1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * This allocator is designed for use with zram. Thus, the allocator is 16 * supposed to work well under low memory conditions. In particular, it 17 * never attempts higher order page allocation which is very likely to 18 * fail under memory pressure. On the other hand, if we just use single 19 * (0-order) pages, it would suffer from very high fragmentation -- 20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page. 21 * This was one of the major issues with its predecessor (xvmalloc). 22 * 23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages 24 * and links them together using various 'struct page' fields. These linked 25 * pages act as a single higher-order page i.e. an object can span 0-order 26 * page boundaries. The code refers to these linked pages as a single entity 27 * called zspage. 28 * 29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE 30 * since this satisfies the requirements of all its current users (in the 31 * worst case, page is incompressible and is thus stored "as-is" i.e. in 32 * uncompressed form). For allocation requests larger than this size, failure 33 * is returned (see zs_malloc). 34 * 35 * Additionally, zs_malloc() does not return a dereferenceable pointer. 36 * Instead, it returns an opaque handle (unsigned long) which encodes actual 37 * location of the allocated object. The reason for this indirection is that 38 * zsmalloc does not keep zspages permanently mapped since that would cause 39 * issues on 32-bit systems where the VA region for kernel space mappings 40 * is very small. So, before using the allocating memory, the object has to 41 * be mapped using zs_map_object() to get a usable pointer and subsequently 42 * unmapped using zs_unmap_object(). 43 * 44 * Following is how we use various fields and flags of underlying 45 * struct page(s) to form a zspage. 46 * 47 * Usage of struct page fields: 48 * page->first_page: points to the first component (0-order) page 49 * page->index (union with page->freelist): offset of the first object 50 * starting in this page. For the first page, this is 51 * always 0, so we use this field (aka freelist) to point 52 * to the first free object in zspage. 53 * page->lru: links together all component pages (except the first page) 54 * of a zspage 55 * 56 * For _first_ page only: 57 * 58 * page->private (union with page->first_page): refers to the 59 * component page after the first page 60 * page->freelist: points to the first free object in zspage. 61 * Free objects are linked together using in-place 62 * metadata. 63 * page->objects: maximum number of objects we can store in this 64 * zspage (class->zspage_order * PAGE_SIZE / class->size) 65 * page->lru: links together first pages of various zspages. 66 * Basically forming list of zspages in a fullness group. 67 * page->mapping: class index and fullness group of the zspage 68 * 69 * Usage of struct page flags: 70 * PG_private: identifies the first component page 71 * PG_private2: identifies the last component page 72 * 73 */ 74 75 #ifdef CONFIG_ZSMALLOC_DEBUG 76 #define DEBUG 77 #endif 78 79 #include <linux/module.h> 80 #include <linux/kernel.h> 81 #include <linux/bitops.h> 82 #include <linux/errno.h> 83 #include <linux/highmem.h> 84 #include <linux/string.h> 85 #include <linux/slab.h> 86 #include <asm/tlbflush.h> 87 #include <asm/pgtable.h> 88 #include <linux/cpumask.h> 89 #include <linux/cpu.h> 90 #include <linux/vmalloc.h> 91 #include <linux/hardirq.h> 92 #include <linux/spinlock.h> 93 #include <linux/types.h> 94 #include <linux/zsmalloc.h> 95 96 /* 97 * This must be power of 2 and greater than of equal to sizeof(link_free). 98 * These two conditions ensure that any 'struct link_free' itself doesn't 99 * span more than 1 page which avoids complex case of mapping 2 pages simply 100 * to restore link_free pointer values. 101 */ 102 #define ZS_ALIGN 8 103 104 /* 105 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 106 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 107 */ 108 #define ZS_MAX_ZSPAGE_ORDER 2 109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 110 111 /* 112 * Object location (<PFN>, <obj_idx>) is encoded as 113 * as single (unsigned long) handle value. 114 * 115 * Note that object index <obj_idx> is relative to system 116 * page <PFN> it is stored in, so for each sub-page belonging 117 * to a zspage, obj_idx starts with 0. 118 * 119 * This is made more complicated by various memory models and PAE. 120 */ 121 122 #ifndef MAX_PHYSMEM_BITS 123 #ifdef CONFIG_HIGHMEM64G 124 #define MAX_PHYSMEM_BITS 36 125 #else /* !CONFIG_HIGHMEM64G */ 126 /* 127 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 128 * be PAGE_SHIFT 129 */ 130 #define MAX_PHYSMEM_BITS BITS_PER_LONG 131 #endif 132 #endif 133 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 134 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 135 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 136 137 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 138 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 139 #define ZS_MIN_ALLOC_SIZE \ 140 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 141 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 142 143 /* 144 * On systems with 4K page size, this gives 254 size classes! There is a 145 * trader-off here: 146 * - Large number of size classes is potentially wasteful as free page are 147 * spread across these classes 148 * - Small number of size classes causes large internal fragmentation 149 * - Probably its better to use specific size classes (empirically 150 * determined). NOTE: all those class sizes must be set as multiple of 151 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 152 * 153 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 154 * (reason above) 155 */ 156 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) 157 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ 158 ZS_SIZE_CLASS_DELTA + 1) 159 160 /* 161 * We do not maintain any list for completely empty or full pages 162 */ 163 enum fullness_group { 164 ZS_ALMOST_FULL, 165 ZS_ALMOST_EMPTY, 166 _ZS_NR_FULLNESS_GROUPS, 167 168 ZS_EMPTY, 169 ZS_FULL 170 }; 171 172 /* 173 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 174 * n <= N / f, where 175 * n = number of allocated objects 176 * N = total number of objects zspage can store 177 * f = 1/fullness_threshold_frac 178 * 179 * Similarly, we assign zspage to: 180 * ZS_ALMOST_FULL when n > N / f 181 * ZS_EMPTY when n == 0 182 * ZS_FULL when n == N 183 * 184 * (see: fix_fullness_group()) 185 */ 186 static const int fullness_threshold_frac = 4; 187 188 struct size_class { 189 /* 190 * Size of objects stored in this class. Must be multiple 191 * of ZS_ALIGN. 192 */ 193 int size; 194 unsigned int index; 195 196 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 197 int pages_per_zspage; 198 199 spinlock_t lock; 200 201 /* stats */ 202 u64 pages_allocated; 203 204 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; 205 }; 206 207 /* 208 * Placed within free objects to form a singly linked list. 209 * For every zspage, first_page->freelist gives head of this list. 210 * 211 * This must be power of 2 and less than or equal to ZS_ALIGN 212 */ 213 struct link_free { 214 /* Handle of next free chunk (encodes <PFN, obj_idx>) */ 215 void *next; 216 }; 217 218 struct zs_pool { 219 struct size_class size_class[ZS_SIZE_CLASSES]; 220 221 gfp_t flags; /* allocation flags used when growing pool */ 222 }; 223 224 /* 225 * A zspage's class index and fullness group 226 * are encoded in its (first)page->mapping 227 */ 228 #define CLASS_IDX_BITS 28 229 #define FULLNESS_BITS 4 230 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) 231 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) 232 233 struct mapping_area { 234 #ifdef CONFIG_PGTABLE_MAPPING 235 struct vm_struct *vm; /* vm area for mapping object that span pages */ 236 #else 237 char *vm_buf; /* copy buffer for objects that span pages */ 238 #endif 239 char *vm_addr; /* address of kmap_atomic()'ed pages */ 240 enum zs_mapmode vm_mm; /* mapping mode */ 241 }; 242 243 244 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 245 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 246 247 static int is_first_page(struct page *page) 248 { 249 return PagePrivate(page); 250 } 251 252 static int is_last_page(struct page *page) 253 { 254 return PagePrivate2(page); 255 } 256 257 static void get_zspage_mapping(struct page *page, unsigned int *class_idx, 258 enum fullness_group *fullness) 259 { 260 unsigned long m; 261 BUG_ON(!is_first_page(page)); 262 263 m = (unsigned long)page->mapping; 264 *fullness = m & FULLNESS_MASK; 265 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; 266 } 267 268 static void set_zspage_mapping(struct page *page, unsigned int class_idx, 269 enum fullness_group fullness) 270 { 271 unsigned long m; 272 BUG_ON(!is_first_page(page)); 273 274 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | 275 (fullness & FULLNESS_MASK); 276 page->mapping = (struct address_space *)m; 277 } 278 279 /* 280 * zsmalloc divides the pool into various size classes where each 281 * class maintains a list of zspages where each zspage is divided 282 * into equal sized chunks. Each allocation falls into one of these 283 * classes depending on its size. This function returns index of the 284 * size class which has chunk size big enough to hold the give size. 285 */ 286 static int get_size_class_index(int size) 287 { 288 int idx = 0; 289 290 if (likely(size > ZS_MIN_ALLOC_SIZE)) 291 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 292 ZS_SIZE_CLASS_DELTA); 293 294 return idx; 295 } 296 297 /* 298 * For each size class, zspages are divided into different groups 299 * depending on how "full" they are. This was done so that we could 300 * easily find empty or nearly empty zspages when we try to shrink 301 * the pool (not yet implemented). This function returns fullness 302 * status of the given page. 303 */ 304 static enum fullness_group get_fullness_group(struct page *page) 305 { 306 int inuse, max_objects; 307 enum fullness_group fg; 308 BUG_ON(!is_first_page(page)); 309 310 inuse = page->inuse; 311 max_objects = page->objects; 312 313 if (inuse == 0) 314 fg = ZS_EMPTY; 315 else if (inuse == max_objects) 316 fg = ZS_FULL; 317 else if (inuse <= max_objects / fullness_threshold_frac) 318 fg = ZS_ALMOST_EMPTY; 319 else 320 fg = ZS_ALMOST_FULL; 321 322 return fg; 323 } 324 325 /* 326 * Each size class maintains various freelists and zspages are assigned 327 * to one of these freelists based on the number of live objects they 328 * have. This functions inserts the given zspage into the freelist 329 * identified by <class, fullness_group>. 330 */ 331 static void insert_zspage(struct page *page, struct size_class *class, 332 enum fullness_group fullness) 333 { 334 struct page **head; 335 336 BUG_ON(!is_first_page(page)); 337 338 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 339 return; 340 341 head = &class->fullness_list[fullness]; 342 if (*head) 343 list_add_tail(&page->lru, &(*head)->lru); 344 345 *head = page; 346 } 347 348 /* 349 * This function removes the given zspage from the freelist identified 350 * by <class, fullness_group>. 351 */ 352 static void remove_zspage(struct page *page, struct size_class *class, 353 enum fullness_group fullness) 354 { 355 struct page **head; 356 357 BUG_ON(!is_first_page(page)); 358 359 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 360 return; 361 362 head = &class->fullness_list[fullness]; 363 BUG_ON(!*head); 364 if (list_empty(&(*head)->lru)) 365 *head = NULL; 366 else if (*head == page) 367 *head = (struct page *)list_entry((*head)->lru.next, 368 struct page, lru); 369 370 list_del_init(&page->lru); 371 } 372 373 /* 374 * Each size class maintains zspages in different fullness groups depending 375 * on the number of live objects they contain. When allocating or freeing 376 * objects, the fullness status of the page can change, say, from ALMOST_FULL 377 * to ALMOST_EMPTY when freeing an object. This function checks if such 378 * a status change has occurred for the given page and accordingly moves the 379 * page from the freelist of the old fullness group to that of the new 380 * fullness group. 381 */ 382 static enum fullness_group fix_fullness_group(struct zs_pool *pool, 383 struct page *page) 384 { 385 int class_idx; 386 struct size_class *class; 387 enum fullness_group currfg, newfg; 388 389 BUG_ON(!is_first_page(page)); 390 391 get_zspage_mapping(page, &class_idx, &currfg); 392 newfg = get_fullness_group(page); 393 if (newfg == currfg) 394 goto out; 395 396 class = &pool->size_class[class_idx]; 397 remove_zspage(page, class, currfg); 398 insert_zspage(page, class, newfg); 399 set_zspage_mapping(page, class_idx, newfg); 400 401 out: 402 return newfg; 403 } 404 405 /* 406 * We have to decide on how many pages to link together 407 * to form a zspage for each size class. This is important 408 * to reduce wastage due to unusable space left at end of 409 * each zspage which is given as: 410 * wastage = Zp - Zp % size_class 411 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 412 * 413 * For example, for size class of 3/8 * PAGE_SIZE, we should 414 * link together 3 PAGE_SIZE sized pages to form a zspage 415 * since then we can perfectly fit in 8 such objects. 416 */ 417 static int get_pages_per_zspage(int class_size) 418 { 419 int i, max_usedpc = 0; 420 /* zspage order which gives maximum used size per KB */ 421 int max_usedpc_order = 1; 422 423 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 424 int zspage_size; 425 int waste, usedpc; 426 427 zspage_size = i * PAGE_SIZE; 428 waste = zspage_size % class_size; 429 usedpc = (zspage_size - waste) * 100 / zspage_size; 430 431 if (usedpc > max_usedpc) { 432 max_usedpc = usedpc; 433 max_usedpc_order = i; 434 } 435 } 436 437 return max_usedpc_order; 438 } 439 440 /* 441 * A single 'zspage' is composed of many system pages which are 442 * linked together using fields in struct page. This function finds 443 * the first/head page, given any component page of a zspage. 444 */ 445 static struct page *get_first_page(struct page *page) 446 { 447 if (is_first_page(page)) 448 return page; 449 else 450 return page->first_page; 451 } 452 453 static struct page *get_next_page(struct page *page) 454 { 455 struct page *next; 456 457 if (is_last_page(page)) 458 next = NULL; 459 else if (is_first_page(page)) 460 next = (struct page *)page_private(page); 461 else 462 next = list_entry(page->lru.next, struct page, lru); 463 464 return next; 465 } 466 467 /* 468 * Encode <page, obj_idx> as a single handle value. 469 * On hardware platforms with physical memory starting at 0x0 the pfn 470 * could be 0 so we ensure that the handle will never be 0 by adjusting the 471 * encoded obj_idx value before encoding. 472 */ 473 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) 474 { 475 unsigned long handle; 476 477 if (!page) { 478 BUG_ON(obj_idx); 479 return NULL; 480 } 481 482 handle = page_to_pfn(page) << OBJ_INDEX_BITS; 483 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); 484 485 return (void *)handle; 486 } 487 488 /* 489 * Decode <page, obj_idx> pair from the given object handle. We adjust the 490 * decoded obj_idx back to its original value since it was adjusted in 491 * obj_location_to_handle(). 492 */ 493 static void obj_handle_to_location(unsigned long handle, struct page **page, 494 unsigned long *obj_idx) 495 { 496 *page = pfn_to_page(handle >> OBJ_INDEX_BITS); 497 *obj_idx = (handle & OBJ_INDEX_MASK) - 1; 498 } 499 500 static unsigned long obj_idx_to_offset(struct page *page, 501 unsigned long obj_idx, int class_size) 502 { 503 unsigned long off = 0; 504 505 if (!is_first_page(page)) 506 off = page->index; 507 508 return off + obj_idx * class_size; 509 } 510 511 static void reset_page(struct page *page) 512 { 513 clear_bit(PG_private, &page->flags); 514 clear_bit(PG_private_2, &page->flags); 515 set_page_private(page, 0); 516 page->mapping = NULL; 517 page->freelist = NULL; 518 page_mapcount_reset(page); 519 } 520 521 static void free_zspage(struct page *first_page) 522 { 523 struct page *nextp, *tmp, *head_extra; 524 525 BUG_ON(!is_first_page(first_page)); 526 BUG_ON(first_page->inuse); 527 528 head_extra = (struct page *)page_private(first_page); 529 530 reset_page(first_page); 531 __free_page(first_page); 532 533 /* zspage with only 1 system page */ 534 if (!head_extra) 535 return; 536 537 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { 538 list_del(&nextp->lru); 539 reset_page(nextp); 540 __free_page(nextp); 541 } 542 reset_page(head_extra); 543 __free_page(head_extra); 544 } 545 546 /* Initialize a newly allocated zspage */ 547 static void init_zspage(struct page *first_page, struct size_class *class) 548 { 549 unsigned long off = 0; 550 struct page *page = first_page; 551 552 BUG_ON(!is_first_page(first_page)); 553 while (page) { 554 struct page *next_page; 555 struct link_free *link; 556 unsigned int i, objs_on_page; 557 558 /* 559 * page->index stores offset of first object starting 560 * in the page. For the first page, this is always 0, 561 * so we use first_page->index (aka ->freelist) to store 562 * head of corresponding zspage's freelist. 563 */ 564 if (page != first_page) 565 page->index = off; 566 567 link = (struct link_free *)kmap_atomic(page) + 568 off / sizeof(*link); 569 objs_on_page = (PAGE_SIZE - off) / class->size; 570 571 for (i = 1; i <= objs_on_page; i++) { 572 off += class->size; 573 if (off < PAGE_SIZE) { 574 link->next = obj_location_to_handle(page, i); 575 link += class->size / sizeof(*link); 576 } 577 } 578 579 /* 580 * We now come to the last (full or partial) object on this 581 * page, which must point to the first object on the next 582 * page (if present) 583 */ 584 next_page = get_next_page(page); 585 link->next = obj_location_to_handle(next_page, 0); 586 kunmap_atomic(link); 587 page = next_page; 588 off = (off + class->size) % PAGE_SIZE; 589 } 590 } 591 592 /* 593 * Allocate a zspage for the given size class 594 */ 595 static struct page *alloc_zspage(struct size_class *class, gfp_t flags) 596 { 597 int i, error; 598 struct page *first_page = NULL, *uninitialized_var(prev_page); 599 600 /* 601 * Allocate individual pages and link them together as: 602 * 1. first page->private = first sub-page 603 * 2. all sub-pages are linked together using page->lru 604 * 3. each sub-page is linked to the first page using page->first_page 605 * 606 * For each size class, First/Head pages are linked together using 607 * page->lru. Also, we set PG_private to identify the first page 608 * (i.e. no other sub-page has this flag set) and PG_private_2 to 609 * identify the last page. 610 */ 611 error = -ENOMEM; 612 for (i = 0; i < class->pages_per_zspage; i++) { 613 struct page *page; 614 615 page = alloc_page(flags); 616 if (!page) 617 goto cleanup; 618 619 INIT_LIST_HEAD(&page->lru); 620 if (i == 0) { /* first page */ 621 SetPagePrivate(page); 622 set_page_private(page, 0); 623 first_page = page; 624 first_page->inuse = 0; 625 } 626 if (i == 1) 627 set_page_private(first_page, (unsigned long)page); 628 if (i >= 1) 629 page->first_page = first_page; 630 if (i >= 2) 631 list_add(&page->lru, &prev_page->lru); 632 if (i == class->pages_per_zspage - 1) /* last page */ 633 SetPagePrivate2(page); 634 prev_page = page; 635 } 636 637 init_zspage(first_page, class); 638 639 first_page->freelist = obj_location_to_handle(first_page, 0); 640 /* Maximum number of objects we can store in this zspage */ 641 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; 642 643 error = 0; /* Success */ 644 645 cleanup: 646 if (unlikely(error) && first_page) { 647 free_zspage(first_page); 648 first_page = NULL; 649 } 650 651 return first_page; 652 } 653 654 static struct page *find_get_zspage(struct size_class *class) 655 { 656 int i; 657 struct page *page; 658 659 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 660 page = class->fullness_list[i]; 661 if (page) 662 break; 663 } 664 665 return page; 666 } 667 668 #ifdef CONFIG_PGTABLE_MAPPING 669 static inline int __zs_cpu_up(struct mapping_area *area) 670 { 671 /* 672 * Make sure we don't leak memory if a cpu UP notification 673 * and zs_init() race and both call zs_cpu_up() on the same cpu 674 */ 675 if (area->vm) 676 return 0; 677 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 678 if (!area->vm) 679 return -ENOMEM; 680 return 0; 681 } 682 683 static inline void __zs_cpu_down(struct mapping_area *area) 684 { 685 if (area->vm) 686 free_vm_area(area->vm); 687 area->vm = NULL; 688 } 689 690 static inline void *__zs_map_object(struct mapping_area *area, 691 struct page *pages[2], int off, int size) 692 { 693 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages)); 694 area->vm_addr = area->vm->addr; 695 return area->vm_addr + off; 696 } 697 698 static inline void __zs_unmap_object(struct mapping_area *area, 699 struct page *pages[2], int off, int size) 700 { 701 unsigned long addr = (unsigned long)area->vm_addr; 702 703 unmap_kernel_range(addr, PAGE_SIZE * 2); 704 } 705 706 #else /* CONFIG_PGTABLE_MAPPING */ 707 708 static inline int __zs_cpu_up(struct mapping_area *area) 709 { 710 /* 711 * Make sure we don't leak memory if a cpu UP notification 712 * and zs_init() race and both call zs_cpu_up() on the same cpu 713 */ 714 if (area->vm_buf) 715 return 0; 716 area->vm_buf = (char *)__get_free_page(GFP_KERNEL); 717 if (!area->vm_buf) 718 return -ENOMEM; 719 return 0; 720 } 721 722 static inline void __zs_cpu_down(struct mapping_area *area) 723 { 724 if (area->vm_buf) 725 free_page((unsigned long)area->vm_buf); 726 area->vm_buf = NULL; 727 } 728 729 static void *__zs_map_object(struct mapping_area *area, 730 struct page *pages[2], int off, int size) 731 { 732 int sizes[2]; 733 void *addr; 734 char *buf = area->vm_buf; 735 736 /* disable page faults to match kmap_atomic() return conditions */ 737 pagefault_disable(); 738 739 /* no read fastpath */ 740 if (area->vm_mm == ZS_MM_WO) 741 goto out; 742 743 sizes[0] = PAGE_SIZE - off; 744 sizes[1] = size - sizes[0]; 745 746 /* copy object to per-cpu buffer */ 747 addr = kmap_atomic(pages[0]); 748 memcpy(buf, addr + off, sizes[0]); 749 kunmap_atomic(addr); 750 addr = kmap_atomic(pages[1]); 751 memcpy(buf + sizes[0], addr, sizes[1]); 752 kunmap_atomic(addr); 753 out: 754 return area->vm_buf; 755 } 756 757 static void __zs_unmap_object(struct mapping_area *area, 758 struct page *pages[2], int off, int size) 759 { 760 int sizes[2]; 761 void *addr; 762 char *buf = area->vm_buf; 763 764 /* no write fastpath */ 765 if (area->vm_mm == ZS_MM_RO) 766 goto out; 767 768 sizes[0] = PAGE_SIZE - off; 769 sizes[1] = size - sizes[0]; 770 771 /* copy per-cpu buffer to object */ 772 addr = kmap_atomic(pages[0]); 773 memcpy(addr + off, buf, sizes[0]); 774 kunmap_atomic(addr); 775 addr = kmap_atomic(pages[1]); 776 memcpy(addr, buf + sizes[0], sizes[1]); 777 kunmap_atomic(addr); 778 779 out: 780 /* enable page faults to match kunmap_atomic() return conditions */ 781 pagefault_enable(); 782 } 783 784 #endif /* CONFIG_PGTABLE_MAPPING */ 785 786 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 787 void *pcpu) 788 { 789 int ret, cpu = (long)pcpu; 790 struct mapping_area *area; 791 792 switch (action) { 793 case CPU_UP_PREPARE: 794 area = &per_cpu(zs_map_area, cpu); 795 ret = __zs_cpu_up(area); 796 if (ret) 797 return notifier_from_errno(ret); 798 break; 799 case CPU_DEAD: 800 case CPU_UP_CANCELED: 801 area = &per_cpu(zs_map_area, cpu); 802 __zs_cpu_down(area); 803 break; 804 } 805 806 return NOTIFY_OK; 807 } 808 809 static struct notifier_block zs_cpu_nb = { 810 .notifier_call = zs_cpu_notifier 811 }; 812 813 static void zs_exit(void) 814 { 815 int cpu; 816 817 cpu_notifier_register_begin(); 818 819 for_each_online_cpu(cpu) 820 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 821 __unregister_cpu_notifier(&zs_cpu_nb); 822 823 cpu_notifier_register_done(); 824 } 825 826 static int zs_init(void) 827 { 828 int cpu, ret; 829 830 cpu_notifier_register_begin(); 831 832 __register_cpu_notifier(&zs_cpu_nb); 833 for_each_online_cpu(cpu) { 834 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 835 if (notifier_to_errno(ret)) { 836 cpu_notifier_register_done(); 837 goto fail; 838 } 839 } 840 841 cpu_notifier_register_done(); 842 843 return 0; 844 fail: 845 zs_exit(); 846 return notifier_to_errno(ret); 847 } 848 849 /** 850 * zs_create_pool - Creates an allocation pool to work from. 851 * @flags: allocation flags used to allocate pool metadata 852 * 853 * This function must be called before anything when using 854 * the zsmalloc allocator. 855 * 856 * On success, a pointer to the newly created pool is returned, 857 * otherwise NULL. 858 */ 859 struct zs_pool *zs_create_pool(gfp_t flags) 860 { 861 int i, ovhd_size; 862 struct zs_pool *pool; 863 864 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); 865 pool = kzalloc(ovhd_size, GFP_KERNEL); 866 if (!pool) 867 return NULL; 868 869 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 870 int size; 871 struct size_class *class; 872 873 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 874 if (size > ZS_MAX_ALLOC_SIZE) 875 size = ZS_MAX_ALLOC_SIZE; 876 877 class = &pool->size_class[i]; 878 class->size = size; 879 class->index = i; 880 spin_lock_init(&class->lock); 881 class->pages_per_zspage = get_pages_per_zspage(size); 882 883 } 884 885 pool->flags = flags; 886 887 return pool; 888 } 889 EXPORT_SYMBOL_GPL(zs_create_pool); 890 891 void zs_destroy_pool(struct zs_pool *pool) 892 { 893 int i; 894 895 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 896 int fg; 897 struct size_class *class = &pool->size_class[i]; 898 899 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { 900 if (class->fullness_list[fg]) { 901 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 902 class->size, fg); 903 } 904 } 905 } 906 kfree(pool); 907 } 908 EXPORT_SYMBOL_GPL(zs_destroy_pool); 909 910 /** 911 * zs_malloc - Allocate block of given size from pool. 912 * @pool: pool to allocate from 913 * @size: size of block to allocate 914 * 915 * On success, handle to the allocated object is returned, 916 * otherwise 0. 917 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 918 */ 919 unsigned long zs_malloc(struct zs_pool *pool, size_t size) 920 { 921 unsigned long obj; 922 struct link_free *link; 923 int class_idx; 924 struct size_class *class; 925 926 struct page *first_page, *m_page; 927 unsigned long m_objidx, m_offset; 928 929 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 930 return 0; 931 932 class_idx = get_size_class_index(size); 933 class = &pool->size_class[class_idx]; 934 BUG_ON(class_idx != class->index); 935 936 spin_lock(&class->lock); 937 first_page = find_get_zspage(class); 938 939 if (!first_page) { 940 spin_unlock(&class->lock); 941 first_page = alloc_zspage(class, pool->flags); 942 if (unlikely(!first_page)) 943 return 0; 944 945 set_zspage_mapping(first_page, class->index, ZS_EMPTY); 946 spin_lock(&class->lock); 947 class->pages_allocated += class->pages_per_zspage; 948 } 949 950 obj = (unsigned long)first_page->freelist; 951 obj_handle_to_location(obj, &m_page, &m_objidx); 952 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); 953 954 link = (struct link_free *)kmap_atomic(m_page) + 955 m_offset / sizeof(*link); 956 first_page->freelist = link->next; 957 memset(link, POISON_INUSE, sizeof(*link)); 958 kunmap_atomic(link); 959 960 first_page->inuse++; 961 /* Now move the zspage to another fullness group, if required */ 962 fix_fullness_group(pool, first_page); 963 spin_unlock(&class->lock); 964 965 return obj; 966 } 967 EXPORT_SYMBOL_GPL(zs_malloc); 968 969 void zs_free(struct zs_pool *pool, unsigned long obj) 970 { 971 struct link_free *link; 972 struct page *first_page, *f_page; 973 unsigned long f_objidx, f_offset; 974 975 int class_idx; 976 struct size_class *class; 977 enum fullness_group fullness; 978 979 if (unlikely(!obj)) 980 return; 981 982 obj_handle_to_location(obj, &f_page, &f_objidx); 983 first_page = get_first_page(f_page); 984 985 get_zspage_mapping(first_page, &class_idx, &fullness); 986 class = &pool->size_class[class_idx]; 987 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); 988 989 spin_lock(&class->lock); 990 991 /* Insert this object in containing zspage's freelist */ 992 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) 993 + f_offset); 994 link->next = first_page->freelist; 995 kunmap_atomic(link); 996 first_page->freelist = (void *)obj; 997 998 first_page->inuse--; 999 fullness = fix_fullness_group(pool, first_page); 1000 1001 if (fullness == ZS_EMPTY) 1002 class->pages_allocated -= class->pages_per_zspage; 1003 1004 spin_unlock(&class->lock); 1005 1006 if (fullness == ZS_EMPTY) 1007 free_zspage(first_page); 1008 } 1009 EXPORT_SYMBOL_GPL(zs_free); 1010 1011 /** 1012 * zs_map_object - get address of allocated object from handle. 1013 * @pool: pool from which the object was allocated 1014 * @handle: handle returned from zs_malloc 1015 * 1016 * Before using an object allocated from zs_malloc, it must be mapped using 1017 * this function. When done with the object, it must be unmapped using 1018 * zs_unmap_object. 1019 * 1020 * Only one object can be mapped per cpu at a time. There is no protection 1021 * against nested mappings. 1022 * 1023 * This function returns with preemption and page faults disabled. 1024 */ 1025 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1026 enum zs_mapmode mm) 1027 { 1028 struct page *page; 1029 unsigned long obj_idx, off; 1030 1031 unsigned int class_idx; 1032 enum fullness_group fg; 1033 struct size_class *class; 1034 struct mapping_area *area; 1035 struct page *pages[2]; 1036 1037 BUG_ON(!handle); 1038 1039 /* 1040 * Because we use per-cpu mapping areas shared among the 1041 * pools/users, we can't allow mapping in interrupt context 1042 * because it can corrupt another users mappings. 1043 */ 1044 BUG_ON(in_interrupt()); 1045 1046 obj_handle_to_location(handle, &page, &obj_idx); 1047 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1048 class = &pool->size_class[class_idx]; 1049 off = obj_idx_to_offset(page, obj_idx, class->size); 1050 1051 area = &get_cpu_var(zs_map_area); 1052 area->vm_mm = mm; 1053 if (off + class->size <= PAGE_SIZE) { 1054 /* this object is contained entirely within a page */ 1055 area->vm_addr = kmap_atomic(page); 1056 return area->vm_addr + off; 1057 } 1058 1059 /* this object spans two pages */ 1060 pages[0] = page; 1061 pages[1] = get_next_page(page); 1062 BUG_ON(!pages[1]); 1063 1064 return __zs_map_object(area, pages, off, class->size); 1065 } 1066 EXPORT_SYMBOL_GPL(zs_map_object); 1067 1068 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1069 { 1070 struct page *page; 1071 unsigned long obj_idx, off; 1072 1073 unsigned int class_idx; 1074 enum fullness_group fg; 1075 struct size_class *class; 1076 struct mapping_area *area; 1077 1078 BUG_ON(!handle); 1079 1080 obj_handle_to_location(handle, &page, &obj_idx); 1081 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1082 class = &pool->size_class[class_idx]; 1083 off = obj_idx_to_offset(page, obj_idx, class->size); 1084 1085 area = &__get_cpu_var(zs_map_area); 1086 if (off + class->size <= PAGE_SIZE) 1087 kunmap_atomic(area->vm_addr); 1088 else { 1089 struct page *pages[2]; 1090 1091 pages[0] = page; 1092 pages[1] = get_next_page(page); 1093 BUG_ON(!pages[1]); 1094 1095 __zs_unmap_object(area, pages, off, class->size); 1096 } 1097 put_cpu_var(zs_map_area); 1098 } 1099 EXPORT_SYMBOL_GPL(zs_unmap_object); 1100 1101 u64 zs_get_total_size_bytes(struct zs_pool *pool) 1102 { 1103 int i; 1104 u64 npages = 0; 1105 1106 for (i = 0; i < ZS_SIZE_CLASSES; i++) 1107 npages += pool->size_class[i].pages_allocated; 1108 1109 return npages << PAGE_SHIFT; 1110 } 1111 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); 1112 1113 module_init(zs_init); 1114 module_exit(zs_exit); 1115 1116 MODULE_LICENSE("Dual BSD/GPL"); 1117 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1118