xref: /openbmc/linux/mm/zsmalloc.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_private2: identifies the last component page
28  *	PG_owner_priv_1: indentifies the huge component page
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 
57 #define ZSPAGE_MAGIC	0x58
58 
59 /*
60  * This must be power of 2 and greater than of equal to sizeof(link_free).
61  * These two conditions ensure that any 'struct link_free' itself doesn't
62  * span more than 1 page which avoids complex case of mapping 2 pages simply
63  * to restore link_free pointer values.
64  */
65 #define ZS_ALIGN		8
66 
67 /*
68  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70  */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73 
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75 
76 /*
77  * Object location (<PFN>, <obj_idx>) is encoded as
78  * as single (unsigned long) handle value.
79  *
80  * Note that object index <obj_idx> starts from 0.
81  *
82  * This is made more complicated by various memory models and PAE.
83  */
84 
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91  * be PAGE_SHIFT
92  */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
97 
98 /*
99  * Memory for allocating for handle keeps object position by
100  * encoding <page, obj_idx> and the encoded value has a room
101  * in least bit(ie, look at obj_to_location).
102  * We use the bit to synchronize between object access by
103  * user and migration.
104  */
105 #define HANDLE_PIN_BIT	0
106 
107 /*
108  * Head in allocated object should have OBJ_ALLOCATED_TAG
109  * to identify the object was allocated or not.
110  * It's okay to add the status bit in the least bit because
111  * header keeps handle which is 4byte-aligned address so we
112  * have room for two bit at least.
113  */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118 
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
125 
126 /*
127  * On systems with 4K page size, this gives 255 size classes! There is a
128  * trader-off here:
129  *  - Large number of size classes is potentially wasteful as free page are
130  *    spread across these classes
131  *  - Small number of size classes causes large internal fragmentation
132  *  - Probably its better to use specific size classes (empirically
133  *    determined). NOTE: all those class sizes must be set as multiple of
134  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
135  *
136  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137  *  (reason above)
138  */
139 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
140 
141 enum fullness_group {
142 	ZS_EMPTY,
143 	ZS_ALMOST_EMPTY,
144 	ZS_ALMOST_FULL,
145 	ZS_FULL,
146 	NR_ZS_FULLNESS,
147 };
148 
149 enum zs_stat_type {
150 	CLASS_EMPTY,
151 	CLASS_ALMOST_EMPTY,
152 	CLASS_ALMOST_FULL,
153 	CLASS_FULL,
154 	OBJ_ALLOCATED,
155 	OBJ_USED,
156 	NR_ZS_STAT_TYPE,
157 };
158 
159 struct zs_size_stat {
160 	unsigned long objs[NR_ZS_STAT_TYPE];
161 };
162 
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
166 
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
170 
171 /*
172  * number of size_classes
173  */
174 static int zs_size_classes;
175 
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *	n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *	ZS_ALMOST_FULL	when n > N / f
185  *	ZS_EMPTY	when n == 0
186  *	ZS_FULL		when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 
192 struct size_class {
193 	spinlock_t lock;
194 	struct list_head fullness_list[NR_ZS_FULLNESS];
195 	/*
196 	 * Size of objects stored in this class. Must be multiple
197 	 * of ZS_ALIGN.
198 	 */
199 	int size;
200 	int objs_per_zspage;
201 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 	int pages_per_zspage;
203 
204 	unsigned int index;
205 	struct zs_size_stat stats;
206 };
207 
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
210 {
211 	SetPageOwnerPriv1(page);
212 }
213 
214 static void ClearPageHugeObject(struct page *page)
215 {
216 	ClearPageOwnerPriv1(page);
217 }
218 
219 static int PageHugeObject(struct page *page)
220 {
221 	return PageOwnerPriv1(page);
222 }
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Free object index;
234 		 * It's valid for non-allocated object
235 		 */
236 		unsigned long next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 	struct kmem_cache *zspage_cachep;
250 
251 	atomic_long_t pages_allocated;
252 
253 	struct zs_pool_stats stats;
254 
255 	/* Compact classes */
256 	struct shrinker shrinker;
257 	/*
258 	 * To signify that register_shrinker() was successful
259 	 * and unregister_shrinker() will not Oops.
260 	 */
261 	bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 	struct inode *inode;
267 	struct work_struct free_work;
268 #endif
269 };
270 
271 /*
272  * A zspage's class index and fullness group
273  * are encoded in its (first)page->mapping
274  */
275 #define FULLNESS_BITS	2
276 #define CLASS_BITS	8
277 #define ISOLATED_BITS	3
278 #define MAGIC_VAL_BITS	8
279 
280 struct zspage {
281 	struct {
282 		unsigned int fullness:FULLNESS_BITS;
283 		unsigned int class:CLASS_BITS;
284 		unsigned int isolated:ISOLATED_BITS;
285 		unsigned int magic:MAGIC_VAL_BITS;
286 	};
287 	unsigned int inuse;
288 	unsigned int freeobj;
289 	struct page *first_page;
290 	struct list_head list; /* fullness list */
291 #ifdef CONFIG_COMPACTION
292 	rwlock_t lock;
293 #endif
294 };
295 
296 struct mapping_area {
297 #ifdef CONFIG_PGTABLE_MAPPING
298 	struct vm_struct *vm; /* vm area for mapping object that span pages */
299 #else
300 	char *vm_buf; /* copy buffer for objects that span pages */
301 #endif
302 	char *vm_addr; /* address of kmap_atomic()'ed pages */
303 	enum zs_mapmode vm_mm; /* mapping mode */
304 };
305 
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool *pool);
308 static void zs_unregister_migration(struct zs_pool *pool);
309 static void migrate_lock_init(struct zspage *zspage);
310 static void migrate_read_lock(struct zspage *zspage);
311 static void migrate_read_unlock(struct zspage *zspage);
312 static void kick_deferred_free(struct zs_pool *pool);
313 static void init_deferred_free(struct zs_pool *pool);
314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 #else
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool *pool) { return 0; }
319 static void zs_unregister_migration(struct zs_pool *pool) {}
320 static void migrate_lock_init(struct zspage *zspage) {}
321 static void migrate_read_lock(struct zspage *zspage) {}
322 static void migrate_read_unlock(struct zspage *zspage) {}
323 static void kick_deferred_free(struct zs_pool *pool) {}
324 static void init_deferred_free(struct zs_pool *pool) {}
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 #endif
327 
328 static int create_cache(struct zs_pool *pool)
329 {
330 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331 					0, 0, NULL);
332 	if (!pool->handle_cachep)
333 		return 1;
334 
335 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336 					0, 0, NULL);
337 	if (!pool->zspage_cachep) {
338 		kmem_cache_destroy(pool->handle_cachep);
339 		pool->handle_cachep = NULL;
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 static void destroy_cache(struct zs_pool *pool)
347 {
348 	kmem_cache_destroy(pool->handle_cachep);
349 	kmem_cache_destroy(pool->zspage_cachep);
350 }
351 
352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
353 {
354 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
355 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 }
357 
358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
359 {
360 	kmem_cache_free(pool->handle_cachep, (void *)handle);
361 }
362 
363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
364 {
365 	return kmem_cache_alloc(pool->zspage_cachep,
366 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 };
368 
369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
370 {
371 	kmem_cache_free(pool->zspage_cachep, zspage);
372 }
373 
374 static void record_obj(unsigned long handle, unsigned long obj)
375 {
376 	/*
377 	 * lsb of @obj represents handle lock while other bits
378 	 * represent object value the handle is pointing so
379 	 * updating shouldn't do store tearing.
380 	 */
381 	WRITE_ONCE(*(unsigned long *)handle, obj);
382 }
383 
384 /* zpool driver */
385 
386 #ifdef CONFIG_ZPOOL
387 
388 static void *zs_zpool_create(const char *name, gfp_t gfp,
389 			     const struct zpool_ops *zpool_ops,
390 			     struct zpool *zpool)
391 {
392 	/*
393 	 * Ignore global gfp flags: zs_malloc() may be invoked from
394 	 * different contexts and its caller must provide a valid
395 	 * gfp mask.
396 	 */
397 	return zs_create_pool(name);
398 }
399 
400 static void zs_zpool_destroy(void *pool)
401 {
402 	zs_destroy_pool(pool);
403 }
404 
405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
406 			unsigned long *handle)
407 {
408 	*handle = zs_malloc(pool, size, gfp);
409 	return *handle ? 0 : -1;
410 }
411 static void zs_zpool_free(void *pool, unsigned long handle)
412 {
413 	zs_free(pool, handle);
414 }
415 
416 static int zs_zpool_shrink(void *pool, unsigned int pages,
417 			unsigned int *reclaimed)
418 {
419 	return -EINVAL;
420 }
421 
422 static void *zs_zpool_map(void *pool, unsigned long handle,
423 			enum zpool_mapmode mm)
424 {
425 	enum zs_mapmode zs_mm;
426 
427 	switch (mm) {
428 	case ZPOOL_MM_RO:
429 		zs_mm = ZS_MM_RO;
430 		break;
431 	case ZPOOL_MM_WO:
432 		zs_mm = ZS_MM_WO;
433 		break;
434 	case ZPOOL_MM_RW: /* fallthru */
435 	default:
436 		zs_mm = ZS_MM_RW;
437 		break;
438 	}
439 
440 	return zs_map_object(pool, handle, zs_mm);
441 }
442 static void zs_zpool_unmap(void *pool, unsigned long handle)
443 {
444 	zs_unmap_object(pool, handle);
445 }
446 
447 static u64 zs_zpool_total_size(void *pool)
448 {
449 	return zs_get_total_pages(pool) << PAGE_SHIFT;
450 }
451 
452 static struct zpool_driver zs_zpool_driver = {
453 	.type =		"zsmalloc",
454 	.owner =	THIS_MODULE,
455 	.create =	zs_zpool_create,
456 	.destroy =	zs_zpool_destroy,
457 	.malloc =	zs_zpool_malloc,
458 	.free =		zs_zpool_free,
459 	.shrink =	zs_zpool_shrink,
460 	.map =		zs_zpool_map,
461 	.unmap =	zs_zpool_unmap,
462 	.total_size =	zs_zpool_total_size,
463 };
464 
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
467 
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
470 
471 static bool is_zspage_isolated(struct zspage *zspage)
472 {
473 	return zspage->isolated;
474 }
475 
476 static int is_first_page(struct page *page)
477 {
478 	return PagePrivate(page);
479 }
480 
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage *zspage)
483 {
484 	return zspage->inuse;
485 }
486 
487 static inline void set_zspage_inuse(struct zspage *zspage, int val)
488 {
489 	zspage->inuse = val;
490 }
491 
492 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
493 {
494 	zspage->inuse += val;
495 }
496 
497 static inline struct page *get_first_page(struct zspage *zspage)
498 {
499 	struct page *first_page = zspage->first_page;
500 
501 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
502 	return first_page;
503 }
504 
505 static inline int get_first_obj_offset(struct page *page)
506 {
507 	return page->units;
508 }
509 
510 static inline void set_first_obj_offset(struct page *page, int offset)
511 {
512 	page->units = offset;
513 }
514 
515 static inline unsigned int get_freeobj(struct zspage *zspage)
516 {
517 	return zspage->freeobj;
518 }
519 
520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
521 {
522 	zspage->freeobj = obj;
523 }
524 
525 static void get_zspage_mapping(struct zspage *zspage,
526 				unsigned int *class_idx,
527 				enum fullness_group *fullness)
528 {
529 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
530 
531 	*fullness = zspage->fullness;
532 	*class_idx = zspage->class;
533 }
534 
535 static void set_zspage_mapping(struct zspage *zspage,
536 				unsigned int class_idx,
537 				enum fullness_group fullness)
538 {
539 	zspage->class = class_idx;
540 	zspage->fullness = fullness;
541 }
542 
543 /*
544  * zsmalloc divides the pool into various size classes where each
545  * class maintains a list of zspages where each zspage is divided
546  * into equal sized chunks. Each allocation falls into one of these
547  * classes depending on its size. This function returns index of the
548  * size class which has chunk size big enough to hold the give size.
549  */
550 static int get_size_class_index(int size)
551 {
552 	int idx = 0;
553 
554 	if (likely(size > ZS_MIN_ALLOC_SIZE))
555 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
556 				ZS_SIZE_CLASS_DELTA);
557 
558 	return min(zs_size_classes - 1, idx);
559 }
560 
561 static inline void zs_stat_inc(struct size_class *class,
562 				enum zs_stat_type type, unsigned long cnt)
563 {
564 	class->stats.objs[type] += cnt;
565 }
566 
567 static inline void zs_stat_dec(struct size_class *class,
568 				enum zs_stat_type type, unsigned long cnt)
569 {
570 	class->stats.objs[type] -= cnt;
571 }
572 
573 static inline unsigned long zs_stat_get(struct size_class *class,
574 				enum zs_stat_type type)
575 {
576 	return class->stats.objs[type];
577 }
578 
579 #ifdef CONFIG_ZSMALLOC_STAT
580 
581 static void __init zs_stat_init(void)
582 {
583 	if (!debugfs_initialized()) {
584 		pr_warn("debugfs not available, stat dir not created\n");
585 		return;
586 	}
587 
588 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
589 	if (!zs_stat_root)
590 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
591 }
592 
593 static void __exit zs_stat_exit(void)
594 {
595 	debugfs_remove_recursive(zs_stat_root);
596 }
597 
598 static unsigned long zs_can_compact(struct size_class *class);
599 
600 static int zs_stats_size_show(struct seq_file *s, void *v)
601 {
602 	int i;
603 	struct zs_pool *pool = s->private;
604 	struct size_class *class;
605 	int objs_per_zspage;
606 	unsigned long class_almost_full, class_almost_empty;
607 	unsigned long obj_allocated, obj_used, pages_used, freeable;
608 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
609 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
610 	unsigned long total_freeable = 0;
611 
612 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
613 			"class", "size", "almost_full", "almost_empty",
614 			"obj_allocated", "obj_used", "pages_used",
615 			"pages_per_zspage", "freeable");
616 
617 	for (i = 0; i < zs_size_classes; i++) {
618 		class = pool->size_class[i];
619 
620 		if (class->index != i)
621 			continue;
622 
623 		spin_lock(&class->lock);
624 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
625 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
626 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
627 		obj_used = zs_stat_get(class, OBJ_USED);
628 		freeable = zs_can_compact(class);
629 		spin_unlock(&class->lock);
630 
631 		objs_per_zspage = class->objs_per_zspage;
632 		pages_used = obj_allocated / objs_per_zspage *
633 				class->pages_per_zspage;
634 
635 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
636 				" %10lu %10lu %16d %8lu\n",
637 			i, class->size, class_almost_full, class_almost_empty,
638 			obj_allocated, obj_used, pages_used,
639 			class->pages_per_zspage, freeable);
640 
641 		total_class_almost_full += class_almost_full;
642 		total_class_almost_empty += class_almost_empty;
643 		total_objs += obj_allocated;
644 		total_used_objs += obj_used;
645 		total_pages += pages_used;
646 		total_freeable += freeable;
647 	}
648 
649 	seq_puts(s, "\n");
650 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
651 			"Total", "", total_class_almost_full,
652 			total_class_almost_empty, total_objs,
653 			total_used_objs, total_pages, "", total_freeable);
654 
655 	return 0;
656 }
657 
658 static int zs_stats_size_open(struct inode *inode, struct file *file)
659 {
660 	return single_open(file, zs_stats_size_show, inode->i_private);
661 }
662 
663 static const struct file_operations zs_stat_size_ops = {
664 	.open           = zs_stats_size_open,
665 	.read           = seq_read,
666 	.llseek         = seq_lseek,
667 	.release        = single_release,
668 };
669 
670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
671 {
672 	struct dentry *entry;
673 
674 	if (!zs_stat_root) {
675 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
676 		return;
677 	}
678 
679 	entry = debugfs_create_dir(name, zs_stat_root);
680 	if (!entry) {
681 		pr_warn("debugfs dir <%s> creation failed\n", name);
682 		return;
683 	}
684 	pool->stat_dentry = entry;
685 
686 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
687 			pool->stat_dentry, pool, &zs_stat_size_ops);
688 	if (!entry) {
689 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
690 				name, "classes");
691 		debugfs_remove_recursive(pool->stat_dentry);
692 		pool->stat_dentry = NULL;
693 	}
694 }
695 
696 static void zs_pool_stat_destroy(struct zs_pool *pool)
697 {
698 	debugfs_remove_recursive(pool->stat_dentry);
699 }
700 
701 #else /* CONFIG_ZSMALLOC_STAT */
702 static void __init zs_stat_init(void)
703 {
704 }
705 
706 static void __exit zs_stat_exit(void)
707 {
708 }
709 
710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
711 {
712 }
713 
714 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
715 {
716 }
717 #endif
718 
719 
720 /*
721  * For each size class, zspages are divided into different groups
722  * depending on how "full" they are. This was done so that we could
723  * easily find empty or nearly empty zspages when we try to shrink
724  * the pool (not yet implemented). This function returns fullness
725  * status of the given page.
726  */
727 static enum fullness_group get_fullness_group(struct size_class *class,
728 						struct zspage *zspage)
729 {
730 	int inuse, objs_per_zspage;
731 	enum fullness_group fg;
732 
733 	inuse = get_zspage_inuse(zspage);
734 	objs_per_zspage = class->objs_per_zspage;
735 
736 	if (inuse == 0)
737 		fg = ZS_EMPTY;
738 	else if (inuse == objs_per_zspage)
739 		fg = ZS_FULL;
740 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
741 		fg = ZS_ALMOST_EMPTY;
742 	else
743 		fg = ZS_ALMOST_FULL;
744 
745 	return fg;
746 }
747 
748 /*
749  * Each size class maintains various freelists and zspages are assigned
750  * to one of these freelists based on the number of live objects they
751  * have. This functions inserts the given zspage into the freelist
752  * identified by <class, fullness_group>.
753  */
754 static void insert_zspage(struct size_class *class,
755 				struct zspage *zspage,
756 				enum fullness_group fullness)
757 {
758 	struct zspage *head;
759 
760 	zs_stat_inc(class, fullness, 1);
761 	head = list_first_entry_or_null(&class->fullness_list[fullness],
762 					struct zspage, list);
763 	/*
764 	 * We want to see more ZS_FULL pages and less almost empty/full.
765 	 * Put pages with higher ->inuse first.
766 	 */
767 	if (head) {
768 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
769 			list_add(&zspage->list, &head->list);
770 			return;
771 		}
772 	}
773 	list_add(&zspage->list, &class->fullness_list[fullness]);
774 }
775 
776 /*
777  * This function removes the given zspage from the freelist identified
778  * by <class, fullness_group>.
779  */
780 static void remove_zspage(struct size_class *class,
781 				struct zspage *zspage,
782 				enum fullness_group fullness)
783 {
784 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
785 	VM_BUG_ON(is_zspage_isolated(zspage));
786 
787 	list_del_init(&zspage->list);
788 	zs_stat_dec(class, fullness, 1);
789 }
790 
791 /*
792  * Each size class maintains zspages in different fullness groups depending
793  * on the number of live objects they contain. When allocating or freeing
794  * objects, the fullness status of the page can change, say, from ALMOST_FULL
795  * to ALMOST_EMPTY when freeing an object. This function checks if such
796  * a status change has occurred for the given page and accordingly moves the
797  * page from the freelist of the old fullness group to that of the new
798  * fullness group.
799  */
800 static enum fullness_group fix_fullness_group(struct size_class *class,
801 						struct zspage *zspage)
802 {
803 	int class_idx;
804 	enum fullness_group currfg, newfg;
805 
806 	get_zspage_mapping(zspage, &class_idx, &currfg);
807 	newfg = get_fullness_group(class, zspage);
808 	if (newfg == currfg)
809 		goto out;
810 
811 	if (!is_zspage_isolated(zspage)) {
812 		remove_zspage(class, zspage, currfg);
813 		insert_zspage(class, zspage, newfg);
814 	}
815 
816 	set_zspage_mapping(zspage, class_idx, newfg);
817 
818 out:
819 	return newfg;
820 }
821 
822 /*
823  * We have to decide on how many pages to link together
824  * to form a zspage for each size class. This is important
825  * to reduce wastage due to unusable space left at end of
826  * each zspage which is given as:
827  *     wastage = Zp % class_size
828  *     usage = Zp - wastage
829  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
830  *
831  * For example, for size class of 3/8 * PAGE_SIZE, we should
832  * link together 3 PAGE_SIZE sized pages to form a zspage
833  * since then we can perfectly fit in 8 such objects.
834  */
835 static int get_pages_per_zspage(int class_size)
836 {
837 	int i, max_usedpc = 0;
838 	/* zspage order which gives maximum used size per KB */
839 	int max_usedpc_order = 1;
840 
841 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
842 		int zspage_size;
843 		int waste, usedpc;
844 
845 		zspage_size = i * PAGE_SIZE;
846 		waste = zspage_size % class_size;
847 		usedpc = (zspage_size - waste) * 100 / zspage_size;
848 
849 		if (usedpc > max_usedpc) {
850 			max_usedpc = usedpc;
851 			max_usedpc_order = i;
852 		}
853 	}
854 
855 	return max_usedpc_order;
856 }
857 
858 static struct zspage *get_zspage(struct page *page)
859 {
860 	struct zspage *zspage = (struct zspage *)page->private;
861 
862 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
863 	return zspage;
864 }
865 
866 static struct page *get_next_page(struct page *page)
867 {
868 	if (unlikely(PageHugeObject(page)))
869 		return NULL;
870 
871 	return page->freelist;
872 }
873 
874 /**
875  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
876  * @page: page object resides in zspage
877  * @obj_idx: object index
878  */
879 static void obj_to_location(unsigned long obj, struct page **page,
880 				unsigned int *obj_idx)
881 {
882 	obj >>= OBJ_TAG_BITS;
883 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
884 	*obj_idx = (obj & OBJ_INDEX_MASK);
885 }
886 
887 /**
888  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
889  * @page: page object resides in zspage
890  * @obj_idx: object index
891  */
892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
893 {
894 	unsigned long obj;
895 
896 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
897 	obj |= obj_idx & OBJ_INDEX_MASK;
898 	obj <<= OBJ_TAG_BITS;
899 
900 	return obj;
901 }
902 
903 static unsigned long handle_to_obj(unsigned long handle)
904 {
905 	return *(unsigned long *)handle;
906 }
907 
908 static unsigned long obj_to_head(struct page *page, void *obj)
909 {
910 	if (unlikely(PageHugeObject(page))) {
911 		VM_BUG_ON_PAGE(!is_first_page(page), page);
912 		return page->index;
913 	} else
914 		return *(unsigned long *)obj;
915 }
916 
917 static inline int testpin_tag(unsigned long handle)
918 {
919 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921 
922 static inline int trypin_tag(unsigned long handle)
923 {
924 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926 
927 static void pin_tag(unsigned long handle)
928 {
929 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931 
932 static void unpin_tag(unsigned long handle)
933 {
934 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
935 }
936 
937 static void reset_page(struct page *page)
938 {
939 	__ClearPageMovable(page);
940 	ClearPagePrivate(page);
941 	ClearPagePrivate2(page);
942 	set_page_private(page, 0);
943 	page_mapcount_reset(page);
944 	ClearPageHugeObject(page);
945 	page->freelist = NULL;
946 }
947 
948 /*
949  * To prevent zspage destroy during migration, zspage freeing should
950  * hold locks of all pages in the zspage.
951  */
952 void lock_zspage(struct zspage *zspage)
953 {
954 	struct page *page = get_first_page(zspage);
955 
956 	do {
957 		lock_page(page);
958 	} while ((page = get_next_page(page)) != NULL);
959 }
960 
961 int trylock_zspage(struct zspage *zspage)
962 {
963 	struct page *cursor, *fail;
964 
965 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966 					get_next_page(cursor)) {
967 		if (!trylock_page(cursor)) {
968 			fail = cursor;
969 			goto unlock;
970 		}
971 	}
972 
973 	return 1;
974 unlock:
975 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
976 					get_next_page(cursor))
977 		unlock_page(cursor);
978 
979 	return 0;
980 }
981 
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983 				struct zspage *zspage)
984 {
985 	struct page *page, *next;
986 	enum fullness_group fg;
987 	unsigned int class_idx;
988 
989 	get_zspage_mapping(zspage, &class_idx, &fg);
990 
991 	assert_spin_locked(&class->lock);
992 
993 	VM_BUG_ON(get_zspage_inuse(zspage));
994 	VM_BUG_ON(fg != ZS_EMPTY);
995 
996 	next = page = get_first_page(zspage);
997 	do {
998 		VM_BUG_ON_PAGE(!PageLocked(page), page);
999 		next = get_next_page(page);
1000 		reset_page(page);
1001 		unlock_page(page);
1002 		dec_zone_page_state(page, NR_ZSPAGES);
1003 		put_page(page);
1004 		page = next;
1005 	} while (page != NULL);
1006 
1007 	cache_free_zspage(pool, zspage);
1008 
1009 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010 	atomic_long_sub(class->pages_per_zspage,
1011 					&pool->pages_allocated);
1012 }
1013 
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015 				struct zspage *zspage)
1016 {
1017 	VM_BUG_ON(get_zspage_inuse(zspage));
1018 	VM_BUG_ON(list_empty(&zspage->list));
1019 
1020 	if (!trylock_zspage(zspage)) {
1021 		kick_deferred_free(pool);
1022 		return;
1023 	}
1024 
1025 	remove_zspage(class, zspage, ZS_EMPTY);
1026 	__free_zspage(pool, class, zspage);
1027 }
1028 
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1031 {
1032 	unsigned int freeobj = 1;
1033 	unsigned long off = 0;
1034 	struct page *page = get_first_page(zspage);
1035 
1036 	while (page) {
1037 		struct page *next_page;
1038 		struct link_free *link;
1039 		void *vaddr;
1040 
1041 		set_first_obj_offset(page, off);
1042 
1043 		vaddr = kmap_atomic(page);
1044 		link = (struct link_free *)vaddr + off / sizeof(*link);
1045 
1046 		while ((off += class->size) < PAGE_SIZE) {
1047 			link->next = freeobj++ << OBJ_TAG_BITS;
1048 			link += class->size / sizeof(*link);
1049 		}
1050 
1051 		/*
1052 		 * We now come to the last (full or partial) object on this
1053 		 * page, which must point to the first object on the next
1054 		 * page (if present)
1055 		 */
1056 		next_page = get_next_page(page);
1057 		if (next_page) {
1058 			link->next = freeobj++ << OBJ_TAG_BITS;
1059 		} else {
1060 			/*
1061 			 * Reset OBJ_TAG_BITS bit to last link to tell
1062 			 * whether it's allocated object or not.
1063 			 */
1064 			link->next = -1 << OBJ_TAG_BITS;
1065 		}
1066 		kunmap_atomic(vaddr);
1067 		page = next_page;
1068 		off %= PAGE_SIZE;
1069 	}
1070 
1071 	set_freeobj(zspage, 0);
1072 }
1073 
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075 				struct page *pages[])
1076 {
1077 	int i;
1078 	struct page *page;
1079 	struct page *prev_page = NULL;
1080 	int nr_pages = class->pages_per_zspage;
1081 
1082 	/*
1083 	 * Allocate individual pages and link them together as:
1084 	 * 1. all pages are linked together using page->freelist
1085 	 * 2. each sub-page point to zspage using page->private
1086 	 *
1087 	 * we set PG_private to identify the first page (i.e. no other sub-page
1088 	 * has this flag set) and PG_private_2 to identify the last page.
1089 	 */
1090 	for (i = 0; i < nr_pages; i++) {
1091 		page = pages[i];
1092 		set_page_private(page, (unsigned long)zspage);
1093 		page->freelist = NULL;
1094 		if (i == 0) {
1095 			zspage->first_page = page;
1096 			SetPagePrivate(page);
1097 			if (unlikely(class->objs_per_zspage == 1 &&
1098 					class->pages_per_zspage == 1))
1099 				SetPageHugeObject(page);
1100 		} else {
1101 			prev_page->freelist = page;
1102 		}
1103 		if (i == nr_pages - 1)
1104 			SetPagePrivate2(page);
1105 		prev_page = page;
1106 	}
1107 }
1108 
1109 /*
1110  * Allocate a zspage for the given size class
1111  */
1112 static struct zspage *alloc_zspage(struct zs_pool *pool,
1113 					struct size_class *class,
1114 					gfp_t gfp)
1115 {
1116 	int i;
1117 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119 
1120 	if (!zspage)
1121 		return NULL;
1122 
1123 	memset(zspage, 0, sizeof(struct zspage));
1124 	zspage->magic = ZSPAGE_MAGIC;
1125 	migrate_lock_init(zspage);
1126 
1127 	for (i = 0; i < class->pages_per_zspage; i++) {
1128 		struct page *page;
1129 
1130 		page = alloc_page(gfp);
1131 		if (!page) {
1132 			while (--i >= 0) {
1133 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1134 				__free_page(pages[i]);
1135 			}
1136 			cache_free_zspage(pool, zspage);
1137 			return NULL;
1138 		}
1139 
1140 		inc_zone_page_state(page, NR_ZSPAGES);
1141 		pages[i] = page;
1142 	}
1143 
1144 	create_page_chain(class, zspage, pages);
1145 	init_zspage(class, zspage);
1146 
1147 	return zspage;
1148 }
1149 
1150 static struct zspage *find_get_zspage(struct size_class *class)
1151 {
1152 	int i;
1153 	struct zspage *zspage;
1154 
1155 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1157 				struct zspage, list);
1158 		if (zspage)
1159 			break;
1160 	}
1161 
1162 	return zspage;
1163 }
1164 
1165 #ifdef CONFIG_PGTABLE_MAPPING
1166 static inline int __zs_cpu_up(struct mapping_area *area)
1167 {
1168 	/*
1169 	 * Make sure we don't leak memory if a cpu UP notification
1170 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1171 	 */
1172 	if (area->vm)
1173 		return 0;
1174 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1175 	if (!area->vm)
1176 		return -ENOMEM;
1177 	return 0;
1178 }
1179 
1180 static inline void __zs_cpu_down(struct mapping_area *area)
1181 {
1182 	if (area->vm)
1183 		free_vm_area(area->vm);
1184 	area->vm = NULL;
1185 }
1186 
1187 static inline void *__zs_map_object(struct mapping_area *area,
1188 				struct page *pages[2], int off, int size)
1189 {
1190 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1191 	area->vm_addr = area->vm->addr;
1192 	return area->vm_addr + off;
1193 }
1194 
1195 static inline void __zs_unmap_object(struct mapping_area *area,
1196 				struct page *pages[2], int off, int size)
1197 {
1198 	unsigned long addr = (unsigned long)area->vm_addr;
1199 
1200 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1201 }
1202 
1203 #else /* CONFIG_PGTABLE_MAPPING */
1204 
1205 static inline int __zs_cpu_up(struct mapping_area *area)
1206 {
1207 	/*
1208 	 * Make sure we don't leak memory if a cpu UP notification
1209 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1210 	 */
1211 	if (area->vm_buf)
1212 		return 0;
1213 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1214 	if (!area->vm_buf)
1215 		return -ENOMEM;
1216 	return 0;
1217 }
1218 
1219 static inline void __zs_cpu_down(struct mapping_area *area)
1220 {
1221 	kfree(area->vm_buf);
1222 	area->vm_buf = NULL;
1223 }
1224 
1225 static void *__zs_map_object(struct mapping_area *area,
1226 			struct page *pages[2], int off, int size)
1227 {
1228 	int sizes[2];
1229 	void *addr;
1230 	char *buf = area->vm_buf;
1231 
1232 	/* disable page faults to match kmap_atomic() return conditions */
1233 	pagefault_disable();
1234 
1235 	/* no read fastpath */
1236 	if (area->vm_mm == ZS_MM_WO)
1237 		goto out;
1238 
1239 	sizes[0] = PAGE_SIZE - off;
1240 	sizes[1] = size - sizes[0];
1241 
1242 	/* copy object to per-cpu buffer */
1243 	addr = kmap_atomic(pages[0]);
1244 	memcpy(buf, addr + off, sizes[0]);
1245 	kunmap_atomic(addr);
1246 	addr = kmap_atomic(pages[1]);
1247 	memcpy(buf + sizes[0], addr, sizes[1]);
1248 	kunmap_atomic(addr);
1249 out:
1250 	return area->vm_buf;
1251 }
1252 
1253 static void __zs_unmap_object(struct mapping_area *area,
1254 			struct page *pages[2], int off, int size)
1255 {
1256 	int sizes[2];
1257 	void *addr;
1258 	char *buf;
1259 
1260 	/* no write fastpath */
1261 	if (area->vm_mm == ZS_MM_RO)
1262 		goto out;
1263 
1264 	buf = area->vm_buf;
1265 	buf = buf + ZS_HANDLE_SIZE;
1266 	size -= ZS_HANDLE_SIZE;
1267 	off += ZS_HANDLE_SIZE;
1268 
1269 	sizes[0] = PAGE_SIZE - off;
1270 	sizes[1] = size - sizes[0];
1271 
1272 	/* copy per-cpu buffer to object */
1273 	addr = kmap_atomic(pages[0]);
1274 	memcpy(addr + off, buf, sizes[0]);
1275 	kunmap_atomic(addr);
1276 	addr = kmap_atomic(pages[1]);
1277 	memcpy(addr, buf + sizes[0], sizes[1]);
1278 	kunmap_atomic(addr);
1279 
1280 out:
1281 	/* enable page faults to match kunmap_atomic() return conditions */
1282 	pagefault_enable();
1283 }
1284 
1285 #endif /* CONFIG_PGTABLE_MAPPING */
1286 
1287 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1288 				void *pcpu)
1289 {
1290 	int ret, cpu = (long)pcpu;
1291 	struct mapping_area *area;
1292 
1293 	switch (action) {
1294 	case CPU_UP_PREPARE:
1295 		area = &per_cpu(zs_map_area, cpu);
1296 		ret = __zs_cpu_up(area);
1297 		if (ret)
1298 			return notifier_from_errno(ret);
1299 		break;
1300 	case CPU_DEAD:
1301 	case CPU_UP_CANCELED:
1302 		area = &per_cpu(zs_map_area, cpu);
1303 		__zs_cpu_down(area);
1304 		break;
1305 	}
1306 
1307 	return NOTIFY_OK;
1308 }
1309 
1310 static struct notifier_block zs_cpu_nb = {
1311 	.notifier_call = zs_cpu_notifier
1312 };
1313 
1314 static int zs_register_cpu_notifier(void)
1315 {
1316 	int cpu, uninitialized_var(ret);
1317 
1318 	cpu_notifier_register_begin();
1319 
1320 	__register_cpu_notifier(&zs_cpu_nb);
1321 	for_each_online_cpu(cpu) {
1322 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1323 		if (notifier_to_errno(ret))
1324 			break;
1325 	}
1326 
1327 	cpu_notifier_register_done();
1328 	return notifier_to_errno(ret);
1329 }
1330 
1331 static void zs_unregister_cpu_notifier(void)
1332 {
1333 	int cpu;
1334 
1335 	cpu_notifier_register_begin();
1336 
1337 	for_each_online_cpu(cpu)
1338 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1339 	__unregister_cpu_notifier(&zs_cpu_nb);
1340 
1341 	cpu_notifier_register_done();
1342 }
1343 
1344 static void __init init_zs_size_classes(void)
1345 {
1346 	int nr;
1347 
1348 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1349 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1350 		nr += 1;
1351 
1352 	zs_size_classes = nr;
1353 }
1354 
1355 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1356 					int objs_per_zspage)
1357 {
1358 	if (prev->pages_per_zspage == pages_per_zspage &&
1359 		prev->objs_per_zspage == objs_per_zspage)
1360 		return true;
1361 
1362 	return false;
1363 }
1364 
1365 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1366 {
1367 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1368 }
1369 
1370 unsigned long zs_get_total_pages(struct zs_pool *pool)
1371 {
1372 	return atomic_long_read(&pool->pages_allocated);
1373 }
1374 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1375 
1376 /**
1377  * zs_map_object - get address of allocated object from handle.
1378  * @pool: pool from which the object was allocated
1379  * @handle: handle returned from zs_malloc
1380  *
1381  * Before using an object allocated from zs_malloc, it must be mapped using
1382  * this function. When done with the object, it must be unmapped using
1383  * zs_unmap_object.
1384  *
1385  * Only one object can be mapped per cpu at a time. There is no protection
1386  * against nested mappings.
1387  *
1388  * This function returns with preemption and page faults disabled.
1389  */
1390 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1391 			enum zs_mapmode mm)
1392 {
1393 	struct zspage *zspage;
1394 	struct page *page;
1395 	unsigned long obj, off;
1396 	unsigned int obj_idx;
1397 
1398 	unsigned int class_idx;
1399 	enum fullness_group fg;
1400 	struct size_class *class;
1401 	struct mapping_area *area;
1402 	struct page *pages[2];
1403 	void *ret;
1404 
1405 	/*
1406 	 * Because we use per-cpu mapping areas shared among the
1407 	 * pools/users, we can't allow mapping in interrupt context
1408 	 * because it can corrupt another users mappings.
1409 	 */
1410 	WARN_ON_ONCE(in_interrupt());
1411 
1412 	/* From now on, migration cannot move the object */
1413 	pin_tag(handle);
1414 
1415 	obj = handle_to_obj(handle);
1416 	obj_to_location(obj, &page, &obj_idx);
1417 	zspage = get_zspage(page);
1418 
1419 	/* migration cannot move any subpage in this zspage */
1420 	migrate_read_lock(zspage);
1421 
1422 	get_zspage_mapping(zspage, &class_idx, &fg);
1423 	class = pool->size_class[class_idx];
1424 	off = (class->size * obj_idx) & ~PAGE_MASK;
1425 
1426 	area = &get_cpu_var(zs_map_area);
1427 	area->vm_mm = mm;
1428 	if (off + class->size <= PAGE_SIZE) {
1429 		/* this object is contained entirely within a page */
1430 		area->vm_addr = kmap_atomic(page);
1431 		ret = area->vm_addr + off;
1432 		goto out;
1433 	}
1434 
1435 	/* this object spans two pages */
1436 	pages[0] = page;
1437 	pages[1] = get_next_page(page);
1438 	BUG_ON(!pages[1]);
1439 
1440 	ret = __zs_map_object(area, pages, off, class->size);
1441 out:
1442 	if (likely(!PageHugeObject(page)))
1443 		ret += ZS_HANDLE_SIZE;
1444 
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(zs_map_object);
1448 
1449 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1450 {
1451 	struct zspage *zspage;
1452 	struct page *page;
1453 	unsigned long obj, off;
1454 	unsigned int obj_idx;
1455 
1456 	unsigned int class_idx;
1457 	enum fullness_group fg;
1458 	struct size_class *class;
1459 	struct mapping_area *area;
1460 
1461 	obj = handle_to_obj(handle);
1462 	obj_to_location(obj, &page, &obj_idx);
1463 	zspage = get_zspage(page);
1464 	get_zspage_mapping(zspage, &class_idx, &fg);
1465 	class = pool->size_class[class_idx];
1466 	off = (class->size * obj_idx) & ~PAGE_MASK;
1467 
1468 	area = this_cpu_ptr(&zs_map_area);
1469 	if (off + class->size <= PAGE_SIZE)
1470 		kunmap_atomic(area->vm_addr);
1471 	else {
1472 		struct page *pages[2];
1473 
1474 		pages[0] = page;
1475 		pages[1] = get_next_page(page);
1476 		BUG_ON(!pages[1]);
1477 
1478 		__zs_unmap_object(area, pages, off, class->size);
1479 	}
1480 	put_cpu_var(zs_map_area);
1481 
1482 	migrate_read_unlock(zspage);
1483 	unpin_tag(handle);
1484 }
1485 EXPORT_SYMBOL_GPL(zs_unmap_object);
1486 
1487 static unsigned long obj_malloc(struct size_class *class,
1488 				struct zspage *zspage, unsigned long handle)
1489 {
1490 	int i, nr_page, offset;
1491 	unsigned long obj;
1492 	struct link_free *link;
1493 
1494 	struct page *m_page;
1495 	unsigned long m_offset;
1496 	void *vaddr;
1497 
1498 	handle |= OBJ_ALLOCATED_TAG;
1499 	obj = get_freeobj(zspage);
1500 
1501 	offset = obj * class->size;
1502 	nr_page = offset >> PAGE_SHIFT;
1503 	m_offset = offset & ~PAGE_MASK;
1504 	m_page = get_first_page(zspage);
1505 
1506 	for (i = 0; i < nr_page; i++)
1507 		m_page = get_next_page(m_page);
1508 
1509 	vaddr = kmap_atomic(m_page);
1510 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1511 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1512 	if (likely(!PageHugeObject(m_page)))
1513 		/* record handle in the header of allocated chunk */
1514 		link->handle = handle;
1515 	else
1516 		/* record handle to page->index */
1517 		zspage->first_page->index = handle;
1518 
1519 	kunmap_atomic(vaddr);
1520 	mod_zspage_inuse(zspage, 1);
1521 	zs_stat_inc(class, OBJ_USED, 1);
1522 
1523 	obj = location_to_obj(m_page, obj);
1524 
1525 	return obj;
1526 }
1527 
1528 
1529 /**
1530  * zs_malloc - Allocate block of given size from pool.
1531  * @pool: pool to allocate from
1532  * @size: size of block to allocate
1533  * @gfp: gfp flags when allocating object
1534  *
1535  * On success, handle to the allocated object is returned,
1536  * otherwise 0.
1537  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1538  */
1539 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1540 {
1541 	unsigned long handle, obj;
1542 	struct size_class *class;
1543 	enum fullness_group newfg;
1544 	struct zspage *zspage;
1545 
1546 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1547 		return 0;
1548 
1549 	handle = cache_alloc_handle(pool, gfp);
1550 	if (!handle)
1551 		return 0;
1552 
1553 	/* extra space in chunk to keep the handle */
1554 	size += ZS_HANDLE_SIZE;
1555 	class = pool->size_class[get_size_class_index(size)];
1556 
1557 	spin_lock(&class->lock);
1558 	zspage = find_get_zspage(class);
1559 	if (likely(zspage)) {
1560 		obj = obj_malloc(class, zspage, handle);
1561 		/* Now move the zspage to another fullness group, if required */
1562 		fix_fullness_group(class, zspage);
1563 		record_obj(handle, obj);
1564 		spin_unlock(&class->lock);
1565 
1566 		return handle;
1567 	}
1568 
1569 	spin_unlock(&class->lock);
1570 
1571 	zspage = alloc_zspage(pool, class, gfp);
1572 	if (!zspage) {
1573 		cache_free_handle(pool, handle);
1574 		return 0;
1575 	}
1576 
1577 	spin_lock(&class->lock);
1578 	obj = obj_malloc(class, zspage, handle);
1579 	newfg = get_fullness_group(class, zspage);
1580 	insert_zspage(class, zspage, newfg);
1581 	set_zspage_mapping(zspage, class->index, newfg);
1582 	record_obj(handle, obj);
1583 	atomic_long_add(class->pages_per_zspage,
1584 				&pool->pages_allocated);
1585 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1586 
1587 	/* We completely set up zspage so mark them as movable */
1588 	SetZsPageMovable(pool, zspage);
1589 	spin_unlock(&class->lock);
1590 
1591 	return handle;
1592 }
1593 EXPORT_SYMBOL_GPL(zs_malloc);
1594 
1595 static void obj_free(struct size_class *class, unsigned long obj)
1596 {
1597 	struct link_free *link;
1598 	struct zspage *zspage;
1599 	struct page *f_page;
1600 	unsigned long f_offset;
1601 	unsigned int f_objidx;
1602 	void *vaddr;
1603 
1604 	obj &= ~OBJ_ALLOCATED_TAG;
1605 	obj_to_location(obj, &f_page, &f_objidx);
1606 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1607 	zspage = get_zspage(f_page);
1608 
1609 	vaddr = kmap_atomic(f_page);
1610 
1611 	/* Insert this object in containing zspage's freelist */
1612 	link = (struct link_free *)(vaddr + f_offset);
1613 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1614 	kunmap_atomic(vaddr);
1615 	set_freeobj(zspage, f_objidx);
1616 	mod_zspage_inuse(zspage, -1);
1617 	zs_stat_dec(class, OBJ_USED, 1);
1618 }
1619 
1620 void zs_free(struct zs_pool *pool, unsigned long handle)
1621 {
1622 	struct zspage *zspage;
1623 	struct page *f_page;
1624 	unsigned long obj;
1625 	unsigned int f_objidx;
1626 	int class_idx;
1627 	struct size_class *class;
1628 	enum fullness_group fullness;
1629 	bool isolated;
1630 
1631 	if (unlikely(!handle))
1632 		return;
1633 
1634 	pin_tag(handle);
1635 	obj = handle_to_obj(handle);
1636 	obj_to_location(obj, &f_page, &f_objidx);
1637 	zspage = get_zspage(f_page);
1638 
1639 	migrate_read_lock(zspage);
1640 
1641 	get_zspage_mapping(zspage, &class_idx, &fullness);
1642 	class = pool->size_class[class_idx];
1643 
1644 	spin_lock(&class->lock);
1645 	obj_free(class, obj);
1646 	fullness = fix_fullness_group(class, zspage);
1647 	if (fullness != ZS_EMPTY) {
1648 		migrate_read_unlock(zspage);
1649 		goto out;
1650 	}
1651 
1652 	isolated = is_zspage_isolated(zspage);
1653 	migrate_read_unlock(zspage);
1654 	/* If zspage is isolated, zs_page_putback will free the zspage */
1655 	if (likely(!isolated))
1656 		free_zspage(pool, class, zspage);
1657 out:
1658 
1659 	spin_unlock(&class->lock);
1660 	unpin_tag(handle);
1661 	cache_free_handle(pool, handle);
1662 }
1663 EXPORT_SYMBOL_GPL(zs_free);
1664 
1665 static void zs_object_copy(struct size_class *class, unsigned long dst,
1666 				unsigned long src)
1667 {
1668 	struct page *s_page, *d_page;
1669 	unsigned int s_objidx, d_objidx;
1670 	unsigned long s_off, d_off;
1671 	void *s_addr, *d_addr;
1672 	int s_size, d_size, size;
1673 	int written = 0;
1674 
1675 	s_size = d_size = class->size;
1676 
1677 	obj_to_location(src, &s_page, &s_objidx);
1678 	obj_to_location(dst, &d_page, &d_objidx);
1679 
1680 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1681 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1682 
1683 	if (s_off + class->size > PAGE_SIZE)
1684 		s_size = PAGE_SIZE - s_off;
1685 
1686 	if (d_off + class->size > PAGE_SIZE)
1687 		d_size = PAGE_SIZE - d_off;
1688 
1689 	s_addr = kmap_atomic(s_page);
1690 	d_addr = kmap_atomic(d_page);
1691 
1692 	while (1) {
1693 		size = min(s_size, d_size);
1694 		memcpy(d_addr + d_off, s_addr + s_off, size);
1695 		written += size;
1696 
1697 		if (written == class->size)
1698 			break;
1699 
1700 		s_off += size;
1701 		s_size -= size;
1702 		d_off += size;
1703 		d_size -= size;
1704 
1705 		if (s_off >= PAGE_SIZE) {
1706 			kunmap_atomic(d_addr);
1707 			kunmap_atomic(s_addr);
1708 			s_page = get_next_page(s_page);
1709 			s_addr = kmap_atomic(s_page);
1710 			d_addr = kmap_atomic(d_page);
1711 			s_size = class->size - written;
1712 			s_off = 0;
1713 		}
1714 
1715 		if (d_off >= PAGE_SIZE) {
1716 			kunmap_atomic(d_addr);
1717 			d_page = get_next_page(d_page);
1718 			d_addr = kmap_atomic(d_page);
1719 			d_size = class->size - written;
1720 			d_off = 0;
1721 		}
1722 	}
1723 
1724 	kunmap_atomic(d_addr);
1725 	kunmap_atomic(s_addr);
1726 }
1727 
1728 /*
1729  * Find alloced object in zspage from index object and
1730  * return handle.
1731  */
1732 static unsigned long find_alloced_obj(struct size_class *class,
1733 					struct page *page, int *obj_idx)
1734 {
1735 	unsigned long head;
1736 	int offset = 0;
1737 	int index = *obj_idx;
1738 	unsigned long handle = 0;
1739 	void *addr = kmap_atomic(page);
1740 
1741 	offset = get_first_obj_offset(page);
1742 	offset += class->size * index;
1743 
1744 	while (offset < PAGE_SIZE) {
1745 		head = obj_to_head(page, addr + offset);
1746 		if (head & OBJ_ALLOCATED_TAG) {
1747 			handle = head & ~OBJ_ALLOCATED_TAG;
1748 			if (trypin_tag(handle))
1749 				break;
1750 			handle = 0;
1751 		}
1752 
1753 		offset += class->size;
1754 		index++;
1755 	}
1756 
1757 	kunmap_atomic(addr);
1758 
1759 	*obj_idx = index;
1760 
1761 	return handle;
1762 }
1763 
1764 struct zs_compact_control {
1765 	/* Source spage for migration which could be a subpage of zspage */
1766 	struct page *s_page;
1767 	/* Destination page for migration which should be a first page
1768 	 * of zspage. */
1769 	struct page *d_page;
1770 	 /* Starting object index within @s_page which used for live object
1771 	  * in the subpage. */
1772 	int obj_idx;
1773 };
1774 
1775 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1776 				struct zs_compact_control *cc)
1777 {
1778 	unsigned long used_obj, free_obj;
1779 	unsigned long handle;
1780 	struct page *s_page = cc->s_page;
1781 	struct page *d_page = cc->d_page;
1782 	int obj_idx = cc->obj_idx;
1783 	int ret = 0;
1784 
1785 	while (1) {
1786 		handle = find_alloced_obj(class, s_page, &obj_idx);
1787 		if (!handle) {
1788 			s_page = get_next_page(s_page);
1789 			if (!s_page)
1790 				break;
1791 			obj_idx = 0;
1792 			continue;
1793 		}
1794 
1795 		/* Stop if there is no more space */
1796 		if (zspage_full(class, get_zspage(d_page))) {
1797 			unpin_tag(handle);
1798 			ret = -ENOMEM;
1799 			break;
1800 		}
1801 
1802 		used_obj = handle_to_obj(handle);
1803 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1804 		zs_object_copy(class, free_obj, used_obj);
1805 		obj_idx++;
1806 		/*
1807 		 * record_obj updates handle's value to free_obj and it will
1808 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1809 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1810 		 * let's keep the lock bit.
1811 		 */
1812 		free_obj |= BIT(HANDLE_PIN_BIT);
1813 		record_obj(handle, free_obj);
1814 		unpin_tag(handle);
1815 		obj_free(class, used_obj);
1816 	}
1817 
1818 	/* Remember last position in this iteration */
1819 	cc->s_page = s_page;
1820 	cc->obj_idx = obj_idx;
1821 
1822 	return ret;
1823 }
1824 
1825 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1826 {
1827 	int i;
1828 	struct zspage *zspage;
1829 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1830 
1831 	if (!source) {
1832 		fg[0] = ZS_ALMOST_FULL;
1833 		fg[1] = ZS_ALMOST_EMPTY;
1834 	}
1835 
1836 	for (i = 0; i < 2; i++) {
1837 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1838 							struct zspage, list);
1839 		if (zspage) {
1840 			VM_BUG_ON(is_zspage_isolated(zspage));
1841 			remove_zspage(class, zspage, fg[i]);
1842 			return zspage;
1843 		}
1844 	}
1845 
1846 	return zspage;
1847 }
1848 
1849 /*
1850  * putback_zspage - add @zspage into right class's fullness list
1851  * @class: destination class
1852  * @zspage: target page
1853  *
1854  * Return @zspage's fullness_group
1855  */
1856 static enum fullness_group putback_zspage(struct size_class *class,
1857 			struct zspage *zspage)
1858 {
1859 	enum fullness_group fullness;
1860 
1861 	VM_BUG_ON(is_zspage_isolated(zspage));
1862 
1863 	fullness = get_fullness_group(class, zspage);
1864 	insert_zspage(class, zspage, fullness);
1865 	set_zspage_mapping(zspage, class->index, fullness);
1866 
1867 	return fullness;
1868 }
1869 
1870 #ifdef CONFIG_COMPACTION
1871 static struct dentry *zs_mount(struct file_system_type *fs_type,
1872 				int flags, const char *dev_name, void *data)
1873 {
1874 	static const struct dentry_operations ops = {
1875 		.d_dname = simple_dname,
1876 	};
1877 
1878 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1879 }
1880 
1881 static struct file_system_type zsmalloc_fs = {
1882 	.name		= "zsmalloc",
1883 	.mount		= zs_mount,
1884 	.kill_sb	= kill_anon_super,
1885 };
1886 
1887 static int zsmalloc_mount(void)
1888 {
1889 	int ret = 0;
1890 
1891 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1892 	if (IS_ERR(zsmalloc_mnt))
1893 		ret = PTR_ERR(zsmalloc_mnt);
1894 
1895 	return ret;
1896 }
1897 
1898 static void zsmalloc_unmount(void)
1899 {
1900 	kern_unmount(zsmalloc_mnt);
1901 }
1902 
1903 static void migrate_lock_init(struct zspage *zspage)
1904 {
1905 	rwlock_init(&zspage->lock);
1906 }
1907 
1908 static void migrate_read_lock(struct zspage *zspage)
1909 {
1910 	read_lock(&zspage->lock);
1911 }
1912 
1913 static void migrate_read_unlock(struct zspage *zspage)
1914 {
1915 	read_unlock(&zspage->lock);
1916 }
1917 
1918 static void migrate_write_lock(struct zspage *zspage)
1919 {
1920 	write_lock(&zspage->lock);
1921 }
1922 
1923 static void migrate_write_unlock(struct zspage *zspage)
1924 {
1925 	write_unlock(&zspage->lock);
1926 }
1927 
1928 /* Number of isolated subpage for *page migration* in this zspage */
1929 static void inc_zspage_isolation(struct zspage *zspage)
1930 {
1931 	zspage->isolated++;
1932 }
1933 
1934 static void dec_zspage_isolation(struct zspage *zspage)
1935 {
1936 	zspage->isolated--;
1937 }
1938 
1939 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1940 				struct page *newpage, struct page *oldpage)
1941 {
1942 	struct page *page;
1943 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1944 	int idx = 0;
1945 
1946 	page = get_first_page(zspage);
1947 	do {
1948 		if (page == oldpage)
1949 			pages[idx] = newpage;
1950 		else
1951 			pages[idx] = page;
1952 		idx++;
1953 	} while ((page = get_next_page(page)) != NULL);
1954 
1955 	create_page_chain(class, zspage, pages);
1956 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1957 	if (unlikely(PageHugeObject(oldpage)))
1958 		newpage->index = oldpage->index;
1959 	__SetPageMovable(newpage, page_mapping(oldpage));
1960 }
1961 
1962 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1963 {
1964 	struct zs_pool *pool;
1965 	struct size_class *class;
1966 	int class_idx;
1967 	enum fullness_group fullness;
1968 	struct zspage *zspage;
1969 	struct address_space *mapping;
1970 
1971 	/*
1972 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1973 	 * lock_zspage in free_zspage.
1974 	 */
1975 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1976 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1977 
1978 	zspage = get_zspage(page);
1979 
1980 	/*
1981 	 * Without class lock, fullness could be stale while class_idx is okay
1982 	 * because class_idx is constant unless page is freed so we should get
1983 	 * fullness again under class lock.
1984 	 */
1985 	get_zspage_mapping(zspage, &class_idx, &fullness);
1986 	mapping = page_mapping(page);
1987 	pool = mapping->private_data;
1988 	class = pool->size_class[class_idx];
1989 
1990 	spin_lock(&class->lock);
1991 	if (get_zspage_inuse(zspage) == 0) {
1992 		spin_unlock(&class->lock);
1993 		return false;
1994 	}
1995 
1996 	/* zspage is isolated for object migration */
1997 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1998 		spin_unlock(&class->lock);
1999 		return false;
2000 	}
2001 
2002 	/*
2003 	 * If this is first time isolation for the zspage, isolate zspage from
2004 	 * size_class to prevent further object allocation from the zspage.
2005 	 */
2006 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2007 		get_zspage_mapping(zspage, &class_idx, &fullness);
2008 		remove_zspage(class, zspage, fullness);
2009 	}
2010 
2011 	inc_zspage_isolation(zspage);
2012 	spin_unlock(&class->lock);
2013 
2014 	return true;
2015 }
2016 
2017 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2018 		struct page *page, enum migrate_mode mode)
2019 {
2020 	struct zs_pool *pool;
2021 	struct size_class *class;
2022 	int class_idx;
2023 	enum fullness_group fullness;
2024 	struct zspage *zspage;
2025 	struct page *dummy;
2026 	void *s_addr, *d_addr, *addr;
2027 	int offset, pos;
2028 	unsigned long handle, head;
2029 	unsigned long old_obj, new_obj;
2030 	unsigned int obj_idx;
2031 	int ret = -EAGAIN;
2032 
2033 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2034 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2035 
2036 	zspage = get_zspage(page);
2037 
2038 	/* Concurrent compactor cannot migrate any subpage in zspage */
2039 	migrate_write_lock(zspage);
2040 	get_zspage_mapping(zspage, &class_idx, &fullness);
2041 	pool = mapping->private_data;
2042 	class = pool->size_class[class_idx];
2043 	offset = get_first_obj_offset(page);
2044 
2045 	spin_lock(&class->lock);
2046 	if (!get_zspage_inuse(zspage)) {
2047 		ret = -EBUSY;
2048 		goto unlock_class;
2049 	}
2050 
2051 	pos = offset;
2052 	s_addr = kmap_atomic(page);
2053 	while (pos < PAGE_SIZE) {
2054 		head = obj_to_head(page, s_addr + pos);
2055 		if (head & OBJ_ALLOCATED_TAG) {
2056 			handle = head & ~OBJ_ALLOCATED_TAG;
2057 			if (!trypin_tag(handle))
2058 				goto unpin_objects;
2059 		}
2060 		pos += class->size;
2061 	}
2062 
2063 	/*
2064 	 * Here, any user cannot access all objects in the zspage so let's move.
2065 	 */
2066 	d_addr = kmap_atomic(newpage);
2067 	memcpy(d_addr, s_addr, PAGE_SIZE);
2068 	kunmap_atomic(d_addr);
2069 
2070 	for (addr = s_addr + offset; addr < s_addr + pos;
2071 					addr += class->size) {
2072 		head = obj_to_head(page, addr);
2073 		if (head & OBJ_ALLOCATED_TAG) {
2074 			handle = head & ~OBJ_ALLOCATED_TAG;
2075 			if (!testpin_tag(handle))
2076 				BUG();
2077 
2078 			old_obj = handle_to_obj(handle);
2079 			obj_to_location(old_obj, &dummy, &obj_idx);
2080 			new_obj = (unsigned long)location_to_obj(newpage,
2081 								obj_idx);
2082 			new_obj |= BIT(HANDLE_PIN_BIT);
2083 			record_obj(handle, new_obj);
2084 		}
2085 	}
2086 
2087 	replace_sub_page(class, zspage, newpage, page);
2088 	get_page(newpage);
2089 
2090 	dec_zspage_isolation(zspage);
2091 
2092 	/*
2093 	 * Page migration is done so let's putback isolated zspage to
2094 	 * the list if @page is final isolated subpage in the zspage.
2095 	 */
2096 	if (!is_zspage_isolated(zspage))
2097 		putback_zspage(class, zspage);
2098 
2099 	reset_page(page);
2100 	put_page(page);
2101 	page = newpage;
2102 
2103 	ret = MIGRATEPAGE_SUCCESS;
2104 unpin_objects:
2105 	for (addr = s_addr + offset; addr < s_addr + pos;
2106 						addr += class->size) {
2107 		head = obj_to_head(page, addr);
2108 		if (head & OBJ_ALLOCATED_TAG) {
2109 			handle = head & ~OBJ_ALLOCATED_TAG;
2110 			if (!testpin_tag(handle))
2111 				BUG();
2112 			unpin_tag(handle);
2113 		}
2114 	}
2115 	kunmap_atomic(s_addr);
2116 unlock_class:
2117 	spin_unlock(&class->lock);
2118 	migrate_write_unlock(zspage);
2119 
2120 	return ret;
2121 }
2122 
2123 void zs_page_putback(struct page *page)
2124 {
2125 	struct zs_pool *pool;
2126 	struct size_class *class;
2127 	int class_idx;
2128 	enum fullness_group fg;
2129 	struct address_space *mapping;
2130 	struct zspage *zspage;
2131 
2132 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2133 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2134 
2135 	zspage = get_zspage(page);
2136 	get_zspage_mapping(zspage, &class_idx, &fg);
2137 	mapping = page_mapping(page);
2138 	pool = mapping->private_data;
2139 	class = pool->size_class[class_idx];
2140 
2141 	spin_lock(&class->lock);
2142 	dec_zspage_isolation(zspage);
2143 	if (!is_zspage_isolated(zspage)) {
2144 		fg = putback_zspage(class, zspage);
2145 		/*
2146 		 * Due to page_lock, we cannot free zspage immediately
2147 		 * so let's defer.
2148 		 */
2149 		if (fg == ZS_EMPTY)
2150 			schedule_work(&pool->free_work);
2151 	}
2152 	spin_unlock(&class->lock);
2153 }
2154 
2155 const struct address_space_operations zsmalloc_aops = {
2156 	.isolate_page = zs_page_isolate,
2157 	.migratepage = zs_page_migrate,
2158 	.putback_page = zs_page_putback,
2159 };
2160 
2161 static int zs_register_migration(struct zs_pool *pool)
2162 {
2163 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2164 	if (IS_ERR(pool->inode)) {
2165 		pool->inode = NULL;
2166 		return 1;
2167 	}
2168 
2169 	pool->inode->i_mapping->private_data = pool;
2170 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2171 	return 0;
2172 }
2173 
2174 static void zs_unregister_migration(struct zs_pool *pool)
2175 {
2176 	flush_work(&pool->free_work);
2177 	iput(pool->inode);
2178 }
2179 
2180 /*
2181  * Caller should hold page_lock of all pages in the zspage
2182  * In here, we cannot use zspage meta data.
2183  */
2184 static void async_free_zspage(struct work_struct *work)
2185 {
2186 	int i;
2187 	struct size_class *class;
2188 	unsigned int class_idx;
2189 	enum fullness_group fullness;
2190 	struct zspage *zspage, *tmp;
2191 	LIST_HEAD(free_pages);
2192 	struct zs_pool *pool = container_of(work, struct zs_pool,
2193 					free_work);
2194 
2195 	for (i = 0; i < zs_size_classes; i++) {
2196 		class = pool->size_class[i];
2197 		if (class->index != i)
2198 			continue;
2199 
2200 		spin_lock(&class->lock);
2201 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2202 		spin_unlock(&class->lock);
2203 	}
2204 
2205 
2206 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2207 		list_del(&zspage->list);
2208 		lock_zspage(zspage);
2209 
2210 		get_zspage_mapping(zspage, &class_idx, &fullness);
2211 		VM_BUG_ON(fullness != ZS_EMPTY);
2212 		class = pool->size_class[class_idx];
2213 		spin_lock(&class->lock);
2214 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2215 		spin_unlock(&class->lock);
2216 	}
2217 };
2218 
2219 static void kick_deferred_free(struct zs_pool *pool)
2220 {
2221 	schedule_work(&pool->free_work);
2222 }
2223 
2224 static void init_deferred_free(struct zs_pool *pool)
2225 {
2226 	INIT_WORK(&pool->free_work, async_free_zspage);
2227 }
2228 
2229 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2230 {
2231 	struct page *page = get_first_page(zspage);
2232 
2233 	do {
2234 		WARN_ON(!trylock_page(page));
2235 		__SetPageMovable(page, pool->inode->i_mapping);
2236 		unlock_page(page);
2237 	} while ((page = get_next_page(page)) != NULL);
2238 }
2239 #endif
2240 
2241 /*
2242  *
2243  * Based on the number of unused allocated objects calculate
2244  * and return the number of pages that we can free.
2245  */
2246 static unsigned long zs_can_compact(struct size_class *class)
2247 {
2248 	unsigned long obj_wasted;
2249 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251 
2252 	if (obj_allocated <= obj_used)
2253 		return 0;
2254 
2255 	obj_wasted = obj_allocated - obj_used;
2256 	obj_wasted /= class->objs_per_zspage;
2257 
2258 	return obj_wasted * class->pages_per_zspage;
2259 }
2260 
2261 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2262 {
2263 	struct zs_compact_control cc;
2264 	struct zspage *src_zspage;
2265 	struct zspage *dst_zspage = NULL;
2266 
2267 	spin_lock(&class->lock);
2268 	while ((src_zspage = isolate_zspage(class, true))) {
2269 
2270 		if (!zs_can_compact(class))
2271 			break;
2272 
2273 		cc.obj_idx = 0;
2274 		cc.s_page = get_first_page(src_zspage);
2275 
2276 		while ((dst_zspage = isolate_zspage(class, false))) {
2277 			cc.d_page = get_first_page(dst_zspage);
2278 			/*
2279 			 * If there is no more space in dst_page, resched
2280 			 * and see if anyone had allocated another zspage.
2281 			 */
2282 			if (!migrate_zspage(pool, class, &cc))
2283 				break;
2284 
2285 			putback_zspage(class, dst_zspage);
2286 		}
2287 
2288 		/* Stop if we couldn't find slot */
2289 		if (dst_zspage == NULL)
2290 			break;
2291 
2292 		putback_zspage(class, dst_zspage);
2293 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2294 			free_zspage(pool, class, src_zspage);
2295 			pool->stats.pages_compacted += class->pages_per_zspage;
2296 		}
2297 		spin_unlock(&class->lock);
2298 		cond_resched();
2299 		spin_lock(&class->lock);
2300 	}
2301 
2302 	if (src_zspage)
2303 		putback_zspage(class, src_zspage);
2304 
2305 	spin_unlock(&class->lock);
2306 }
2307 
2308 unsigned long zs_compact(struct zs_pool *pool)
2309 {
2310 	int i;
2311 	struct size_class *class;
2312 
2313 	for (i = zs_size_classes - 1; i >= 0; i--) {
2314 		class = pool->size_class[i];
2315 		if (!class)
2316 			continue;
2317 		if (class->index != i)
2318 			continue;
2319 		__zs_compact(pool, class);
2320 	}
2321 
2322 	return pool->stats.pages_compacted;
2323 }
2324 EXPORT_SYMBOL_GPL(zs_compact);
2325 
2326 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2327 {
2328 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2329 }
2330 EXPORT_SYMBOL_GPL(zs_pool_stats);
2331 
2332 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2333 		struct shrink_control *sc)
2334 {
2335 	unsigned long pages_freed;
2336 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2337 			shrinker);
2338 
2339 	pages_freed = pool->stats.pages_compacted;
2340 	/*
2341 	 * Compact classes and calculate compaction delta.
2342 	 * Can run concurrently with a manually triggered
2343 	 * (by user) compaction.
2344 	 */
2345 	pages_freed = zs_compact(pool) - pages_freed;
2346 
2347 	return pages_freed ? pages_freed : SHRINK_STOP;
2348 }
2349 
2350 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2351 		struct shrink_control *sc)
2352 {
2353 	int i;
2354 	struct size_class *class;
2355 	unsigned long pages_to_free = 0;
2356 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2357 			shrinker);
2358 
2359 	for (i = zs_size_classes - 1; i >= 0; i--) {
2360 		class = pool->size_class[i];
2361 		if (!class)
2362 			continue;
2363 		if (class->index != i)
2364 			continue;
2365 
2366 		pages_to_free += zs_can_compact(class);
2367 	}
2368 
2369 	return pages_to_free;
2370 }
2371 
2372 static void zs_unregister_shrinker(struct zs_pool *pool)
2373 {
2374 	if (pool->shrinker_enabled) {
2375 		unregister_shrinker(&pool->shrinker);
2376 		pool->shrinker_enabled = false;
2377 	}
2378 }
2379 
2380 static int zs_register_shrinker(struct zs_pool *pool)
2381 {
2382 	pool->shrinker.scan_objects = zs_shrinker_scan;
2383 	pool->shrinker.count_objects = zs_shrinker_count;
2384 	pool->shrinker.batch = 0;
2385 	pool->shrinker.seeks = DEFAULT_SEEKS;
2386 
2387 	return register_shrinker(&pool->shrinker);
2388 }
2389 
2390 /**
2391  * zs_create_pool - Creates an allocation pool to work from.
2392  * @name: pool name to be created
2393  *
2394  * This function must be called before anything when using
2395  * the zsmalloc allocator.
2396  *
2397  * On success, a pointer to the newly created pool is returned,
2398  * otherwise NULL.
2399  */
2400 struct zs_pool *zs_create_pool(const char *name)
2401 {
2402 	int i;
2403 	struct zs_pool *pool;
2404 	struct size_class *prev_class = NULL;
2405 
2406 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2407 	if (!pool)
2408 		return NULL;
2409 
2410 	init_deferred_free(pool);
2411 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2412 			GFP_KERNEL);
2413 	if (!pool->size_class) {
2414 		kfree(pool);
2415 		return NULL;
2416 	}
2417 
2418 	pool->name = kstrdup(name, GFP_KERNEL);
2419 	if (!pool->name)
2420 		goto err;
2421 
2422 	if (create_cache(pool))
2423 		goto err;
2424 
2425 	/*
2426 	 * Iterate reversly, because, size of size_class that we want to use
2427 	 * for merging should be larger or equal to current size.
2428 	 */
2429 	for (i = zs_size_classes - 1; i >= 0; i--) {
2430 		int size;
2431 		int pages_per_zspage;
2432 		int objs_per_zspage;
2433 		struct size_class *class;
2434 		int fullness = 0;
2435 
2436 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2437 		if (size > ZS_MAX_ALLOC_SIZE)
2438 			size = ZS_MAX_ALLOC_SIZE;
2439 		pages_per_zspage = get_pages_per_zspage(size);
2440 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2441 
2442 		/*
2443 		 * size_class is used for normal zsmalloc operation such
2444 		 * as alloc/free for that size. Although it is natural that we
2445 		 * have one size_class for each size, there is a chance that we
2446 		 * can get more memory utilization if we use one size_class for
2447 		 * many different sizes whose size_class have same
2448 		 * characteristics. So, we makes size_class point to
2449 		 * previous size_class if possible.
2450 		 */
2451 		if (prev_class) {
2452 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2453 				pool->size_class[i] = prev_class;
2454 				continue;
2455 			}
2456 		}
2457 
2458 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2459 		if (!class)
2460 			goto err;
2461 
2462 		class->size = size;
2463 		class->index = i;
2464 		class->pages_per_zspage = pages_per_zspage;
2465 		class->objs_per_zspage = objs_per_zspage;
2466 		spin_lock_init(&class->lock);
2467 		pool->size_class[i] = class;
2468 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2469 							fullness++)
2470 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2471 
2472 		prev_class = class;
2473 	}
2474 
2475 	/* debug only, don't abort if it fails */
2476 	zs_pool_stat_create(pool, name);
2477 
2478 	if (zs_register_migration(pool))
2479 		goto err;
2480 
2481 	/*
2482 	 * Not critical, we still can use the pool
2483 	 * and user can trigger compaction manually.
2484 	 */
2485 	if (zs_register_shrinker(pool) == 0)
2486 		pool->shrinker_enabled = true;
2487 	return pool;
2488 
2489 err:
2490 	zs_destroy_pool(pool);
2491 	return NULL;
2492 }
2493 EXPORT_SYMBOL_GPL(zs_create_pool);
2494 
2495 void zs_destroy_pool(struct zs_pool *pool)
2496 {
2497 	int i;
2498 
2499 	zs_unregister_shrinker(pool);
2500 	zs_unregister_migration(pool);
2501 	zs_pool_stat_destroy(pool);
2502 
2503 	for (i = 0; i < zs_size_classes; i++) {
2504 		int fg;
2505 		struct size_class *class = pool->size_class[i];
2506 
2507 		if (!class)
2508 			continue;
2509 
2510 		if (class->index != i)
2511 			continue;
2512 
2513 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2514 			if (!list_empty(&class->fullness_list[fg])) {
2515 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2516 					class->size, fg);
2517 			}
2518 		}
2519 		kfree(class);
2520 	}
2521 
2522 	destroy_cache(pool);
2523 	kfree(pool->size_class);
2524 	kfree(pool->name);
2525 	kfree(pool);
2526 }
2527 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2528 
2529 static int __init zs_init(void)
2530 {
2531 	int ret;
2532 
2533 	ret = zsmalloc_mount();
2534 	if (ret)
2535 		goto out;
2536 
2537 	ret = zs_register_cpu_notifier();
2538 
2539 	if (ret)
2540 		goto notifier_fail;
2541 
2542 	init_zs_size_classes();
2543 
2544 #ifdef CONFIG_ZPOOL
2545 	zpool_register_driver(&zs_zpool_driver);
2546 #endif
2547 
2548 	zs_stat_init();
2549 
2550 	return 0;
2551 
2552 notifier_fail:
2553 	zs_unregister_cpu_notifier();
2554 	zsmalloc_unmount();
2555 out:
2556 	return ret;
2557 }
2558 
2559 static void __exit zs_exit(void)
2560 {
2561 #ifdef CONFIG_ZPOOL
2562 	zpool_unregister_driver(&zs_zpool_driver);
2563 #endif
2564 	zsmalloc_unmount();
2565 	zs_unregister_cpu_notifier();
2566 
2567 	zs_stat_exit();
2568 }
2569 
2570 module_init(zs_init);
2571 module_exit(zs_exit);
2572 
2573 MODULE_LICENSE("Dual BSD/GPL");
2574 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2575