1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than of equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * as single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 #ifdef CONFIG_PGTABLE_MAPPING 297 struct vm_struct *vm; /* vm area for mapping object that span pages */ 298 #else 299 char *vm_buf; /* copy buffer for objects that span pages */ 300 #endif 301 char *vm_addr; /* address of kmap_atomic()'ed pages */ 302 enum zs_mapmode vm_mm; /* mapping mode */ 303 }; 304 305 #ifdef CONFIG_COMPACTION 306 static int zs_register_migration(struct zs_pool *pool); 307 static void zs_unregister_migration(struct zs_pool *pool); 308 static void migrate_lock_init(struct zspage *zspage); 309 static void migrate_read_lock(struct zspage *zspage); 310 static void migrate_read_unlock(struct zspage *zspage); 311 static void kick_deferred_free(struct zs_pool *pool); 312 static void init_deferred_free(struct zs_pool *pool); 313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 314 #else 315 static int zsmalloc_mount(void) { return 0; } 316 static void zsmalloc_unmount(void) {} 317 static int zs_register_migration(struct zs_pool *pool) { return 0; } 318 static void zs_unregister_migration(struct zs_pool *pool) {} 319 static void migrate_lock_init(struct zspage *zspage) {} 320 static void migrate_read_lock(struct zspage *zspage) {} 321 static void migrate_read_unlock(struct zspage *zspage) {} 322 static void kick_deferred_free(struct zs_pool *pool) {} 323 static void init_deferred_free(struct zs_pool *pool) {} 324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 325 #endif 326 327 static int create_cache(struct zs_pool *pool) 328 { 329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 330 0, 0, NULL); 331 if (!pool->handle_cachep) 332 return 1; 333 334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 335 0, 0, NULL); 336 if (!pool->zspage_cachep) { 337 kmem_cache_destroy(pool->handle_cachep); 338 pool->handle_cachep = NULL; 339 return 1; 340 } 341 342 return 0; 343 } 344 345 static void destroy_cache(struct zs_pool *pool) 346 { 347 kmem_cache_destroy(pool->handle_cachep); 348 kmem_cache_destroy(pool->zspage_cachep); 349 } 350 351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 352 { 353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 355 } 356 357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 358 { 359 kmem_cache_free(pool->handle_cachep, (void *)handle); 360 } 361 362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 363 { 364 return kmem_cache_alloc(pool->zspage_cachep, 365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 366 } 367 368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 369 { 370 kmem_cache_free(pool->zspage_cachep, zspage); 371 } 372 373 static void record_obj(unsigned long handle, unsigned long obj) 374 { 375 /* 376 * lsb of @obj represents handle lock while other bits 377 * represent object value the handle is pointing so 378 * updating shouldn't do store tearing. 379 */ 380 WRITE_ONCE(*(unsigned long *)handle, obj); 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 return zs_create_pool(name); 397 } 398 399 static void zs_zpool_destroy(void *pool) 400 { 401 zs_destroy_pool(pool); 402 } 403 404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 405 unsigned long *handle) 406 { 407 *handle = zs_malloc(pool, size, gfp); 408 return *handle ? 0 : -1; 409 } 410 static void zs_zpool_free(void *pool, unsigned long handle) 411 { 412 zs_free(pool, handle); 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: /* fall through */ 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc = zs_zpool_malloc, 451 .free = zs_zpool_free, 452 .map = zs_zpool_map, 453 .unmap = zs_zpool_unmap, 454 .total_size = zs_zpool_total_size, 455 }; 456 457 MODULE_ALIAS("zpool-zsmalloc"); 458 #endif /* CONFIG_ZPOOL */ 459 460 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 461 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 462 463 static bool is_zspage_isolated(struct zspage *zspage) 464 { 465 return zspage->isolated; 466 } 467 468 static __maybe_unused int is_first_page(struct page *page) 469 { 470 return PagePrivate(page); 471 } 472 473 /* Protected by class->lock */ 474 static inline int get_zspage_inuse(struct zspage *zspage) 475 { 476 return zspage->inuse; 477 } 478 479 static inline void set_zspage_inuse(struct zspage *zspage, int val) 480 { 481 zspage->inuse = val; 482 } 483 484 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 485 { 486 zspage->inuse += val; 487 } 488 489 static inline struct page *get_first_page(struct zspage *zspage) 490 { 491 struct page *first_page = zspage->first_page; 492 493 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 494 return first_page; 495 } 496 497 static inline int get_first_obj_offset(struct page *page) 498 { 499 return page->units; 500 } 501 502 static inline void set_first_obj_offset(struct page *page, int offset) 503 { 504 page->units = offset; 505 } 506 507 static inline unsigned int get_freeobj(struct zspage *zspage) 508 { 509 return zspage->freeobj; 510 } 511 512 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 513 { 514 zspage->freeobj = obj; 515 } 516 517 static void get_zspage_mapping(struct zspage *zspage, 518 unsigned int *class_idx, 519 enum fullness_group *fullness) 520 { 521 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 522 523 *fullness = zspage->fullness; 524 *class_idx = zspage->class; 525 } 526 527 static void set_zspage_mapping(struct zspage *zspage, 528 unsigned int class_idx, 529 enum fullness_group fullness) 530 { 531 zspage->class = class_idx; 532 zspage->fullness = fullness; 533 } 534 535 /* 536 * zsmalloc divides the pool into various size classes where each 537 * class maintains a list of zspages where each zspage is divided 538 * into equal sized chunks. Each allocation falls into one of these 539 * classes depending on its size. This function returns index of the 540 * size class which has chunk size big enough to hold the give size. 541 */ 542 static int get_size_class_index(int size) 543 { 544 int idx = 0; 545 546 if (likely(size > ZS_MIN_ALLOC_SIZE)) 547 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 548 ZS_SIZE_CLASS_DELTA); 549 550 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 551 } 552 553 /* type can be of enum type zs_stat_type or fullness_group */ 554 static inline void zs_stat_inc(struct size_class *class, 555 int type, unsigned long cnt) 556 { 557 class->stats.objs[type] += cnt; 558 } 559 560 /* type can be of enum type zs_stat_type or fullness_group */ 561 static inline void zs_stat_dec(struct size_class *class, 562 int type, unsigned long cnt) 563 { 564 class->stats.objs[type] -= cnt; 565 } 566 567 /* type can be of enum type zs_stat_type or fullness_group */ 568 static inline unsigned long zs_stat_get(struct size_class *class, 569 int type) 570 { 571 return class->stats.objs[type]; 572 } 573 574 #ifdef CONFIG_ZSMALLOC_STAT 575 576 static void __init zs_stat_init(void) 577 { 578 if (!debugfs_initialized()) { 579 pr_warn("debugfs not available, stat dir not created\n"); 580 return; 581 } 582 583 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 584 } 585 586 static void __exit zs_stat_exit(void) 587 { 588 debugfs_remove_recursive(zs_stat_root); 589 } 590 591 static unsigned long zs_can_compact(struct size_class *class); 592 593 static int zs_stats_size_show(struct seq_file *s, void *v) 594 { 595 int i; 596 struct zs_pool *pool = s->private; 597 struct size_class *class; 598 int objs_per_zspage; 599 unsigned long class_almost_full, class_almost_empty; 600 unsigned long obj_allocated, obj_used, pages_used, freeable; 601 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 602 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 603 unsigned long total_freeable = 0; 604 605 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 606 "class", "size", "almost_full", "almost_empty", 607 "obj_allocated", "obj_used", "pages_used", 608 "pages_per_zspage", "freeable"); 609 610 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 611 class = pool->size_class[i]; 612 613 if (class->index != i) 614 continue; 615 616 spin_lock(&class->lock); 617 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 618 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 619 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 620 obj_used = zs_stat_get(class, OBJ_USED); 621 freeable = zs_can_compact(class); 622 spin_unlock(&class->lock); 623 624 objs_per_zspage = class->objs_per_zspage; 625 pages_used = obj_allocated / objs_per_zspage * 626 class->pages_per_zspage; 627 628 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 629 " %10lu %10lu %16d %8lu\n", 630 i, class->size, class_almost_full, class_almost_empty, 631 obj_allocated, obj_used, pages_used, 632 class->pages_per_zspage, freeable); 633 634 total_class_almost_full += class_almost_full; 635 total_class_almost_empty += class_almost_empty; 636 total_objs += obj_allocated; 637 total_used_objs += obj_used; 638 total_pages += pages_used; 639 total_freeable += freeable; 640 } 641 642 seq_puts(s, "\n"); 643 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 644 "Total", "", total_class_almost_full, 645 total_class_almost_empty, total_objs, 646 total_used_objs, total_pages, "", total_freeable); 647 648 return 0; 649 } 650 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 651 652 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 653 { 654 if (!zs_stat_root) { 655 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 656 return; 657 } 658 659 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 660 661 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 662 &zs_stats_size_fops); 663 } 664 665 static void zs_pool_stat_destroy(struct zs_pool *pool) 666 { 667 debugfs_remove_recursive(pool->stat_dentry); 668 } 669 670 #else /* CONFIG_ZSMALLOC_STAT */ 671 static void __init zs_stat_init(void) 672 { 673 } 674 675 static void __exit zs_stat_exit(void) 676 { 677 } 678 679 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 680 { 681 } 682 683 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 684 { 685 } 686 #endif 687 688 689 /* 690 * For each size class, zspages are divided into different groups 691 * depending on how "full" they are. This was done so that we could 692 * easily find empty or nearly empty zspages when we try to shrink 693 * the pool (not yet implemented). This function returns fullness 694 * status of the given page. 695 */ 696 static enum fullness_group get_fullness_group(struct size_class *class, 697 struct zspage *zspage) 698 { 699 int inuse, objs_per_zspage; 700 enum fullness_group fg; 701 702 inuse = get_zspage_inuse(zspage); 703 objs_per_zspage = class->objs_per_zspage; 704 705 if (inuse == 0) 706 fg = ZS_EMPTY; 707 else if (inuse == objs_per_zspage) 708 fg = ZS_FULL; 709 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 710 fg = ZS_ALMOST_EMPTY; 711 else 712 fg = ZS_ALMOST_FULL; 713 714 return fg; 715 } 716 717 /* 718 * Each size class maintains various freelists and zspages are assigned 719 * to one of these freelists based on the number of live objects they 720 * have. This functions inserts the given zspage into the freelist 721 * identified by <class, fullness_group>. 722 */ 723 static void insert_zspage(struct size_class *class, 724 struct zspage *zspage, 725 enum fullness_group fullness) 726 { 727 struct zspage *head; 728 729 zs_stat_inc(class, fullness, 1); 730 head = list_first_entry_or_null(&class->fullness_list[fullness], 731 struct zspage, list); 732 /* 733 * We want to see more ZS_FULL pages and less almost empty/full. 734 * Put pages with higher ->inuse first. 735 */ 736 if (head) { 737 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 738 list_add(&zspage->list, &head->list); 739 return; 740 } 741 } 742 list_add(&zspage->list, &class->fullness_list[fullness]); 743 } 744 745 /* 746 * This function removes the given zspage from the freelist identified 747 * by <class, fullness_group>. 748 */ 749 static void remove_zspage(struct size_class *class, 750 struct zspage *zspage, 751 enum fullness_group fullness) 752 { 753 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 754 VM_BUG_ON(is_zspage_isolated(zspage)); 755 756 list_del_init(&zspage->list); 757 zs_stat_dec(class, fullness, 1); 758 } 759 760 /* 761 * Each size class maintains zspages in different fullness groups depending 762 * on the number of live objects they contain. When allocating or freeing 763 * objects, the fullness status of the page can change, say, from ALMOST_FULL 764 * to ALMOST_EMPTY when freeing an object. This function checks if such 765 * a status change has occurred for the given page and accordingly moves the 766 * page from the freelist of the old fullness group to that of the new 767 * fullness group. 768 */ 769 static enum fullness_group fix_fullness_group(struct size_class *class, 770 struct zspage *zspage) 771 { 772 int class_idx; 773 enum fullness_group currfg, newfg; 774 775 get_zspage_mapping(zspage, &class_idx, &currfg); 776 newfg = get_fullness_group(class, zspage); 777 if (newfg == currfg) 778 goto out; 779 780 if (!is_zspage_isolated(zspage)) { 781 remove_zspage(class, zspage, currfg); 782 insert_zspage(class, zspage, newfg); 783 } 784 785 set_zspage_mapping(zspage, class_idx, newfg); 786 787 out: 788 return newfg; 789 } 790 791 /* 792 * We have to decide on how many pages to link together 793 * to form a zspage for each size class. This is important 794 * to reduce wastage due to unusable space left at end of 795 * each zspage which is given as: 796 * wastage = Zp % class_size 797 * usage = Zp - wastage 798 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 799 * 800 * For example, for size class of 3/8 * PAGE_SIZE, we should 801 * link together 3 PAGE_SIZE sized pages to form a zspage 802 * since then we can perfectly fit in 8 such objects. 803 */ 804 static int get_pages_per_zspage(int class_size) 805 { 806 int i, max_usedpc = 0; 807 /* zspage order which gives maximum used size per KB */ 808 int max_usedpc_order = 1; 809 810 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 811 int zspage_size; 812 int waste, usedpc; 813 814 zspage_size = i * PAGE_SIZE; 815 waste = zspage_size % class_size; 816 usedpc = (zspage_size - waste) * 100 / zspage_size; 817 818 if (usedpc > max_usedpc) { 819 max_usedpc = usedpc; 820 max_usedpc_order = i; 821 } 822 } 823 824 return max_usedpc_order; 825 } 826 827 static struct zspage *get_zspage(struct page *page) 828 { 829 struct zspage *zspage = (struct zspage *)page->private; 830 831 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 832 return zspage; 833 } 834 835 static struct page *get_next_page(struct page *page) 836 { 837 if (unlikely(PageHugeObject(page))) 838 return NULL; 839 840 return page->freelist; 841 } 842 843 /** 844 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 845 * @obj: the encoded object value 846 * @page: page object resides in zspage 847 * @obj_idx: object index 848 */ 849 static void obj_to_location(unsigned long obj, struct page **page, 850 unsigned int *obj_idx) 851 { 852 obj >>= OBJ_TAG_BITS; 853 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 854 *obj_idx = (obj & OBJ_INDEX_MASK); 855 } 856 857 /** 858 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 859 * @page: page object resides in zspage 860 * @obj_idx: object index 861 */ 862 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 863 { 864 unsigned long obj; 865 866 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 867 obj |= obj_idx & OBJ_INDEX_MASK; 868 obj <<= OBJ_TAG_BITS; 869 870 return obj; 871 } 872 873 static unsigned long handle_to_obj(unsigned long handle) 874 { 875 return *(unsigned long *)handle; 876 } 877 878 static unsigned long obj_to_head(struct page *page, void *obj) 879 { 880 if (unlikely(PageHugeObject(page))) { 881 VM_BUG_ON_PAGE(!is_first_page(page), page); 882 return page->index; 883 } else 884 return *(unsigned long *)obj; 885 } 886 887 static inline int testpin_tag(unsigned long handle) 888 { 889 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 890 } 891 892 static inline int trypin_tag(unsigned long handle) 893 { 894 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 895 } 896 897 static void pin_tag(unsigned long handle) 898 { 899 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 900 } 901 902 static void unpin_tag(unsigned long handle) 903 { 904 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 905 } 906 907 static void reset_page(struct page *page) 908 { 909 __ClearPageMovable(page); 910 ClearPagePrivate(page); 911 set_page_private(page, 0); 912 page_mapcount_reset(page); 913 ClearPageHugeObject(page); 914 page->freelist = NULL; 915 } 916 917 static int trylock_zspage(struct zspage *zspage) 918 { 919 struct page *cursor, *fail; 920 921 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 922 get_next_page(cursor)) { 923 if (!trylock_page(cursor)) { 924 fail = cursor; 925 goto unlock; 926 } 927 } 928 929 return 1; 930 unlock: 931 for (cursor = get_first_page(zspage); cursor != fail; cursor = 932 get_next_page(cursor)) 933 unlock_page(cursor); 934 935 return 0; 936 } 937 938 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 939 struct zspage *zspage) 940 { 941 struct page *page, *next; 942 enum fullness_group fg; 943 unsigned int class_idx; 944 945 get_zspage_mapping(zspage, &class_idx, &fg); 946 947 assert_spin_locked(&class->lock); 948 949 VM_BUG_ON(get_zspage_inuse(zspage)); 950 VM_BUG_ON(fg != ZS_EMPTY); 951 952 next = page = get_first_page(zspage); 953 do { 954 VM_BUG_ON_PAGE(!PageLocked(page), page); 955 next = get_next_page(page); 956 reset_page(page); 957 unlock_page(page); 958 dec_zone_page_state(page, NR_ZSPAGES); 959 put_page(page); 960 page = next; 961 } while (page != NULL); 962 963 cache_free_zspage(pool, zspage); 964 965 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 966 atomic_long_sub(class->pages_per_zspage, 967 &pool->pages_allocated); 968 } 969 970 static void free_zspage(struct zs_pool *pool, struct size_class *class, 971 struct zspage *zspage) 972 { 973 VM_BUG_ON(get_zspage_inuse(zspage)); 974 VM_BUG_ON(list_empty(&zspage->list)); 975 976 if (!trylock_zspage(zspage)) { 977 kick_deferred_free(pool); 978 return; 979 } 980 981 remove_zspage(class, zspage, ZS_EMPTY); 982 __free_zspage(pool, class, zspage); 983 } 984 985 /* Initialize a newly allocated zspage */ 986 static void init_zspage(struct size_class *class, struct zspage *zspage) 987 { 988 unsigned int freeobj = 1; 989 unsigned long off = 0; 990 struct page *page = get_first_page(zspage); 991 992 while (page) { 993 struct page *next_page; 994 struct link_free *link; 995 void *vaddr; 996 997 set_first_obj_offset(page, off); 998 999 vaddr = kmap_atomic(page); 1000 link = (struct link_free *)vaddr + off / sizeof(*link); 1001 1002 while ((off += class->size) < PAGE_SIZE) { 1003 link->next = freeobj++ << OBJ_TAG_BITS; 1004 link += class->size / sizeof(*link); 1005 } 1006 1007 /* 1008 * We now come to the last (full or partial) object on this 1009 * page, which must point to the first object on the next 1010 * page (if present) 1011 */ 1012 next_page = get_next_page(page); 1013 if (next_page) { 1014 link->next = freeobj++ << OBJ_TAG_BITS; 1015 } else { 1016 /* 1017 * Reset OBJ_TAG_BITS bit to last link to tell 1018 * whether it's allocated object or not. 1019 */ 1020 link->next = -1UL << OBJ_TAG_BITS; 1021 } 1022 kunmap_atomic(vaddr); 1023 page = next_page; 1024 off %= PAGE_SIZE; 1025 } 1026 1027 set_freeobj(zspage, 0); 1028 } 1029 1030 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1031 struct page *pages[]) 1032 { 1033 int i; 1034 struct page *page; 1035 struct page *prev_page = NULL; 1036 int nr_pages = class->pages_per_zspage; 1037 1038 /* 1039 * Allocate individual pages and link them together as: 1040 * 1. all pages are linked together using page->freelist 1041 * 2. each sub-page point to zspage using page->private 1042 * 1043 * we set PG_private to identify the first page (i.e. no other sub-page 1044 * has this flag set). 1045 */ 1046 for (i = 0; i < nr_pages; i++) { 1047 page = pages[i]; 1048 set_page_private(page, (unsigned long)zspage); 1049 page->freelist = NULL; 1050 if (i == 0) { 1051 zspage->first_page = page; 1052 SetPagePrivate(page); 1053 if (unlikely(class->objs_per_zspage == 1 && 1054 class->pages_per_zspage == 1)) 1055 SetPageHugeObject(page); 1056 } else { 1057 prev_page->freelist = page; 1058 } 1059 prev_page = page; 1060 } 1061 } 1062 1063 /* 1064 * Allocate a zspage for the given size class 1065 */ 1066 static struct zspage *alloc_zspage(struct zs_pool *pool, 1067 struct size_class *class, 1068 gfp_t gfp) 1069 { 1070 int i; 1071 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1072 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1073 1074 if (!zspage) 1075 return NULL; 1076 1077 memset(zspage, 0, sizeof(struct zspage)); 1078 zspage->magic = ZSPAGE_MAGIC; 1079 migrate_lock_init(zspage); 1080 1081 for (i = 0; i < class->pages_per_zspage; i++) { 1082 struct page *page; 1083 1084 page = alloc_page(gfp); 1085 if (!page) { 1086 while (--i >= 0) { 1087 dec_zone_page_state(pages[i], NR_ZSPAGES); 1088 __free_page(pages[i]); 1089 } 1090 cache_free_zspage(pool, zspage); 1091 return NULL; 1092 } 1093 1094 inc_zone_page_state(page, NR_ZSPAGES); 1095 pages[i] = page; 1096 } 1097 1098 create_page_chain(class, zspage, pages); 1099 init_zspage(class, zspage); 1100 1101 return zspage; 1102 } 1103 1104 static struct zspage *find_get_zspage(struct size_class *class) 1105 { 1106 int i; 1107 struct zspage *zspage; 1108 1109 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1110 zspage = list_first_entry_or_null(&class->fullness_list[i], 1111 struct zspage, list); 1112 if (zspage) 1113 break; 1114 } 1115 1116 return zspage; 1117 } 1118 1119 #ifdef CONFIG_PGTABLE_MAPPING 1120 static inline int __zs_cpu_up(struct mapping_area *area) 1121 { 1122 /* 1123 * Make sure we don't leak memory if a cpu UP notification 1124 * and zs_init() race and both call zs_cpu_up() on the same cpu 1125 */ 1126 if (area->vm) 1127 return 0; 1128 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1129 if (!area->vm) 1130 return -ENOMEM; 1131 return 0; 1132 } 1133 1134 static inline void __zs_cpu_down(struct mapping_area *area) 1135 { 1136 if (area->vm) 1137 free_vm_area(area->vm); 1138 area->vm = NULL; 1139 } 1140 1141 static inline void *__zs_map_object(struct mapping_area *area, 1142 struct page *pages[2], int off, int size) 1143 { 1144 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1145 area->vm_addr = area->vm->addr; 1146 return area->vm_addr + off; 1147 } 1148 1149 static inline void __zs_unmap_object(struct mapping_area *area, 1150 struct page *pages[2], int off, int size) 1151 { 1152 unsigned long addr = (unsigned long)area->vm_addr; 1153 1154 unmap_kernel_range(addr, PAGE_SIZE * 2); 1155 } 1156 1157 #else /* CONFIG_PGTABLE_MAPPING */ 1158 1159 static inline int __zs_cpu_up(struct mapping_area *area) 1160 { 1161 /* 1162 * Make sure we don't leak memory if a cpu UP notification 1163 * and zs_init() race and both call zs_cpu_up() on the same cpu 1164 */ 1165 if (area->vm_buf) 1166 return 0; 1167 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1168 if (!area->vm_buf) 1169 return -ENOMEM; 1170 return 0; 1171 } 1172 1173 static inline void __zs_cpu_down(struct mapping_area *area) 1174 { 1175 kfree(area->vm_buf); 1176 area->vm_buf = NULL; 1177 } 1178 1179 static void *__zs_map_object(struct mapping_area *area, 1180 struct page *pages[2], int off, int size) 1181 { 1182 int sizes[2]; 1183 void *addr; 1184 char *buf = area->vm_buf; 1185 1186 /* disable page faults to match kmap_atomic() return conditions */ 1187 pagefault_disable(); 1188 1189 /* no read fastpath */ 1190 if (area->vm_mm == ZS_MM_WO) 1191 goto out; 1192 1193 sizes[0] = PAGE_SIZE - off; 1194 sizes[1] = size - sizes[0]; 1195 1196 /* copy object to per-cpu buffer */ 1197 addr = kmap_atomic(pages[0]); 1198 memcpy(buf, addr + off, sizes[0]); 1199 kunmap_atomic(addr); 1200 addr = kmap_atomic(pages[1]); 1201 memcpy(buf + sizes[0], addr, sizes[1]); 1202 kunmap_atomic(addr); 1203 out: 1204 return area->vm_buf; 1205 } 1206 1207 static void __zs_unmap_object(struct mapping_area *area, 1208 struct page *pages[2], int off, int size) 1209 { 1210 int sizes[2]; 1211 void *addr; 1212 char *buf; 1213 1214 /* no write fastpath */ 1215 if (area->vm_mm == ZS_MM_RO) 1216 goto out; 1217 1218 buf = area->vm_buf; 1219 buf = buf + ZS_HANDLE_SIZE; 1220 size -= ZS_HANDLE_SIZE; 1221 off += ZS_HANDLE_SIZE; 1222 1223 sizes[0] = PAGE_SIZE - off; 1224 sizes[1] = size - sizes[0]; 1225 1226 /* copy per-cpu buffer to object */ 1227 addr = kmap_atomic(pages[0]); 1228 memcpy(addr + off, buf, sizes[0]); 1229 kunmap_atomic(addr); 1230 addr = kmap_atomic(pages[1]); 1231 memcpy(addr, buf + sizes[0], sizes[1]); 1232 kunmap_atomic(addr); 1233 1234 out: 1235 /* enable page faults to match kunmap_atomic() return conditions */ 1236 pagefault_enable(); 1237 } 1238 1239 #endif /* CONFIG_PGTABLE_MAPPING */ 1240 1241 static int zs_cpu_prepare(unsigned int cpu) 1242 { 1243 struct mapping_area *area; 1244 1245 area = &per_cpu(zs_map_area, cpu); 1246 return __zs_cpu_up(area); 1247 } 1248 1249 static int zs_cpu_dead(unsigned int cpu) 1250 { 1251 struct mapping_area *area; 1252 1253 area = &per_cpu(zs_map_area, cpu); 1254 __zs_cpu_down(area); 1255 return 0; 1256 } 1257 1258 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1259 int objs_per_zspage) 1260 { 1261 if (prev->pages_per_zspage == pages_per_zspage && 1262 prev->objs_per_zspage == objs_per_zspage) 1263 return true; 1264 1265 return false; 1266 } 1267 1268 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1269 { 1270 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1271 } 1272 1273 unsigned long zs_get_total_pages(struct zs_pool *pool) 1274 { 1275 return atomic_long_read(&pool->pages_allocated); 1276 } 1277 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1278 1279 /** 1280 * zs_map_object - get address of allocated object from handle. 1281 * @pool: pool from which the object was allocated 1282 * @handle: handle returned from zs_malloc 1283 * @mm: maping mode to use 1284 * 1285 * Before using an object allocated from zs_malloc, it must be mapped using 1286 * this function. When done with the object, it must be unmapped using 1287 * zs_unmap_object. 1288 * 1289 * Only one object can be mapped per cpu at a time. There is no protection 1290 * against nested mappings. 1291 * 1292 * This function returns with preemption and page faults disabled. 1293 */ 1294 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1295 enum zs_mapmode mm) 1296 { 1297 struct zspage *zspage; 1298 struct page *page; 1299 unsigned long obj, off; 1300 unsigned int obj_idx; 1301 1302 unsigned int class_idx; 1303 enum fullness_group fg; 1304 struct size_class *class; 1305 struct mapping_area *area; 1306 struct page *pages[2]; 1307 void *ret; 1308 1309 /* 1310 * Because we use per-cpu mapping areas shared among the 1311 * pools/users, we can't allow mapping in interrupt context 1312 * because it can corrupt another users mappings. 1313 */ 1314 BUG_ON(in_interrupt()); 1315 1316 /* From now on, migration cannot move the object */ 1317 pin_tag(handle); 1318 1319 obj = handle_to_obj(handle); 1320 obj_to_location(obj, &page, &obj_idx); 1321 zspage = get_zspage(page); 1322 1323 /* migration cannot move any subpage in this zspage */ 1324 migrate_read_lock(zspage); 1325 1326 get_zspage_mapping(zspage, &class_idx, &fg); 1327 class = pool->size_class[class_idx]; 1328 off = (class->size * obj_idx) & ~PAGE_MASK; 1329 1330 area = &get_cpu_var(zs_map_area); 1331 area->vm_mm = mm; 1332 if (off + class->size <= PAGE_SIZE) { 1333 /* this object is contained entirely within a page */ 1334 area->vm_addr = kmap_atomic(page); 1335 ret = area->vm_addr + off; 1336 goto out; 1337 } 1338 1339 /* this object spans two pages */ 1340 pages[0] = page; 1341 pages[1] = get_next_page(page); 1342 BUG_ON(!pages[1]); 1343 1344 ret = __zs_map_object(area, pages, off, class->size); 1345 out: 1346 if (likely(!PageHugeObject(page))) 1347 ret += ZS_HANDLE_SIZE; 1348 1349 return ret; 1350 } 1351 EXPORT_SYMBOL_GPL(zs_map_object); 1352 1353 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1354 { 1355 struct zspage *zspage; 1356 struct page *page; 1357 unsigned long obj, off; 1358 unsigned int obj_idx; 1359 1360 unsigned int class_idx; 1361 enum fullness_group fg; 1362 struct size_class *class; 1363 struct mapping_area *area; 1364 1365 obj = handle_to_obj(handle); 1366 obj_to_location(obj, &page, &obj_idx); 1367 zspage = get_zspage(page); 1368 get_zspage_mapping(zspage, &class_idx, &fg); 1369 class = pool->size_class[class_idx]; 1370 off = (class->size * obj_idx) & ~PAGE_MASK; 1371 1372 area = this_cpu_ptr(&zs_map_area); 1373 if (off + class->size <= PAGE_SIZE) 1374 kunmap_atomic(area->vm_addr); 1375 else { 1376 struct page *pages[2]; 1377 1378 pages[0] = page; 1379 pages[1] = get_next_page(page); 1380 BUG_ON(!pages[1]); 1381 1382 __zs_unmap_object(area, pages, off, class->size); 1383 } 1384 put_cpu_var(zs_map_area); 1385 1386 migrate_read_unlock(zspage); 1387 unpin_tag(handle); 1388 } 1389 EXPORT_SYMBOL_GPL(zs_unmap_object); 1390 1391 /** 1392 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1393 * zsmalloc &size_class. 1394 * @pool: zsmalloc pool to use 1395 * 1396 * The function returns the size of the first huge class - any object of equal 1397 * or bigger size will be stored in zspage consisting of a single physical 1398 * page. 1399 * 1400 * Context: Any context. 1401 * 1402 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1403 */ 1404 size_t zs_huge_class_size(struct zs_pool *pool) 1405 { 1406 return huge_class_size; 1407 } 1408 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1409 1410 static unsigned long obj_malloc(struct size_class *class, 1411 struct zspage *zspage, unsigned long handle) 1412 { 1413 int i, nr_page, offset; 1414 unsigned long obj; 1415 struct link_free *link; 1416 1417 struct page *m_page; 1418 unsigned long m_offset; 1419 void *vaddr; 1420 1421 handle |= OBJ_ALLOCATED_TAG; 1422 obj = get_freeobj(zspage); 1423 1424 offset = obj * class->size; 1425 nr_page = offset >> PAGE_SHIFT; 1426 m_offset = offset & ~PAGE_MASK; 1427 m_page = get_first_page(zspage); 1428 1429 for (i = 0; i < nr_page; i++) 1430 m_page = get_next_page(m_page); 1431 1432 vaddr = kmap_atomic(m_page); 1433 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1434 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1435 if (likely(!PageHugeObject(m_page))) 1436 /* record handle in the header of allocated chunk */ 1437 link->handle = handle; 1438 else 1439 /* record handle to page->index */ 1440 zspage->first_page->index = handle; 1441 1442 kunmap_atomic(vaddr); 1443 mod_zspage_inuse(zspage, 1); 1444 zs_stat_inc(class, OBJ_USED, 1); 1445 1446 obj = location_to_obj(m_page, obj); 1447 1448 return obj; 1449 } 1450 1451 1452 /** 1453 * zs_malloc - Allocate block of given size from pool. 1454 * @pool: pool to allocate from 1455 * @size: size of block to allocate 1456 * @gfp: gfp flags when allocating object 1457 * 1458 * On success, handle to the allocated object is returned, 1459 * otherwise 0. 1460 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1461 */ 1462 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1463 { 1464 unsigned long handle, obj; 1465 struct size_class *class; 1466 enum fullness_group newfg; 1467 struct zspage *zspage; 1468 1469 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1470 return 0; 1471 1472 handle = cache_alloc_handle(pool, gfp); 1473 if (!handle) 1474 return 0; 1475 1476 /* extra space in chunk to keep the handle */ 1477 size += ZS_HANDLE_SIZE; 1478 class = pool->size_class[get_size_class_index(size)]; 1479 1480 spin_lock(&class->lock); 1481 zspage = find_get_zspage(class); 1482 if (likely(zspage)) { 1483 obj = obj_malloc(class, zspage, handle); 1484 /* Now move the zspage to another fullness group, if required */ 1485 fix_fullness_group(class, zspage); 1486 record_obj(handle, obj); 1487 spin_unlock(&class->lock); 1488 1489 return handle; 1490 } 1491 1492 spin_unlock(&class->lock); 1493 1494 zspage = alloc_zspage(pool, class, gfp); 1495 if (!zspage) { 1496 cache_free_handle(pool, handle); 1497 return 0; 1498 } 1499 1500 spin_lock(&class->lock); 1501 obj = obj_malloc(class, zspage, handle); 1502 newfg = get_fullness_group(class, zspage); 1503 insert_zspage(class, zspage, newfg); 1504 set_zspage_mapping(zspage, class->index, newfg); 1505 record_obj(handle, obj); 1506 atomic_long_add(class->pages_per_zspage, 1507 &pool->pages_allocated); 1508 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1509 1510 /* We completely set up zspage so mark them as movable */ 1511 SetZsPageMovable(pool, zspage); 1512 spin_unlock(&class->lock); 1513 1514 return handle; 1515 } 1516 EXPORT_SYMBOL_GPL(zs_malloc); 1517 1518 static void obj_free(struct size_class *class, unsigned long obj) 1519 { 1520 struct link_free *link; 1521 struct zspage *zspage; 1522 struct page *f_page; 1523 unsigned long f_offset; 1524 unsigned int f_objidx; 1525 void *vaddr; 1526 1527 obj &= ~OBJ_ALLOCATED_TAG; 1528 obj_to_location(obj, &f_page, &f_objidx); 1529 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1530 zspage = get_zspage(f_page); 1531 1532 vaddr = kmap_atomic(f_page); 1533 1534 /* Insert this object in containing zspage's freelist */ 1535 link = (struct link_free *)(vaddr + f_offset); 1536 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1537 kunmap_atomic(vaddr); 1538 set_freeobj(zspage, f_objidx); 1539 mod_zspage_inuse(zspage, -1); 1540 zs_stat_dec(class, OBJ_USED, 1); 1541 } 1542 1543 void zs_free(struct zs_pool *pool, unsigned long handle) 1544 { 1545 struct zspage *zspage; 1546 struct page *f_page; 1547 unsigned long obj; 1548 unsigned int f_objidx; 1549 int class_idx; 1550 struct size_class *class; 1551 enum fullness_group fullness; 1552 bool isolated; 1553 1554 if (unlikely(!handle)) 1555 return; 1556 1557 pin_tag(handle); 1558 obj = handle_to_obj(handle); 1559 obj_to_location(obj, &f_page, &f_objidx); 1560 zspage = get_zspage(f_page); 1561 1562 migrate_read_lock(zspage); 1563 1564 get_zspage_mapping(zspage, &class_idx, &fullness); 1565 class = pool->size_class[class_idx]; 1566 1567 spin_lock(&class->lock); 1568 obj_free(class, obj); 1569 fullness = fix_fullness_group(class, zspage); 1570 if (fullness != ZS_EMPTY) { 1571 migrate_read_unlock(zspage); 1572 goto out; 1573 } 1574 1575 isolated = is_zspage_isolated(zspage); 1576 migrate_read_unlock(zspage); 1577 /* If zspage is isolated, zs_page_putback will free the zspage */ 1578 if (likely(!isolated)) 1579 free_zspage(pool, class, zspage); 1580 out: 1581 1582 spin_unlock(&class->lock); 1583 unpin_tag(handle); 1584 cache_free_handle(pool, handle); 1585 } 1586 EXPORT_SYMBOL_GPL(zs_free); 1587 1588 static void zs_object_copy(struct size_class *class, unsigned long dst, 1589 unsigned long src) 1590 { 1591 struct page *s_page, *d_page; 1592 unsigned int s_objidx, d_objidx; 1593 unsigned long s_off, d_off; 1594 void *s_addr, *d_addr; 1595 int s_size, d_size, size; 1596 int written = 0; 1597 1598 s_size = d_size = class->size; 1599 1600 obj_to_location(src, &s_page, &s_objidx); 1601 obj_to_location(dst, &d_page, &d_objidx); 1602 1603 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1604 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1605 1606 if (s_off + class->size > PAGE_SIZE) 1607 s_size = PAGE_SIZE - s_off; 1608 1609 if (d_off + class->size > PAGE_SIZE) 1610 d_size = PAGE_SIZE - d_off; 1611 1612 s_addr = kmap_atomic(s_page); 1613 d_addr = kmap_atomic(d_page); 1614 1615 while (1) { 1616 size = min(s_size, d_size); 1617 memcpy(d_addr + d_off, s_addr + s_off, size); 1618 written += size; 1619 1620 if (written == class->size) 1621 break; 1622 1623 s_off += size; 1624 s_size -= size; 1625 d_off += size; 1626 d_size -= size; 1627 1628 if (s_off >= PAGE_SIZE) { 1629 kunmap_atomic(d_addr); 1630 kunmap_atomic(s_addr); 1631 s_page = get_next_page(s_page); 1632 s_addr = kmap_atomic(s_page); 1633 d_addr = kmap_atomic(d_page); 1634 s_size = class->size - written; 1635 s_off = 0; 1636 } 1637 1638 if (d_off >= PAGE_SIZE) { 1639 kunmap_atomic(d_addr); 1640 d_page = get_next_page(d_page); 1641 d_addr = kmap_atomic(d_page); 1642 d_size = class->size - written; 1643 d_off = 0; 1644 } 1645 } 1646 1647 kunmap_atomic(d_addr); 1648 kunmap_atomic(s_addr); 1649 } 1650 1651 /* 1652 * Find alloced object in zspage from index object and 1653 * return handle. 1654 */ 1655 static unsigned long find_alloced_obj(struct size_class *class, 1656 struct page *page, int *obj_idx) 1657 { 1658 unsigned long head; 1659 int offset = 0; 1660 int index = *obj_idx; 1661 unsigned long handle = 0; 1662 void *addr = kmap_atomic(page); 1663 1664 offset = get_first_obj_offset(page); 1665 offset += class->size * index; 1666 1667 while (offset < PAGE_SIZE) { 1668 head = obj_to_head(page, addr + offset); 1669 if (head & OBJ_ALLOCATED_TAG) { 1670 handle = head & ~OBJ_ALLOCATED_TAG; 1671 if (trypin_tag(handle)) 1672 break; 1673 handle = 0; 1674 } 1675 1676 offset += class->size; 1677 index++; 1678 } 1679 1680 kunmap_atomic(addr); 1681 1682 *obj_idx = index; 1683 1684 return handle; 1685 } 1686 1687 struct zs_compact_control { 1688 /* Source spage for migration which could be a subpage of zspage */ 1689 struct page *s_page; 1690 /* Destination page for migration which should be a first page 1691 * of zspage. */ 1692 struct page *d_page; 1693 /* Starting object index within @s_page which used for live object 1694 * in the subpage. */ 1695 int obj_idx; 1696 }; 1697 1698 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1699 struct zs_compact_control *cc) 1700 { 1701 unsigned long used_obj, free_obj; 1702 unsigned long handle; 1703 struct page *s_page = cc->s_page; 1704 struct page *d_page = cc->d_page; 1705 int obj_idx = cc->obj_idx; 1706 int ret = 0; 1707 1708 while (1) { 1709 handle = find_alloced_obj(class, s_page, &obj_idx); 1710 if (!handle) { 1711 s_page = get_next_page(s_page); 1712 if (!s_page) 1713 break; 1714 obj_idx = 0; 1715 continue; 1716 } 1717 1718 /* Stop if there is no more space */ 1719 if (zspage_full(class, get_zspage(d_page))) { 1720 unpin_tag(handle); 1721 ret = -ENOMEM; 1722 break; 1723 } 1724 1725 used_obj = handle_to_obj(handle); 1726 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1727 zs_object_copy(class, free_obj, used_obj); 1728 obj_idx++; 1729 /* 1730 * record_obj updates handle's value to free_obj and it will 1731 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1732 * breaks synchronization using pin_tag(e,g, zs_free) so 1733 * let's keep the lock bit. 1734 */ 1735 free_obj |= BIT(HANDLE_PIN_BIT); 1736 record_obj(handle, free_obj); 1737 unpin_tag(handle); 1738 obj_free(class, used_obj); 1739 } 1740 1741 /* Remember last position in this iteration */ 1742 cc->s_page = s_page; 1743 cc->obj_idx = obj_idx; 1744 1745 return ret; 1746 } 1747 1748 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1749 { 1750 int i; 1751 struct zspage *zspage; 1752 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1753 1754 if (!source) { 1755 fg[0] = ZS_ALMOST_FULL; 1756 fg[1] = ZS_ALMOST_EMPTY; 1757 } 1758 1759 for (i = 0; i < 2; i++) { 1760 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1761 struct zspage, list); 1762 if (zspage) { 1763 VM_BUG_ON(is_zspage_isolated(zspage)); 1764 remove_zspage(class, zspage, fg[i]); 1765 return zspage; 1766 } 1767 } 1768 1769 return zspage; 1770 } 1771 1772 /* 1773 * putback_zspage - add @zspage into right class's fullness list 1774 * @class: destination class 1775 * @zspage: target page 1776 * 1777 * Return @zspage's fullness_group 1778 */ 1779 static enum fullness_group putback_zspage(struct size_class *class, 1780 struct zspage *zspage) 1781 { 1782 enum fullness_group fullness; 1783 1784 VM_BUG_ON(is_zspage_isolated(zspage)); 1785 1786 fullness = get_fullness_group(class, zspage); 1787 insert_zspage(class, zspage, fullness); 1788 set_zspage_mapping(zspage, class->index, fullness); 1789 1790 return fullness; 1791 } 1792 1793 #ifdef CONFIG_COMPACTION 1794 /* 1795 * To prevent zspage destroy during migration, zspage freeing should 1796 * hold locks of all pages in the zspage. 1797 */ 1798 static void lock_zspage(struct zspage *zspage) 1799 { 1800 struct page *page = get_first_page(zspage); 1801 1802 do { 1803 lock_page(page); 1804 } while ((page = get_next_page(page)) != NULL); 1805 } 1806 1807 static int zs_init_fs_context(struct fs_context *fc) 1808 { 1809 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1810 } 1811 1812 static struct file_system_type zsmalloc_fs = { 1813 .name = "zsmalloc", 1814 .init_fs_context = zs_init_fs_context, 1815 .kill_sb = kill_anon_super, 1816 }; 1817 1818 static int zsmalloc_mount(void) 1819 { 1820 int ret = 0; 1821 1822 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1823 if (IS_ERR(zsmalloc_mnt)) 1824 ret = PTR_ERR(zsmalloc_mnt); 1825 1826 return ret; 1827 } 1828 1829 static void zsmalloc_unmount(void) 1830 { 1831 kern_unmount(zsmalloc_mnt); 1832 } 1833 1834 static void migrate_lock_init(struct zspage *zspage) 1835 { 1836 rwlock_init(&zspage->lock); 1837 } 1838 1839 static void migrate_read_lock(struct zspage *zspage) 1840 { 1841 read_lock(&zspage->lock); 1842 } 1843 1844 static void migrate_read_unlock(struct zspage *zspage) 1845 { 1846 read_unlock(&zspage->lock); 1847 } 1848 1849 static void migrate_write_lock(struct zspage *zspage) 1850 { 1851 write_lock(&zspage->lock); 1852 } 1853 1854 static void migrate_write_unlock(struct zspage *zspage) 1855 { 1856 write_unlock(&zspage->lock); 1857 } 1858 1859 /* Number of isolated subpage for *page migration* in this zspage */ 1860 static void inc_zspage_isolation(struct zspage *zspage) 1861 { 1862 zspage->isolated++; 1863 } 1864 1865 static void dec_zspage_isolation(struct zspage *zspage) 1866 { 1867 zspage->isolated--; 1868 } 1869 1870 static void putback_zspage_deferred(struct zs_pool *pool, 1871 struct size_class *class, 1872 struct zspage *zspage) 1873 { 1874 enum fullness_group fg; 1875 1876 fg = putback_zspage(class, zspage); 1877 if (fg == ZS_EMPTY) 1878 schedule_work(&pool->free_work); 1879 1880 } 1881 1882 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1883 { 1884 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1885 atomic_long_dec(&pool->isolated_pages); 1886 /* 1887 * There's no possibility of racing, since wait_for_isolated_drain() 1888 * checks the isolated count under &class->lock after enqueuing 1889 * on migration_wait. 1890 */ 1891 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1892 wake_up_all(&pool->migration_wait); 1893 } 1894 1895 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1896 struct page *newpage, struct page *oldpage) 1897 { 1898 struct page *page; 1899 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1900 int idx = 0; 1901 1902 page = get_first_page(zspage); 1903 do { 1904 if (page == oldpage) 1905 pages[idx] = newpage; 1906 else 1907 pages[idx] = page; 1908 idx++; 1909 } while ((page = get_next_page(page)) != NULL); 1910 1911 create_page_chain(class, zspage, pages); 1912 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1913 if (unlikely(PageHugeObject(oldpage))) 1914 newpage->index = oldpage->index; 1915 __SetPageMovable(newpage, page_mapping(oldpage)); 1916 } 1917 1918 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1919 { 1920 struct zs_pool *pool; 1921 struct size_class *class; 1922 int class_idx; 1923 enum fullness_group fullness; 1924 struct zspage *zspage; 1925 struct address_space *mapping; 1926 1927 /* 1928 * Page is locked so zspage couldn't be destroyed. For detail, look at 1929 * lock_zspage in free_zspage. 1930 */ 1931 VM_BUG_ON_PAGE(!PageMovable(page), page); 1932 VM_BUG_ON_PAGE(PageIsolated(page), page); 1933 1934 zspage = get_zspage(page); 1935 1936 /* 1937 * Without class lock, fullness could be stale while class_idx is okay 1938 * because class_idx is constant unless page is freed so we should get 1939 * fullness again under class lock. 1940 */ 1941 get_zspage_mapping(zspage, &class_idx, &fullness); 1942 mapping = page_mapping(page); 1943 pool = mapping->private_data; 1944 class = pool->size_class[class_idx]; 1945 1946 spin_lock(&class->lock); 1947 if (get_zspage_inuse(zspage) == 0) { 1948 spin_unlock(&class->lock); 1949 return false; 1950 } 1951 1952 /* zspage is isolated for object migration */ 1953 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1954 spin_unlock(&class->lock); 1955 return false; 1956 } 1957 1958 /* 1959 * If this is first time isolation for the zspage, isolate zspage from 1960 * size_class to prevent further object allocation from the zspage. 1961 */ 1962 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1963 get_zspage_mapping(zspage, &class_idx, &fullness); 1964 atomic_long_inc(&pool->isolated_pages); 1965 remove_zspage(class, zspage, fullness); 1966 } 1967 1968 inc_zspage_isolation(zspage); 1969 spin_unlock(&class->lock); 1970 1971 return true; 1972 } 1973 1974 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1975 struct page *page, enum migrate_mode mode) 1976 { 1977 struct zs_pool *pool; 1978 struct size_class *class; 1979 int class_idx; 1980 enum fullness_group fullness; 1981 struct zspage *zspage; 1982 struct page *dummy; 1983 void *s_addr, *d_addr, *addr; 1984 int offset, pos; 1985 unsigned long handle, head; 1986 unsigned long old_obj, new_obj; 1987 unsigned int obj_idx; 1988 int ret = -EAGAIN; 1989 1990 /* 1991 * We cannot support the _NO_COPY case here, because copy needs to 1992 * happen under the zs lock, which does not work with 1993 * MIGRATE_SYNC_NO_COPY workflow. 1994 */ 1995 if (mode == MIGRATE_SYNC_NO_COPY) 1996 return -EINVAL; 1997 1998 VM_BUG_ON_PAGE(!PageMovable(page), page); 1999 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2000 2001 zspage = get_zspage(page); 2002 2003 /* Concurrent compactor cannot migrate any subpage in zspage */ 2004 migrate_write_lock(zspage); 2005 get_zspage_mapping(zspage, &class_idx, &fullness); 2006 pool = mapping->private_data; 2007 class = pool->size_class[class_idx]; 2008 offset = get_first_obj_offset(page); 2009 2010 spin_lock(&class->lock); 2011 if (!get_zspage_inuse(zspage)) { 2012 /* 2013 * Set "offset" to end of the page so that every loops 2014 * skips unnecessary object scanning. 2015 */ 2016 offset = PAGE_SIZE; 2017 } 2018 2019 pos = offset; 2020 s_addr = kmap_atomic(page); 2021 while (pos < PAGE_SIZE) { 2022 head = obj_to_head(page, s_addr + pos); 2023 if (head & OBJ_ALLOCATED_TAG) { 2024 handle = head & ~OBJ_ALLOCATED_TAG; 2025 if (!trypin_tag(handle)) 2026 goto unpin_objects; 2027 } 2028 pos += class->size; 2029 } 2030 2031 /* 2032 * Here, any user cannot access all objects in the zspage so let's move. 2033 */ 2034 d_addr = kmap_atomic(newpage); 2035 memcpy(d_addr, s_addr, PAGE_SIZE); 2036 kunmap_atomic(d_addr); 2037 2038 for (addr = s_addr + offset; addr < s_addr + pos; 2039 addr += class->size) { 2040 head = obj_to_head(page, addr); 2041 if (head & OBJ_ALLOCATED_TAG) { 2042 handle = head & ~OBJ_ALLOCATED_TAG; 2043 if (!testpin_tag(handle)) 2044 BUG(); 2045 2046 old_obj = handle_to_obj(handle); 2047 obj_to_location(old_obj, &dummy, &obj_idx); 2048 new_obj = (unsigned long)location_to_obj(newpage, 2049 obj_idx); 2050 new_obj |= BIT(HANDLE_PIN_BIT); 2051 record_obj(handle, new_obj); 2052 } 2053 } 2054 2055 replace_sub_page(class, zspage, newpage, page); 2056 get_page(newpage); 2057 2058 dec_zspage_isolation(zspage); 2059 2060 /* 2061 * Page migration is done so let's putback isolated zspage to 2062 * the list if @page is final isolated subpage in the zspage. 2063 */ 2064 if (!is_zspage_isolated(zspage)) { 2065 /* 2066 * We cannot race with zs_destroy_pool() here because we wait 2067 * for isolation to hit zero before we start destroying. 2068 * Also, we ensure that everyone can see pool->destroying before 2069 * we start waiting. 2070 */ 2071 putback_zspage_deferred(pool, class, zspage); 2072 zs_pool_dec_isolated(pool); 2073 } 2074 2075 reset_page(page); 2076 put_page(page); 2077 page = newpage; 2078 2079 ret = MIGRATEPAGE_SUCCESS; 2080 unpin_objects: 2081 for (addr = s_addr + offset; addr < s_addr + pos; 2082 addr += class->size) { 2083 head = obj_to_head(page, addr); 2084 if (head & OBJ_ALLOCATED_TAG) { 2085 handle = head & ~OBJ_ALLOCATED_TAG; 2086 if (!testpin_tag(handle)) 2087 BUG(); 2088 unpin_tag(handle); 2089 } 2090 } 2091 kunmap_atomic(s_addr); 2092 spin_unlock(&class->lock); 2093 migrate_write_unlock(zspage); 2094 2095 return ret; 2096 } 2097 2098 static void zs_page_putback(struct page *page) 2099 { 2100 struct zs_pool *pool; 2101 struct size_class *class; 2102 int class_idx; 2103 enum fullness_group fg; 2104 struct address_space *mapping; 2105 struct zspage *zspage; 2106 2107 VM_BUG_ON_PAGE(!PageMovable(page), page); 2108 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2109 2110 zspage = get_zspage(page); 2111 get_zspage_mapping(zspage, &class_idx, &fg); 2112 mapping = page_mapping(page); 2113 pool = mapping->private_data; 2114 class = pool->size_class[class_idx]; 2115 2116 spin_lock(&class->lock); 2117 dec_zspage_isolation(zspage); 2118 if (!is_zspage_isolated(zspage)) { 2119 /* 2120 * Due to page_lock, we cannot free zspage immediately 2121 * so let's defer. 2122 */ 2123 putback_zspage_deferred(pool, class, zspage); 2124 zs_pool_dec_isolated(pool); 2125 } 2126 spin_unlock(&class->lock); 2127 } 2128 2129 static const struct address_space_operations zsmalloc_aops = { 2130 .isolate_page = zs_page_isolate, 2131 .migratepage = zs_page_migrate, 2132 .putback_page = zs_page_putback, 2133 }; 2134 2135 static int zs_register_migration(struct zs_pool *pool) 2136 { 2137 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2138 if (IS_ERR(pool->inode)) { 2139 pool->inode = NULL; 2140 return 1; 2141 } 2142 2143 pool->inode->i_mapping->private_data = pool; 2144 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2145 return 0; 2146 } 2147 2148 static bool pool_isolated_are_drained(struct zs_pool *pool) 2149 { 2150 return atomic_long_read(&pool->isolated_pages) == 0; 2151 } 2152 2153 /* Function for resolving migration */ 2154 static void wait_for_isolated_drain(struct zs_pool *pool) 2155 { 2156 2157 /* 2158 * We're in the process of destroying the pool, so there are no 2159 * active allocations. zs_page_isolate() fails for completely free 2160 * zspages, so we need only wait for the zs_pool's isolated 2161 * count to hit zero. 2162 */ 2163 wait_event(pool->migration_wait, 2164 pool_isolated_are_drained(pool)); 2165 } 2166 2167 static void zs_unregister_migration(struct zs_pool *pool) 2168 { 2169 pool->destroying = true; 2170 /* 2171 * We need a memory barrier here to ensure global visibility of 2172 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2173 * case we don't care, or it will be > 0 and pool->destroying will 2174 * ensure that we wake up once isolation hits 0. 2175 */ 2176 smp_mb(); 2177 wait_for_isolated_drain(pool); /* This can block */ 2178 flush_work(&pool->free_work); 2179 iput(pool->inode); 2180 } 2181 2182 /* 2183 * Caller should hold page_lock of all pages in the zspage 2184 * In here, we cannot use zspage meta data. 2185 */ 2186 static void async_free_zspage(struct work_struct *work) 2187 { 2188 int i; 2189 struct size_class *class; 2190 unsigned int class_idx; 2191 enum fullness_group fullness; 2192 struct zspage *zspage, *tmp; 2193 LIST_HEAD(free_pages); 2194 struct zs_pool *pool = container_of(work, struct zs_pool, 2195 free_work); 2196 2197 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2198 class = pool->size_class[i]; 2199 if (class->index != i) 2200 continue; 2201 2202 spin_lock(&class->lock); 2203 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2204 spin_unlock(&class->lock); 2205 } 2206 2207 2208 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2209 list_del(&zspage->list); 2210 lock_zspage(zspage); 2211 2212 get_zspage_mapping(zspage, &class_idx, &fullness); 2213 VM_BUG_ON(fullness != ZS_EMPTY); 2214 class = pool->size_class[class_idx]; 2215 spin_lock(&class->lock); 2216 __free_zspage(pool, pool->size_class[class_idx], zspage); 2217 spin_unlock(&class->lock); 2218 } 2219 }; 2220 2221 static void kick_deferred_free(struct zs_pool *pool) 2222 { 2223 schedule_work(&pool->free_work); 2224 } 2225 2226 static void init_deferred_free(struct zs_pool *pool) 2227 { 2228 INIT_WORK(&pool->free_work, async_free_zspage); 2229 } 2230 2231 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2232 { 2233 struct page *page = get_first_page(zspage); 2234 2235 do { 2236 WARN_ON(!trylock_page(page)); 2237 __SetPageMovable(page, pool->inode->i_mapping); 2238 unlock_page(page); 2239 } while ((page = get_next_page(page)) != NULL); 2240 } 2241 #endif 2242 2243 /* 2244 * 2245 * Based on the number of unused allocated objects calculate 2246 * and return the number of pages that we can free. 2247 */ 2248 static unsigned long zs_can_compact(struct size_class *class) 2249 { 2250 unsigned long obj_wasted; 2251 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2252 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2253 2254 if (obj_allocated <= obj_used) 2255 return 0; 2256 2257 obj_wasted = obj_allocated - obj_used; 2258 obj_wasted /= class->objs_per_zspage; 2259 2260 return obj_wasted * class->pages_per_zspage; 2261 } 2262 2263 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2264 { 2265 struct zs_compact_control cc; 2266 struct zspage *src_zspage; 2267 struct zspage *dst_zspage = NULL; 2268 2269 spin_lock(&class->lock); 2270 while ((src_zspage = isolate_zspage(class, true))) { 2271 2272 if (!zs_can_compact(class)) 2273 break; 2274 2275 cc.obj_idx = 0; 2276 cc.s_page = get_first_page(src_zspage); 2277 2278 while ((dst_zspage = isolate_zspage(class, false))) { 2279 cc.d_page = get_first_page(dst_zspage); 2280 /* 2281 * If there is no more space in dst_page, resched 2282 * and see if anyone had allocated another zspage. 2283 */ 2284 if (!migrate_zspage(pool, class, &cc)) 2285 break; 2286 2287 putback_zspage(class, dst_zspage); 2288 } 2289 2290 /* Stop if we couldn't find slot */ 2291 if (dst_zspage == NULL) 2292 break; 2293 2294 putback_zspage(class, dst_zspage); 2295 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2296 free_zspage(pool, class, src_zspage); 2297 pool->stats.pages_compacted += class->pages_per_zspage; 2298 } 2299 spin_unlock(&class->lock); 2300 cond_resched(); 2301 spin_lock(&class->lock); 2302 } 2303 2304 if (src_zspage) 2305 putback_zspage(class, src_zspage); 2306 2307 spin_unlock(&class->lock); 2308 } 2309 2310 unsigned long zs_compact(struct zs_pool *pool) 2311 { 2312 int i; 2313 struct size_class *class; 2314 2315 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2316 class = pool->size_class[i]; 2317 if (!class) 2318 continue; 2319 if (class->index != i) 2320 continue; 2321 __zs_compact(pool, class); 2322 } 2323 2324 return pool->stats.pages_compacted; 2325 } 2326 EXPORT_SYMBOL_GPL(zs_compact); 2327 2328 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2329 { 2330 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2331 } 2332 EXPORT_SYMBOL_GPL(zs_pool_stats); 2333 2334 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2335 struct shrink_control *sc) 2336 { 2337 unsigned long pages_freed; 2338 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2339 shrinker); 2340 2341 pages_freed = pool->stats.pages_compacted; 2342 /* 2343 * Compact classes and calculate compaction delta. 2344 * Can run concurrently with a manually triggered 2345 * (by user) compaction. 2346 */ 2347 pages_freed = zs_compact(pool) - pages_freed; 2348 2349 return pages_freed ? pages_freed : SHRINK_STOP; 2350 } 2351 2352 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2353 struct shrink_control *sc) 2354 { 2355 int i; 2356 struct size_class *class; 2357 unsigned long pages_to_free = 0; 2358 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2359 shrinker); 2360 2361 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2362 class = pool->size_class[i]; 2363 if (!class) 2364 continue; 2365 if (class->index != i) 2366 continue; 2367 2368 pages_to_free += zs_can_compact(class); 2369 } 2370 2371 return pages_to_free; 2372 } 2373 2374 static void zs_unregister_shrinker(struct zs_pool *pool) 2375 { 2376 unregister_shrinker(&pool->shrinker); 2377 } 2378 2379 static int zs_register_shrinker(struct zs_pool *pool) 2380 { 2381 pool->shrinker.scan_objects = zs_shrinker_scan; 2382 pool->shrinker.count_objects = zs_shrinker_count; 2383 pool->shrinker.batch = 0; 2384 pool->shrinker.seeks = DEFAULT_SEEKS; 2385 2386 return register_shrinker(&pool->shrinker); 2387 } 2388 2389 /** 2390 * zs_create_pool - Creates an allocation pool to work from. 2391 * @name: pool name to be created 2392 * 2393 * This function must be called before anything when using 2394 * the zsmalloc allocator. 2395 * 2396 * On success, a pointer to the newly created pool is returned, 2397 * otherwise NULL. 2398 */ 2399 struct zs_pool *zs_create_pool(const char *name) 2400 { 2401 int i; 2402 struct zs_pool *pool; 2403 struct size_class *prev_class = NULL; 2404 2405 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2406 if (!pool) 2407 return NULL; 2408 2409 init_deferred_free(pool); 2410 2411 pool->name = kstrdup(name, GFP_KERNEL); 2412 if (!pool->name) 2413 goto err; 2414 2415 #ifdef CONFIG_COMPACTION 2416 init_waitqueue_head(&pool->migration_wait); 2417 #endif 2418 2419 if (create_cache(pool)) 2420 goto err; 2421 2422 /* 2423 * Iterate reversely, because, size of size_class that we want to use 2424 * for merging should be larger or equal to current size. 2425 */ 2426 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2427 int size; 2428 int pages_per_zspage; 2429 int objs_per_zspage; 2430 struct size_class *class; 2431 int fullness = 0; 2432 2433 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2434 if (size > ZS_MAX_ALLOC_SIZE) 2435 size = ZS_MAX_ALLOC_SIZE; 2436 pages_per_zspage = get_pages_per_zspage(size); 2437 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2438 2439 /* 2440 * We iterate from biggest down to smallest classes, 2441 * so huge_class_size holds the size of the first huge 2442 * class. Any object bigger than or equal to that will 2443 * endup in the huge class. 2444 */ 2445 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2446 !huge_class_size) { 2447 huge_class_size = size; 2448 /* 2449 * The object uses ZS_HANDLE_SIZE bytes to store the 2450 * handle. We need to subtract it, because zs_malloc() 2451 * unconditionally adds handle size before it performs 2452 * size class search - so object may be smaller than 2453 * huge class size, yet it still can end up in the huge 2454 * class because it grows by ZS_HANDLE_SIZE extra bytes 2455 * right before class lookup. 2456 */ 2457 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2458 } 2459 2460 /* 2461 * size_class is used for normal zsmalloc operation such 2462 * as alloc/free for that size. Although it is natural that we 2463 * have one size_class for each size, there is a chance that we 2464 * can get more memory utilization if we use one size_class for 2465 * many different sizes whose size_class have same 2466 * characteristics. So, we makes size_class point to 2467 * previous size_class if possible. 2468 */ 2469 if (prev_class) { 2470 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2471 pool->size_class[i] = prev_class; 2472 continue; 2473 } 2474 } 2475 2476 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2477 if (!class) 2478 goto err; 2479 2480 class->size = size; 2481 class->index = i; 2482 class->pages_per_zspage = pages_per_zspage; 2483 class->objs_per_zspage = objs_per_zspage; 2484 spin_lock_init(&class->lock); 2485 pool->size_class[i] = class; 2486 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2487 fullness++) 2488 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2489 2490 prev_class = class; 2491 } 2492 2493 /* debug only, don't abort if it fails */ 2494 zs_pool_stat_create(pool, name); 2495 2496 if (zs_register_migration(pool)) 2497 goto err; 2498 2499 /* 2500 * Not critical since shrinker is only used to trigger internal 2501 * defragmentation of the pool which is pretty optional thing. If 2502 * registration fails we still can use the pool normally and user can 2503 * trigger compaction manually. Thus, ignore return code. 2504 */ 2505 zs_register_shrinker(pool); 2506 2507 return pool; 2508 2509 err: 2510 zs_destroy_pool(pool); 2511 return NULL; 2512 } 2513 EXPORT_SYMBOL_GPL(zs_create_pool); 2514 2515 void zs_destroy_pool(struct zs_pool *pool) 2516 { 2517 int i; 2518 2519 zs_unregister_shrinker(pool); 2520 zs_unregister_migration(pool); 2521 zs_pool_stat_destroy(pool); 2522 2523 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2524 int fg; 2525 struct size_class *class = pool->size_class[i]; 2526 2527 if (!class) 2528 continue; 2529 2530 if (class->index != i) 2531 continue; 2532 2533 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2534 if (!list_empty(&class->fullness_list[fg])) { 2535 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2536 class->size, fg); 2537 } 2538 } 2539 kfree(class); 2540 } 2541 2542 destroy_cache(pool); 2543 kfree(pool->name); 2544 kfree(pool); 2545 } 2546 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2547 2548 static int __init zs_init(void) 2549 { 2550 int ret; 2551 2552 ret = zsmalloc_mount(); 2553 if (ret) 2554 goto out; 2555 2556 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2557 zs_cpu_prepare, zs_cpu_dead); 2558 if (ret) 2559 goto hp_setup_fail; 2560 2561 #ifdef CONFIG_ZPOOL 2562 zpool_register_driver(&zs_zpool_driver); 2563 #endif 2564 2565 zs_stat_init(); 2566 2567 return 0; 2568 2569 hp_setup_fail: 2570 zsmalloc_unmount(); 2571 out: 2572 return ret; 2573 } 2574 2575 static void __exit zs_exit(void) 2576 { 2577 #ifdef CONFIG_ZPOOL 2578 zpool_unregister_driver(&zs_zpool_driver); 2579 #endif 2580 zsmalloc_unmount(); 2581 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2582 2583 zs_stat_exit(); 2584 } 2585 2586 module_init(zs_init); 2587 module_exit(zs_exit); 2588 2589 MODULE_LICENSE("Dual BSD/GPL"); 2590 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2591