xref: /openbmc/linux/mm/zsmalloc.c (revision cd4d09ec)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private: refers to the component page after the first page
30  *		If the page is first_page for huge object, it stores handle.
31  *		Look at size_class->huge.
32  *	page->freelist: points to the first free object in zspage.
33  *		Free objects are linked together using in-place
34  *		metadata.
35  *	page->objects: maximum number of objects we can store in this
36  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
37  *	page->lru: links together first pages of various zspages.
38  *		Basically forming list of zspages in a fullness group.
39  *	page->mapping: class index and fullness group of the zspage
40  *	page->inuse: the number of objects that are used in this zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/preempt.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67 
68 /*
69  * This must be power of 2 and greater than of equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * as single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> is relative to system
90  * page <PFN> it is stored in, so for each sub-page belonging
91  * to a zspage, obj_idx starts with 0.
92  *
93  * This is made more complicated by various memory models and PAE.
94  */
95 
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102  * be PAGE_SHIFT
103  */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Memory for allocating for handle keeps object position by
111  * encoding <page, obj_idx> and the encoded value has a room
112  * in least bit(ie, look at obj_to_location).
113  * We use the bit to synchronize between object access by
114  * user and migration.
115  */
116 #define HANDLE_PIN_BIT	0
117 
118 /*
119  * Head in allocated object should have OBJ_ALLOCATED_TAG
120  * to identify the object was allocated or not.
121  * It's okay to add the status bit in the least bit because
122  * header keeps handle which is 4byte-aligned address so we
123  * have room for two bit at least.
124  */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 
152 /*
153  * We do not maintain any list for completely empty or full pages
154  */
155 enum fullness_group {
156 	ZS_ALMOST_FULL,
157 	ZS_ALMOST_EMPTY,
158 	_ZS_NR_FULLNESS_GROUPS,
159 
160 	ZS_EMPTY,
161 	ZS_FULL
162 };
163 
164 enum zs_stat_type {
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	CLASS_ALMOST_FULL,
168 	CLASS_ALMOST_EMPTY,
169 };
170 
171 #ifdef CONFIG_ZSMALLOC_STAT
172 #define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
173 #else
174 #define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
175 #endif
176 
177 struct zs_size_stat {
178 	unsigned long objs[NR_ZS_STAT_TYPE];
179 };
180 
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184 
185 /*
186  * number of size_classes
187  */
188 static int zs_size_classes;
189 
190 /*
191  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192  *	n <= N / f, where
193  * n = number of allocated objects
194  * N = total number of objects zspage can store
195  * f = fullness_threshold_frac
196  *
197  * Similarly, we assign zspage to:
198  *	ZS_ALMOST_FULL	when n > N / f
199  *	ZS_EMPTY	when n == 0
200  *	ZS_FULL		when n == N
201  *
202  * (see: fix_fullness_group())
203  */
204 static const int fullness_threshold_frac = 4;
205 
206 struct size_class {
207 	spinlock_t lock;
208 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 	/*
210 	 * Size of objects stored in this class. Must be multiple
211 	 * of ZS_ALIGN.
212 	 */
213 	int size;
214 	unsigned int index;
215 
216 	struct zs_size_stat stats;
217 
218 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 	int pages_per_zspage;
220 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 	bool huge;
222 };
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, first_page->freelist gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Position of next free chunk (encodes <PFN, obj_idx>)
234 		 * It's valid for non-allocated object
235 		 */
236 		void *next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 
250 	gfp_t flags;	/* allocation flags used when growing pool */
251 	atomic_long_t pages_allocated;
252 
253 	struct zs_pool_stats stats;
254 
255 	/* Compact classes */
256 	struct shrinker shrinker;
257 	/*
258 	 * To signify that register_shrinker() was successful
259 	 * and unregister_shrinker() will not Oops.
260 	 */
261 	bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 };
266 
267 /*
268  * A zspage's class index and fullness group
269  * are encoded in its (first)page->mapping
270  */
271 #define CLASS_IDX_BITS	28
272 #define FULLNESS_BITS	4
273 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
274 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
275 
276 struct mapping_area {
277 #ifdef CONFIG_PGTABLE_MAPPING
278 	struct vm_struct *vm; /* vm area for mapping object that span pages */
279 #else
280 	char *vm_buf; /* copy buffer for objects that span pages */
281 #endif
282 	char *vm_addr; /* address of kmap_atomic()'ed pages */
283 	enum zs_mapmode vm_mm; /* mapping mode */
284 	bool huge;
285 };
286 
287 static int create_handle_cache(struct zs_pool *pool)
288 {
289 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
290 					0, 0, NULL);
291 	return pool->handle_cachep ? 0 : 1;
292 }
293 
294 static void destroy_handle_cache(struct zs_pool *pool)
295 {
296 	kmem_cache_destroy(pool->handle_cachep);
297 }
298 
299 static unsigned long alloc_handle(struct zs_pool *pool)
300 {
301 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
302 		pool->flags & ~__GFP_HIGHMEM);
303 }
304 
305 static void free_handle(struct zs_pool *pool, unsigned long handle)
306 {
307 	kmem_cache_free(pool->handle_cachep, (void *)handle);
308 }
309 
310 static void record_obj(unsigned long handle, unsigned long obj)
311 {
312 	/*
313 	 * lsb of @obj represents handle lock while other bits
314 	 * represent object value the handle is pointing so
315 	 * updating shouldn't do store tearing.
316 	 */
317 	WRITE_ONCE(*(unsigned long *)handle, obj);
318 }
319 
320 /* zpool driver */
321 
322 #ifdef CONFIG_ZPOOL
323 
324 static void *zs_zpool_create(const char *name, gfp_t gfp,
325 			     const struct zpool_ops *zpool_ops,
326 			     struct zpool *zpool)
327 {
328 	return zs_create_pool(name, gfp);
329 }
330 
331 static void zs_zpool_destroy(void *pool)
332 {
333 	zs_destroy_pool(pool);
334 }
335 
336 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
337 			unsigned long *handle)
338 {
339 	*handle = zs_malloc(pool, size);
340 	return *handle ? 0 : -1;
341 }
342 static void zs_zpool_free(void *pool, unsigned long handle)
343 {
344 	zs_free(pool, handle);
345 }
346 
347 static int zs_zpool_shrink(void *pool, unsigned int pages,
348 			unsigned int *reclaimed)
349 {
350 	return -EINVAL;
351 }
352 
353 static void *zs_zpool_map(void *pool, unsigned long handle,
354 			enum zpool_mapmode mm)
355 {
356 	enum zs_mapmode zs_mm;
357 
358 	switch (mm) {
359 	case ZPOOL_MM_RO:
360 		zs_mm = ZS_MM_RO;
361 		break;
362 	case ZPOOL_MM_WO:
363 		zs_mm = ZS_MM_WO;
364 		break;
365 	case ZPOOL_MM_RW: /* fallthru */
366 	default:
367 		zs_mm = ZS_MM_RW;
368 		break;
369 	}
370 
371 	return zs_map_object(pool, handle, zs_mm);
372 }
373 static void zs_zpool_unmap(void *pool, unsigned long handle)
374 {
375 	zs_unmap_object(pool, handle);
376 }
377 
378 static u64 zs_zpool_total_size(void *pool)
379 {
380 	return zs_get_total_pages(pool) << PAGE_SHIFT;
381 }
382 
383 static struct zpool_driver zs_zpool_driver = {
384 	.type =		"zsmalloc",
385 	.owner =	THIS_MODULE,
386 	.create =	zs_zpool_create,
387 	.destroy =	zs_zpool_destroy,
388 	.malloc =	zs_zpool_malloc,
389 	.free =		zs_zpool_free,
390 	.shrink =	zs_zpool_shrink,
391 	.map =		zs_zpool_map,
392 	.unmap =	zs_zpool_unmap,
393 	.total_size =	zs_zpool_total_size,
394 };
395 
396 MODULE_ALIAS("zpool-zsmalloc");
397 #endif /* CONFIG_ZPOOL */
398 
399 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
400 {
401 	return pages_per_zspage * PAGE_SIZE / size;
402 }
403 
404 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
405 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
406 
407 static int is_first_page(struct page *page)
408 {
409 	return PagePrivate(page);
410 }
411 
412 static int is_last_page(struct page *page)
413 {
414 	return PagePrivate2(page);
415 }
416 
417 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
418 				enum fullness_group *fullness)
419 {
420 	unsigned long m;
421 	BUG_ON(!is_first_page(page));
422 
423 	m = (unsigned long)page->mapping;
424 	*fullness = m & FULLNESS_MASK;
425 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
426 }
427 
428 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
429 				enum fullness_group fullness)
430 {
431 	unsigned long m;
432 	BUG_ON(!is_first_page(page));
433 
434 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
435 			(fullness & FULLNESS_MASK);
436 	page->mapping = (struct address_space *)m;
437 }
438 
439 /*
440  * zsmalloc divides the pool into various size classes where each
441  * class maintains a list of zspages where each zspage is divided
442  * into equal sized chunks. Each allocation falls into one of these
443  * classes depending on its size. This function returns index of the
444  * size class which has chunk size big enough to hold the give size.
445  */
446 static int get_size_class_index(int size)
447 {
448 	int idx = 0;
449 
450 	if (likely(size > ZS_MIN_ALLOC_SIZE))
451 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
452 				ZS_SIZE_CLASS_DELTA);
453 
454 	return min(zs_size_classes - 1, idx);
455 }
456 
457 static inline void zs_stat_inc(struct size_class *class,
458 				enum zs_stat_type type, unsigned long cnt)
459 {
460 	if (type < NR_ZS_STAT_TYPE)
461 		class->stats.objs[type] += cnt;
462 }
463 
464 static inline void zs_stat_dec(struct size_class *class,
465 				enum zs_stat_type type, unsigned long cnt)
466 {
467 	if (type < NR_ZS_STAT_TYPE)
468 		class->stats.objs[type] -= cnt;
469 }
470 
471 static inline unsigned long zs_stat_get(struct size_class *class,
472 				enum zs_stat_type type)
473 {
474 	if (type < NR_ZS_STAT_TYPE)
475 		return class->stats.objs[type];
476 	return 0;
477 }
478 
479 #ifdef CONFIG_ZSMALLOC_STAT
480 
481 static int __init zs_stat_init(void)
482 {
483 	if (!debugfs_initialized())
484 		return -ENODEV;
485 
486 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
487 	if (!zs_stat_root)
488 		return -ENOMEM;
489 
490 	return 0;
491 }
492 
493 static void __exit zs_stat_exit(void)
494 {
495 	debugfs_remove_recursive(zs_stat_root);
496 }
497 
498 static int zs_stats_size_show(struct seq_file *s, void *v)
499 {
500 	int i;
501 	struct zs_pool *pool = s->private;
502 	struct size_class *class;
503 	int objs_per_zspage;
504 	unsigned long class_almost_full, class_almost_empty;
505 	unsigned long obj_allocated, obj_used, pages_used;
506 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
507 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
508 
509 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
510 			"class", "size", "almost_full", "almost_empty",
511 			"obj_allocated", "obj_used", "pages_used",
512 			"pages_per_zspage");
513 
514 	for (i = 0; i < zs_size_classes; i++) {
515 		class = pool->size_class[i];
516 
517 		if (class->index != i)
518 			continue;
519 
520 		spin_lock(&class->lock);
521 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
522 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
523 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
524 		obj_used = zs_stat_get(class, OBJ_USED);
525 		spin_unlock(&class->lock);
526 
527 		objs_per_zspage = get_maxobj_per_zspage(class->size,
528 				class->pages_per_zspage);
529 		pages_used = obj_allocated / objs_per_zspage *
530 				class->pages_per_zspage;
531 
532 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
533 			i, class->size, class_almost_full, class_almost_empty,
534 			obj_allocated, obj_used, pages_used,
535 			class->pages_per_zspage);
536 
537 		total_class_almost_full += class_almost_full;
538 		total_class_almost_empty += class_almost_empty;
539 		total_objs += obj_allocated;
540 		total_used_objs += obj_used;
541 		total_pages += pages_used;
542 	}
543 
544 	seq_puts(s, "\n");
545 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
546 			"Total", "", total_class_almost_full,
547 			total_class_almost_empty, total_objs,
548 			total_used_objs, total_pages);
549 
550 	return 0;
551 }
552 
553 static int zs_stats_size_open(struct inode *inode, struct file *file)
554 {
555 	return single_open(file, zs_stats_size_show, inode->i_private);
556 }
557 
558 static const struct file_operations zs_stat_size_ops = {
559 	.open           = zs_stats_size_open,
560 	.read           = seq_read,
561 	.llseek         = seq_lseek,
562 	.release        = single_release,
563 };
564 
565 static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
566 {
567 	struct dentry *entry;
568 
569 	if (!zs_stat_root)
570 		return -ENODEV;
571 
572 	entry = debugfs_create_dir(name, zs_stat_root);
573 	if (!entry) {
574 		pr_warn("debugfs dir <%s> creation failed\n", name);
575 		return -ENOMEM;
576 	}
577 	pool->stat_dentry = entry;
578 
579 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
580 			pool->stat_dentry, pool, &zs_stat_size_ops);
581 	if (!entry) {
582 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
583 				name, "classes");
584 		return -ENOMEM;
585 	}
586 
587 	return 0;
588 }
589 
590 static void zs_pool_stat_destroy(struct zs_pool *pool)
591 {
592 	debugfs_remove_recursive(pool->stat_dentry);
593 }
594 
595 #else /* CONFIG_ZSMALLOC_STAT */
596 static int __init zs_stat_init(void)
597 {
598 	return 0;
599 }
600 
601 static void __exit zs_stat_exit(void)
602 {
603 }
604 
605 static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
606 {
607 	return 0;
608 }
609 
610 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
611 {
612 }
613 #endif
614 
615 
616 /*
617  * For each size class, zspages are divided into different groups
618  * depending on how "full" they are. This was done so that we could
619  * easily find empty or nearly empty zspages when we try to shrink
620  * the pool (not yet implemented). This function returns fullness
621  * status of the given page.
622  */
623 static enum fullness_group get_fullness_group(struct page *page)
624 {
625 	int inuse, max_objects;
626 	enum fullness_group fg;
627 	BUG_ON(!is_first_page(page));
628 
629 	inuse = page->inuse;
630 	max_objects = page->objects;
631 
632 	if (inuse == 0)
633 		fg = ZS_EMPTY;
634 	else if (inuse == max_objects)
635 		fg = ZS_FULL;
636 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
637 		fg = ZS_ALMOST_EMPTY;
638 	else
639 		fg = ZS_ALMOST_FULL;
640 
641 	return fg;
642 }
643 
644 /*
645  * Each size class maintains various freelists and zspages are assigned
646  * to one of these freelists based on the number of live objects they
647  * have. This functions inserts the given zspage into the freelist
648  * identified by <class, fullness_group>.
649  */
650 static void insert_zspage(struct page *page, struct size_class *class,
651 				enum fullness_group fullness)
652 {
653 	struct page **head;
654 
655 	BUG_ON(!is_first_page(page));
656 
657 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
658 		return;
659 
660 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
661 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
662 
663 	head = &class->fullness_list[fullness];
664 	if (!*head) {
665 		*head = page;
666 		return;
667 	}
668 
669 	/*
670 	 * We want to see more ZS_FULL pages and less almost
671 	 * empty/full. Put pages with higher ->inuse first.
672 	 */
673 	list_add_tail(&page->lru, &(*head)->lru);
674 	if (page->inuse >= (*head)->inuse)
675 		*head = page;
676 }
677 
678 /*
679  * This function removes the given zspage from the freelist identified
680  * by <class, fullness_group>.
681  */
682 static void remove_zspage(struct page *page, struct size_class *class,
683 				enum fullness_group fullness)
684 {
685 	struct page **head;
686 
687 	BUG_ON(!is_first_page(page));
688 
689 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
690 		return;
691 
692 	head = &class->fullness_list[fullness];
693 	BUG_ON(!*head);
694 	if (list_empty(&(*head)->lru))
695 		*head = NULL;
696 	else if (*head == page)
697 		*head = (struct page *)list_entry((*head)->lru.next,
698 					struct page, lru);
699 
700 	list_del_init(&page->lru);
701 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
702 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
703 }
704 
705 /*
706  * Each size class maintains zspages in different fullness groups depending
707  * on the number of live objects they contain. When allocating or freeing
708  * objects, the fullness status of the page can change, say, from ALMOST_FULL
709  * to ALMOST_EMPTY when freeing an object. This function checks if such
710  * a status change has occurred for the given page and accordingly moves the
711  * page from the freelist of the old fullness group to that of the new
712  * fullness group.
713  */
714 static enum fullness_group fix_fullness_group(struct size_class *class,
715 						struct page *page)
716 {
717 	int class_idx;
718 	enum fullness_group currfg, newfg;
719 
720 	BUG_ON(!is_first_page(page));
721 
722 	get_zspage_mapping(page, &class_idx, &currfg);
723 	newfg = get_fullness_group(page);
724 	if (newfg == currfg)
725 		goto out;
726 
727 	remove_zspage(page, class, currfg);
728 	insert_zspage(page, class, newfg);
729 	set_zspage_mapping(page, class_idx, newfg);
730 
731 out:
732 	return newfg;
733 }
734 
735 /*
736  * We have to decide on how many pages to link together
737  * to form a zspage for each size class. This is important
738  * to reduce wastage due to unusable space left at end of
739  * each zspage which is given as:
740  *     wastage = Zp % class_size
741  *     usage = Zp - wastage
742  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
743  *
744  * For example, for size class of 3/8 * PAGE_SIZE, we should
745  * link together 3 PAGE_SIZE sized pages to form a zspage
746  * since then we can perfectly fit in 8 such objects.
747  */
748 static int get_pages_per_zspage(int class_size)
749 {
750 	int i, max_usedpc = 0;
751 	/* zspage order which gives maximum used size per KB */
752 	int max_usedpc_order = 1;
753 
754 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
755 		int zspage_size;
756 		int waste, usedpc;
757 
758 		zspage_size = i * PAGE_SIZE;
759 		waste = zspage_size % class_size;
760 		usedpc = (zspage_size - waste) * 100 / zspage_size;
761 
762 		if (usedpc > max_usedpc) {
763 			max_usedpc = usedpc;
764 			max_usedpc_order = i;
765 		}
766 	}
767 
768 	return max_usedpc_order;
769 }
770 
771 /*
772  * A single 'zspage' is composed of many system pages which are
773  * linked together using fields in struct page. This function finds
774  * the first/head page, given any component page of a zspage.
775  */
776 static struct page *get_first_page(struct page *page)
777 {
778 	if (is_first_page(page))
779 		return page;
780 	else
781 		return (struct page *)page_private(page);
782 }
783 
784 static struct page *get_next_page(struct page *page)
785 {
786 	struct page *next;
787 
788 	if (is_last_page(page))
789 		next = NULL;
790 	else if (is_first_page(page))
791 		next = (struct page *)page_private(page);
792 	else
793 		next = list_entry(page->lru.next, struct page, lru);
794 
795 	return next;
796 }
797 
798 /*
799  * Encode <page, obj_idx> as a single handle value.
800  * We use the least bit of handle for tagging.
801  */
802 static void *location_to_obj(struct page *page, unsigned long obj_idx)
803 {
804 	unsigned long obj;
805 
806 	if (!page) {
807 		BUG_ON(obj_idx);
808 		return NULL;
809 	}
810 
811 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
812 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
813 	obj <<= OBJ_TAG_BITS;
814 
815 	return (void *)obj;
816 }
817 
818 /*
819  * Decode <page, obj_idx> pair from the given object handle. We adjust the
820  * decoded obj_idx back to its original value since it was adjusted in
821  * location_to_obj().
822  */
823 static void obj_to_location(unsigned long obj, struct page **page,
824 				unsigned long *obj_idx)
825 {
826 	obj >>= OBJ_TAG_BITS;
827 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
828 	*obj_idx = (obj & OBJ_INDEX_MASK);
829 }
830 
831 static unsigned long handle_to_obj(unsigned long handle)
832 {
833 	return *(unsigned long *)handle;
834 }
835 
836 static unsigned long obj_to_head(struct size_class *class, struct page *page,
837 			void *obj)
838 {
839 	if (class->huge) {
840 		VM_BUG_ON(!is_first_page(page));
841 		return page_private(page);
842 	} else
843 		return *(unsigned long *)obj;
844 }
845 
846 static unsigned long obj_idx_to_offset(struct page *page,
847 				unsigned long obj_idx, int class_size)
848 {
849 	unsigned long off = 0;
850 
851 	if (!is_first_page(page))
852 		off = page->index;
853 
854 	return off + obj_idx * class_size;
855 }
856 
857 static inline int trypin_tag(unsigned long handle)
858 {
859 	unsigned long *ptr = (unsigned long *)handle;
860 
861 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
862 }
863 
864 static void pin_tag(unsigned long handle)
865 {
866 	while (!trypin_tag(handle));
867 }
868 
869 static void unpin_tag(unsigned long handle)
870 {
871 	unsigned long *ptr = (unsigned long *)handle;
872 
873 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
874 }
875 
876 static void reset_page(struct page *page)
877 {
878 	clear_bit(PG_private, &page->flags);
879 	clear_bit(PG_private_2, &page->flags);
880 	set_page_private(page, 0);
881 	page->mapping = NULL;
882 	page->freelist = NULL;
883 	page_mapcount_reset(page);
884 }
885 
886 static void free_zspage(struct page *first_page)
887 {
888 	struct page *nextp, *tmp, *head_extra;
889 
890 	BUG_ON(!is_first_page(first_page));
891 	BUG_ON(first_page->inuse);
892 
893 	head_extra = (struct page *)page_private(first_page);
894 
895 	reset_page(first_page);
896 	__free_page(first_page);
897 
898 	/* zspage with only 1 system page */
899 	if (!head_extra)
900 		return;
901 
902 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
903 		list_del(&nextp->lru);
904 		reset_page(nextp);
905 		__free_page(nextp);
906 	}
907 	reset_page(head_extra);
908 	__free_page(head_extra);
909 }
910 
911 /* Initialize a newly allocated zspage */
912 static void init_zspage(struct page *first_page, struct size_class *class)
913 {
914 	unsigned long off = 0;
915 	struct page *page = first_page;
916 
917 	BUG_ON(!is_first_page(first_page));
918 	while (page) {
919 		struct page *next_page;
920 		struct link_free *link;
921 		unsigned int i = 1;
922 		void *vaddr;
923 
924 		/*
925 		 * page->index stores offset of first object starting
926 		 * in the page. For the first page, this is always 0,
927 		 * so we use first_page->index (aka ->freelist) to store
928 		 * head of corresponding zspage's freelist.
929 		 */
930 		if (page != first_page)
931 			page->index = off;
932 
933 		vaddr = kmap_atomic(page);
934 		link = (struct link_free *)vaddr + off / sizeof(*link);
935 
936 		while ((off += class->size) < PAGE_SIZE) {
937 			link->next = location_to_obj(page, i++);
938 			link += class->size / sizeof(*link);
939 		}
940 
941 		/*
942 		 * We now come to the last (full or partial) object on this
943 		 * page, which must point to the first object on the next
944 		 * page (if present)
945 		 */
946 		next_page = get_next_page(page);
947 		link->next = location_to_obj(next_page, 0);
948 		kunmap_atomic(vaddr);
949 		page = next_page;
950 		off %= PAGE_SIZE;
951 	}
952 }
953 
954 /*
955  * Allocate a zspage for the given size class
956  */
957 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
958 {
959 	int i, error;
960 	struct page *first_page = NULL, *uninitialized_var(prev_page);
961 
962 	/*
963 	 * Allocate individual pages and link them together as:
964 	 * 1. first page->private = first sub-page
965 	 * 2. all sub-pages are linked together using page->lru
966 	 * 3. each sub-page is linked to the first page using page->private
967 	 *
968 	 * For each size class, First/Head pages are linked together using
969 	 * page->lru. Also, we set PG_private to identify the first page
970 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
971 	 * identify the last page.
972 	 */
973 	error = -ENOMEM;
974 	for (i = 0; i < class->pages_per_zspage; i++) {
975 		struct page *page;
976 
977 		page = alloc_page(flags);
978 		if (!page)
979 			goto cleanup;
980 
981 		INIT_LIST_HEAD(&page->lru);
982 		if (i == 0) {	/* first page */
983 			SetPagePrivate(page);
984 			set_page_private(page, 0);
985 			first_page = page;
986 			first_page->inuse = 0;
987 		}
988 		if (i == 1)
989 			set_page_private(first_page, (unsigned long)page);
990 		if (i >= 1)
991 			set_page_private(page, (unsigned long)first_page);
992 		if (i >= 2)
993 			list_add(&page->lru, &prev_page->lru);
994 		if (i == class->pages_per_zspage - 1)	/* last page */
995 			SetPagePrivate2(page);
996 		prev_page = page;
997 	}
998 
999 	init_zspage(first_page, class);
1000 
1001 	first_page->freelist = location_to_obj(first_page, 0);
1002 	/* Maximum number of objects we can store in this zspage */
1003 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1004 
1005 	error = 0; /* Success */
1006 
1007 cleanup:
1008 	if (unlikely(error) && first_page) {
1009 		free_zspage(first_page);
1010 		first_page = NULL;
1011 	}
1012 
1013 	return first_page;
1014 }
1015 
1016 static struct page *find_get_zspage(struct size_class *class)
1017 {
1018 	int i;
1019 	struct page *page;
1020 
1021 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1022 		page = class->fullness_list[i];
1023 		if (page)
1024 			break;
1025 	}
1026 
1027 	return page;
1028 }
1029 
1030 #ifdef CONFIG_PGTABLE_MAPPING
1031 static inline int __zs_cpu_up(struct mapping_area *area)
1032 {
1033 	/*
1034 	 * Make sure we don't leak memory if a cpu UP notification
1035 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1036 	 */
1037 	if (area->vm)
1038 		return 0;
1039 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1040 	if (!area->vm)
1041 		return -ENOMEM;
1042 	return 0;
1043 }
1044 
1045 static inline void __zs_cpu_down(struct mapping_area *area)
1046 {
1047 	if (area->vm)
1048 		free_vm_area(area->vm);
1049 	area->vm = NULL;
1050 }
1051 
1052 static inline void *__zs_map_object(struct mapping_area *area,
1053 				struct page *pages[2], int off, int size)
1054 {
1055 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1056 	area->vm_addr = area->vm->addr;
1057 	return area->vm_addr + off;
1058 }
1059 
1060 static inline void __zs_unmap_object(struct mapping_area *area,
1061 				struct page *pages[2], int off, int size)
1062 {
1063 	unsigned long addr = (unsigned long)area->vm_addr;
1064 
1065 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1066 }
1067 
1068 #else /* CONFIG_PGTABLE_MAPPING */
1069 
1070 static inline int __zs_cpu_up(struct mapping_area *area)
1071 {
1072 	/*
1073 	 * Make sure we don't leak memory if a cpu UP notification
1074 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1075 	 */
1076 	if (area->vm_buf)
1077 		return 0;
1078 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1079 	if (!area->vm_buf)
1080 		return -ENOMEM;
1081 	return 0;
1082 }
1083 
1084 static inline void __zs_cpu_down(struct mapping_area *area)
1085 {
1086 	kfree(area->vm_buf);
1087 	area->vm_buf = NULL;
1088 }
1089 
1090 static void *__zs_map_object(struct mapping_area *area,
1091 			struct page *pages[2], int off, int size)
1092 {
1093 	int sizes[2];
1094 	void *addr;
1095 	char *buf = area->vm_buf;
1096 
1097 	/* disable page faults to match kmap_atomic() return conditions */
1098 	pagefault_disable();
1099 
1100 	/* no read fastpath */
1101 	if (area->vm_mm == ZS_MM_WO)
1102 		goto out;
1103 
1104 	sizes[0] = PAGE_SIZE - off;
1105 	sizes[1] = size - sizes[0];
1106 
1107 	/* copy object to per-cpu buffer */
1108 	addr = kmap_atomic(pages[0]);
1109 	memcpy(buf, addr + off, sizes[0]);
1110 	kunmap_atomic(addr);
1111 	addr = kmap_atomic(pages[1]);
1112 	memcpy(buf + sizes[0], addr, sizes[1]);
1113 	kunmap_atomic(addr);
1114 out:
1115 	return area->vm_buf;
1116 }
1117 
1118 static void __zs_unmap_object(struct mapping_area *area,
1119 			struct page *pages[2], int off, int size)
1120 {
1121 	int sizes[2];
1122 	void *addr;
1123 	char *buf;
1124 
1125 	/* no write fastpath */
1126 	if (area->vm_mm == ZS_MM_RO)
1127 		goto out;
1128 
1129 	buf = area->vm_buf;
1130 	if (!area->huge) {
1131 		buf = buf + ZS_HANDLE_SIZE;
1132 		size -= ZS_HANDLE_SIZE;
1133 		off += ZS_HANDLE_SIZE;
1134 	}
1135 
1136 	sizes[0] = PAGE_SIZE - off;
1137 	sizes[1] = size - sizes[0];
1138 
1139 	/* copy per-cpu buffer to object */
1140 	addr = kmap_atomic(pages[0]);
1141 	memcpy(addr + off, buf, sizes[0]);
1142 	kunmap_atomic(addr);
1143 	addr = kmap_atomic(pages[1]);
1144 	memcpy(addr, buf + sizes[0], sizes[1]);
1145 	kunmap_atomic(addr);
1146 
1147 out:
1148 	/* enable page faults to match kunmap_atomic() return conditions */
1149 	pagefault_enable();
1150 }
1151 
1152 #endif /* CONFIG_PGTABLE_MAPPING */
1153 
1154 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1155 				void *pcpu)
1156 {
1157 	int ret, cpu = (long)pcpu;
1158 	struct mapping_area *area;
1159 
1160 	switch (action) {
1161 	case CPU_UP_PREPARE:
1162 		area = &per_cpu(zs_map_area, cpu);
1163 		ret = __zs_cpu_up(area);
1164 		if (ret)
1165 			return notifier_from_errno(ret);
1166 		break;
1167 	case CPU_DEAD:
1168 	case CPU_UP_CANCELED:
1169 		area = &per_cpu(zs_map_area, cpu);
1170 		__zs_cpu_down(area);
1171 		break;
1172 	}
1173 
1174 	return NOTIFY_OK;
1175 }
1176 
1177 static struct notifier_block zs_cpu_nb = {
1178 	.notifier_call = zs_cpu_notifier
1179 };
1180 
1181 static int zs_register_cpu_notifier(void)
1182 {
1183 	int cpu, uninitialized_var(ret);
1184 
1185 	cpu_notifier_register_begin();
1186 
1187 	__register_cpu_notifier(&zs_cpu_nb);
1188 	for_each_online_cpu(cpu) {
1189 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1190 		if (notifier_to_errno(ret))
1191 			break;
1192 	}
1193 
1194 	cpu_notifier_register_done();
1195 	return notifier_to_errno(ret);
1196 }
1197 
1198 static void zs_unregister_cpu_notifier(void)
1199 {
1200 	int cpu;
1201 
1202 	cpu_notifier_register_begin();
1203 
1204 	for_each_online_cpu(cpu)
1205 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1206 	__unregister_cpu_notifier(&zs_cpu_nb);
1207 
1208 	cpu_notifier_register_done();
1209 }
1210 
1211 static void init_zs_size_classes(void)
1212 {
1213 	int nr;
1214 
1215 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1216 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1217 		nr += 1;
1218 
1219 	zs_size_classes = nr;
1220 }
1221 
1222 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1223 {
1224 	if (prev->pages_per_zspage != pages_per_zspage)
1225 		return false;
1226 
1227 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1228 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1229 		return false;
1230 
1231 	return true;
1232 }
1233 
1234 static bool zspage_full(struct page *page)
1235 {
1236 	BUG_ON(!is_first_page(page));
1237 
1238 	return page->inuse == page->objects;
1239 }
1240 
1241 unsigned long zs_get_total_pages(struct zs_pool *pool)
1242 {
1243 	return atomic_long_read(&pool->pages_allocated);
1244 }
1245 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1246 
1247 /**
1248  * zs_map_object - get address of allocated object from handle.
1249  * @pool: pool from which the object was allocated
1250  * @handle: handle returned from zs_malloc
1251  *
1252  * Before using an object allocated from zs_malloc, it must be mapped using
1253  * this function. When done with the object, it must be unmapped using
1254  * zs_unmap_object.
1255  *
1256  * Only one object can be mapped per cpu at a time. There is no protection
1257  * against nested mappings.
1258  *
1259  * This function returns with preemption and page faults disabled.
1260  */
1261 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1262 			enum zs_mapmode mm)
1263 {
1264 	struct page *page;
1265 	unsigned long obj, obj_idx, off;
1266 
1267 	unsigned int class_idx;
1268 	enum fullness_group fg;
1269 	struct size_class *class;
1270 	struct mapping_area *area;
1271 	struct page *pages[2];
1272 	void *ret;
1273 
1274 	BUG_ON(!handle);
1275 
1276 	/*
1277 	 * Because we use per-cpu mapping areas shared among the
1278 	 * pools/users, we can't allow mapping in interrupt context
1279 	 * because it can corrupt another users mappings.
1280 	 */
1281 	BUG_ON(in_interrupt());
1282 
1283 	/* From now on, migration cannot move the object */
1284 	pin_tag(handle);
1285 
1286 	obj = handle_to_obj(handle);
1287 	obj_to_location(obj, &page, &obj_idx);
1288 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1289 	class = pool->size_class[class_idx];
1290 	off = obj_idx_to_offset(page, obj_idx, class->size);
1291 
1292 	area = &get_cpu_var(zs_map_area);
1293 	area->vm_mm = mm;
1294 	if (off + class->size <= PAGE_SIZE) {
1295 		/* this object is contained entirely within a page */
1296 		area->vm_addr = kmap_atomic(page);
1297 		ret = area->vm_addr + off;
1298 		goto out;
1299 	}
1300 
1301 	/* this object spans two pages */
1302 	pages[0] = page;
1303 	pages[1] = get_next_page(page);
1304 	BUG_ON(!pages[1]);
1305 
1306 	ret = __zs_map_object(area, pages, off, class->size);
1307 out:
1308 	if (!class->huge)
1309 		ret += ZS_HANDLE_SIZE;
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(zs_map_object);
1314 
1315 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1316 {
1317 	struct page *page;
1318 	unsigned long obj, obj_idx, off;
1319 
1320 	unsigned int class_idx;
1321 	enum fullness_group fg;
1322 	struct size_class *class;
1323 	struct mapping_area *area;
1324 
1325 	BUG_ON(!handle);
1326 
1327 	obj = handle_to_obj(handle);
1328 	obj_to_location(obj, &page, &obj_idx);
1329 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1330 	class = pool->size_class[class_idx];
1331 	off = obj_idx_to_offset(page, obj_idx, class->size);
1332 
1333 	area = this_cpu_ptr(&zs_map_area);
1334 	if (off + class->size <= PAGE_SIZE)
1335 		kunmap_atomic(area->vm_addr);
1336 	else {
1337 		struct page *pages[2];
1338 
1339 		pages[0] = page;
1340 		pages[1] = get_next_page(page);
1341 		BUG_ON(!pages[1]);
1342 
1343 		__zs_unmap_object(area, pages, off, class->size);
1344 	}
1345 	put_cpu_var(zs_map_area);
1346 	unpin_tag(handle);
1347 }
1348 EXPORT_SYMBOL_GPL(zs_unmap_object);
1349 
1350 static unsigned long obj_malloc(struct page *first_page,
1351 		struct size_class *class, unsigned long handle)
1352 {
1353 	unsigned long obj;
1354 	struct link_free *link;
1355 
1356 	struct page *m_page;
1357 	unsigned long m_objidx, m_offset;
1358 	void *vaddr;
1359 
1360 	handle |= OBJ_ALLOCATED_TAG;
1361 	obj = (unsigned long)first_page->freelist;
1362 	obj_to_location(obj, &m_page, &m_objidx);
1363 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1364 
1365 	vaddr = kmap_atomic(m_page);
1366 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1367 	first_page->freelist = link->next;
1368 	if (!class->huge)
1369 		/* record handle in the header of allocated chunk */
1370 		link->handle = handle;
1371 	else
1372 		/* record handle in first_page->private */
1373 		set_page_private(first_page, handle);
1374 	kunmap_atomic(vaddr);
1375 	first_page->inuse++;
1376 	zs_stat_inc(class, OBJ_USED, 1);
1377 
1378 	return obj;
1379 }
1380 
1381 
1382 /**
1383  * zs_malloc - Allocate block of given size from pool.
1384  * @pool: pool to allocate from
1385  * @size: size of block to allocate
1386  *
1387  * On success, handle to the allocated object is returned,
1388  * otherwise 0.
1389  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1390  */
1391 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1392 {
1393 	unsigned long handle, obj;
1394 	struct size_class *class;
1395 	struct page *first_page;
1396 
1397 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1398 		return 0;
1399 
1400 	handle = alloc_handle(pool);
1401 	if (!handle)
1402 		return 0;
1403 
1404 	/* extra space in chunk to keep the handle */
1405 	size += ZS_HANDLE_SIZE;
1406 	class = pool->size_class[get_size_class_index(size)];
1407 
1408 	spin_lock(&class->lock);
1409 	first_page = find_get_zspage(class);
1410 
1411 	if (!first_page) {
1412 		spin_unlock(&class->lock);
1413 		first_page = alloc_zspage(class, pool->flags);
1414 		if (unlikely(!first_page)) {
1415 			free_handle(pool, handle);
1416 			return 0;
1417 		}
1418 
1419 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1420 		atomic_long_add(class->pages_per_zspage,
1421 					&pool->pages_allocated);
1422 
1423 		spin_lock(&class->lock);
1424 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1425 				class->size, class->pages_per_zspage));
1426 	}
1427 
1428 	obj = obj_malloc(first_page, class, handle);
1429 	/* Now move the zspage to another fullness group, if required */
1430 	fix_fullness_group(class, first_page);
1431 	record_obj(handle, obj);
1432 	spin_unlock(&class->lock);
1433 
1434 	return handle;
1435 }
1436 EXPORT_SYMBOL_GPL(zs_malloc);
1437 
1438 static void obj_free(struct zs_pool *pool, struct size_class *class,
1439 			unsigned long obj)
1440 {
1441 	struct link_free *link;
1442 	struct page *first_page, *f_page;
1443 	unsigned long f_objidx, f_offset;
1444 	void *vaddr;
1445 
1446 	BUG_ON(!obj);
1447 
1448 	obj &= ~OBJ_ALLOCATED_TAG;
1449 	obj_to_location(obj, &f_page, &f_objidx);
1450 	first_page = get_first_page(f_page);
1451 
1452 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1453 
1454 	vaddr = kmap_atomic(f_page);
1455 
1456 	/* Insert this object in containing zspage's freelist */
1457 	link = (struct link_free *)(vaddr + f_offset);
1458 	link->next = first_page->freelist;
1459 	if (class->huge)
1460 		set_page_private(first_page, 0);
1461 	kunmap_atomic(vaddr);
1462 	first_page->freelist = (void *)obj;
1463 	first_page->inuse--;
1464 	zs_stat_dec(class, OBJ_USED, 1);
1465 }
1466 
1467 void zs_free(struct zs_pool *pool, unsigned long handle)
1468 {
1469 	struct page *first_page, *f_page;
1470 	unsigned long obj, f_objidx;
1471 	int class_idx;
1472 	struct size_class *class;
1473 	enum fullness_group fullness;
1474 
1475 	if (unlikely(!handle))
1476 		return;
1477 
1478 	pin_tag(handle);
1479 	obj = handle_to_obj(handle);
1480 	obj_to_location(obj, &f_page, &f_objidx);
1481 	first_page = get_first_page(f_page);
1482 
1483 	get_zspage_mapping(first_page, &class_idx, &fullness);
1484 	class = pool->size_class[class_idx];
1485 
1486 	spin_lock(&class->lock);
1487 	obj_free(pool, class, obj);
1488 	fullness = fix_fullness_group(class, first_page);
1489 	if (fullness == ZS_EMPTY) {
1490 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1491 				class->size, class->pages_per_zspage));
1492 		atomic_long_sub(class->pages_per_zspage,
1493 				&pool->pages_allocated);
1494 		free_zspage(first_page);
1495 	}
1496 	spin_unlock(&class->lock);
1497 	unpin_tag(handle);
1498 
1499 	free_handle(pool, handle);
1500 }
1501 EXPORT_SYMBOL_GPL(zs_free);
1502 
1503 static void zs_object_copy(unsigned long dst, unsigned long src,
1504 				struct size_class *class)
1505 {
1506 	struct page *s_page, *d_page;
1507 	unsigned long s_objidx, d_objidx;
1508 	unsigned long s_off, d_off;
1509 	void *s_addr, *d_addr;
1510 	int s_size, d_size, size;
1511 	int written = 0;
1512 
1513 	s_size = d_size = class->size;
1514 
1515 	obj_to_location(src, &s_page, &s_objidx);
1516 	obj_to_location(dst, &d_page, &d_objidx);
1517 
1518 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1519 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1520 
1521 	if (s_off + class->size > PAGE_SIZE)
1522 		s_size = PAGE_SIZE - s_off;
1523 
1524 	if (d_off + class->size > PAGE_SIZE)
1525 		d_size = PAGE_SIZE - d_off;
1526 
1527 	s_addr = kmap_atomic(s_page);
1528 	d_addr = kmap_atomic(d_page);
1529 
1530 	while (1) {
1531 		size = min(s_size, d_size);
1532 		memcpy(d_addr + d_off, s_addr + s_off, size);
1533 		written += size;
1534 
1535 		if (written == class->size)
1536 			break;
1537 
1538 		s_off += size;
1539 		s_size -= size;
1540 		d_off += size;
1541 		d_size -= size;
1542 
1543 		if (s_off >= PAGE_SIZE) {
1544 			kunmap_atomic(d_addr);
1545 			kunmap_atomic(s_addr);
1546 			s_page = get_next_page(s_page);
1547 			BUG_ON(!s_page);
1548 			s_addr = kmap_atomic(s_page);
1549 			d_addr = kmap_atomic(d_page);
1550 			s_size = class->size - written;
1551 			s_off = 0;
1552 		}
1553 
1554 		if (d_off >= PAGE_SIZE) {
1555 			kunmap_atomic(d_addr);
1556 			d_page = get_next_page(d_page);
1557 			BUG_ON(!d_page);
1558 			d_addr = kmap_atomic(d_page);
1559 			d_size = class->size - written;
1560 			d_off = 0;
1561 		}
1562 	}
1563 
1564 	kunmap_atomic(d_addr);
1565 	kunmap_atomic(s_addr);
1566 }
1567 
1568 /*
1569  * Find alloced object in zspage from index object and
1570  * return handle.
1571  */
1572 static unsigned long find_alloced_obj(struct page *page, int index,
1573 					struct size_class *class)
1574 {
1575 	unsigned long head;
1576 	int offset = 0;
1577 	unsigned long handle = 0;
1578 	void *addr = kmap_atomic(page);
1579 
1580 	if (!is_first_page(page))
1581 		offset = page->index;
1582 	offset += class->size * index;
1583 
1584 	while (offset < PAGE_SIZE) {
1585 		head = obj_to_head(class, page, addr + offset);
1586 		if (head & OBJ_ALLOCATED_TAG) {
1587 			handle = head & ~OBJ_ALLOCATED_TAG;
1588 			if (trypin_tag(handle))
1589 				break;
1590 			handle = 0;
1591 		}
1592 
1593 		offset += class->size;
1594 		index++;
1595 	}
1596 
1597 	kunmap_atomic(addr);
1598 	return handle;
1599 }
1600 
1601 struct zs_compact_control {
1602 	/* Source page for migration which could be a subpage of zspage. */
1603 	struct page *s_page;
1604 	/* Destination page for migration which should be a first page
1605 	 * of zspage. */
1606 	struct page *d_page;
1607 	 /* Starting object index within @s_page which used for live object
1608 	  * in the subpage. */
1609 	int index;
1610 };
1611 
1612 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1613 				struct zs_compact_control *cc)
1614 {
1615 	unsigned long used_obj, free_obj;
1616 	unsigned long handle;
1617 	struct page *s_page = cc->s_page;
1618 	struct page *d_page = cc->d_page;
1619 	unsigned long index = cc->index;
1620 	int ret = 0;
1621 
1622 	while (1) {
1623 		handle = find_alloced_obj(s_page, index, class);
1624 		if (!handle) {
1625 			s_page = get_next_page(s_page);
1626 			if (!s_page)
1627 				break;
1628 			index = 0;
1629 			continue;
1630 		}
1631 
1632 		/* Stop if there is no more space */
1633 		if (zspage_full(d_page)) {
1634 			unpin_tag(handle);
1635 			ret = -ENOMEM;
1636 			break;
1637 		}
1638 
1639 		used_obj = handle_to_obj(handle);
1640 		free_obj = obj_malloc(d_page, class, handle);
1641 		zs_object_copy(free_obj, used_obj, class);
1642 		index++;
1643 		/*
1644 		 * record_obj updates handle's value to free_obj and it will
1645 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1646 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1647 		 * let's keep the lock bit.
1648 		 */
1649 		free_obj |= BIT(HANDLE_PIN_BIT);
1650 		record_obj(handle, free_obj);
1651 		unpin_tag(handle);
1652 		obj_free(pool, class, used_obj);
1653 	}
1654 
1655 	/* Remember last position in this iteration */
1656 	cc->s_page = s_page;
1657 	cc->index = index;
1658 
1659 	return ret;
1660 }
1661 
1662 static struct page *isolate_target_page(struct size_class *class)
1663 {
1664 	int i;
1665 	struct page *page;
1666 
1667 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1668 		page = class->fullness_list[i];
1669 		if (page) {
1670 			remove_zspage(page, class, i);
1671 			break;
1672 		}
1673 	}
1674 
1675 	return page;
1676 }
1677 
1678 /*
1679  * putback_zspage - add @first_page into right class's fullness list
1680  * @pool: target pool
1681  * @class: destination class
1682  * @first_page: target page
1683  *
1684  * Return @fist_page's fullness_group
1685  */
1686 static enum fullness_group putback_zspage(struct zs_pool *pool,
1687 			struct size_class *class,
1688 			struct page *first_page)
1689 {
1690 	enum fullness_group fullness;
1691 
1692 	BUG_ON(!is_first_page(first_page));
1693 
1694 	fullness = get_fullness_group(first_page);
1695 	insert_zspage(first_page, class, fullness);
1696 	set_zspage_mapping(first_page, class->index, fullness);
1697 
1698 	if (fullness == ZS_EMPTY) {
1699 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1700 			class->size, class->pages_per_zspage));
1701 		atomic_long_sub(class->pages_per_zspage,
1702 				&pool->pages_allocated);
1703 
1704 		free_zspage(first_page);
1705 	}
1706 
1707 	return fullness;
1708 }
1709 
1710 static struct page *isolate_source_page(struct size_class *class)
1711 {
1712 	int i;
1713 	struct page *page = NULL;
1714 
1715 	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1716 		page = class->fullness_list[i];
1717 		if (!page)
1718 			continue;
1719 
1720 		remove_zspage(page, class, i);
1721 		break;
1722 	}
1723 
1724 	return page;
1725 }
1726 
1727 /*
1728  *
1729  * Based on the number of unused allocated objects calculate
1730  * and return the number of pages that we can free.
1731  */
1732 static unsigned long zs_can_compact(struct size_class *class)
1733 {
1734 	unsigned long obj_wasted;
1735 
1736 	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1737 		zs_stat_get(class, OBJ_USED);
1738 
1739 	obj_wasted /= get_maxobj_per_zspage(class->size,
1740 			class->pages_per_zspage);
1741 
1742 	return obj_wasted * class->pages_per_zspage;
1743 }
1744 
1745 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1746 {
1747 	struct zs_compact_control cc;
1748 	struct page *src_page;
1749 	struct page *dst_page = NULL;
1750 
1751 	spin_lock(&class->lock);
1752 	while ((src_page = isolate_source_page(class))) {
1753 
1754 		BUG_ON(!is_first_page(src_page));
1755 
1756 		if (!zs_can_compact(class))
1757 			break;
1758 
1759 		cc.index = 0;
1760 		cc.s_page = src_page;
1761 
1762 		while ((dst_page = isolate_target_page(class))) {
1763 			cc.d_page = dst_page;
1764 			/*
1765 			 * If there is no more space in dst_page, resched
1766 			 * and see if anyone had allocated another zspage.
1767 			 */
1768 			if (!migrate_zspage(pool, class, &cc))
1769 				break;
1770 
1771 			putback_zspage(pool, class, dst_page);
1772 		}
1773 
1774 		/* Stop if we couldn't find slot */
1775 		if (dst_page == NULL)
1776 			break;
1777 
1778 		putback_zspage(pool, class, dst_page);
1779 		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1780 			pool->stats.pages_compacted += class->pages_per_zspage;
1781 		spin_unlock(&class->lock);
1782 		cond_resched();
1783 		spin_lock(&class->lock);
1784 	}
1785 
1786 	if (src_page)
1787 		putback_zspage(pool, class, src_page);
1788 
1789 	spin_unlock(&class->lock);
1790 }
1791 
1792 unsigned long zs_compact(struct zs_pool *pool)
1793 {
1794 	int i;
1795 	struct size_class *class;
1796 
1797 	for (i = zs_size_classes - 1; i >= 0; i--) {
1798 		class = pool->size_class[i];
1799 		if (!class)
1800 			continue;
1801 		if (class->index != i)
1802 			continue;
1803 		__zs_compact(pool, class);
1804 	}
1805 
1806 	return pool->stats.pages_compacted;
1807 }
1808 EXPORT_SYMBOL_GPL(zs_compact);
1809 
1810 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1811 {
1812 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1813 }
1814 EXPORT_SYMBOL_GPL(zs_pool_stats);
1815 
1816 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1817 		struct shrink_control *sc)
1818 {
1819 	unsigned long pages_freed;
1820 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1821 			shrinker);
1822 
1823 	pages_freed = pool->stats.pages_compacted;
1824 	/*
1825 	 * Compact classes and calculate compaction delta.
1826 	 * Can run concurrently with a manually triggered
1827 	 * (by user) compaction.
1828 	 */
1829 	pages_freed = zs_compact(pool) - pages_freed;
1830 
1831 	return pages_freed ? pages_freed : SHRINK_STOP;
1832 }
1833 
1834 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1835 		struct shrink_control *sc)
1836 {
1837 	int i;
1838 	struct size_class *class;
1839 	unsigned long pages_to_free = 0;
1840 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1841 			shrinker);
1842 
1843 	for (i = zs_size_classes - 1; i >= 0; i--) {
1844 		class = pool->size_class[i];
1845 		if (!class)
1846 			continue;
1847 		if (class->index != i)
1848 			continue;
1849 
1850 		pages_to_free += zs_can_compact(class);
1851 	}
1852 
1853 	return pages_to_free;
1854 }
1855 
1856 static void zs_unregister_shrinker(struct zs_pool *pool)
1857 {
1858 	if (pool->shrinker_enabled) {
1859 		unregister_shrinker(&pool->shrinker);
1860 		pool->shrinker_enabled = false;
1861 	}
1862 }
1863 
1864 static int zs_register_shrinker(struct zs_pool *pool)
1865 {
1866 	pool->shrinker.scan_objects = zs_shrinker_scan;
1867 	pool->shrinker.count_objects = zs_shrinker_count;
1868 	pool->shrinker.batch = 0;
1869 	pool->shrinker.seeks = DEFAULT_SEEKS;
1870 
1871 	return register_shrinker(&pool->shrinker);
1872 }
1873 
1874 /**
1875  * zs_create_pool - Creates an allocation pool to work from.
1876  * @flags: allocation flags used to allocate pool metadata
1877  *
1878  * This function must be called before anything when using
1879  * the zsmalloc allocator.
1880  *
1881  * On success, a pointer to the newly created pool is returned,
1882  * otherwise NULL.
1883  */
1884 struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1885 {
1886 	int i;
1887 	struct zs_pool *pool;
1888 	struct size_class *prev_class = NULL;
1889 
1890 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1891 	if (!pool)
1892 		return NULL;
1893 
1894 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1895 			GFP_KERNEL);
1896 	if (!pool->size_class) {
1897 		kfree(pool);
1898 		return NULL;
1899 	}
1900 
1901 	pool->name = kstrdup(name, GFP_KERNEL);
1902 	if (!pool->name)
1903 		goto err;
1904 
1905 	if (create_handle_cache(pool))
1906 		goto err;
1907 
1908 	/*
1909 	 * Iterate reversly, because, size of size_class that we want to use
1910 	 * for merging should be larger or equal to current size.
1911 	 */
1912 	for (i = zs_size_classes - 1; i >= 0; i--) {
1913 		int size;
1914 		int pages_per_zspage;
1915 		struct size_class *class;
1916 
1917 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1918 		if (size > ZS_MAX_ALLOC_SIZE)
1919 			size = ZS_MAX_ALLOC_SIZE;
1920 		pages_per_zspage = get_pages_per_zspage(size);
1921 
1922 		/*
1923 		 * size_class is used for normal zsmalloc operation such
1924 		 * as alloc/free for that size. Although it is natural that we
1925 		 * have one size_class for each size, there is a chance that we
1926 		 * can get more memory utilization if we use one size_class for
1927 		 * many different sizes whose size_class have same
1928 		 * characteristics. So, we makes size_class point to
1929 		 * previous size_class if possible.
1930 		 */
1931 		if (prev_class) {
1932 			if (can_merge(prev_class, size, pages_per_zspage)) {
1933 				pool->size_class[i] = prev_class;
1934 				continue;
1935 			}
1936 		}
1937 
1938 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1939 		if (!class)
1940 			goto err;
1941 
1942 		class->size = size;
1943 		class->index = i;
1944 		class->pages_per_zspage = pages_per_zspage;
1945 		if (pages_per_zspage == 1 &&
1946 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1947 			class->huge = true;
1948 		spin_lock_init(&class->lock);
1949 		pool->size_class[i] = class;
1950 
1951 		prev_class = class;
1952 	}
1953 
1954 	pool->flags = flags;
1955 
1956 	if (zs_pool_stat_create(name, pool))
1957 		goto err;
1958 
1959 	/*
1960 	 * Not critical, we still can use the pool
1961 	 * and user can trigger compaction manually.
1962 	 */
1963 	if (zs_register_shrinker(pool) == 0)
1964 		pool->shrinker_enabled = true;
1965 	return pool;
1966 
1967 err:
1968 	zs_destroy_pool(pool);
1969 	return NULL;
1970 }
1971 EXPORT_SYMBOL_GPL(zs_create_pool);
1972 
1973 void zs_destroy_pool(struct zs_pool *pool)
1974 {
1975 	int i;
1976 
1977 	zs_unregister_shrinker(pool);
1978 	zs_pool_stat_destroy(pool);
1979 
1980 	for (i = 0; i < zs_size_classes; i++) {
1981 		int fg;
1982 		struct size_class *class = pool->size_class[i];
1983 
1984 		if (!class)
1985 			continue;
1986 
1987 		if (class->index != i)
1988 			continue;
1989 
1990 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1991 			if (class->fullness_list[fg]) {
1992 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1993 					class->size, fg);
1994 			}
1995 		}
1996 		kfree(class);
1997 	}
1998 
1999 	destroy_handle_cache(pool);
2000 	kfree(pool->size_class);
2001 	kfree(pool->name);
2002 	kfree(pool);
2003 }
2004 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2005 
2006 static int __init zs_init(void)
2007 {
2008 	int ret = zs_register_cpu_notifier();
2009 
2010 	if (ret)
2011 		goto notifier_fail;
2012 
2013 	init_zs_size_classes();
2014 
2015 #ifdef CONFIG_ZPOOL
2016 	zpool_register_driver(&zs_zpool_driver);
2017 #endif
2018 
2019 	ret = zs_stat_init();
2020 	if (ret) {
2021 		pr_err("zs stat initialization failed\n");
2022 		goto stat_fail;
2023 	}
2024 	return 0;
2025 
2026 stat_fail:
2027 #ifdef CONFIG_ZPOOL
2028 	zpool_unregister_driver(&zs_zpool_driver);
2029 #endif
2030 notifier_fail:
2031 	zs_unregister_cpu_notifier();
2032 
2033 	return ret;
2034 }
2035 
2036 static void __exit zs_exit(void)
2037 {
2038 #ifdef CONFIG_ZPOOL
2039 	zpool_unregister_driver(&zs_zpool_driver);
2040 #endif
2041 	zs_unregister_cpu_notifier();
2042 
2043 	zs_stat_exit();
2044 }
2045 
2046 module_init(zs_init);
2047 module_exit(zs_exit);
2048 
2049 MODULE_LICENSE("Dual BSD/GPL");
2050 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2051