1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <linux/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than or equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * a single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 char *vm_buf; /* copy buffer for objects that span pages */ 297 char *vm_addr; /* address of kmap_atomic()'ed pages */ 298 enum zs_mapmode vm_mm; /* mapping mode */ 299 }; 300 301 #ifdef CONFIG_COMPACTION 302 static int zs_register_migration(struct zs_pool *pool); 303 static void zs_unregister_migration(struct zs_pool *pool); 304 static void migrate_lock_init(struct zspage *zspage); 305 static void migrate_read_lock(struct zspage *zspage); 306 static void migrate_read_unlock(struct zspage *zspage); 307 static void kick_deferred_free(struct zs_pool *pool); 308 static void init_deferred_free(struct zs_pool *pool); 309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 310 #else 311 static int zsmalloc_mount(void) { return 0; } 312 static void zsmalloc_unmount(void) {} 313 static int zs_register_migration(struct zs_pool *pool) { return 0; } 314 static void zs_unregister_migration(struct zs_pool *pool) {} 315 static void migrate_lock_init(struct zspage *zspage) {} 316 static void migrate_read_lock(struct zspage *zspage) {} 317 static void migrate_read_unlock(struct zspage *zspage) {} 318 static void kick_deferred_free(struct zs_pool *pool) {} 319 static void init_deferred_free(struct zs_pool *pool) {} 320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 321 #endif 322 323 static int create_cache(struct zs_pool *pool) 324 { 325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 326 0, 0, NULL); 327 if (!pool->handle_cachep) 328 return 1; 329 330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 331 0, 0, NULL); 332 if (!pool->zspage_cachep) { 333 kmem_cache_destroy(pool->handle_cachep); 334 pool->handle_cachep = NULL; 335 return 1; 336 } 337 338 return 0; 339 } 340 341 static void destroy_cache(struct zs_pool *pool) 342 { 343 kmem_cache_destroy(pool->handle_cachep); 344 kmem_cache_destroy(pool->zspage_cachep); 345 } 346 347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 348 { 349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 351 } 352 353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 354 { 355 kmem_cache_free(pool->handle_cachep, (void *)handle); 356 } 357 358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 359 { 360 return kmem_cache_zalloc(pool->zspage_cachep, 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 362 } 363 364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 365 { 366 kmem_cache_free(pool->zspage_cachep, zspage); 367 } 368 369 static void record_obj(unsigned long handle, unsigned long obj) 370 { 371 /* 372 * lsb of @obj represents handle lock while other bits 373 * represent object value the handle is pointing so 374 * updating shouldn't do store tearing. 375 */ 376 WRITE_ONCE(*(unsigned long *)handle, obj); 377 } 378 379 /* zpool driver */ 380 381 #ifdef CONFIG_ZPOOL 382 383 static void *zs_zpool_create(const char *name, gfp_t gfp, 384 const struct zpool_ops *zpool_ops, 385 struct zpool *zpool) 386 { 387 /* 388 * Ignore global gfp flags: zs_malloc() may be invoked from 389 * different contexts and its caller must provide a valid 390 * gfp mask. 391 */ 392 return zs_create_pool(name); 393 } 394 395 static void zs_zpool_destroy(void *pool) 396 { 397 zs_destroy_pool(pool); 398 } 399 400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 401 unsigned long *handle) 402 { 403 *handle = zs_malloc(pool, size, gfp); 404 return *handle ? 0 : -1; 405 } 406 static void zs_zpool_free(void *pool, unsigned long handle) 407 { 408 zs_free(pool, handle); 409 } 410 411 static void *zs_zpool_map(void *pool, unsigned long handle, 412 enum zpool_mapmode mm) 413 { 414 enum zs_mapmode zs_mm; 415 416 switch (mm) { 417 case ZPOOL_MM_RO: 418 zs_mm = ZS_MM_RO; 419 break; 420 case ZPOOL_MM_WO: 421 zs_mm = ZS_MM_WO; 422 break; 423 case ZPOOL_MM_RW: 424 default: 425 zs_mm = ZS_MM_RW; 426 break; 427 } 428 429 return zs_map_object(pool, handle, zs_mm); 430 } 431 static void zs_zpool_unmap(void *pool, unsigned long handle) 432 { 433 zs_unmap_object(pool, handle); 434 } 435 436 static u64 zs_zpool_total_size(void *pool) 437 { 438 return zs_get_total_pages(pool) << PAGE_SHIFT; 439 } 440 441 static struct zpool_driver zs_zpool_driver = { 442 .type = "zsmalloc", 443 .owner = THIS_MODULE, 444 .create = zs_zpool_create, 445 .destroy = zs_zpool_destroy, 446 .malloc_support_movable = true, 447 .malloc = zs_zpool_malloc, 448 .free = zs_zpool_free, 449 .map = zs_zpool_map, 450 .unmap = zs_zpool_unmap, 451 .total_size = zs_zpool_total_size, 452 }; 453 454 MODULE_ALIAS("zpool-zsmalloc"); 455 #endif /* CONFIG_ZPOOL */ 456 457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 459 460 static bool is_zspage_isolated(struct zspage *zspage) 461 { 462 return zspage->isolated; 463 } 464 465 static __maybe_unused int is_first_page(struct page *page) 466 { 467 return PagePrivate(page); 468 } 469 470 /* Protected by class->lock */ 471 static inline int get_zspage_inuse(struct zspage *zspage) 472 { 473 return zspage->inuse; 474 } 475 476 477 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 478 { 479 zspage->inuse += val; 480 } 481 482 static inline struct page *get_first_page(struct zspage *zspage) 483 { 484 struct page *first_page = zspage->first_page; 485 486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 487 return first_page; 488 } 489 490 static inline int get_first_obj_offset(struct page *page) 491 { 492 return page->units; 493 } 494 495 static inline void set_first_obj_offset(struct page *page, int offset) 496 { 497 page->units = offset; 498 } 499 500 static inline unsigned int get_freeobj(struct zspage *zspage) 501 { 502 return zspage->freeobj; 503 } 504 505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 506 { 507 zspage->freeobj = obj; 508 } 509 510 static void get_zspage_mapping(struct zspage *zspage, 511 unsigned int *class_idx, 512 enum fullness_group *fullness) 513 { 514 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 515 516 *fullness = zspage->fullness; 517 *class_idx = zspage->class; 518 } 519 520 static void set_zspage_mapping(struct zspage *zspage, 521 unsigned int class_idx, 522 enum fullness_group fullness) 523 { 524 zspage->class = class_idx; 525 zspage->fullness = fullness; 526 } 527 528 /* 529 * zsmalloc divides the pool into various size classes where each 530 * class maintains a list of zspages where each zspage is divided 531 * into equal sized chunks. Each allocation falls into one of these 532 * classes depending on its size. This function returns index of the 533 * size class which has chunk size big enough to hold the given size. 534 */ 535 static int get_size_class_index(int size) 536 { 537 int idx = 0; 538 539 if (likely(size > ZS_MIN_ALLOC_SIZE)) 540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 541 ZS_SIZE_CLASS_DELTA); 542 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 544 } 545 546 /* type can be of enum type zs_stat_type or fullness_group */ 547 static inline void zs_stat_inc(struct size_class *class, 548 int type, unsigned long cnt) 549 { 550 class->stats.objs[type] += cnt; 551 } 552 553 /* type can be of enum type zs_stat_type or fullness_group */ 554 static inline void zs_stat_dec(struct size_class *class, 555 int type, unsigned long cnt) 556 { 557 class->stats.objs[type] -= cnt; 558 } 559 560 /* type can be of enum type zs_stat_type or fullness_group */ 561 static inline unsigned long zs_stat_get(struct size_class *class, 562 int type) 563 { 564 return class->stats.objs[type]; 565 } 566 567 #ifdef CONFIG_ZSMALLOC_STAT 568 569 static void __init zs_stat_init(void) 570 { 571 if (!debugfs_initialized()) { 572 pr_warn("debugfs not available, stat dir not created\n"); 573 return; 574 } 575 576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 577 } 578 579 static void __exit zs_stat_exit(void) 580 { 581 debugfs_remove_recursive(zs_stat_root); 582 } 583 584 static unsigned long zs_can_compact(struct size_class *class); 585 586 static int zs_stats_size_show(struct seq_file *s, void *v) 587 { 588 int i; 589 struct zs_pool *pool = s->private; 590 struct size_class *class; 591 int objs_per_zspage; 592 unsigned long class_almost_full, class_almost_empty; 593 unsigned long obj_allocated, obj_used, pages_used, freeable; 594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 596 unsigned long total_freeable = 0; 597 598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 599 "class", "size", "almost_full", "almost_empty", 600 "obj_allocated", "obj_used", "pages_used", 601 "pages_per_zspage", "freeable"); 602 603 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 604 class = pool->size_class[i]; 605 606 if (class->index != i) 607 continue; 608 609 spin_lock(&class->lock); 610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 613 obj_used = zs_stat_get(class, OBJ_USED); 614 freeable = zs_can_compact(class); 615 spin_unlock(&class->lock); 616 617 objs_per_zspage = class->objs_per_zspage; 618 pages_used = obj_allocated / objs_per_zspage * 619 class->pages_per_zspage; 620 621 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 622 " %10lu %10lu %16d %8lu\n", 623 i, class->size, class_almost_full, class_almost_empty, 624 obj_allocated, obj_used, pages_used, 625 class->pages_per_zspage, freeable); 626 627 total_class_almost_full += class_almost_full; 628 total_class_almost_empty += class_almost_empty; 629 total_objs += obj_allocated; 630 total_used_objs += obj_used; 631 total_pages += pages_used; 632 total_freeable += freeable; 633 } 634 635 seq_puts(s, "\n"); 636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 637 "Total", "", total_class_almost_full, 638 total_class_almost_empty, total_objs, 639 total_used_objs, total_pages, "", total_freeable); 640 641 return 0; 642 } 643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 644 645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 646 { 647 if (!zs_stat_root) { 648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 649 return; 650 } 651 652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 653 654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 655 &zs_stats_size_fops); 656 } 657 658 static void zs_pool_stat_destroy(struct zs_pool *pool) 659 { 660 debugfs_remove_recursive(pool->stat_dentry); 661 } 662 663 #else /* CONFIG_ZSMALLOC_STAT */ 664 static void __init zs_stat_init(void) 665 { 666 } 667 668 static void __exit zs_stat_exit(void) 669 { 670 } 671 672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 673 { 674 } 675 676 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 677 { 678 } 679 #endif 680 681 682 /* 683 * For each size class, zspages are divided into different groups 684 * depending on how "full" they are. This was done so that we could 685 * easily find empty or nearly empty zspages when we try to shrink 686 * the pool (not yet implemented). This function returns fullness 687 * status of the given page. 688 */ 689 static enum fullness_group get_fullness_group(struct size_class *class, 690 struct zspage *zspage) 691 { 692 int inuse, objs_per_zspage; 693 enum fullness_group fg; 694 695 inuse = get_zspage_inuse(zspage); 696 objs_per_zspage = class->objs_per_zspage; 697 698 if (inuse == 0) 699 fg = ZS_EMPTY; 700 else if (inuse == objs_per_zspage) 701 fg = ZS_FULL; 702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 703 fg = ZS_ALMOST_EMPTY; 704 else 705 fg = ZS_ALMOST_FULL; 706 707 return fg; 708 } 709 710 /* 711 * Each size class maintains various freelists and zspages are assigned 712 * to one of these freelists based on the number of live objects they 713 * have. This functions inserts the given zspage into the freelist 714 * identified by <class, fullness_group>. 715 */ 716 static void insert_zspage(struct size_class *class, 717 struct zspage *zspage, 718 enum fullness_group fullness) 719 { 720 struct zspage *head; 721 722 zs_stat_inc(class, fullness, 1); 723 head = list_first_entry_or_null(&class->fullness_list[fullness], 724 struct zspage, list); 725 /* 726 * We want to see more ZS_FULL pages and less almost empty/full. 727 * Put pages with higher ->inuse first. 728 */ 729 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 730 list_add(&zspage->list, &head->list); 731 else 732 list_add(&zspage->list, &class->fullness_list[fullness]); 733 } 734 735 /* 736 * This function removes the given zspage from the freelist identified 737 * by <class, fullness_group>. 738 */ 739 static void remove_zspage(struct size_class *class, 740 struct zspage *zspage, 741 enum fullness_group fullness) 742 { 743 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 744 VM_BUG_ON(is_zspage_isolated(zspage)); 745 746 list_del_init(&zspage->list); 747 zs_stat_dec(class, fullness, 1); 748 } 749 750 /* 751 * Each size class maintains zspages in different fullness groups depending 752 * on the number of live objects they contain. When allocating or freeing 753 * objects, the fullness status of the page can change, say, from ALMOST_FULL 754 * to ALMOST_EMPTY when freeing an object. This function checks if such 755 * a status change has occurred for the given page and accordingly moves the 756 * page from the freelist of the old fullness group to that of the new 757 * fullness group. 758 */ 759 static enum fullness_group fix_fullness_group(struct size_class *class, 760 struct zspage *zspage) 761 { 762 int class_idx; 763 enum fullness_group currfg, newfg; 764 765 get_zspage_mapping(zspage, &class_idx, &currfg); 766 newfg = get_fullness_group(class, zspage); 767 if (newfg == currfg) 768 goto out; 769 770 if (!is_zspage_isolated(zspage)) { 771 remove_zspage(class, zspage, currfg); 772 insert_zspage(class, zspage, newfg); 773 } 774 775 set_zspage_mapping(zspage, class_idx, newfg); 776 777 out: 778 return newfg; 779 } 780 781 /* 782 * We have to decide on how many pages to link together 783 * to form a zspage for each size class. This is important 784 * to reduce wastage due to unusable space left at end of 785 * each zspage which is given as: 786 * wastage = Zp % class_size 787 * usage = Zp - wastage 788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 789 * 790 * For example, for size class of 3/8 * PAGE_SIZE, we should 791 * link together 3 PAGE_SIZE sized pages to form a zspage 792 * since then we can perfectly fit in 8 such objects. 793 */ 794 static int get_pages_per_zspage(int class_size) 795 { 796 int i, max_usedpc = 0; 797 /* zspage order which gives maximum used size per KB */ 798 int max_usedpc_order = 1; 799 800 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 801 int zspage_size; 802 int waste, usedpc; 803 804 zspage_size = i * PAGE_SIZE; 805 waste = zspage_size % class_size; 806 usedpc = (zspage_size - waste) * 100 / zspage_size; 807 808 if (usedpc > max_usedpc) { 809 max_usedpc = usedpc; 810 max_usedpc_order = i; 811 } 812 } 813 814 return max_usedpc_order; 815 } 816 817 static struct zspage *get_zspage(struct page *page) 818 { 819 struct zspage *zspage = (struct zspage *)page_private(page); 820 821 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 822 return zspage; 823 } 824 825 static struct page *get_next_page(struct page *page) 826 { 827 if (unlikely(PageHugeObject(page))) 828 return NULL; 829 830 return page->freelist; 831 } 832 833 /** 834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 835 * @obj: the encoded object value 836 * @page: page object resides in zspage 837 * @obj_idx: object index 838 */ 839 static void obj_to_location(unsigned long obj, struct page **page, 840 unsigned int *obj_idx) 841 { 842 obj >>= OBJ_TAG_BITS; 843 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 844 *obj_idx = (obj & OBJ_INDEX_MASK); 845 } 846 847 /** 848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 849 * @page: page object resides in zspage 850 * @obj_idx: object index 851 */ 852 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 853 { 854 unsigned long obj; 855 856 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 857 obj |= obj_idx & OBJ_INDEX_MASK; 858 obj <<= OBJ_TAG_BITS; 859 860 return obj; 861 } 862 863 static unsigned long handle_to_obj(unsigned long handle) 864 { 865 return *(unsigned long *)handle; 866 } 867 868 static unsigned long obj_to_head(struct page *page, void *obj) 869 { 870 if (unlikely(PageHugeObject(page))) { 871 VM_BUG_ON_PAGE(!is_first_page(page), page); 872 return page->index; 873 } else 874 return *(unsigned long *)obj; 875 } 876 877 static inline int testpin_tag(unsigned long handle) 878 { 879 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 880 } 881 882 static inline int trypin_tag(unsigned long handle) 883 { 884 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 885 } 886 887 static void pin_tag(unsigned long handle) __acquires(bitlock) 888 { 889 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 890 } 891 892 static void unpin_tag(unsigned long handle) __releases(bitlock) 893 { 894 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 895 } 896 897 static void reset_page(struct page *page) 898 { 899 __ClearPageMovable(page); 900 ClearPagePrivate(page); 901 set_page_private(page, 0); 902 page_mapcount_reset(page); 903 ClearPageHugeObject(page); 904 page->freelist = NULL; 905 } 906 907 static int trylock_zspage(struct zspage *zspage) 908 { 909 struct page *cursor, *fail; 910 911 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 912 get_next_page(cursor)) { 913 if (!trylock_page(cursor)) { 914 fail = cursor; 915 goto unlock; 916 } 917 } 918 919 return 1; 920 unlock: 921 for (cursor = get_first_page(zspage); cursor != fail; cursor = 922 get_next_page(cursor)) 923 unlock_page(cursor); 924 925 return 0; 926 } 927 928 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 929 struct zspage *zspage) 930 { 931 struct page *page, *next; 932 enum fullness_group fg; 933 unsigned int class_idx; 934 935 get_zspage_mapping(zspage, &class_idx, &fg); 936 937 assert_spin_locked(&class->lock); 938 939 VM_BUG_ON(get_zspage_inuse(zspage)); 940 VM_BUG_ON(fg != ZS_EMPTY); 941 942 next = page = get_first_page(zspage); 943 do { 944 VM_BUG_ON_PAGE(!PageLocked(page), page); 945 next = get_next_page(page); 946 reset_page(page); 947 unlock_page(page); 948 dec_zone_page_state(page, NR_ZSPAGES); 949 put_page(page); 950 page = next; 951 } while (page != NULL); 952 953 cache_free_zspage(pool, zspage); 954 955 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 956 atomic_long_sub(class->pages_per_zspage, 957 &pool->pages_allocated); 958 } 959 960 static void free_zspage(struct zs_pool *pool, struct size_class *class, 961 struct zspage *zspage) 962 { 963 VM_BUG_ON(get_zspage_inuse(zspage)); 964 VM_BUG_ON(list_empty(&zspage->list)); 965 966 if (!trylock_zspage(zspage)) { 967 kick_deferred_free(pool); 968 return; 969 } 970 971 remove_zspage(class, zspage, ZS_EMPTY); 972 __free_zspage(pool, class, zspage); 973 } 974 975 /* Initialize a newly allocated zspage */ 976 static void init_zspage(struct size_class *class, struct zspage *zspage) 977 { 978 unsigned int freeobj = 1; 979 unsigned long off = 0; 980 struct page *page = get_first_page(zspage); 981 982 while (page) { 983 struct page *next_page; 984 struct link_free *link; 985 void *vaddr; 986 987 set_first_obj_offset(page, off); 988 989 vaddr = kmap_atomic(page); 990 link = (struct link_free *)vaddr + off / sizeof(*link); 991 992 while ((off += class->size) < PAGE_SIZE) { 993 link->next = freeobj++ << OBJ_TAG_BITS; 994 link += class->size / sizeof(*link); 995 } 996 997 /* 998 * We now come to the last (full or partial) object on this 999 * page, which must point to the first object on the next 1000 * page (if present) 1001 */ 1002 next_page = get_next_page(page); 1003 if (next_page) { 1004 link->next = freeobj++ << OBJ_TAG_BITS; 1005 } else { 1006 /* 1007 * Reset OBJ_TAG_BITS bit to last link to tell 1008 * whether it's allocated object or not. 1009 */ 1010 link->next = -1UL << OBJ_TAG_BITS; 1011 } 1012 kunmap_atomic(vaddr); 1013 page = next_page; 1014 off %= PAGE_SIZE; 1015 } 1016 1017 set_freeobj(zspage, 0); 1018 } 1019 1020 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1021 struct page *pages[]) 1022 { 1023 int i; 1024 struct page *page; 1025 struct page *prev_page = NULL; 1026 int nr_pages = class->pages_per_zspage; 1027 1028 /* 1029 * Allocate individual pages and link them together as: 1030 * 1. all pages are linked together using page->freelist 1031 * 2. each sub-page point to zspage using page->private 1032 * 1033 * we set PG_private to identify the first page (i.e. no other sub-page 1034 * has this flag set). 1035 */ 1036 for (i = 0; i < nr_pages; i++) { 1037 page = pages[i]; 1038 set_page_private(page, (unsigned long)zspage); 1039 page->freelist = NULL; 1040 if (i == 0) { 1041 zspage->first_page = page; 1042 SetPagePrivate(page); 1043 if (unlikely(class->objs_per_zspage == 1 && 1044 class->pages_per_zspage == 1)) 1045 SetPageHugeObject(page); 1046 } else { 1047 prev_page->freelist = page; 1048 } 1049 prev_page = page; 1050 } 1051 } 1052 1053 /* 1054 * Allocate a zspage for the given size class 1055 */ 1056 static struct zspage *alloc_zspage(struct zs_pool *pool, 1057 struct size_class *class, 1058 gfp_t gfp) 1059 { 1060 int i; 1061 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1062 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1063 1064 if (!zspage) 1065 return NULL; 1066 1067 zspage->magic = ZSPAGE_MAGIC; 1068 migrate_lock_init(zspage); 1069 1070 for (i = 0; i < class->pages_per_zspage; i++) { 1071 struct page *page; 1072 1073 page = alloc_page(gfp); 1074 if (!page) { 1075 while (--i >= 0) { 1076 dec_zone_page_state(pages[i], NR_ZSPAGES); 1077 __free_page(pages[i]); 1078 } 1079 cache_free_zspage(pool, zspage); 1080 return NULL; 1081 } 1082 1083 inc_zone_page_state(page, NR_ZSPAGES); 1084 pages[i] = page; 1085 } 1086 1087 create_page_chain(class, zspage, pages); 1088 init_zspage(class, zspage); 1089 1090 return zspage; 1091 } 1092 1093 static struct zspage *find_get_zspage(struct size_class *class) 1094 { 1095 int i; 1096 struct zspage *zspage; 1097 1098 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1099 zspage = list_first_entry_or_null(&class->fullness_list[i], 1100 struct zspage, list); 1101 if (zspage) 1102 break; 1103 } 1104 1105 return zspage; 1106 } 1107 1108 static inline int __zs_cpu_up(struct mapping_area *area) 1109 { 1110 /* 1111 * Make sure we don't leak memory if a cpu UP notification 1112 * and zs_init() race and both call zs_cpu_up() on the same cpu 1113 */ 1114 if (area->vm_buf) 1115 return 0; 1116 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1117 if (!area->vm_buf) 1118 return -ENOMEM; 1119 return 0; 1120 } 1121 1122 static inline void __zs_cpu_down(struct mapping_area *area) 1123 { 1124 kfree(area->vm_buf); 1125 area->vm_buf = NULL; 1126 } 1127 1128 static void *__zs_map_object(struct mapping_area *area, 1129 struct page *pages[2], int off, int size) 1130 { 1131 int sizes[2]; 1132 void *addr; 1133 char *buf = area->vm_buf; 1134 1135 /* disable page faults to match kmap_atomic() return conditions */ 1136 pagefault_disable(); 1137 1138 /* no read fastpath */ 1139 if (area->vm_mm == ZS_MM_WO) 1140 goto out; 1141 1142 sizes[0] = PAGE_SIZE - off; 1143 sizes[1] = size - sizes[0]; 1144 1145 /* copy object to per-cpu buffer */ 1146 addr = kmap_atomic(pages[0]); 1147 memcpy(buf, addr + off, sizes[0]); 1148 kunmap_atomic(addr); 1149 addr = kmap_atomic(pages[1]); 1150 memcpy(buf + sizes[0], addr, sizes[1]); 1151 kunmap_atomic(addr); 1152 out: 1153 return area->vm_buf; 1154 } 1155 1156 static void __zs_unmap_object(struct mapping_area *area, 1157 struct page *pages[2], int off, int size) 1158 { 1159 int sizes[2]; 1160 void *addr; 1161 char *buf; 1162 1163 /* no write fastpath */ 1164 if (area->vm_mm == ZS_MM_RO) 1165 goto out; 1166 1167 buf = area->vm_buf; 1168 buf = buf + ZS_HANDLE_SIZE; 1169 size -= ZS_HANDLE_SIZE; 1170 off += ZS_HANDLE_SIZE; 1171 1172 sizes[0] = PAGE_SIZE - off; 1173 sizes[1] = size - sizes[0]; 1174 1175 /* copy per-cpu buffer to object */ 1176 addr = kmap_atomic(pages[0]); 1177 memcpy(addr + off, buf, sizes[0]); 1178 kunmap_atomic(addr); 1179 addr = kmap_atomic(pages[1]); 1180 memcpy(addr, buf + sizes[0], sizes[1]); 1181 kunmap_atomic(addr); 1182 1183 out: 1184 /* enable page faults to match kunmap_atomic() return conditions */ 1185 pagefault_enable(); 1186 } 1187 1188 static int zs_cpu_prepare(unsigned int cpu) 1189 { 1190 struct mapping_area *area; 1191 1192 area = &per_cpu(zs_map_area, cpu); 1193 return __zs_cpu_up(area); 1194 } 1195 1196 static int zs_cpu_dead(unsigned int cpu) 1197 { 1198 struct mapping_area *area; 1199 1200 area = &per_cpu(zs_map_area, cpu); 1201 __zs_cpu_down(area); 1202 return 0; 1203 } 1204 1205 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1206 int objs_per_zspage) 1207 { 1208 if (prev->pages_per_zspage == pages_per_zspage && 1209 prev->objs_per_zspage == objs_per_zspage) 1210 return true; 1211 1212 return false; 1213 } 1214 1215 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1216 { 1217 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1218 } 1219 1220 unsigned long zs_get_total_pages(struct zs_pool *pool) 1221 { 1222 return atomic_long_read(&pool->pages_allocated); 1223 } 1224 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1225 1226 /** 1227 * zs_map_object - get address of allocated object from handle. 1228 * @pool: pool from which the object was allocated 1229 * @handle: handle returned from zs_malloc 1230 * @mm: mapping mode to use 1231 * 1232 * Before using an object allocated from zs_malloc, it must be mapped using 1233 * this function. When done with the object, it must be unmapped using 1234 * zs_unmap_object. 1235 * 1236 * Only one object can be mapped per cpu at a time. There is no protection 1237 * against nested mappings. 1238 * 1239 * This function returns with preemption and page faults disabled. 1240 */ 1241 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1242 enum zs_mapmode mm) 1243 { 1244 struct zspage *zspage; 1245 struct page *page; 1246 unsigned long obj, off; 1247 unsigned int obj_idx; 1248 1249 unsigned int class_idx; 1250 enum fullness_group fg; 1251 struct size_class *class; 1252 struct mapping_area *area; 1253 struct page *pages[2]; 1254 void *ret; 1255 1256 /* 1257 * Because we use per-cpu mapping areas shared among the 1258 * pools/users, we can't allow mapping in interrupt context 1259 * because it can corrupt another users mappings. 1260 */ 1261 BUG_ON(in_interrupt()); 1262 1263 /* From now on, migration cannot move the object */ 1264 pin_tag(handle); 1265 1266 obj = handle_to_obj(handle); 1267 obj_to_location(obj, &page, &obj_idx); 1268 zspage = get_zspage(page); 1269 1270 /* migration cannot move any subpage in this zspage */ 1271 migrate_read_lock(zspage); 1272 1273 get_zspage_mapping(zspage, &class_idx, &fg); 1274 class = pool->size_class[class_idx]; 1275 off = (class->size * obj_idx) & ~PAGE_MASK; 1276 1277 area = &get_cpu_var(zs_map_area); 1278 area->vm_mm = mm; 1279 if (off + class->size <= PAGE_SIZE) { 1280 /* this object is contained entirely within a page */ 1281 area->vm_addr = kmap_atomic(page); 1282 ret = area->vm_addr + off; 1283 goto out; 1284 } 1285 1286 /* this object spans two pages */ 1287 pages[0] = page; 1288 pages[1] = get_next_page(page); 1289 BUG_ON(!pages[1]); 1290 1291 ret = __zs_map_object(area, pages, off, class->size); 1292 out: 1293 if (likely(!PageHugeObject(page))) 1294 ret += ZS_HANDLE_SIZE; 1295 1296 return ret; 1297 } 1298 EXPORT_SYMBOL_GPL(zs_map_object); 1299 1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1301 { 1302 struct zspage *zspage; 1303 struct page *page; 1304 unsigned long obj, off; 1305 unsigned int obj_idx; 1306 1307 unsigned int class_idx; 1308 enum fullness_group fg; 1309 struct size_class *class; 1310 struct mapping_area *area; 1311 1312 obj = handle_to_obj(handle); 1313 obj_to_location(obj, &page, &obj_idx); 1314 zspage = get_zspage(page); 1315 get_zspage_mapping(zspage, &class_idx, &fg); 1316 class = pool->size_class[class_idx]; 1317 off = (class->size * obj_idx) & ~PAGE_MASK; 1318 1319 area = this_cpu_ptr(&zs_map_area); 1320 if (off + class->size <= PAGE_SIZE) 1321 kunmap_atomic(area->vm_addr); 1322 else { 1323 struct page *pages[2]; 1324 1325 pages[0] = page; 1326 pages[1] = get_next_page(page); 1327 BUG_ON(!pages[1]); 1328 1329 __zs_unmap_object(area, pages, off, class->size); 1330 } 1331 put_cpu_var(zs_map_area); 1332 1333 migrate_read_unlock(zspage); 1334 unpin_tag(handle); 1335 } 1336 EXPORT_SYMBOL_GPL(zs_unmap_object); 1337 1338 /** 1339 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1340 * zsmalloc &size_class. 1341 * @pool: zsmalloc pool to use 1342 * 1343 * The function returns the size of the first huge class - any object of equal 1344 * or bigger size will be stored in zspage consisting of a single physical 1345 * page. 1346 * 1347 * Context: Any context. 1348 * 1349 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1350 */ 1351 size_t zs_huge_class_size(struct zs_pool *pool) 1352 { 1353 return huge_class_size; 1354 } 1355 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1356 1357 static unsigned long obj_malloc(struct size_class *class, 1358 struct zspage *zspage, unsigned long handle) 1359 { 1360 int i, nr_page, offset; 1361 unsigned long obj; 1362 struct link_free *link; 1363 1364 struct page *m_page; 1365 unsigned long m_offset; 1366 void *vaddr; 1367 1368 handle |= OBJ_ALLOCATED_TAG; 1369 obj = get_freeobj(zspage); 1370 1371 offset = obj * class->size; 1372 nr_page = offset >> PAGE_SHIFT; 1373 m_offset = offset & ~PAGE_MASK; 1374 m_page = get_first_page(zspage); 1375 1376 for (i = 0; i < nr_page; i++) 1377 m_page = get_next_page(m_page); 1378 1379 vaddr = kmap_atomic(m_page); 1380 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1381 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1382 if (likely(!PageHugeObject(m_page))) 1383 /* record handle in the header of allocated chunk */ 1384 link->handle = handle; 1385 else 1386 /* record handle to page->index */ 1387 zspage->first_page->index = handle; 1388 1389 kunmap_atomic(vaddr); 1390 mod_zspage_inuse(zspage, 1); 1391 zs_stat_inc(class, OBJ_USED, 1); 1392 1393 obj = location_to_obj(m_page, obj); 1394 1395 return obj; 1396 } 1397 1398 1399 /** 1400 * zs_malloc - Allocate block of given size from pool. 1401 * @pool: pool to allocate from 1402 * @size: size of block to allocate 1403 * @gfp: gfp flags when allocating object 1404 * 1405 * On success, handle to the allocated object is returned, 1406 * otherwise 0. 1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1408 */ 1409 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1410 { 1411 unsigned long handle, obj; 1412 struct size_class *class; 1413 enum fullness_group newfg; 1414 struct zspage *zspage; 1415 1416 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1417 return 0; 1418 1419 handle = cache_alloc_handle(pool, gfp); 1420 if (!handle) 1421 return 0; 1422 1423 /* extra space in chunk to keep the handle */ 1424 size += ZS_HANDLE_SIZE; 1425 class = pool->size_class[get_size_class_index(size)]; 1426 1427 spin_lock(&class->lock); 1428 zspage = find_get_zspage(class); 1429 if (likely(zspage)) { 1430 obj = obj_malloc(class, zspage, handle); 1431 /* Now move the zspage to another fullness group, if required */ 1432 fix_fullness_group(class, zspage); 1433 record_obj(handle, obj); 1434 spin_unlock(&class->lock); 1435 1436 return handle; 1437 } 1438 1439 spin_unlock(&class->lock); 1440 1441 zspage = alloc_zspage(pool, class, gfp); 1442 if (!zspage) { 1443 cache_free_handle(pool, handle); 1444 return 0; 1445 } 1446 1447 spin_lock(&class->lock); 1448 obj = obj_malloc(class, zspage, handle); 1449 newfg = get_fullness_group(class, zspage); 1450 insert_zspage(class, zspage, newfg); 1451 set_zspage_mapping(zspage, class->index, newfg); 1452 record_obj(handle, obj); 1453 atomic_long_add(class->pages_per_zspage, 1454 &pool->pages_allocated); 1455 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1456 1457 /* We completely set up zspage so mark them as movable */ 1458 SetZsPageMovable(pool, zspage); 1459 spin_unlock(&class->lock); 1460 1461 return handle; 1462 } 1463 EXPORT_SYMBOL_GPL(zs_malloc); 1464 1465 static void obj_free(struct size_class *class, unsigned long obj) 1466 { 1467 struct link_free *link; 1468 struct zspage *zspage; 1469 struct page *f_page; 1470 unsigned long f_offset; 1471 unsigned int f_objidx; 1472 void *vaddr; 1473 1474 obj_to_location(obj, &f_page, &f_objidx); 1475 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1476 zspage = get_zspage(f_page); 1477 1478 vaddr = kmap_atomic(f_page); 1479 1480 /* Insert this object in containing zspage's freelist */ 1481 link = (struct link_free *)(vaddr + f_offset); 1482 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1483 kunmap_atomic(vaddr); 1484 set_freeobj(zspage, f_objidx); 1485 mod_zspage_inuse(zspage, -1); 1486 zs_stat_dec(class, OBJ_USED, 1); 1487 } 1488 1489 void zs_free(struct zs_pool *pool, unsigned long handle) 1490 { 1491 struct zspage *zspage; 1492 struct page *f_page; 1493 unsigned long obj; 1494 unsigned int f_objidx; 1495 int class_idx; 1496 struct size_class *class; 1497 enum fullness_group fullness; 1498 bool isolated; 1499 1500 if (unlikely(!handle)) 1501 return; 1502 1503 pin_tag(handle); 1504 obj = handle_to_obj(handle); 1505 obj_to_location(obj, &f_page, &f_objidx); 1506 zspage = get_zspage(f_page); 1507 1508 migrate_read_lock(zspage); 1509 1510 get_zspage_mapping(zspage, &class_idx, &fullness); 1511 class = pool->size_class[class_idx]; 1512 1513 spin_lock(&class->lock); 1514 obj_free(class, obj); 1515 fullness = fix_fullness_group(class, zspage); 1516 if (fullness != ZS_EMPTY) { 1517 migrate_read_unlock(zspage); 1518 goto out; 1519 } 1520 1521 isolated = is_zspage_isolated(zspage); 1522 migrate_read_unlock(zspage); 1523 /* If zspage is isolated, zs_page_putback will free the zspage */ 1524 if (likely(!isolated)) 1525 free_zspage(pool, class, zspage); 1526 out: 1527 1528 spin_unlock(&class->lock); 1529 unpin_tag(handle); 1530 cache_free_handle(pool, handle); 1531 } 1532 EXPORT_SYMBOL_GPL(zs_free); 1533 1534 static void zs_object_copy(struct size_class *class, unsigned long dst, 1535 unsigned long src) 1536 { 1537 struct page *s_page, *d_page; 1538 unsigned int s_objidx, d_objidx; 1539 unsigned long s_off, d_off; 1540 void *s_addr, *d_addr; 1541 int s_size, d_size, size; 1542 int written = 0; 1543 1544 s_size = d_size = class->size; 1545 1546 obj_to_location(src, &s_page, &s_objidx); 1547 obj_to_location(dst, &d_page, &d_objidx); 1548 1549 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1550 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1551 1552 if (s_off + class->size > PAGE_SIZE) 1553 s_size = PAGE_SIZE - s_off; 1554 1555 if (d_off + class->size > PAGE_SIZE) 1556 d_size = PAGE_SIZE - d_off; 1557 1558 s_addr = kmap_atomic(s_page); 1559 d_addr = kmap_atomic(d_page); 1560 1561 while (1) { 1562 size = min(s_size, d_size); 1563 memcpy(d_addr + d_off, s_addr + s_off, size); 1564 written += size; 1565 1566 if (written == class->size) 1567 break; 1568 1569 s_off += size; 1570 s_size -= size; 1571 d_off += size; 1572 d_size -= size; 1573 1574 if (s_off >= PAGE_SIZE) { 1575 kunmap_atomic(d_addr); 1576 kunmap_atomic(s_addr); 1577 s_page = get_next_page(s_page); 1578 s_addr = kmap_atomic(s_page); 1579 d_addr = kmap_atomic(d_page); 1580 s_size = class->size - written; 1581 s_off = 0; 1582 } 1583 1584 if (d_off >= PAGE_SIZE) { 1585 kunmap_atomic(d_addr); 1586 d_page = get_next_page(d_page); 1587 d_addr = kmap_atomic(d_page); 1588 d_size = class->size - written; 1589 d_off = 0; 1590 } 1591 } 1592 1593 kunmap_atomic(d_addr); 1594 kunmap_atomic(s_addr); 1595 } 1596 1597 /* 1598 * Find alloced object in zspage from index object and 1599 * return handle. 1600 */ 1601 static unsigned long find_alloced_obj(struct size_class *class, 1602 struct page *page, int *obj_idx) 1603 { 1604 unsigned long head; 1605 int offset = 0; 1606 int index = *obj_idx; 1607 unsigned long handle = 0; 1608 void *addr = kmap_atomic(page); 1609 1610 offset = get_first_obj_offset(page); 1611 offset += class->size * index; 1612 1613 while (offset < PAGE_SIZE) { 1614 head = obj_to_head(page, addr + offset); 1615 if (head & OBJ_ALLOCATED_TAG) { 1616 handle = head & ~OBJ_ALLOCATED_TAG; 1617 if (trypin_tag(handle)) 1618 break; 1619 handle = 0; 1620 } 1621 1622 offset += class->size; 1623 index++; 1624 } 1625 1626 kunmap_atomic(addr); 1627 1628 *obj_idx = index; 1629 1630 return handle; 1631 } 1632 1633 struct zs_compact_control { 1634 /* Source spage for migration which could be a subpage of zspage */ 1635 struct page *s_page; 1636 /* Destination page for migration which should be a first page 1637 * of zspage. */ 1638 struct page *d_page; 1639 /* Starting object index within @s_page which used for live object 1640 * in the subpage. */ 1641 int obj_idx; 1642 }; 1643 1644 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1645 struct zs_compact_control *cc) 1646 { 1647 unsigned long used_obj, free_obj; 1648 unsigned long handle; 1649 struct page *s_page = cc->s_page; 1650 struct page *d_page = cc->d_page; 1651 int obj_idx = cc->obj_idx; 1652 int ret = 0; 1653 1654 while (1) { 1655 handle = find_alloced_obj(class, s_page, &obj_idx); 1656 if (!handle) { 1657 s_page = get_next_page(s_page); 1658 if (!s_page) 1659 break; 1660 obj_idx = 0; 1661 continue; 1662 } 1663 1664 /* Stop if there is no more space */ 1665 if (zspage_full(class, get_zspage(d_page))) { 1666 unpin_tag(handle); 1667 ret = -ENOMEM; 1668 break; 1669 } 1670 1671 used_obj = handle_to_obj(handle); 1672 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1673 zs_object_copy(class, free_obj, used_obj); 1674 obj_idx++; 1675 /* 1676 * record_obj updates handle's value to free_obj and it will 1677 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1678 * breaks synchronization using pin_tag(e,g, zs_free) so 1679 * let's keep the lock bit. 1680 */ 1681 free_obj |= BIT(HANDLE_PIN_BIT); 1682 record_obj(handle, free_obj); 1683 unpin_tag(handle); 1684 obj_free(class, used_obj); 1685 } 1686 1687 /* Remember last position in this iteration */ 1688 cc->s_page = s_page; 1689 cc->obj_idx = obj_idx; 1690 1691 return ret; 1692 } 1693 1694 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1695 { 1696 int i; 1697 struct zspage *zspage; 1698 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1699 1700 if (!source) { 1701 fg[0] = ZS_ALMOST_FULL; 1702 fg[1] = ZS_ALMOST_EMPTY; 1703 } 1704 1705 for (i = 0; i < 2; i++) { 1706 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1707 struct zspage, list); 1708 if (zspage) { 1709 VM_BUG_ON(is_zspage_isolated(zspage)); 1710 remove_zspage(class, zspage, fg[i]); 1711 return zspage; 1712 } 1713 } 1714 1715 return zspage; 1716 } 1717 1718 /* 1719 * putback_zspage - add @zspage into right class's fullness list 1720 * @class: destination class 1721 * @zspage: target page 1722 * 1723 * Return @zspage's fullness_group 1724 */ 1725 static enum fullness_group putback_zspage(struct size_class *class, 1726 struct zspage *zspage) 1727 { 1728 enum fullness_group fullness; 1729 1730 VM_BUG_ON(is_zspage_isolated(zspage)); 1731 1732 fullness = get_fullness_group(class, zspage); 1733 insert_zspage(class, zspage, fullness); 1734 set_zspage_mapping(zspage, class->index, fullness); 1735 1736 return fullness; 1737 } 1738 1739 #ifdef CONFIG_COMPACTION 1740 /* 1741 * To prevent zspage destroy during migration, zspage freeing should 1742 * hold locks of all pages in the zspage. 1743 */ 1744 static void lock_zspage(struct zspage *zspage) 1745 { 1746 struct page *page = get_first_page(zspage); 1747 1748 do { 1749 lock_page(page); 1750 } while ((page = get_next_page(page)) != NULL); 1751 } 1752 1753 static int zs_init_fs_context(struct fs_context *fc) 1754 { 1755 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1756 } 1757 1758 static struct file_system_type zsmalloc_fs = { 1759 .name = "zsmalloc", 1760 .init_fs_context = zs_init_fs_context, 1761 .kill_sb = kill_anon_super, 1762 }; 1763 1764 static int zsmalloc_mount(void) 1765 { 1766 int ret = 0; 1767 1768 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1769 if (IS_ERR(zsmalloc_mnt)) 1770 ret = PTR_ERR(zsmalloc_mnt); 1771 1772 return ret; 1773 } 1774 1775 static void zsmalloc_unmount(void) 1776 { 1777 kern_unmount(zsmalloc_mnt); 1778 } 1779 1780 static void migrate_lock_init(struct zspage *zspage) 1781 { 1782 rwlock_init(&zspage->lock); 1783 } 1784 1785 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1786 { 1787 read_lock(&zspage->lock); 1788 } 1789 1790 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1791 { 1792 read_unlock(&zspage->lock); 1793 } 1794 1795 static void migrate_write_lock(struct zspage *zspage) 1796 { 1797 write_lock(&zspage->lock); 1798 } 1799 1800 static void migrate_write_unlock(struct zspage *zspage) 1801 { 1802 write_unlock(&zspage->lock); 1803 } 1804 1805 /* Number of isolated subpage for *page migration* in this zspage */ 1806 static void inc_zspage_isolation(struct zspage *zspage) 1807 { 1808 zspage->isolated++; 1809 } 1810 1811 static void dec_zspage_isolation(struct zspage *zspage) 1812 { 1813 zspage->isolated--; 1814 } 1815 1816 static void putback_zspage_deferred(struct zs_pool *pool, 1817 struct size_class *class, 1818 struct zspage *zspage) 1819 { 1820 enum fullness_group fg; 1821 1822 fg = putback_zspage(class, zspage); 1823 if (fg == ZS_EMPTY) 1824 schedule_work(&pool->free_work); 1825 1826 } 1827 1828 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1829 { 1830 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1831 atomic_long_dec(&pool->isolated_pages); 1832 /* 1833 * There's no possibility of racing, since wait_for_isolated_drain() 1834 * checks the isolated count under &class->lock after enqueuing 1835 * on migration_wait. 1836 */ 1837 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1838 wake_up_all(&pool->migration_wait); 1839 } 1840 1841 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1842 struct page *newpage, struct page *oldpage) 1843 { 1844 struct page *page; 1845 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1846 int idx = 0; 1847 1848 page = get_first_page(zspage); 1849 do { 1850 if (page == oldpage) 1851 pages[idx] = newpage; 1852 else 1853 pages[idx] = page; 1854 idx++; 1855 } while ((page = get_next_page(page)) != NULL); 1856 1857 create_page_chain(class, zspage, pages); 1858 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1859 if (unlikely(PageHugeObject(oldpage))) 1860 newpage->index = oldpage->index; 1861 __SetPageMovable(newpage, page_mapping(oldpage)); 1862 } 1863 1864 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1865 { 1866 struct zs_pool *pool; 1867 struct size_class *class; 1868 int class_idx; 1869 enum fullness_group fullness; 1870 struct zspage *zspage; 1871 struct address_space *mapping; 1872 1873 /* 1874 * Page is locked so zspage couldn't be destroyed. For detail, look at 1875 * lock_zspage in free_zspage. 1876 */ 1877 VM_BUG_ON_PAGE(!PageMovable(page), page); 1878 VM_BUG_ON_PAGE(PageIsolated(page), page); 1879 1880 zspage = get_zspage(page); 1881 1882 /* 1883 * Without class lock, fullness could be stale while class_idx is okay 1884 * because class_idx is constant unless page is freed so we should get 1885 * fullness again under class lock. 1886 */ 1887 get_zspage_mapping(zspage, &class_idx, &fullness); 1888 mapping = page_mapping(page); 1889 pool = mapping->private_data; 1890 class = pool->size_class[class_idx]; 1891 1892 spin_lock(&class->lock); 1893 if (get_zspage_inuse(zspage) == 0) { 1894 spin_unlock(&class->lock); 1895 return false; 1896 } 1897 1898 /* zspage is isolated for object migration */ 1899 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1900 spin_unlock(&class->lock); 1901 return false; 1902 } 1903 1904 /* 1905 * If this is first time isolation for the zspage, isolate zspage from 1906 * size_class to prevent further object allocation from the zspage. 1907 */ 1908 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1909 get_zspage_mapping(zspage, &class_idx, &fullness); 1910 atomic_long_inc(&pool->isolated_pages); 1911 remove_zspage(class, zspage, fullness); 1912 } 1913 1914 inc_zspage_isolation(zspage); 1915 spin_unlock(&class->lock); 1916 1917 return true; 1918 } 1919 1920 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1921 struct page *page, enum migrate_mode mode) 1922 { 1923 struct zs_pool *pool; 1924 struct size_class *class; 1925 int class_idx; 1926 enum fullness_group fullness; 1927 struct zspage *zspage; 1928 struct page *dummy; 1929 void *s_addr, *d_addr, *addr; 1930 int offset, pos; 1931 unsigned long handle, head; 1932 unsigned long old_obj, new_obj; 1933 unsigned int obj_idx; 1934 int ret = -EAGAIN; 1935 1936 /* 1937 * We cannot support the _NO_COPY case here, because copy needs to 1938 * happen under the zs lock, which does not work with 1939 * MIGRATE_SYNC_NO_COPY workflow. 1940 */ 1941 if (mode == MIGRATE_SYNC_NO_COPY) 1942 return -EINVAL; 1943 1944 VM_BUG_ON_PAGE(!PageMovable(page), page); 1945 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1946 1947 zspage = get_zspage(page); 1948 1949 /* Concurrent compactor cannot migrate any subpage in zspage */ 1950 migrate_write_lock(zspage); 1951 get_zspage_mapping(zspage, &class_idx, &fullness); 1952 pool = mapping->private_data; 1953 class = pool->size_class[class_idx]; 1954 offset = get_first_obj_offset(page); 1955 1956 spin_lock(&class->lock); 1957 if (!get_zspage_inuse(zspage)) { 1958 /* 1959 * Set "offset" to end of the page so that every loops 1960 * skips unnecessary object scanning. 1961 */ 1962 offset = PAGE_SIZE; 1963 } 1964 1965 pos = offset; 1966 s_addr = kmap_atomic(page); 1967 while (pos < PAGE_SIZE) { 1968 head = obj_to_head(page, s_addr + pos); 1969 if (head & OBJ_ALLOCATED_TAG) { 1970 handle = head & ~OBJ_ALLOCATED_TAG; 1971 if (!trypin_tag(handle)) 1972 goto unpin_objects; 1973 } 1974 pos += class->size; 1975 } 1976 1977 /* 1978 * Here, any user cannot access all objects in the zspage so let's move. 1979 */ 1980 d_addr = kmap_atomic(newpage); 1981 memcpy(d_addr, s_addr, PAGE_SIZE); 1982 kunmap_atomic(d_addr); 1983 1984 for (addr = s_addr + offset; addr < s_addr + pos; 1985 addr += class->size) { 1986 head = obj_to_head(page, addr); 1987 if (head & OBJ_ALLOCATED_TAG) { 1988 handle = head & ~OBJ_ALLOCATED_TAG; 1989 BUG_ON(!testpin_tag(handle)); 1990 1991 old_obj = handle_to_obj(handle); 1992 obj_to_location(old_obj, &dummy, &obj_idx); 1993 new_obj = (unsigned long)location_to_obj(newpage, 1994 obj_idx); 1995 new_obj |= BIT(HANDLE_PIN_BIT); 1996 record_obj(handle, new_obj); 1997 } 1998 } 1999 2000 replace_sub_page(class, zspage, newpage, page); 2001 get_page(newpage); 2002 2003 dec_zspage_isolation(zspage); 2004 2005 /* 2006 * Page migration is done so let's putback isolated zspage to 2007 * the list if @page is final isolated subpage in the zspage. 2008 */ 2009 if (!is_zspage_isolated(zspage)) { 2010 /* 2011 * We cannot race with zs_destroy_pool() here because we wait 2012 * for isolation to hit zero before we start destroying. 2013 * Also, we ensure that everyone can see pool->destroying before 2014 * we start waiting. 2015 */ 2016 putback_zspage_deferred(pool, class, zspage); 2017 zs_pool_dec_isolated(pool); 2018 } 2019 2020 if (page_zone(newpage) != page_zone(page)) { 2021 dec_zone_page_state(page, NR_ZSPAGES); 2022 inc_zone_page_state(newpage, NR_ZSPAGES); 2023 } 2024 2025 reset_page(page); 2026 put_page(page); 2027 page = newpage; 2028 2029 ret = MIGRATEPAGE_SUCCESS; 2030 unpin_objects: 2031 for (addr = s_addr + offset; addr < s_addr + pos; 2032 addr += class->size) { 2033 head = obj_to_head(page, addr); 2034 if (head & OBJ_ALLOCATED_TAG) { 2035 handle = head & ~OBJ_ALLOCATED_TAG; 2036 BUG_ON(!testpin_tag(handle)); 2037 unpin_tag(handle); 2038 } 2039 } 2040 kunmap_atomic(s_addr); 2041 spin_unlock(&class->lock); 2042 migrate_write_unlock(zspage); 2043 2044 return ret; 2045 } 2046 2047 static void zs_page_putback(struct page *page) 2048 { 2049 struct zs_pool *pool; 2050 struct size_class *class; 2051 int class_idx; 2052 enum fullness_group fg; 2053 struct address_space *mapping; 2054 struct zspage *zspage; 2055 2056 VM_BUG_ON_PAGE(!PageMovable(page), page); 2057 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2058 2059 zspage = get_zspage(page); 2060 get_zspage_mapping(zspage, &class_idx, &fg); 2061 mapping = page_mapping(page); 2062 pool = mapping->private_data; 2063 class = pool->size_class[class_idx]; 2064 2065 spin_lock(&class->lock); 2066 dec_zspage_isolation(zspage); 2067 if (!is_zspage_isolated(zspage)) { 2068 /* 2069 * Due to page_lock, we cannot free zspage immediately 2070 * so let's defer. 2071 */ 2072 putback_zspage_deferred(pool, class, zspage); 2073 zs_pool_dec_isolated(pool); 2074 } 2075 spin_unlock(&class->lock); 2076 } 2077 2078 static const struct address_space_operations zsmalloc_aops = { 2079 .isolate_page = zs_page_isolate, 2080 .migratepage = zs_page_migrate, 2081 .putback_page = zs_page_putback, 2082 }; 2083 2084 static int zs_register_migration(struct zs_pool *pool) 2085 { 2086 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2087 if (IS_ERR(pool->inode)) { 2088 pool->inode = NULL; 2089 return 1; 2090 } 2091 2092 pool->inode->i_mapping->private_data = pool; 2093 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2094 return 0; 2095 } 2096 2097 static bool pool_isolated_are_drained(struct zs_pool *pool) 2098 { 2099 return atomic_long_read(&pool->isolated_pages) == 0; 2100 } 2101 2102 /* Function for resolving migration */ 2103 static void wait_for_isolated_drain(struct zs_pool *pool) 2104 { 2105 2106 /* 2107 * We're in the process of destroying the pool, so there are no 2108 * active allocations. zs_page_isolate() fails for completely free 2109 * zspages, so we need only wait for the zs_pool's isolated 2110 * count to hit zero. 2111 */ 2112 wait_event(pool->migration_wait, 2113 pool_isolated_are_drained(pool)); 2114 } 2115 2116 static void zs_unregister_migration(struct zs_pool *pool) 2117 { 2118 pool->destroying = true; 2119 /* 2120 * We need a memory barrier here to ensure global visibility of 2121 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2122 * case we don't care, or it will be > 0 and pool->destroying will 2123 * ensure that we wake up once isolation hits 0. 2124 */ 2125 smp_mb(); 2126 wait_for_isolated_drain(pool); /* This can block */ 2127 flush_work(&pool->free_work); 2128 iput(pool->inode); 2129 } 2130 2131 /* 2132 * Caller should hold page_lock of all pages in the zspage 2133 * In here, we cannot use zspage meta data. 2134 */ 2135 static void async_free_zspage(struct work_struct *work) 2136 { 2137 int i; 2138 struct size_class *class; 2139 unsigned int class_idx; 2140 enum fullness_group fullness; 2141 struct zspage *zspage, *tmp; 2142 LIST_HEAD(free_pages); 2143 struct zs_pool *pool = container_of(work, struct zs_pool, 2144 free_work); 2145 2146 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2147 class = pool->size_class[i]; 2148 if (class->index != i) 2149 continue; 2150 2151 spin_lock(&class->lock); 2152 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2153 spin_unlock(&class->lock); 2154 } 2155 2156 2157 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2158 list_del(&zspage->list); 2159 lock_zspage(zspage); 2160 2161 get_zspage_mapping(zspage, &class_idx, &fullness); 2162 VM_BUG_ON(fullness != ZS_EMPTY); 2163 class = pool->size_class[class_idx]; 2164 spin_lock(&class->lock); 2165 __free_zspage(pool, class, zspage); 2166 spin_unlock(&class->lock); 2167 } 2168 }; 2169 2170 static void kick_deferred_free(struct zs_pool *pool) 2171 { 2172 schedule_work(&pool->free_work); 2173 } 2174 2175 static void init_deferred_free(struct zs_pool *pool) 2176 { 2177 INIT_WORK(&pool->free_work, async_free_zspage); 2178 } 2179 2180 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2181 { 2182 struct page *page = get_first_page(zspage); 2183 2184 do { 2185 WARN_ON(!trylock_page(page)); 2186 __SetPageMovable(page, pool->inode->i_mapping); 2187 unlock_page(page); 2188 } while ((page = get_next_page(page)) != NULL); 2189 } 2190 #endif 2191 2192 /* 2193 * 2194 * Based on the number of unused allocated objects calculate 2195 * and return the number of pages that we can free. 2196 */ 2197 static unsigned long zs_can_compact(struct size_class *class) 2198 { 2199 unsigned long obj_wasted; 2200 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2201 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2202 2203 if (obj_allocated <= obj_used) 2204 return 0; 2205 2206 obj_wasted = obj_allocated - obj_used; 2207 obj_wasted /= class->objs_per_zspage; 2208 2209 return obj_wasted * class->pages_per_zspage; 2210 } 2211 2212 static unsigned long __zs_compact(struct zs_pool *pool, 2213 struct size_class *class) 2214 { 2215 struct zs_compact_control cc; 2216 struct zspage *src_zspage; 2217 struct zspage *dst_zspage = NULL; 2218 unsigned long pages_freed = 0; 2219 2220 spin_lock(&class->lock); 2221 while ((src_zspage = isolate_zspage(class, true))) { 2222 2223 if (!zs_can_compact(class)) 2224 break; 2225 2226 cc.obj_idx = 0; 2227 cc.s_page = get_first_page(src_zspage); 2228 2229 while ((dst_zspage = isolate_zspage(class, false))) { 2230 cc.d_page = get_first_page(dst_zspage); 2231 /* 2232 * If there is no more space in dst_page, resched 2233 * and see if anyone had allocated another zspage. 2234 */ 2235 if (!migrate_zspage(pool, class, &cc)) 2236 break; 2237 2238 putback_zspage(class, dst_zspage); 2239 } 2240 2241 /* Stop if we couldn't find slot */ 2242 if (dst_zspage == NULL) 2243 break; 2244 2245 putback_zspage(class, dst_zspage); 2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2247 free_zspage(pool, class, src_zspage); 2248 pages_freed += class->pages_per_zspage; 2249 } 2250 spin_unlock(&class->lock); 2251 cond_resched(); 2252 spin_lock(&class->lock); 2253 } 2254 2255 if (src_zspage) 2256 putback_zspage(class, src_zspage); 2257 2258 spin_unlock(&class->lock); 2259 2260 return pages_freed; 2261 } 2262 2263 unsigned long zs_compact(struct zs_pool *pool) 2264 { 2265 int i; 2266 struct size_class *class; 2267 unsigned long pages_freed = 0; 2268 2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2270 class = pool->size_class[i]; 2271 if (!class) 2272 continue; 2273 if (class->index != i) 2274 continue; 2275 pages_freed += __zs_compact(pool, class); 2276 } 2277 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2278 2279 return pages_freed; 2280 } 2281 EXPORT_SYMBOL_GPL(zs_compact); 2282 2283 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2284 { 2285 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2286 } 2287 EXPORT_SYMBOL_GPL(zs_pool_stats); 2288 2289 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2290 struct shrink_control *sc) 2291 { 2292 unsigned long pages_freed; 2293 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2294 shrinker); 2295 2296 /* 2297 * Compact classes and calculate compaction delta. 2298 * Can run concurrently with a manually triggered 2299 * (by user) compaction. 2300 */ 2301 pages_freed = zs_compact(pool); 2302 2303 return pages_freed ? pages_freed : SHRINK_STOP; 2304 } 2305 2306 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2307 struct shrink_control *sc) 2308 { 2309 int i; 2310 struct size_class *class; 2311 unsigned long pages_to_free = 0; 2312 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2313 shrinker); 2314 2315 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2316 class = pool->size_class[i]; 2317 if (!class) 2318 continue; 2319 if (class->index != i) 2320 continue; 2321 2322 pages_to_free += zs_can_compact(class); 2323 } 2324 2325 return pages_to_free; 2326 } 2327 2328 static void zs_unregister_shrinker(struct zs_pool *pool) 2329 { 2330 unregister_shrinker(&pool->shrinker); 2331 } 2332 2333 static int zs_register_shrinker(struct zs_pool *pool) 2334 { 2335 pool->shrinker.scan_objects = zs_shrinker_scan; 2336 pool->shrinker.count_objects = zs_shrinker_count; 2337 pool->shrinker.batch = 0; 2338 pool->shrinker.seeks = DEFAULT_SEEKS; 2339 2340 return register_shrinker(&pool->shrinker); 2341 } 2342 2343 /** 2344 * zs_create_pool - Creates an allocation pool to work from. 2345 * @name: pool name to be created 2346 * 2347 * This function must be called before anything when using 2348 * the zsmalloc allocator. 2349 * 2350 * On success, a pointer to the newly created pool is returned, 2351 * otherwise NULL. 2352 */ 2353 struct zs_pool *zs_create_pool(const char *name) 2354 { 2355 int i; 2356 struct zs_pool *pool; 2357 struct size_class *prev_class = NULL; 2358 2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2360 if (!pool) 2361 return NULL; 2362 2363 init_deferred_free(pool); 2364 2365 pool->name = kstrdup(name, GFP_KERNEL); 2366 if (!pool->name) 2367 goto err; 2368 2369 #ifdef CONFIG_COMPACTION 2370 init_waitqueue_head(&pool->migration_wait); 2371 #endif 2372 2373 if (create_cache(pool)) 2374 goto err; 2375 2376 /* 2377 * Iterate reversely, because, size of size_class that we want to use 2378 * for merging should be larger or equal to current size. 2379 */ 2380 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2381 int size; 2382 int pages_per_zspage; 2383 int objs_per_zspage; 2384 struct size_class *class; 2385 int fullness = 0; 2386 2387 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2388 if (size > ZS_MAX_ALLOC_SIZE) 2389 size = ZS_MAX_ALLOC_SIZE; 2390 pages_per_zspage = get_pages_per_zspage(size); 2391 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2392 2393 /* 2394 * We iterate from biggest down to smallest classes, 2395 * so huge_class_size holds the size of the first huge 2396 * class. Any object bigger than or equal to that will 2397 * endup in the huge class. 2398 */ 2399 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2400 !huge_class_size) { 2401 huge_class_size = size; 2402 /* 2403 * The object uses ZS_HANDLE_SIZE bytes to store the 2404 * handle. We need to subtract it, because zs_malloc() 2405 * unconditionally adds handle size before it performs 2406 * size class search - so object may be smaller than 2407 * huge class size, yet it still can end up in the huge 2408 * class because it grows by ZS_HANDLE_SIZE extra bytes 2409 * right before class lookup. 2410 */ 2411 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2412 } 2413 2414 /* 2415 * size_class is used for normal zsmalloc operation such 2416 * as alloc/free for that size. Although it is natural that we 2417 * have one size_class for each size, there is a chance that we 2418 * can get more memory utilization if we use one size_class for 2419 * many different sizes whose size_class have same 2420 * characteristics. So, we makes size_class point to 2421 * previous size_class if possible. 2422 */ 2423 if (prev_class) { 2424 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2425 pool->size_class[i] = prev_class; 2426 continue; 2427 } 2428 } 2429 2430 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2431 if (!class) 2432 goto err; 2433 2434 class->size = size; 2435 class->index = i; 2436 class->pages_per_zspage = pages_per_zspage; 2437 class->objs_per_zspage = objs_per_zspage; 2438 spin_lock_init(&class->lock); 2439 pool->size_class[i] = class; 2440 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2441 fullness++) 2442 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2443 2444 prev_class = class; 2445 } 2446 2447 /* debug only, don't abort if it fails */ 2448 zs_pool_stat_create(pool, name); 2449 2450 if (zs_register_migration(pool)) 2451 goto err; 2452 2453 /* 2454 * Not critical since shrinker is only used to trigger internal 2455 * defragmentation of the pool which is pretty optional thing. If 2456 * registration fails we still can use the pool normally and user can 2457 * trigger compaction manually. Thus, ignore return code. 2458 */ 2459 zs_register_shrinker(pool); 2460 2461 return pool; 2462 2463 err: 2464 zs_destroy_pool(pool); 2465 return NULL; 2466 } 2467 EXPORT_SYMBOL_GPL(zs_create_pool); 2468 2469 void zs_destroy_pool(struct zs_pool *pool) 2470 { 2471 int i; 2472 2473 zs_unregister_shrinker(pool); 2474 zs_unregister_migration(pool); 2475 zs_pool_stat_destroy(pool); 2476 2477 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2478 int fg; 2479 struct size_class *class = pool->size_class[i]; 2480 2481 if (!class) 2482 continue; 2483 2484 if (class->index != i) 2485 continue; 2486 2487 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2488 if (!list_empty(&class->fullness_list[fg])) { 2489 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2490 class->size, fg); 2491 } 2492 } 2493 kfree(class); 2494 } 2495 2496 destroy_cache(pool); 2497 kfree(pool->name); 2498 kfree(pool); 2499 } 2500 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2501 2502 static int __init zs_init(void) 2503 { 2504 int ret; 2505 2506 ret = zsmalloc_mount(); 2507 if (ret) 2508 goto out; 2509 2510 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2511 zs_cpu_prepare, zs_cpu_dead); 2512 if (ret) 2513 goto hp_setup_fail; 2514 2515 #ifdef CONFIG_ZPOOL 2516 zpool_register_driver(&zs_zpool_driver); 2517 #endif 2518 2519 zs_stat_init(); 2520 2521 return 0; 2522 2523 hp_setup_fail: 2524 zsmalloc_unmount(); 2525 out: 2526 return ret; 2527 } 2528 2529 static void __exit zs_exit(void) 2530 { 2531 #ifdef CONFIG_ZPOOL 2532 zpool_unregister_driver(&zs_zpool_driver); 2533 #endif 2534 zsmalloc_unmount(); 2535 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2536 2537 zs_stat_exit(); 2538 } 2539 2540 module_init(zs_init); 2541 module_exit(zs_exit); 2542 2543 MODULE_LICENSE("Dual BSD/GPL"); 2544 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2545