253 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254 			enum zs_mapmode mm)
1255 {
1256 	struct page *page;
1257 	unsigned long obj, obj_idx, off;
1258 
1259 	unsigned int class_idx;
1260 	enum fullness_group fg;
1261 	struct size_class *class;
1262 	struct mapping_area *area;
1263 	struct page *pages[2];
1264 	void *ret;
1265 
1266 	BUG_ON(!handle);
1267 
1268 	/*
1269 	 * Because we use per-cpu mapping areas shared among the
1270 	 * pools/users, we can't allow mapping in interrupt context
1271 	 * because it can corrupt another users mappings.
1272 	 */
1273 	BUG_ON(in_interrupt());
1274 
1275 	/* From now on, migration cannot move the object */
1276 	pin_tag(handle);
1277 
1278 	obj = handle_to_obj(handle);
1279 	obj_to_location(obj, &page, &obj_idx);
1280 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1281 	class = pool->size_class[class_idx];
1282 	off = obj_idx_to_offset(page, obj_idx, class->size);
1283 
1284 	area = &get_cpu_var(zs_map_area);
1285 	area->vm_mm = mm;
1286 	if (off + class->size <= PAGE_SIZE) {
1287 		/* this object is contained entirely within a page */
1288 		area->vm_addr = kmap_atomic(page);
1289 		ret = area->vm_addr + off;
1290 		goto out;
1291 	}
1292 
1293 	/* this object spans two pages */
1294 	pages[0] = page;
1295 	pages[1] = get_next_page(page);
1296 	BUG_ON(!pages[1]);
1297 
1298 	ret = __zs_map_object(area, pages, off, class->size);
1299 out:
1300 	if (!class->huge)
1301 		ret += ZS_HANDLE_SIZE;
1302 
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_map_object);
1306 
1307 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1308 {
1309 	struct page *page;
1310 	unsigned long obj, obj_idx, off;
1311 
1312 	unsigned int class_idx;
1313 	enum fullness_group fg;
1314 	struct size_class *class;
1315 	struct mapping_area *area;
1316 
1317 	BUG_ON(!handle);
1318 
1319 	obj = handle_to_obj(handle);
1320 	obj_to_location(obj, &page, &obj_idx);
1321 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1322 	class = pool->size_class[class_idx];
1323 	off = obj_idx_to_offset(page, obj_idx, class->size);
1324 
1325 	area = this_cpu_ptr(&zs_map_area);
1326 	if (off + class->size <= PAGE_SIZE)
1327 		kunmap_atomic(area->vm_addr);
1328 	else {
1329 		struct page *pages[2];
1330 
1331 		pages[0] = page;
1332 		pages[1] = get_next_page(page);
1333 		BUG_ON(!pages[1]);
1334 
1335 		__zs_unmap_object(area, pages, off, class->size);
1336 	}
1337 	put_cpu_var(zs_map_area);
1338 	unpin_tag(handle);
1339 }
1340 EXPORT_SYMBOL_GPL(zs_unmap_object);
1341 
1342 static unsigned long obj_malloc(struct page *first_page,
1343 		struct size_class *class, unsigned long handle)
1344 {
1345 	unsigned long obj;
1346 	struct link_free *link;
1347 
1348 	struct page *m_page;
1349 	unsigned long m_objidx, m_offset;
1350 	void *vaddr;
1351 
1352 	handle |= OBJ_ALLOCATED_TAG;
1353 	obj = (unsigned long)first_page->freelist;
1354 	obj_to_location(obj, &m_page, &m_objidx);
1355 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1356 
1357 	vaddr = kmap_atomic(m_page);
1358 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1359 	first_page->freelist = link->next;
1360 	if (!class->huge)
1361 		/* record handle in the header of allocated chunk */
1362 		link->handle = handle;
1363 	else
1364 		/* record handle in first_page->private */
1365 		set_page_private(first_page, handle);
1366 	kunmap_atomic(vaddr);
1367 	first_page->inuse++;
1368 	zs_stat_inc(class, OBJ_USED, 1);
1369 
1370 	return obj;
1371 }
1372 
1373 
1374 /**
1375  * zs_malloc - Allocate block of given size from pool.
1376  * @pool: pool to allocate from
1377  * @size: size of block to allocate
1378  *
1379  * On success, handle to the allocated object is returned,
1380  * otherwise 0.
1381  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1382  */
1383 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1384 {
1385 	unsigned long handle, obj;
1386 	struct size_class *class;
1387 	struct page *first_page;
1388 
1389 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1390 		return 0;
1391 
1392 	handle = alloc_handle(pool);
1393 	if (!handle)
1394 		return 0;
1395 
1396 	/* extra space in chunk to keep the handle */
1397 	size += ZS_HANDLE_SIZE;
1398 	class = pool->size_class[get_size_class_index(size)];
1399 
1400 	spin_lock(&class->lock);
1401 	first_page = find_get_zspage(class);
1402 
1403 	if (!first_page) {
1404 		spin_unlock(&class->lock);
1405 		first_page = alloc_zspage(class, pool->flags);
1406 		if (unlikely(!first_page)) {
1407 			free_handle(pool, handle);
1408 			return 0;
1409 		}
1410 
1411 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1412 		atomic_long_add(class->pages_per_zspage,
1413 					&pool->pages_allocated);
1414 
1415 		spin_lock(&class->lock);
1416 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1417 				class->size, class->pages_per_zspage));
1418 	}
1419 
1420 	obj = obj_malloc(first_page, class, handle);
1421 	/* Now move the zspage to another fullness group, if required */
1422 	fix_fullness_group(class, first_page);
1423 	record_obj(handle, obj);
1424 	spin_unlock(&class->lock);
1425 
1426 	return handle;
1427 }
1428 EXPORT_SYMBOL_GPL(zs_malloc);
1429 
1430 static void obj_free(struct zs_pool *pool, struct size_class *class,
1431 			unsigned long obj)
1432 {
1433 	struct link_free *link;
1434 	struct page *first_page, *f_page;
1435 	unsigned long f_objidx, f_offset;
1436 	void *vaddr;
1437 	int class_idx;
1438 	enum fullness_group fullness;
1439 
1440 	BUG_ON(!obj);
1441 
1442 	obj &= ~OBJ_ALLOCATED_TAG;
1443 	obj_to_location(obj, &f_page, &f_objidx);
1444 	first_page = get_first_page(f_page);
1445 
1446 	get_zspage_mapping(first_page, &class_idx, &fullness);
1447 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1448 
1449 	vaddr = kmap_atomic(f_page);
1450 
1451 	/* Insert this object in containing zspage's freelist */
1452 	link = (struct link_free *)(vaddr + f_offset);
1453 	link->next = first_page->freelist;
1454 	if (class->huge)
1455 		set_page_private(first_page, 0);
1456 	kunmap_atomic(vaddr);
1457 	first_page->freelist = (void *)obj;
1458 	first_page->inuse--;
1459 	zs_stat_dec(class, OBJ_USED, 1);
1460 }
1461 
1462 void zs_free(struct zs_pool *pool, unsigned long handle)
1463 {
1464 	struct page *first_page, *f_page;
1465 	unsigned long obj, f_objidx;
1466 	int class_idx;
1467 	struct size_class *class;
1468 	enum fullness_group fullness;
1469 
1470 	if (unlikely(!handle))
1471 		return;
1472 
1473 	pin_tag(handle);
1474 	obj = handle_to_obj(handle);
1475 	obj_to_location(obj, &f_page, &f_objidx);
1476 	first_page = get_first_page(f_page);
1477 
1478 	get_zspage_mapping(first_page, &class_idx, &fullness);
1479 	class = pool->size_class[class_idx];
1480 
1481 	spin_lock(&class->lock);
1482 	obj_free(pool, class, obj);
1483 	fullness = fix_fullness_group(class, first_page);
1484 	if (fullness == ZS_EMPTY) {
1485 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1486 				class->size, class->pages_per_zspage));
1487 		atomic_long_sub(class->pages_per_zspage,
1488 				&pool->pages_allocated);
1489 		free_zspage(first_page);
1490 	}
1491 	spin_unlock(&class->lock);
1492 	unpin_tag(handle);
1493 
1494 	free_handle(pool, handle);
1495 }
1496 EXPORT_SYMBOL_GPL(zs_free);
1497 
1498 static void zs_object_copy(unsigned long src, unsigned long dst,
1499 				struct size_class *class)
1500 {
1501 	struct page *s_page, *d_page;
1502 	unsigned long s_objidx, d_objidx;
1503 	unsigned long s_off, d_off;
1504 	void *s_addr, *d_addr;
1505 	int s_size, d_size, size;
1506 	int written = 0;
1507 
1508 	s_size = d_size = class->size;
1509 
1510 	obj_to_location(src, &s_page, &s_objidx);
1511 	obj_to_location(dst, &d_page, &d_objidx);
1512 
1513 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1514 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1515 
1516 	if (s_off + class->size > PAGE_SIZE)
1517 		s_size = PAGE_SIZE - s_off;
1518 
1519 	if (d_off + class->size > PAGE_SIZE)
1520 		d_size = PAGE_SIZE - d_off;
1521 
1522 	s_addr = kmap_atomic(s_page);
1523 	d_addr = kmap_atomic(d_page);
1524 
1525 	while (1) {
1526 		size = min(s_size, d_size);
1527 		memcpy(d_addr + d_off, s_addr + s_off, size);
1528 		written += size;
1529 
1530 		if (written == class->size)
1531 			break;
1532 
1533 		s_off += size;
1534 		s_size -= size;
1535 		d_off += size;
1536 		d_size -= size;
1537 
1538 		if (s_off >= PAGE_SIZE) {
1539 			kunmap_atomic(d_addr);
1540 			kunmap_atomic(s_addr);
1541 			s_page = get_next_page(s_page);
1542 			BUG_ON(!s_page);
1543 			s_addr = kmap_atomic(s_page);
1544 			d_addr = kmap_atomic(d_page);
1545 			s_size = class->size - written;
1546 			s_off = 0;
1547 		}
1548 
1549 		if (d_off >= PAGE_SIZE) {
1550 			kunmap_atomic(d_addr);
1551 			d_page = get_next_page(d_page);
1552 			BUG_ON(!d_page);
1553 			d_addr = kmap_atomic(d_page);
1554 			d_size = class->size - written;
1555 			d_off = 0;
1556 		}
1557 	}
1558 
1559 	kunmap_atomic(d_addr);
1560 	kunmap_atomic(s_addr);
1561 }
1562 
1563 /*
1564  * Find alloced object in zspage from index object and
1565  * return handle.
1566  */
1567 static unsigned long find_alloced_obj(struct page *page, int index,
1568 					struct size_class *class)
1569 {
1570 	unsigned long head;
1571 	int offset = 0;
1572 	unsigned long handle = 0;
1573 	void *addr = kmap_atomic(page);
1574 
1575 	if (!is_first_page(page))
1576 		offset = page->index;
1577 	offset += class->size * index;
1578 
1579 	while (offset < PAGE_SIZE) {
1580 		head = obj_to_head(class, page, addr + offset);
1581 		if (head & OBJ_ALLOCATED_TAG) {
1582 			handle = head & ~OBJ_ALLOCATED_TAG;
1583 			if (trypin_tag(handle))
1584 				break;
1585 			handle = 0;
1586 		}
1587 
1588 		offset += class->size;
1589 		index++;
1590 	}
1591 
1592 	kunmap_atomic(addr);
1593 	return handle;
1594 }
1595 
1596 struct zs_compact_control {
1597 	/* Source page for migration which could be a subpage of zspage. */
1598 	struct page *s_page;
1599 	/* Destination page for migration which should be a first page
1600 	 * of zspage. */
1601 	struct page *d_page;
1602 	 /* Starting object index within @s_page which used for live object
1603 	  * in the subpage. */
1604 	int index;
1605 	/* how many of objects are migrated */
1606 	int nr_migrated;
1607 };
1608 
1609 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 				struct zs_compact_control *cc)
1611 {
1612 	unsigned long used_obj, free_obj;
1613 	unsigned long handle;
1614 	struct page *s_page = cc->s_page;
1615 	struct page *d_page = cc->d_page;
1616 	unsigned long index = cc->index;
1617 	int nr_migrated = 0;
1618 	int ret = 0;
1619 
1620 	while (1) {
1621 		handle = find_alloced_obj(s_page, index, class);
1622 		if (!handle) {
1623 			s_page = get_next_page(s_page);
1624 			if (!s_page)
1625 				break;
1626 			index = 0;
1627 			continue;
1628 		}
1629 
1630 		/* Stop if there is no more space */
1631 		if (zspage_full(d_page)) {
1632 			unpin_tag(handle);
1633 			ret = -ENOMEM;
1634 			break;
1635 		}
1636 
1637 		used_obj = handle_to_obj(handle);
1638 		free_obj = obj_malloc(d_page, class, handle);
1639 		zs_object_copy(used_obj, free_obj, class);
1640 		index++;
1641 		record_obj(handle, free_obj);
1642 		unpin_tag(handle);
1643 		obj_free(pool, class, used_obj);
1644 		nr_migrated++;
1645 	}
1646 
1647 	/* Remember last position in this iteration */
1648 	cc->s_page = s_page;
1649 	cc->index = index;
1650 	cc->nr_migrated = nr_migrated;
1651 
1652 	return ret;
1653 }
1654 
1655 static struct page *alloc_target_page(struct size_class *class)
1656 {
1657 	int i;
1658 	struct page *page;
1659 
1660 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1661 		page = class->fullness_list[i];
1662 		if (page) {
1663 			remove_zspage(page, class, i);
1664 			break;
1665 		}
1666 	}
1667 
1668 	return page;
1669 }
1670 
1671 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1672 				struct page *first_page)
1673 {
1674 	enum fullness_group fullness;
1675 
1676 	BUG_ON(!is_first_page(first_page));
1677 
1678 	fullness = get_fullness_group(first_page);
1679 	insert_zspage(first_page, class, fullness);
1680 	set_zspage_mapping(first_page, class->index, fullness);
1681 
1682 	if (fullness == ZS_EMPTY) {
1683 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1684 			class->size, class->pages_per_zspage));
1685 		atomic_long_sub(class->pages_per_zspage,
1686 				&pool->pages_allocated);
1687 
1688 		free_zspage(first_page);
1689 	}
1690 }
1691 
1692 static struct page *isolate_source_page(struct size_class *class)
1693 {
1694 	struct page *page;
1695 
1696 	page = class->fullness_list[ZS_ALMOST_EMPTY];
1697 	if (page)
1698 		remove_zspage(page, class, ZS_ALMOST_EMPTY);
1699 
1700 	return page;
1701 }
1702 
1703 static unsigned long __zs_compact(struct zs_pool *pool,
1704 				struct size_class *class)
1705 {
1706 	int nr_to_migrate;
1707 	struct zs_compact_control cc;
1708 	struct page *src_page;
1709 	struct page *dst_page = NULL;
1710 	unsigned long nr_total_migrated = 0;
1711 
1712 	spin_lock(&class->lock);
1713 	while ((src_page = isolate_source_page(class))) {
1714 
1715 		BUG_ON(!is_first_page(src_page));
1716 
1717 		/* The goal is to migrate all live objects in source page */
1718 		nr_to_migrate = src_page->inuse;
1719 		cc.index = 0;
1720 		cc.s_page = src_page;
1721 
1722 		while ((dst_page = alloc_target_page(class))) {
1723 			cc.d_page = dst_page;
1724 			/*
1725 			 * If there is no more space in dst_page, try to
1726 			 * allocate another zspage.
1727 			 */
1728 			if (!migrate_zspage(pool, class, &cc))
1729 				break;
1730 
1731 			putback_zspage(pool, class, dst_page);
1732 			nr_total_migrated += cc.nr_migrated;
1733 			nr_to_migrate -= cc.nr_migrated;
1734 		}
1735 
1736 		/* Stop if we couldn't find slot */
1737 		if (dst_page == NULL)
1738 			break;
1739 
1740 		putback_zspage(pool, class, dst_page);
1741 		putback_zspage(pool, class, src_page);
1742 		spin_unlock(&class->lock);
1743 		nr_total_migrated += cc.nr_migrated;
1744 		cond_resched();
1745 		spin_lock(&class->lock);
1746 	}
1747 
1748 	if (src_page)
1749 		putback_zspage(pool, class, src_page);
1750 
1751 	spin_unlock(&class->lock);
1752 
1753 	return nr_total_migrated;
1754 }
1755 
1756 unsigned long zs_compact(struct zs_pool *pool)
1757 {
1758 	int i;
1759 	unsigned long nr_migrated = 0;
1760 	struct size_class *class;
1761 
1762 	for (i = zs_size_classes - 1; i >= 0; i--) {
1763 		class = pool->size_class[i];
1764 		if (!class)
1765 			continue;
1766 		if (class->index != i)
1767 			continue;
1768 		nr_migrated += __zs_compact(pool, class);
1769 	}
1770 
1771 	return nr_migrated;
1772 }
1773 EXPORT_SYMBOL_GPL(zs_compact);
1774 
1775 /**
1776  * zs_create_pool - Creates an allocation pool to work from.
1777  * @flags: allocation flags used to allocate pool metadata
1778  *
1779  * This function must be called before anything when using
1780  * the zsmalloc allocator.
1781  *
1782  * On success, a pointer to the newly created pool is returned,
1783  * otherwise NULL.
1784  */
1785 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1786 {
1787 	int i;
1788 	struct zs_pool *pool;
1789 	struct size_class *prev_class = NULL;
1790 
1791 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1792 	if (!pool)
1793 		return NULL;
1794 
1795 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1796 			GFP_KERNEL);
1797 	if (!pool->size_class) {
1798 		kfree(pool);
1799 		return NULL;
1800 	}
1801 
1802 	pool->name = kstrdup(name, GFP_KERNEL);
1803 	if (!pool->name)
1804 		goto err;
1805 
1806 	if (create_handle_cache(pool))
1807 		goto err;
1808 
1809 	/*
1810 	 * Iterate reversly, because, size of size_class that we want to use
1811 	 * for merging should be larger or equal to current size.
1812 	 */
1813 	for (i = zs_size_classes - 1; i >= 0; i--) {
1814 		int size;
1815 		int pages_per_zspage;
1816 		struct size_class *class;
1817 
1818 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1819 		if (size > ZS_MAX_ALLOC_SIZE)
1820 			size = ZS_MAX_ALLOC_SIZE;
1821 		pages_per_zspage = get_pages_per_zspage(size);
1822 
1823 		/*
1824 		 * size_class is used for normal zsmalloc operation such
1825 		 * as alloc/free for that size. Although it is natural that we
1826 		 * have one size_class for each size, there is a chance that we
1827 		 * can get more memory utilization if we use one size_class for
1828 		 * many different sizes whose size_class have same
1829 		 * characteristics. So, we makes size_class point to
1830 		 * previous size_class if possible.
1831 		 */
1832 		if (prev_class) {
1833 			if (can_merge(prev_class, size, pages_per_zspage)) {
1834 				pool->size_class[i] = prev_class;
1835 				continue;
1836 			}
1837 		}
1838 
1839 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1840 		if (!class)
1841 			goto err;
1842 
1843 		class->size = size;
1844 		class->index = i;
1845 		class->pages_per_zspage = pages_per_zspage;
1846 		if (pages_per_zspage == 1 &&
1847 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1848 			class->huge = true;
1849 		spin_lock_init(&class->lock);
1850 		pool->size_class[i] = class;
1851 
1852 		prev_class = class;
1853 	}
1854 
1855 	pool->flags = flags;
1856 
1857 	if (zs_pool_stat_create(name, pool))
1858 		goto err;
1859 
1860 	return pool;
1861 
1862 err:
1863 	zs_destroy_pool(pool);
1864 	return NULL;
1865 }
1866 EXPORT_SYMBOL_GPL(zs_create_pool);
1867 
1868 void zs_destroy_pool(struct zs_pool *pool)
1869 {
1870 	int i;
1871 
1872 	zs_pool_stat_destroy(pool);
1873 
1874 	for (i = 0; i < zs_size_classes; i++) {
1875 		int fg;
1876 		struct size_class *class = pool->size_class[i];
1877 
1878 		if (!class)
1879 			continue;
1880 
1881 		if (class->index != i)
1882 			continue;
1883 
1884 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1885 			if (class->fullness_list[fg]) {
1886 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1887 					class->size, fg);
1888 			}
1889 		}
1890 		kfree(class);
1891 	}
1892 
1893 	destroy_handle_cache(pool);
1894 	kfree(pool->size_class);
1895 	kfree(pool->name);
1896 	kfree(pool);
1897 }
1898 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1899 
1900 static int __init zs_init(void)
1901 {
1902 	int ret = zs_register_cpu_notifier();
1903 
1904 	if (ret)
1905 		goto notifier_fail;
1906 
1907 	init_zs_size_classes();
1908 
1909 #ifdef CONFIG_ZPOOL
1910 	zpool_register_driver(&zs_zpool_driver);
1911 #endif
1912 
1913 	ret = zs_stat_init();
1914 	if (ret) {
1915 		pr_err("zs stat initialization failed\n");
1916 		goto stat_fail;
1917 	}
1918 	return 0;
1919 
1920 stat_fail:
1921 #ifdef CONFIG_ZPOOL
1922 	zpool_unregister_driver(&zs_zpool_driver);
1923 #endif
1924 notifier_fail:
1925 	zs_unregister_cpu_notifier();
1926 
1927 	return ret;
1928 }
1929 
1930 static void __exit zs_exit(void)
1931 {
1932 #ifdef CONFIG_ZPOOL
1933 	zpool_unregister_driver(&zs_zpool_driver);
1934 #endif
1935 	zs_unregister_cpu_notifier();
1936 
1937 	zs_stat_exit();
1938 }
1939 
1940 module_init(zs_init);
1941 module_exit(zs_exit);
1942 
1943 MODULE_LICENSE("Dual BSD/GPL");
1944 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1945