xref: /openbmc/linux/mm/zsmalloc.c (revision af958a38)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * This allocator is designed for use with zram. Thus, the allocator is
16  * supposed to work well under low memory conditions. In particular, it
17  * never attempts higher order page allocation which is very likely to
18  * fail under memory pressure. On the other hand, if we just use single
19  * (0-order) pages, it would suffer from very high fragmentation --
20  * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21  * This was one of the major issues with its predecessor (xvmalloc).
22  *
23  * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24  * and links them together using various 'struct page' fields. These linked
25  * pages act as a single higher-order page i.e. an object can span 0-order
26  * page boundaries. The code refers to these linked pages as a single entity
27  * called zspage.
28  *
29  * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30  * since this satisfies the requirements of all its current users (in the
31  * worst case, page is incompressible and is thus stored "as-is" i.e. in
32  * uncompressed form). For allocation requests larger than this size, failure
33  * is returned (see zs_malloc).
34  *
35  * Additionally, zs_malloc() does not return a dereferenceable pointer.
36  * Instead, it returns an opaque handle (unsigned long) which encodes actual
37  * location of the allocated object. The reason for this indirection is that
38  * zsmalloc does not keep zspages permanently mapped since that would cause
39  * issues on 32-bit systems where the VA region for kernel space mappings
40  * is very small. So, before using the allocating memory, the object has to
41  * be mapped using zs_map_object() to get a usable pointer and subsequently
42  * unmapped using zs_unmap_object().
43  *
44  * Following is how we use various fields and flags of underlying
45  * struct page(s) to form a zspage.
46  *
47  * Usage of struct page fields:
48  *	page->first_page: points to the first component (0-order) page
49  *	page->index (union with page->freelist): offset of the first object
50  *		starting in this page. For the first page, this is
51  *		always 0, so we use this field (aka freelist) to point
52  *		to the first free object in zspage.
53  *	page->lru: links together all component pages (except the first page)
54  *		of a zspage
55  *
56  *	For _first_ page only:
57  *
58  *	page->private (union with page->first_page): refers to the
59  *		component page after the first page
60  *	page->freelist: points to the first free object in zspage.
61  *		Free objects are linked together using in-place
62  *		metadata.
63  *	page->objects: maximum number of objects we can store in this
64  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
65  *	page->lru: links together first pages of various zspages.
66  *		Basically forming list of zspages in a fullness group.
67  *	page->mapping: class index and fullness group of the zspage
68  *
69  * Usage of struct page flags:
70  *	PG_private: identifies the first component page
71  *	PG_private2: identifies the last component page
72  *
73  */
74 
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78 
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96 
97 /*
98  * This must be power of 2 and greater than of equal to sizeof(link_free).
99  * These two conditions ensure that any 'struct link_free' itself doesn't
100  * span more than 1 page which avoids complex case of mapping 2 pages simply
101  * to restore link_free pointer values.
102  */
103 #define ZS_ALIGN		8
104 
105 /*
106  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108  */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111 
112 /*
113  * Object location (<PFN>, <obj_idx>) is encoded as
114  * as single (unsigned long) handle value.
115  *
116  * Note that object index <obj_idx> is relative to system
117  * page <PFN> it is stored in, so for each sub-page belonging
118  * to a zspage, obj_idx starts with 0.
119  *
120  * This is made more complicated by various memory models and PAE.
121  */
122 
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129  * be PAGE_SHIFT
130  */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137 
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
143 
144 /*
145  * On systems with 4K page size, this gives 255 size classes! There is a
146  * trader-off here:
147  *  - Large number of size classes is potentially wasteful as free page are
148  *    spread across these classes
149  *  - Small number of size classes causes large internal fragmentation
150  *  - Probably its better to use specific size classes (empirically
151  *    determined). NOTE: all those class sizes must be set as multiple of
152  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153  *
154  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155  *  (reason above)
156  */
157 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 					ZS_SIZE_CLASS_DELTA + 1)
160 
161 /*
162  * We do not maintain any list for completely empty or full pages
163  */
164 enum fullness_group {
165 	ZS_ALMOST_FULL,
166 	ZS_ALMOST_EMPTY,
167 	_ZS_NR_FULLNESS_GROUPS,
168 
169 	ZS_EMPTY,
170 	ZS_FULL
171 };
172 
173 /*
174  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175  *	n <= N / f, where
176  * n = number of allocated objects
177  * N = total number of objects zspage can store
178  * f = 1/fullness_threshold_frac
179  *
180  * Similarly, we assign zspage to:
181  *	ZS_ALMOST_FULL	when n > N / f
182  *	ZS_EMPTY	when n == 0
183  *	ZS_FULL		when n == N
184  *
185  * (see: fix_fullness_group())
186  */
187 static const int fullness_threshold_frac = 4;
188 
189 struct size_class {
190 	/*
191 	 * Size of objects stored in this class. Must be multiple
192 	 * of ZS_ALIGN.
193 	 */
194 	int size;
195 	unsigned int index;
196 
197 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 	int pages_per_zspage;
199 
200 	spinlock_t lock;
201 
202 	/* stats */
203 	u64 pages_allocated;
204 
205 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206 };
207 
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, first_page->freelist gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215 	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 	void *next;
217 };
218 
219 struct zs_pool {
220 	struct size_class size_class[ZS_SIZE_CLASSES];
221 
222 	gfp_t flags;	/* allocation flags used when growing pool */
223 };
224 
225 /*
226  * A zspage's class index and fullness group
227  * are encoded in its (first)page->mapping
228  */
229 #define CLASS_IDX_BITS	28
230 #define FULLNESS_BITS	4
231 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
232 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
233 
234 struct mapping_area {
235 #ifdef CONFIG_PGTABLE_MAPPING
236 	struct vm_struct *vm; /* vm area for mapping object that span pages */
237 #else
238 	char *vm_buf; /* copy buffer for objects that span pages */
239 #endif
240 	char *vm_addr; /* address of kmap_atomic()'ed pages */
241 	enum zs_mapmode vm_mm; /* mapping mode */
242 };
243 
244 /* zpool driver */
245 
246 #ifdef CONFIG_ZPOOL
247 
248 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
249 {
250 	return zs_create_pool(gfp);
251 }
252 
253 static void zs_zpool_destroy(void *pool)
254 {
255 	zs_destroy_pool(pool);
256 }
257 
258 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
259 			unsigned long *handle)
260 {
261 	*handle = zs_malloc(pool, size);
262 	return *handle ? 0 : -1;
263 }
264 static void zs_zpool_free(void *pool, unsigned long handle)
265 {
266 	zs_free(pool, handle);
267 }
268 
269 static int zs_zpool_shrink(void *pool, unsigned int pages,
270 			unsigned int *reclaimed)
271 {
272 	return -EINVAL;
273 }
274 
275 static void *zs_zpool_map(void *pool, unsigned long handle,
276 			enum zpool_mapmode mm)
277 {
278 	enum zs_mapmode zs_mm;
279 
280 	switch (mm) {
281 	case ZPOOL_MM_RO:
282 		zs_mm = ZS_MM_RO;
283 		break;
284 	case ZPOOL_MM_WO:
285 		zs_mm = ZS_MM_WO;
286 		break;
287 	case ZPOOL_MM_RW: /* fallthru */
288 	default:
289 		zs_mm = ZS_MM_RW;
290 		break;
291 	}
292 
293 	return zs_map_object(pool, handle, zs_mm);
294 }
295 static void zs_zpool_unmap(void *pool, unsigned long handle)
296 {
297 	zs_unmap_object(pool, handle);
298 }
299 
300 static u64 zs_zpool_total_size(void *pool)
301 {
302 	return zs_get_total_size_bytes(pool);
303 }
304 
305 static struct zpool_driver zs_zpool_driver = {
306 	.type =		"zsmalloc",
307 	.owner =	THIS_MODULE,
308 	.create =	zs_zpool_create,
309 	.destroy =	zs_zpool_destroy,
310 	.malloc =	zs_zpool_malloc,
311 	.free =		zs_zpool_free,
312 	.shrink =	zs_zpool_shrink,
313 	.map =		zs_zpool_map,
314 	.unmap =	zs_zpool_unmap,
315 	.total_size =	zs_zpool_total_size,
316 };
317 
318 MODULE_ALIAS("zpool-zsmalloc");
319 #endif /* CONFIG_ZPOOL */
320 
321 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
322 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
323 
324 static int is_first_page(struct page *page)
325 {
326 	return PagePrivate(page);
327 }
328 
329 static int is_last_page(struct page *page)
330 {
331 	return PagePrivate2(page);
332 }
333 
334 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
335 				enum fullness_group *fullness)
336 {
337 	unsigned long m;
338 	BUG_ON(!is_first_page(page));
339 
340 	m = (unsigned long)page->mapping;
341 	*fullness = m & FULLNESS_MASK;
342 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
343 }
344 
345 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
346 				enum fullness_group fullness)
347 {
348 	unsigned long m;
349 	BUG_ON(!is_first_page(page));
350 
351 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
352 			(fullness & FULLNESS_MASK);
353 	page->mapping = (struct address_space *)m;
354 }
355 
356 /*
357  * zsmalloc divides the pool into various size classes where each
358  * class maintains a list of zspages where each zspage is divided
359  * into equal sized chunks. Each allocation falls into one of these
360  * classes depending on its size. This function returns index of the
361  * size class which has chunk size big enough to hold the give size.
362  */
363 static int get_size_class_index(int size)
364 {
365 	int idx = 0;
366 
367 	if (likely(size > ZS_MIN_ALLOC_SIZE))
368 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
369 				ZS_SIZE_CLASS_DELTA);
370 
371 	return idx;
372 }
373 
374 /*
375  * For each size class, zspages are divided into different groups
376  * depending on how "full" they are. This was done so that we could
377  * easily find empty or nearly empty zspages when we try to shrink
378  * the pool (not yet implemented). This function returns fullness
379  * status of the given page.
380  */
381 static enum fullness_group get_fullness_group(struct page *page)
382 {
383 	int inuse, max_objects;
384 	enum fullness_group fg;
385 	BUG_ON(!is_first_page(page));
386 
387 	inuse = page->inuse;
388 	max_objects = page->objects;
389 
390 	if (inuse == 0)
391 		fg = ZS_EMPTY;
392 	else if (inuse == max_objects)
393 		fg = ZS_FULL;
394 	else if (inuse <= max_objects / fullness_threshold_frac)
395 		fg = ZS_ALMOST_EMPTY;
396 	else
397 		fg = ZS_ALMOST_FULL;
398 
399 	return fg;
400 }
401 
402 /*
403  * Each size class maintains various freelists and zspages are assigned
404  * to one of these freelists based on the number of live objects they
405  * have. This functions inserts the given zspage into the freelist
406  * identified by <class, fullness_group>.
407  */
408 static void insert_zspage(struct page *page, struct size_class *class,
409 				enum fullness_group fullness)
410 {
411 	struct page **head;
412 
413 	BUG_ON(!is_first_page(page));
414 
415 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
416 		return;
417 
418 	head = &class->fullness_list[fullness];
419 	if (*head)
420 		list_add_tail(&page->lru, &(*head)->lru);
421 
422 	*head = page;
423 }
424 
425 /*
426  * This function removes the given zspage from the freelist identified
427  * by <class, fullness_group>.
428  */
429 static void remove_zspage(struct page *page, struct size_class *class,
430 				enum fullness_group fullness)
431 {
432 	struct page **head;
433 
434 	BUG_ON(!is_first_page(page));
435 
436 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
437 		return;
438 
439 	head = &class->fullness_list[fullness];
440 	BUG_ON(!*head);
441 	if (list_empty(&(*head)->lru))
442 		*head = NULL;
443 	else if (*head == page)
444 		*head = (struct page *)list_entry((*head)->lru.next,
445 					struct page, lru);
446 
447 	list_del_init(&page->lru);
448 }
449 
450 /*
451  * Each size class maintains zspages in different fullness groups depending
452  * on the number of live objects they contain. When allocating or freeing
453  * objects, the fullness status of the page can change, say, from ALMOST_FULL
454  * to ALMOST_EMPTY when freeing an object. This function checks if such
455  * a status change has occurred for the given page and accordingly moves the
456  * page from the freelist of the old fullness group to that of the new
457  * fullness group.
458  */
459 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
460 						struct page *page)
461 {
462 	int class_idx;
463 	struct size_class *class;
464 	enum fullness_group currfg, newfg;
465 
466 	BUG_ON(!is_first_page(page));
467 
468 	get_zspage_mapping(page, &class_idx, &currfg);
469 	newfg = get_fullness_group(page);
470 	if (newfg == currfg)
471 		goto out;
472 
473 	class = &pool->size_class[class_idx];
474 	remove_zspage(page, class, currfg);
475 	insert_zspage(page, class, newfg);
476 	set_zspage_mapping(page, class_idx, newfg);
477 
478 out:
479 	return newfg;
480 }
481 
482 /*
483  * We have to decide on how many pages to link together
484  * to form a zspage for each size class. This is important
485  * to reduce wastage due to unusable space left at end of
486  * each zspage which is given as:
487  *	wastage = Zp - Zp % size_class
488  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
489  *
490  * For example, for size class of 3/8 * PAGE_SIZE, we should
491  * link together 3 PAGE_SIZE sized pages to form a zspage
492  * since then we can perfectly fit in 8 such objects.
493  */
494 static int get_pages_per_zspage(int class_size)
495 {
496 	int i, max_usedpc = 0;
497 	/* zspage order which gives maximum used size per KB */
498 	int max_usedpc_order = 1;
499 
500 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
501 		int zspage_size;
502 		int waste, usedpc;
503 
504 		zspage_size = i * PAGE_SIZE;
505 		waste = zspage_size % class_size;
506 		usedpc = (zspage_size - waste) * 100 / zspage_size;
507 
508 		if (usedpc > max_usedpc) {
509 			max_usedpc = usedpc;
510 			max_usedpc_order = i;
511 		}
512 	}
513 
514 	return max_usedpc_order;
515 }
516 
517 /*
518  * A single 'zspage' is composed of many system pages which are
519  * linked together using fields in struct page. This function finds
520  * the first/head page, given any component page of a zspage.
521  */
522 static struct page *get_first_page(struct page *page)
523 {
524 	if (is_first_page(page))
525 		return page;
526 	else
527 		return page->first_page;
528 }
529 
530 static struct page *get_next_page(struct page *page)
531 {
532 	struct page *next;
533 
534 	if (is_last_page(page))
535 		next = NULL;
536 	else if (is_first_page(page))
537 		next = (struct page *)page_private(page);
538 	else
539 		next = list_entry(page->lru.next, struct page, lru);
540 
541 	return next;
542 }
543 
544 /*
545  * Encode <page, obj_idx> as a single handle value.
546  * On hardware platforms with physical memory starting at 0x0 the pfn
547  * could be 0 so we ensure that the handle will never be 0 by adjusting the
548  * encoded obj_idx value before encoding.
549  */
550 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
551 {
552 	unsigned long handle;
553 
554 	if (!page) {
555 		BUG_ON(obj_idx);
556 		return NULL;
557 	}
558 
559 	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
560 	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
561 
562 	return (void *)handle;
563 }
564 
565 /*
566  * Decode <page, obj_idx> pair from the given object handle. We adjust the
567  * decoded obj_idx back to its original value since it was adjusted in
568  * obj_location_to_handle().
569  */
570 static void obj_handle_to_location(unsigned long handle, struct page **page,
571 				unsigned long *obj_idx)
572 {
573 	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
574 	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
575 }
576 
577 static unsigned long obj_idx_to_offset(struct page *page,
578 				unsigned long obj_idx, int class_size)
579 {
580 	unsigned long off = 0;
581 
582 	if (!is_first_page(page))
583 		off = page->index;
584 
585 	return off + obj_idx * class_size;
586 }
587 
588 static void reset_page(struct page *page)
589 {
590 	clear_bit(PG_private, &page->flags);
591 	clear_bit(PG_private_2, &page->flags);
592 	set_page_private(page, 0);
593 	page->mapping = NULL;
594 	page->freelist = NULL;
595 	page_mapcount_reset(page);
596 }
597 
598 static void free_zspage(struct page *first_page)
599 {
600 	struct page *nextp, *tmp, *head_extra;
601 
602 	BUG_ON(!is_first_page(first_page));
603 	BUG_ON(first_page->inuse);
604 
605 	head_extra = (struct page *)page_private(first_page);
606 
607 	reset_page(first_page);
608 	__free_page(first_page);
609 
610 	/* zspage with only 1 system page */
611 	if (!head_extra)
612 		return;
613 
614 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
615 		list_del(&nextp->lru);
616 		reset_page(nextp);
617 		__free_page(nextp);
618 	}
619 	reset_page(head_extra);
620 	__free_page(head_extra);
621 }
622 
623 /* Initialize a newly allocated zspage */
624 static void init_zspage(struct page *first_page, struct size_class *class)
625 {
626 	unsigned long off = 0;
627 	struct page *page = first_page;
628 
629 	BUG_ON(!is_first_page(first_page));
630 	while (page) {
631 		struct page *next_page;
632 		struct link_free *link;
633 		unsigned int i, objs_on_page;
634 
635 		/*
636 		 * page->index stores offset of first object starting
637 		 * in the page. For the first page, this is always 0,
638 		 * so we use first_page->index (aka ->freelist) to store
639 		 * head of corresponding zspage's freelist.
640 		 */
641 		if (page != first_page)
642 			page->index = off;
643 
644 		link = (struct link_free *)kmap_atomic(page) +
645 						off / sizeof(*link);
646 		objs_on_page = (PAGE_SIZE - off) / class->size;
647 
648 		for (i = 1; i <= objs_on_page; i++) {
649 			off += class->size;
650 			if (off < PAGE_SIZE) {
651 				link->next = obj_location_to_handle(page, i);
652 				link += class->size / sizeof(*link);
653 			}
654 		}
655 
656 		/*
657 		 * We now come to the last (full or partial) object on this
658 		 * page, which must point to the first object on the next
659 		 * page (if present)
660 		 */
661 		next_page = get_next_page(page);
662 		link->next = obj_location_to_handle(next_page, 0);
663 		kunmap_atomic(link);
664 		page = next_page;
665 		off = (off + class->size) % PAGE_SIZE;
666 	}
667 }
668 
669 /*
670  * Allocate a zspage for the given size class
671  */
672 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
673 {
674 	int i, error;
675 	struct page *first_page = NULL, *uninitialized_var(prev_page);
676 
677 	/*
678 	 * Allocate individual pages and link them together as:
679 	 * 1. first page->private = first sub-page
680 	 * 2. all sub-pages are linked together using page->lru
681 	 * 3. each sub-page is linked to the first page using page->first_page
682 	 *
683 	 * For each size class, First/Head pages are linked together using
684 	 * page->lru. Also, we set PG_private to identify the first page
685 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
686 	 * identify the last page.
687 	 */
688 	error = -ENOMEM;
689 	for (i = 0; i < class->pages_per_zspage; i++) {
690 		struct page *page;
691 
692 		page = alloc_page(flags);
693 		if (!page)
694 			goto cleanup;
695 
696 		INIT_LIST_HEAD(&page->lru);
697 		if (i == 0) {	/* first page */
698 			SetPagePrivate(page);
699 			set_page_private(page, 0);
700 			first_page = page;
701 			first_page->inuse = 0;
702 		}
703 		if (i == 1)
704 			set_page_private(first_page, (unsigned long)page);
705 		if (i >= 1)
706 			page->first_page = first_page;
707 		if (i >= 2)
708 			list_add(&page->lru, &prev_page->lru);
709 		if (i == class->pages_per_zspage - 1)	/* last page */
710 			SetPagePrivate2(page);
711 		prev_page = page;
712 	}
713 
714 	init_zspage(first_page, class);
715 
716 	first_page->freelist = obj_location_to_handle(first_page, 0);
717 	/* Maximum number of objects we can store in this zspage */
718 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
719 
720 	error = 0; /* Success */
721 
722 cleanup:
723 	if (unlikely(error) && first_page) {
724 		free_zspage(first_page);
725 		first_page = NULL;
726 	}
727 
728 	return first_page;
729 }
730 
731 static struct page *find_get_zspage(struct size_class *class)
732 {
733 	int i;
734 	struct page *page;
735 
736 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
737 		page = class->fullness_list[i];
738 		if (page)
739 			break;
740 	}
741 
742 	return page;
743 }
744 
745 #ifdef CONFIG_PGTABLE_MAPPING
746 static inline int __zs_cpu_up(struct mapping_area *area)
747 {
748 	/*
749 	 * Make sure we don't leak memory if a cpu UP notification
750 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
751 	 */
752 	if (area->vm)
753 		return 0;
754 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
755 	if (!area->vm)
756 		return -ENOMEM;
757 	return 0;
758 }
759 
760 static inline void __zs_cpu_down(struct mapping_area *area)
761 {
762 	if (area->vm)
763 		free_vm_area(area->vm);
764 	area->vm = NULL;
765 }
766 
767 static inline void *__zs_map_object(struct mapping_area *area,
768 				struct page *pages[2], int off, int size)
769 {
770 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
771 	area->vm_addr = area->vm->addr;
772 	return area->vm_addr + off;
773 }
774 
775 static inline void __zs_unmap_object(struct mapping_area *area,
776 				struct page *pages[2], int off, int size)
777 {
778 	unsigned long addr = (unsigned long)area->vm_addr;
779 
780 	unmap_kernel_range(addr, PAGE_SIZE * 2);
781 }
782 
783 #else /* CONFIG_PGTABLE_MAPPING */
784 
785 static inline int __zs_cpu_up(struct mapping_area *area)
786 {
787 	/*
788 	 * Make sure we don't leak memory if a cpu UP notification
789 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
790 	 */
791 	if (area->vm_buf)
792 		return 0;
793 	area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
794 	if (!area->vm_buf)
795 		return -ENOMEM;
796 	return 0;
797 }
798 
799 static inline void __zs_cpu_down(struct mapping_area *area)
800 {
801 	if (area->vm_buf)
802 		free_page((unsigned long)area->vm_buf);
803 	area->vm_buf = NULL;
804 }
805 
806 static void *__zs_map_object(struct mapping_area *area,
807 			struct page *pages[2], int off, int size)
808 {
809 	int sizes[2];
810 	void *addr;
811 	char *buf = area->vm_buf;
812 
813 	/* disable page faults to match kmap_atomic() return conditions */
814 	pagefault_disable();
815 
816 	/* no read fastpath */
817 	if (area->vm_mm == ZS_MM_WO)
818 		goto out;
819 
820 	sizes[0] = PAGE_SIZE - off;
821 	sizes[1] = size - sizes[0];
822 
823 	/* copy object to per-cpu buffer */
824 	addr = kmap_atomic(pages[0]);
825 	memcpy(buf, addr + off, sizes[0]);
826 	kunmap_atomic(addr);
827 	addr = kmap_atomic(pages[1]);
828 	memcpy(buf + sizes[0], addr, sizes[1]);
829 	kunmap_atomic(addr);
830 out:
831 	return area->vm_buf;
832 }
833 
834 static void __zs_unmap_object(struct mapping_area *area,
835 			struct page *pages[2], int off, int size)
836 {
837 	int sizes[2];
838 	void *addr;
839 	char *buf = area->vm_buf;
840 
841 	/* no write fastpath */
842 	if (area->vm_mm == ZS_MM_RO)
843 		goto out;
844 
845 	sizes[0] = PAGE_SIZE - off;
846 	sizes[1] = size - sizes[0];
847 
848 	/* copy per-cpu buffer to object */
849 	addr = kmap_atomic(pages[0]);
850 	memcpy(addr + off, buf, sizes[0]);
851 	kunmap_atomic(addr);
852 	addr = kmap_atomic(pages[1]);
853 	memcpy(addr, buf + sizes[0], sizes[1]);
854 	kunmap_atomic(addr);
855 
856 out:
857 	/* enable page faults to match kunmap_atomic() return conditions */
858 	pagefault_enable();
859 }
860 
861 #endif /* CONFIG_PGTABLE_MAPPING */
862 
863 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
864 				void *pcpu)
865 {
866 	int ret, cpu = (long)pcpu;
867 	struct mapping_area *area;
868 
869 	switch (action) {
870 	case CPU_UP_PREPARE:
871 		area = &per_cpu(zs_map_area, cpu);
872 		ret = __zs_cpu_up(area);
873 		if (ret)
874 			return notifier_from_errno(ret);
875 		break;
876 	case CPU_DEAD:
877 	case CPU_UP_CANCELED:
878 		area = &per_cpu(zs_map_area, cpu);
879 		__zs_cpu_down(area);
880 		break;
881 	}
882 
883 	return NOTIFY_OK;
884 }
885 
886 static struct notifier_block zs_cpu_nb = {
887 	.notifier_call = zs_cpu_notifier
888 };
889 
890 static void zs_exit(void)
891 {
892 	int cpu;
893 
894 #ifdef CONFIG_ZPOOL
895 	zpool_unregister_driver(&zs_zpool_driver);
896 #endif
897 
898 	cpu_notifier_register_begin();
899 
900 	for_each_online_cpu(cpu)
901 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
902 	__unregister_cpu_notifier(&zs_cpu_nb);
903 
904 	cpu_notifier_register_done();
905 }
906 
907 static int zs_init(void)
908 {
909 	int cpu, ret;
910 
911 	cpu_notifier_register_begin();
912 
913 	__register_cpu_notifier(&zs_cpu_nb);
914 	for_each_online_cpu(cpu) {
915 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
916 		if (notifier_to_errno(ret)) {
917 			cpu_notifier_register_done();
918 			goto fail;
919 		}
920 	}
921 
922 	cpu_notifier_register_done();
923 
924 #ifdef CONFIG_ZPOOL
925 	zpool_register_driver(&zs_zpool_driver);
926 #endif
927 
928 	return 0;
929 fail:
930 	zs_exit();
931 	return notifier_to_errno(ret);
932 }
933 
934 /**
935  * zs_create_pool - Creates an allocation pool to work from.
936  * @flags: allocation flags used to allocate pool metadata
937  *
938  * This function must be called before anything when using
939  * the zsmalloc allocator.
940  *
941  * On success, a pointer to the newly created pool is returned,
942  * otherwise NULL.
943  */
944 struct zs_pool *zs_create_pool(gfp_t flags)
945 {
946 	int i, ovhd_size;
947 	struct zs_pool *pool;
948 
949 	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
950 	pool = kzalloc(ovhd_size, GFP_KERNEL);
951 	if (!pool)
952 		return NULL;
953 
954 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
955 		int size;
956 		struct size_class *class;
957 
958 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
959 		if (size > ZS_MAX_ALLOC_SIZE)
960 			size = ZS_MAX_ALLOC_SIZE;
961 
962 		class = &pool->size_class[i];
963 		class->size = size;
964 		class->index = i;
965 		spin_lock_init(&class->lock);
966 		class->pages_per_zspage = get_pages_per_zspage(size);
967 
968 	}
969 
970 	pool->flags = flags;
971 
972 	return pool;
973 }
974 EXPORT_SYMBOL_GPL(zs_create_pool);
975 
976 void zs_destroy_pool(struct zs_pool *pool)
977 {
978 	int i;
979 
980 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
981 		int fg;
982 		struct size_class *class = &pool->size_class[i];
983 
984 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
985 			if (class->fullness_list[fg]) {
986 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
987 					class->size, fg);
988 			}
989 		}
990 	}
991 	kfree(pool);
992 }
993 EXPORT_SYMBOL_GPL(zs_destroy_pool);
994 
995 /**
996  * zs_malloc - Allocate block of given size from pool.
997  * @pool: pool to allocate from
998  * @size: size of block to allocate
999  *
1000  * On success, handle to the allocated object is returned,
1001  * otherwise 0.
1002  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1003  */
1004 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1005 {
1006 	unsigned long obj;
1007 	struct link_free *link;
1008 	int class_idx;
1009 	struct size_class *class;
1010 
1011 	struct page *first_page, *m_page;
1012 	unsigned long m_objidx, m_offset;
1013 
1014 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1015 		return 0;
1016 
1017 	class_idx = get_size_class_index(size);
1018 	class = &pool->size_class[class_idx];
1019 	BUG_ON(class_idx != class->index);
1020 
1021 	spin_lock(&class->lock);
1022 	first_page = find_get_zspage(class);
1023 
1024 	if (!first_page) {
1025 		spin_unlock(&class->lock);
1026 		first_page = alloc_zspage(class, pool->flags);
1027 		if (unlikely(!first_page))
1028 			return 0;
1029 
1030 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1031 		spin_lock(&class->lock);
1032 		class->pages_allocated += class->pages_per_zspage;
1033 	}
1034 
1035 	obj = (unsigned long)first_page->freelist;
1036 	obj_handle_to_location(obj, &m_page, &m_objidx);
1037 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1038 
1039 	link = (struct link_free *)kmap_atomic(m_page) +
1040 					m_offset / sizeof(*link);
1041 	first_page->freelist = link->next;
1042 	memset(link, POISON_INUSE, sizeof(*link));
1043 	kunmap_atomic(link);
1044 
1045 	first_page->inuse++;
1046 	/* Now move the zspage to another fullness group, if required */
1047 	fix_fullness_group(pool, first_page);
1048 	spin_unlock(&class->lock);
1049 
1050 	return obj;
1051 }
1052 EXPORT_SYMBOL_GPL(zs_malloc);
1053 
1054 void zs_free(struct zs_pool *pool, unsigned long obj)
1055 {
1056 	struct link_free *link;
1057 	struct page *first_page, *f_page;
1058 	unsigned long f_objidx, f_offset;
1059 
1060 	int class_idx;
1061 	struct size_class *class;
1062 	enum fullness_group fullness;
1063 
1064 	if (unlikely(!obj))
1065 		return;
1066 
1067 	obj_handle_to_location(obj, &f_page, &f_objidx);
1068 	first_page = get_first_page(f_page);
1069 
1070 	get_zspage_mapping(first_page, &class_idx, &fullness);
1071 	class = &pool->size_class[class_idx];
1072 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1073 
1074 	spin_lock(&class->lock);
1075 
1076 	/* Insert this object in containing zspage's freelist */
1077 	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1078 							+ f_offset);
1079 	link->next = first_page->freelist;
1080 	kunmap_atomic(link);
1081 	first_page->freelist = (void *)obj;
1082 
1083 	first_page->inuse--;
1084 	fullness = fix_fullness_group(pool, first_page);
1085 
1086 	if (fullness == ZS_EMPTY)
1087 		class->pages_allocated -= class->pages_per_zspage;
1088 
1089 	spin_unlock(&class->lock);
1090 
1091 	if (fullness == ZS_EMPTY)
1092 		free_zspage(first_page);
1093 }
1094 EXPORT_SYMBOL_GPL(zs_free);
1095 
1096 /**
1097  * zs_map_object - get address of allocated object from handle.
1098  * @pool: pool from which the object was allocated
1099  * @handle: handle returned from zs_malloc
1100  *
1101  * Before using an object allocated from zs_malloc, it must be mapped using
1102  * this function. When done with the object, it must be unmapped using
1103  * zs_unmap_object.
1104  *
1105  * Only one object can be mapped per cpu at a time. There is no protection
1106  * against nested mappings.
1107  *
1108  * This function returns with preemption and page faults disabled.
1109  */
1110 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1111 			enum zs_mapmode mm)
1112 {
1113 	struct page *page;
1114 	unsigned long obj_idx, off;
1115 
1116 	unsigned int class_idx;
1117 	enum fullness_group fg;
1118 	struct size_class *class;
1119 	struct mapping_area *area;
1120 	struct page *pages[2];
1121 
1122 	BUG_ON(!handle);
1123 
1124 	/*
1125 	 * Because we use per-cpu mapping areas shared among the
1126 	 * pools/users, we can't allow mapping in interrupt context
1127 	 * because it can corrupt another users mappings.
1128 	 */
1129 	BUG_ON(in_interrupt());
1130 
1131 	obj_handle_to_location(handle, &page, &obj_idx);
1132 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1133 	class = &pool->size_class[class_idx];
1134 	off = obj_idx_to_offset(page, obj_idx, class->size);
1135 
1136 	area = &get_cpu_var(zs_map_area);
1137 	area->vm_mm = mm;
1138 	if (off + class->size <= PAGE_SIZE) {
1139 		/* this object is contained entirely within a page */
1140 		area->vm_addr = kmap_atomic(page);
1141 		return area->vm_addr + off;
1142 	}
1143 
1144 	/* this object spans two pages */
1145 	pages[0] = page;
1146 	pages[1] = get_next_page(page);
1147 	BUG_ON(!pages[1]);
1148 
1149 	return __zs_map_object(area, pages, off, class->size);
1150 }
1151 EXPORT_SYMBOL_GPL(zs_map_object);
1152 
1153 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1154 {
1155 	struct page *page;
1156 	unsigned long obj_idx, off;
1157 
1158 	unsigned int class_idx;
1159 	enum fullness_group fg;
1160 	struct size_class *class;
1161 	struct mapping_area *area;
1162 
1163 	BUG_ON(!handle);
1164 
1165 	obj_handle_to_location(handle, &page, &obj_idx);
1166 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1167 	class = &pool->size_class[class_idx];
1168 	off = obj_idx_to_offset(page, obj_idx, class->size);
1169 
1170 	area = this_cpu_ptr(&zs_map_area);
1171 	if (off + class->size <= PAGE_SIZE)
1172 		kunmap_atomic(area->vm_addr);
1173 	else {
1174 		struct page *pages[2];
1175 
1176 		pages[0] = page;
1177 		pages[1] = get_next_page(page);
1178 		BUG_ON(!pages[1]);
1179 
1180 		__zs_unmap_object(area, pages, off, class->size);
1181 	}
1182 	put_cpu_var(zs_map_area);
1183 }
1184 EXPORT_SYMBOL_GPL(zs_unmap_object);
1185 
1186 u64 zs_get_total_size_bytes(struct zs_pool *pool)
1187 {
1188 	int i;
1189 	u64 npages = 0;
1190 
1191 	for (i = 0; i < ZS_SIZE_CLASSES; i++)
1192 		npages += pool->size_class[i].pages_allocated;
1193 
1194 	return npages << PAGE_SHIFT;
1195 }
1196 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1197 
1198 module_init(zs_init);
1199 module_exit(zs_exit);
1200 
1201 MODULE_LICENSE("Dual BSD/GPL");
1202 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1203