1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * This allocator is designed for use with zram. Thus, the allocator is 16 * supposed to work well under low memory conditions. In particular, it 17 * never attempts higher order page allocation which is very likely to 18 * fail under memory pressure. On the other hand, if we just use single 19 * (0-order) pages, it would suffer from very high fragmentation -- 20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page. 21 * This was one of the major issues with its predecessor (xvmalloc). 22 * 23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages 24 * and links them together using various 'struct page' fields. These linked 25 * pages act as a single higher-order page i.e. an object can span 0-order 26 * page boundaries. The code refers to these linked pages as a single entity 27 * called zspage. 28 * 29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE 30 * since this satisfies the requirements of all its current users (in the 31 * worst case, page is incompressible and is thus stored "as-is" i.e. in 32 * uncompressed form). For allocation requests larger than this size, failure 33 * is returned (see zs_malloc). 34 * 35 * Additionally, zs_malloc() does not return a dereferenceable pointer. 36 * Instead, it returns an opaque handle (unsigned long) which encodes actual 37 * location of the allocated object. The reason for this indirection is that 38 * zsmalloc does not keep zspages permanently mapped since that would cause 39 * issues on 32-bit systems where the VA region for kernel space mappings 40 * is very small. So, before using the allocating memory, the object has to 41 * be mapped using zs_map_object() to get a usable pointer and subsequently 42 * unmapped using zs_unmap_object(). 43 * 44 * Following is how we use various fields and flags of underlying 45 * struct page(s) to form a zspage. 46 * 47 * Usage of struct page fields: 48 * page->first_page: points to the first component (0-order) page 49 * page->index (union with page->freelist): offset of the first object 50 * starting in this page. For the first page, this is 51 * always 0, so we use this field (aka freelist) to point 52 * to the first free object in zspage. 53 * page->lru: links together all component pages (except the first page) 54 * of a zspage 55 * 56 * For _first_ page only: 57 * 58 * page->private (union with page->first_page): refers to the 59 * component page after the first page 60 * page->freelist: points to the first free object in zspage. 61 * Free objects are linked together using in-place 62 * metadata. 63 * page->objects: maximum number of objects we can store in this 64 * zspage (class->zspage_order * PAGE_SIZE / class->size) 65 * page->lru: links together first pages of various zspages. 66 * Basically forming list of zspages in a fullness group. 67 * page->mapping: class index and fullness group of the zspage 68 * 69 * Usage of struct page flags: 70 * PG_private: identifies the first component page 71 * PG_private2: identifies the last component page 72 * 73 */ 74 75 #ifdef CONFIG_ZSMALLOC_DEBUG 76 #define DEBUG 77 #endif 78 79 #include <linux/module.h> 80 #include <linux/kernel.h> 81 #include <linux/bitops.h> 82 #include <linux/errno.h> 83 #include <linux/highmem.h> 84 #include <linux/string.h> 85 #include <linux/slab.h> 86 #include <asm/tlbflush.h> 87 #include <asm/pgtable.h> 88 #include <linux/cpumask.h> 89 #include <linux/cpu.h> 90 #include <linux/vmalloc.h> 91 #include <linux/hardirq.h> 92 #include <linux/spinlock.h> 93 #include <linux/types.h> 94 #include <linux/zsmalloc.h> 95 #include <linux/zpool.h> 96 97 /* 98 * This must be power of 2 and greater than of equal to sizeof(link_free). 99 * These two conditions ensure that any 'struct link_free' itself doesn't 100 * span more than 1 page which avoids complex case of mapping 2 pages simply 101 * to restore link_free pointer values. 102 */ 103 #define ZS_ALIGN 8 104 105 /* 106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 108 */ 109 #define ZS_MAX_ZSPAGE_ORDER 2 110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 111 112 /* 113 * Object location (<PFN>, <obj_idx>) is encoded as 114 * as single (unsigned long) handle value. 115 * 116 * Note that object index <obj_idx> is relative to system 117 * page <PFN> it is stored in, so for each sub-page belonging 118 * to a zspage, obj_idx starts with 0. 119 * 120 * This is made more complicated by various memory models and PAE. 121 */ 122 123 #ifndef MAX_PHYSMEM_BITS 124 #ifdef CONFIG_HIGHMEM64G 125 #define MAX_PHYSMEM_BITS 36 126 #else /* !CONFIG_HIGHMEM64G */ 127 /* 128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 129 * be PAGE_SHIFT 130 */ 131 #define MAX_PHYSMEM_BITS BITS_PER_LONG 132 #endif 133 #endif 134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 137 138 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 143 144 /* 145 * On systems with 4K page size, this gives 255 size classes! There is a 146 * trader-off here: 147 * - Large number of size classes is potentially wasteful as free page are 148 * spread across these classes 149 * - Small number of size classes causes large internal fragmentation 150 * - Probably its better to use specific size classes (empirically 151 * determined). NOTE: all those class sizes must be set as multiple of 152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 153 * 154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 155 * (reason above) 156 */ 157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) 158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ 159 ZS_SIZE_CLASS_DELTA + 1) 160 161 /* 162 * We do not maintain any list for completely empty or full pages 163 */ 164 enum fullness_group { 165 ZS_ALMOST_FULL, 166 ZS_ALMOST_EMPTY, 167 _ZS_NR_FULLNESS_GROUPS, 168 169 ZS_EMPTY, 170 ZS_FULL 171 }; 172 173 /* 174 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 175 * n <= N / f, where 176 * n = number of allocated objects 177 * N = total number of objects zspage can store 178 * f = 1/fullness_threshold_frac 179 * 180 * Similarly, we assign zspage to: 181 * ZS_ALMOST_FULL when n > N / f 182 * ZS_EMPTY when n == 0 183 * ZS_FULL when n == N 184 * 185 * (see: fix_fullness_group()) 186 */ 187 static const int fullness_threshold_frac = 4; 188 189 struct size_class { 190 /* 191 * Size of objects stored in this class. Must be multiple 192 * of ZS_ALIGN. 193 */ 194 int size; 195 unsigned int index; 196 197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 198 int pages_per_zspage; 199 200 spinlock_t lock; 201 202 /* stats */ 203 u64 pages_allocated; 204 205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; 206 }; 207 208 /* 209 * Placed within free objects to form a singly linked list. 210 * For every zspage, first_page->freelist gives head of this list. 211 * 212 * This must be power of 2 and less than or equal to ZS_ALIGN 213 */ 214 struct link_free { 215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */ 216 void *next; 217 }; 218 219 struct zs_pool { 220 struct size_class size_class[ZS_SIZE_CLASSES]; 221 222 gfp_t flags; /* allocation flags used when growing pool */ 223 }; 224 225 /* 226 * A zspage's class index and fullness group 227 * are encoded in its (first)page->mapping 228 */ 229 #define CLASS_IDX_BITS 28 230 #define FULLNESS_BITS 4 231 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) 232 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) 233 234 struct mapping_area { 235 #ifdef CONFIG_PGTABLE_MAPPING 236 struct vm_struct *vm; /* vm area for mapping object that span pages */ 237 #else 238 char *vm_buf; /* copy buffer for objects that span pages */ 239 #endif 240 char *vm_addr; /* address of kmap_atomic()'ed pages */ 241 enum zs_mapmode vm_mm; /* mapping mode */ 242 }; 243 244 /* zpool driver */ 245 246 #ifdef CONFIG_ZPOOL 247 248 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops) 249 { 250 return zs_create_pool(gfp); 251 } 252 253 static void zs_zpool_destroy(void *pool) 254 { 255 zs_destroy_pool(pool); 256 } 257 258 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 259 unsigned long *handle) 260 { 261 *handle = zs_malloc(pool, size); 262 return *handle ? 0 : -1; 263 } 264 static void zs_zpool_free(void *pool, unsigned long handle) 265 { 266 zs_free(pool, handle); 267 } 268 269 static int zs_zpool_shrink(void *pool, unsigned int pages, 270 unsigned int *reclaimed) 271 { 272 return -EINVAL; 273 } 274 275 static void *zs_zpool_map(void *pool, unsigned long handle, 276 enum zpool_mapmode mm) 277 { 278 enum zs_mapmode zs_mm; 279 280 switch (mm) { 281 case ZPOOL_MM_RO: 282 zs_mm = ZS_MM_RO; 283 break; 284 case ZPOOL_MM_WO: 285 zs_mm = ZS_MM_WO; 286 break; 287 case ZPOOL_MM_RW: /* fallthru */ 288 default: 289 zs_mm = ZS_MM_RW; 290 break; 291 } 292 293 return zs_map_object(pool, handle, zs_mm); 294 } 295 static void zs_zpool_unmap(void *pool, unsigned long handle) 296 { 297 zs_unmap_object(pool, handle); 298 } 299 300 static u64 zs_zpool_total_size(void *pool) 301 { 302 return zs_get_total_size_bytes(pool); 303 } 304 305 static struct zpool_driver zs_zpool_driver = { 306 .type = "zsmalloc", 307 .owner = THIS_MODULE, 308 .create = zs_zpool_create, 309 .destroy = zs_zpool_destroy, 310 .malloc = zs_zpool_malloc, 311 .free = zs_zpool_free, 312 .shrink = zs_zpool_shrink, 313 .map = zs_zpool_map, 314 .unmap = zs_zpool_unmap, 315 .total_size = zs_zpool_total_size, 316 }; 317 318 MODULE_ALIAS("zpool-zsmalloc"); 319 #endif /* CONFIG_ZPOOL */ 320 321 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 322 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 323 324 static int is_first_page(struct page *page) 325 { 326 return PagePrivate(page); 327 } 328 329 static int is_last_page(struct page *page) 330 { 331 return PagePrivate2(page); 332 } 333 334 static void get_zspage_mapping(struct page *page, unsigned int *class_idx, 335 enum fullness_group *fullness) 336 { 337 unsigned long m; 338 BUG_ON(!is_first_page(page)); 339 340 m = (unsigned long)page->mapping; 341 *fullness = m & FULLNESS_MASK; 342 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; 343 } 344 345 static void set_zspage_mapping(struct page *page, unsigned int class_idx, 346 enum fullness_group fullness) 347 { 348 unsigned long m; 349 BUG_ON(!is_first_page(page)); 350 351 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | 352 (fullness & FULLNESS_MASK); 353 page->mapping = (struct address_space *)m; 354 } 355 356 /* 357 * zsmalloc divides the pool into various size classes where each 358 * class maintains a list of zspages where each zspage is divided 359 * into equal sized chunks. Each allocation falls into one of these 360 * classes depending on its size. This function returns index of the 361 * size class which has chunk size big enough to hold the give size. 362 */ 363 static int get_size_class_index(int size) 364 { 365 int idx = 0; 366 367 if (likely(size > ZS_MIN_ALLOC_SIZE)) 368 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 369 ZS_SIZE_CLASS_DELTA); 370 371 return idx; 372 } 373 374 /* 375 * For each size class, zspages are divided into different groups 376 * depending on how "full" they are. This was done so that we could 377 * easily find empty or nearly empty zspages when we try to shrink 378 * the pool (not yet implemented). This function returns fullness 379 * status of the given page. 380 */ 381 static enum fullness_group get_fullness_group(struct page *page) 382 { 383 int inuse, max_objects; 384 enum fullness_group fg; 385 BUG_ON(!is_first_page(page)); 386 387 inuse = page->inuse; 388 max_objects = page->objects; 389 390 if (inuse == 0) 391 fg = ZS_EMPTY; 392 else if (inuse == max_objects) 393 fg = ZS_FULL; 394 else if (inuse <= max_objects / fullness_threshold_frac) 395 fg = ZS_ALMOST_EMPTY; 396 else 397 fg = ZS_ALMOST_FULL; 398 399 return fg; 400 } 401 402 /* 403 * Each size class maintains various freelists and zspages are assigned 404 * to one of these freelists based on the number of live objects they 405 * have. This functions inserts the given zspage into the freelist 406 * identified by <class, fullness_group>. 407 */ 408 static void insert_zspage(struct page *page, struct size_class *class, 409 enum fullness_group fullness) 410 { 411 struct page **head; 412 413 BUG_ON(!is_first_page(page)); 414 415 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 416 return; 417 418 head = &class->fullness_list[fullness]; 419 if (*head) 420 list_add_tail(&page->lru, &(*head)->lru); 421 422 *head = page; 423 } 424 425 /* 426 * This function removes the given zspage from the freelist identified 427 * by <class, fullness_group>. 428 */ 429 static void remove_zspage(struct page *page, struct size_class *class, 430 enum fullness_group fullness) 431 { 432 struct page **head; 433 434 BUG_ON(!is_first_page(page)); 435 436 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 437 return; 438 439 head = &class->fullness_list[fullness]; 440 BUG_ON(!*head); 441 if (list_empty(&(*head)->lru)) 442 *head = NULL; 443 else if (*head == page) 444 *head = (struct page *)list_entry((*head)->lru.next, 445 struct page, lru); 446 447 list_del_init(&page->lru); 448 } 449 450 /* 451 * Each size class maintains zspages in different fullness groups depending 452 * on the number of live objects they contain. When allocating or freeing 453 * objects, the fullness status of the page can change, say, from ALMOST_FULL 454 * to ALMOST_EMPTY when freeing an object. This function checks if such 455 * a status change has occurred for the given page and accordingly moves the 456 * page from the freelist of the old fullness group to that of the new 457 * fullness group. 458 */ 459 static enum fullness_group fix_fullness_group(struct zs_pool *pool, 460 struct page *page) 461 { 462 int class_idx; 463 struct size_class *class; 464 enum fullness_group currfg, newfg; 465 466 BUG_ON(!is_first_page(page)); 467 468 get_zspage_mapping(page, &class_idx, &currfg); 469 newfg = get_fullness_group(page); 470 if (newfg == currfg) 471 goto out; 472 473 class = &pool->size_class[class_idx]; 474 remove_zspage(page, class, currfg); 475 insert_zspage(page, class, newfg); 476 set_zspage_mapping(page, class_idx, newfg); 477 478 out: 479 return newfg; 480 } 481 482 /* 483 * We have to decide on how many pages to link together 484 * to form a zspage for each size class. This is important 485 * to reduce wastage due to unusable space left at end of 486 * each zspage which is given as: 487 * wastage = Zp - Zp % size_class 488 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 489 * 490 * For example, for size class of 3/8 * PAGE_SIZE, we should 491 * link together 3 PAGE_SIZE sized pages to form a zspage 492 * since then we can perfectly fit in 8 such objects. 493 */ 494 static int get_pages_per_zspage(int class_size) 495 { 496 int i, max_usedpc = 0; 497 /* zspage order which gives maximum used size per KB */ 498 int max_usedpc_order = 1; 499 500 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 501 int zspage_size; 502 int waste, usedpc; 503 504 zspage_size = i * PAGE_SIZE; 505 waste = zspage_size % class_size; 506 usedpc = (zspage_size - waste) * 100 / zspage_size; 507 508 if (usedpc > max_usedpc) { 509 max_usedpc = usedpc; 510 max_usedpc_order = i; 511 } 512 } 513 514 return max_usedpc_order; 515 } 516 517 /* 518 * A single 'zspage' is composed of many system pages which are 519 * linked together using fields in struct page. This function finds 520 * the first/head page, given any component page of a zspage. 521 */ 522 static struct page *get_first_page(struct page *page) 523 { 524 if (is_first_page(page)) 525 return page; 526 else 527 return page->first_page; 528 } 529 530 static struct page *get_next_page(struct page *page) 531 { 532 struct page *next; 533 534 if (is_last_page(page)) 535 next = NULL; 536 else if (is_first_page(page)) 537 next = (struct page *)page_private(page); 538 else 539 next = list_entry(page->lru.next, struct page, lru); 540 541 return next; 542 } 543 544 /* 545 * Encode <page, obj_idx> as a single handle value. 546 * On hardware platforms with physical memory starting at 0x0 the pfn 547 * could be 0 so we ensure that the handle will never be 0 by adjusting the 548 * encoded obj_idx value before encoding. 549 */ 550 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) 551 { 552 unsigned long handle; 553 554 if (!page) { 555 BUG_ON(obj_idx); 556 return NULL; 557 } 558 559 handle = page_to_pfn(page) << OBJ_INDEX_BITS; 560 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); 561 562 return (void *)handle; 563 } 564 565 /* 566 * Decode <page, obj_idx> pair from the given object handle. We adjust the 567 * decoded obj_idx back to its original value since it was adjusted in 568 * obj_location_to_handle(). 569 */ 570 static void obj_handle_to_location(unsigned long handle, struct page **page, 571 unsigned long *obj_idx) 572 { 573 *page = pfn_to_page(handle >> OBJ_INDEX_BITS); 574 *obj_idx = (handle & OBJ_INDEX_MASK) - 1; 575 } 576 577 static unsigned long obj_idx_to_offset(struct page *page, 578 unsigned long obj_idx, int class_size) 579 { 580 unsigned long off = 0; 581 582 if (!is_first_page(page)) 583 off = page->index; 584 585 return off + obj_idx * class_size; 586 } 587 588 static void reset_page(struct page *page) 589 { 590 clear_bit(PG_private, &page->flags); 591 clear_bit(PG_private_2, &page->flags); 592 set_page_private(page, 0); 593 page->mapping = NULL; 594 page->freelist = NULL; 595 page_mapcount_reset(page); 596 } 597 598 static void free_zspage(struct page *first_page) 599 { 600 struct page *nextp, *tmp, *head_extra; 601 602 BUG_ON(!is_first_page(first_page)); 603 BUG_ON(first_page->inuse); 604 605 head_extra = (struct page *)page_private(first_page); 606 607 reset_page(first_page); 608 __free_page(first_page); 609 610 /* zspage with only 1 system page */ 611 if (!head_extra) 612 return; 613 614 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { 615 list_del(&nextp->lru); 616 reset_page(nextp); 617 __free_page(nextp); 618 } 619 reset_page(head_extra); 620 __free_page(head_extra); 621 } 622 623 /* Initialize a newly allocated zspage */ 624 static void init_zspage(struct page *first_page, struct size_class *class) 625 { 626 unsigned long off = 0; 627 struct page *page = first_page; 628 629 BUG_ON(!is_first_page(first_page)); 630 while (page) { 631 struct page *next_page; 632 struct link_free *link; 633 unsigned int i, objs_on_page; 634 635 /* 636 * page->index stores offset of first object starting 637 * in the page. For the first page, this is always 0, 638 * so we use first_page->index (aka ->freelist) to store 639 * head of corresponding zspage's freelist. 640 */ 641 if (page != first_page) 642 page->index = off; 643 644 link = (struct link_free *)kmap_atomic(page) + 645 off / sizeof(*link); 646 objs_on_page = (PAGE_SIZE - off) / class->size; 647 648 for (i = 1; i <= objs_on_page; i++) { 649 off += class->size; 650 if (off < PAGE_SIZE) { 651 link->next = obj_location_to_handle(page, i); 652 link += class->size / sizeof(*link); 653 } 654 } 655 656 /* 657 * We now come to the last (full or partial) object on this 658 * page, which must point to the first object on the next 659 * page (if present) 660 */ 661 next_page = get_next_page(page); 662 link->next = obj_location_to_handle(next_page, 0); 663 kunmap_atomic(link); 664 page = next_page; 665 off = (off + class->size) % PAGE_SIZE; 666 } 667 } 668 669 /* 670 * Allocate a zspage for the given size class 671 */ 672 static struct page *alloc_zspage(struct size_class *class, gfp_t flags) 673 { 674 int i, error; 675 struct page *first_page = NULL, *uninitialized_var(prev_page); 676 677 /* 678 * Allocate individual pages and link them together as: 679 * 1. first page->private = first sub-page 680 * 2. all sub-pages are linked together using page->lru 681 * 3. each sub-page is linked to the first page using page->first_page 682 * 683 * For each size class, First/Head pages are linked together using 684 * page->lru. Also, we set PG_private to identify the first page 685 * (i.e. no other sub-page has this flag set) and PG_private_2 to 686 * identify the last page. 687 */ 688 error = -ENOMEM; 689 for (i = 0; i < class->pages_per_zspage; i++) { 690 struct page *page; 691 692 page = alloc_page(flags); 693 if (!page) 694 goto cleanup; 695 696 INIT_LIST_HEAD(&page->lru); 697 if (i == 0) { /* first page */ 698 SetPagePrivate(page); 699 set_page_private(page, 0); 700 first_page = page; 701 first_page->inuse = 0; 702 } 703 if (i == 1) 704 set_page_private(first_page, (unsigned long)page); 705 if (i >= 1) 706 page->first_page = first_page; 707 if (i >= 2) 708 list_add(&page->lru, &prev_page->lru); 709 if (i == class->pages_per_zspage - 1) /* last page */ 710 SetPagePrivate2(page); 711 prev_page = page; 712 } 713 714 init_zspage(first_page, class); 715 716 first_page->freelist = obj_location_to_handle(first_page, 0); 717 /* Maximum number of objects we can store in this zspage */ 718 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; 719 720 error = 0; /* Success */ 721 722 cleanup: 723 if (unlikely(error) && first_page) { 724 free_zspage(first_page); 725 first_page = NULL; 726 } 727 728 return first_page; 729 } 730 731 static struct page *find_get_zspage(struct size_class *class) 732 { 733 int i; 734 struct page *page; 735 736 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 737 page = class->fullness_list[i]; 738 if (page) 739 break; 740 } 741 742 return page; 743 } 744 745 #ifdef CONFIG_PGTABLE_MAPPING 746 static inline int __zs_cpu_up(struct mapping_area *area) 747 { 748 /* 749 * Make sure we don't leak memory if a cpu UP notification 750 * and zs_init() race and both call zs_cpu_up() on the same cpu 751 */ 752 if (area->vm) 753 return 0; 754 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 755 if (!area->vm) 756 return -ENOMEM; 757 return 0; 758 } 759 760 static inline void __zs_cpu_down(struct mapping_area *area) 761 { 762 if (area->vm) 763 free_vm_area(area->vm); 764 area->vm = NULL; 765 } 766 767 static inline void *__zs_map_object(struct mapping_area *area, 768 struct page *pages[2], int off, int size) 769 { 770 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 771 area->vm_addr = area->vm->addr; 772 return area->vm_addr + off; 773 } 774 775 static inline void __zs_unmap_object(struct mapping_area *area, 776 struct page *pages[2], int off, int size) 777 { 778 unsigned long addr = (unsigned long)area->vm_addr; 779 780 unmap_kernel_range(addr, PAGE_SIZE * 2); 781 } 782 783 #else /* CONFIG_PGTABLE_MAPPING */ 784 785 static inline int __zs_cpu_up(struct mapping_area *area) 786 { 787 /* 788 * Make sure we don't leak memory if a cpu UP notification 789 * and zs_init() race and both call zs_cpu_up() on the same cpu 790 */ 791 if (area->vm_buf) 792 return 0; 793 area->vm_buf = (char *)__get_free_page(GFP_KERNEL); 794 if (!area->vm_buf) 795 return -ENOMEM; 796 return 0; 797 } 798 799 static inline void __zs_cpu_down(struct mapping_area *area) 800 { 801 if (area->vm_buf) 802 free_page((unsigned long)area->vm_buf); 803 area->vm_buf = NULL; 804 } 805 806 static void *__zs_map_object(struct mapping_area *area, 807 struct page *pages[2], int off, int size) 808 { 809 int sizes[2]; 810 void *addr; 811 char *buf = area->vm_buf; 812 813 /* disable page faults to match kmap_atomic() return conditions */ 814 pagefault_disable(); 815 816 /* no read fastpath */ 817 if (area->vm_mm == ZS_MM_WO) 818 goto out; 819 820 sizes[0] = PAGE_SIZE - off; 821 sizes[1] = size - sizes[0]; 822 823 /* copy object to per-cpu buffer */ 824 addr = kmap_atomic(pages[0]); 825 memcpy(buf, addr + off, sizes[0]); 826 kunmap_atomic(addr); 827 addr = kmap_atomic(pages[1]); 828 memcpy(buf + sizes[0], addr, sizes[1]); 829 kunmap_atomic(addr); 830 out: 831 return area->vm_buf; 832 } 833 834 static void __zs_unmap_object(struct mapping_area *area, 835 struct page *pages[2], int off, int size) 836 { 837 int sizes[2]; 838 void *addr; 839 char *buf = area->vm_buf; 840 841 /* no write fastpath */ 842 if (area->vm_mm == ZS_MM_RO) 843 goto out; 844 845 sizes[0] = PAGE_SIZE - off; 846 sizes[1] = size - sizes[0]; 847 848 /* copy per-cpu buffer to object */ 849 addr = kmap_atomic(pages[0]); 850 memcpy(addr + off, buf, sizes[0]); 851 kunmap_atomic(addr); 852 addr = kmap_atomic(pages[1]); 853 memcpy(addr, buf + sizes[0], sizes[1]); 854 kunmap_atomic(addr); 855 856 out: 857 /* enable page faults to match kunmap_atomic() return conditions */ 858 pagefault_enable(); 859 } 860 861 #endif /* CONFIG_PGTABLE_MAPPING */ 862 863 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 864 void *pcpu) 865 { 866 int ret, cpu = (long)pcpu; 867 struct mapping_area *area; 868 869 switch (action) { 870 case CPU_UP_PREPARE: 871 area = &per_cpu(zs_map_area, cpu); 872 ret = __zs_cpu_up(area); 873 if (ret) 874 return notifier_from_errno(ret); 875 break; 876 case CPU_DEAD: 877 case CPU_UP_CANCELED: 878 area = &per_cpu(zs_map_area, cpu); 879 __zs_cpu_down(area); 880 break; 881 } 882 883 return NOTIFY_OK; 884 } 885 886 static struct notifier_block zs_cpu_nb = { 887 .notifier_call = zs_cpu_notifier 888 }; 889 890 static void zs_exit(void) 891 { 892 int cpu; 893 894 #ifdef CONFIG_ZPOOL 895 zpool_unregister_driver(&zs_zpool_driver); 896 #endif 897 898 cpu_notifier_register_begin(); 899 900 for_each_online_cpu(cpu) 901 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 902 __unregister_cpu_notifier(&zs_cpu_nb); 903 904 cpu_notifier_register_done(); 905 } 906 907 static int zs_init(void) 908 { 909 int cpu, ret; 910 911 cpu_notifier_register_begin(); 912 913 __register_cpu_notifier(&zs_cpu_nb); 914 for_each_online_cpu(cpu) { 915 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 916 if (notifier_to_errno(ret)) { 917 cpu_notifier_register_done(); 918 goto fail; 919 } 920 } 921 922 cpu_notifier_register_done(); 923 924 #ifdef CONFIG_ZPOOL 925 zpool_register_driver(&zs_zpool_driver); 926 #endif 927 928 return 0; 929 fail: 930 zs_exit(); 931 return notifier_to_errno(ret); 932 } 933 934 /** 935 * zs_create_pool - Creates an allocation pool to work from. 936 * @flags: allocation flags used to allocate pool metadata 937 * 938 * This function must be called before anything when using 939 * the zsmalloc allocator. 940 * 941 * On success, a pointer to the newly created pool is returned, 942 * otherwise NULL. 943 */ 944 struct zs_pool *zs_create_pool(gfp_t flags) 945 { 946 int i, ovhd_size; 947 struct zs_pool *pool; 948 949 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); 950 pool = kzalloc(ovhd_size, GFP_KERNEL); 951 if (!pool) 952 return NULL; 953 954 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 955 int size; 956 struct size_class *class; 957 958 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 959 if (size > ZS_MAX_ALLOC_SIZE) 960 size = ZS_MAX_ALLOC_SIZE; 961 962 class = &pool->size_class[i]; 963 class->size = size; 964 class->index = i; 965 spin_lock_init(&class->lock); 966 class->pages_per_zspage = get_pages_per_zspage(size); 967 968 } 969 970 pool->flags = flags; 971 972 return pool; 973 } 974 EXPORT_SYMBOL_GPL(zs_create_pool); 975 976 void zs_destroy_pool(struct zs_pool *pool) 977 { 978 int i; 979 980 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 981 int fg; 982 struct size_class *class = &pool->size_class[i]; 983 984 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { 985 if (class->fullness_list[fg]) { 986 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 987 class->size, fg); 988 } 989 } 990 } 991 kfree(pool); 992 } 993 EXPORT_SYMBOL_GPL(zs_destroy_pool); 994 995 /** 996 * zs_malloc - Allocate block of given size from pool. 997 * @pool: pool to allocate from 998 * @size: size of block to allocate 999 * 1000 * On success, handle to the allocated object is returned, 1001 * otherwise 0. 1002 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1003 */ 1004 unsigned long zs_malloc(struct zs_pool *pool, size_t size) 1005 { 1006 unsigned long obj; 1007 struct link_free *link; 1008 int class_idx; 1009 struct size_class *class; 1010 1011 struct page *first_page, *m_page; 1012 unsigned long m_objidx, m_offset; 1013 1014 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1015 return 0; 1016 1017 class_idx = get_size_class_index(size); 1018 class = &pool->size_class[class_idx]; 1019 BUG_ON(class_idx != class->index); 1020 1021 spin_lock(&class->lock); 1022 first_page = find_get_zspage(class); 1023 1024 if (!first_page) { 1025 spin_unlock(&class->lock); 1026 first_page = alloc_zspage(class, pool->flags); 1027 if (unlikely(!first_page)) 1028 return 0; 1029 1030 set_zspage_mapping(first_page, class->index, ZS_EMPTY); 1031 spin_lock(&class->lock); 1032 class->pages_allocated += class->pages_per_zspage; 1033 } 1034 1035 obj = (unsigned long)first_page->freelist; 1036 obj_handle_to_location(obj, &m_page, &m_objidx); 1037 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); 1038 1039 link = (struct link_free *)kmap_atomic(m_page) + 1040 m_offset / sizeof(*link); 1041 first_page->freelist = link->next; 1042 memset(link, POISON_INUSE, sizeof(*link)); 1043 kunmap_atomic(link); 1044 1045 first_page->inuse++; 1046 /* Now move the zspage to another fullness group, if required */ 1047 fix_fullness_group(pool, first_page); 1048 spin_unlock(&class->lock); 1049 1050 return obj; 1051 } 1052 EXPORT_SYMBOL_GPL(zs_malloc); 1053 1054 void zs_free(struct zs_pool *pool, unsigned long obj) 1055 { 1056 struct link_free *link; 1057 struct page *first_page, *f_page; 1058 unsigned long f_objidx, f_offset; 1059 1060 int class_idx; 1061 struct size_class *class; 1062 enum fullness_group fullness; 1063 1064 if (unlikely(!obj)) 1065 return; 1066 1067 obj_handle_to_location(obj, &f_page, &f_objidx); 1068 first_page = get_first_page(f_page); 1069 1070 get_zspage_mapping(first_page, &class_idx, &fullness); 1071 class = &pool->size_class[class_idx]; 1072 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); 1073 1074 spin_lock(&class->lock); 1075 1076 /* Insert this object in containing zspage's freelist */ 1077 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) 1078 + f_offset); 1079 link->next = first_page->freelist; 1080 kunmap_atomic(link); 1081 first_page->freelist = (void *)obj; 1082 1083 first_page->inuse--; 1084 fullness = fix_fullness_group(pool, first_page); 1085 1086 if (fullness == ZS_EMPTY) 1087 class->pages_allocated -= class->pages_per_zspage; 1088 1089 spin_unlock(&class->lock); 1090 1091 if (fullness == ZS_EMPTY) 1092 free_zspage(first_page); 1093 } 1094 EXPORT_SYMBOL_GPL(zs_free); 1095 1096 /** 1097 * zs_map_object - get address of allocated object from handle. 1098 * @pool: pool from which the object was allocated 1099 * @handle: handle returned from zs_malloc 1100 * 1101 * Before using an object allocated from zs_malloc, it must be mapped using 1102 * this function. When done with the object, it must be unmapped using 1103 * zs_unmap_object. 1104 * 1105 * Only one object can be mapped per cpu at a time. There is no protection 1106 * against nested mappings. 1107 * 1108 * This function returns with preemption and page faults disabled. 1109 */ 1110 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1111 enum zs_mapmode mm) 1112 { 1113 struct page *page; 1114 unsigned long obj_idx, off; 1115 1116 unsigned int class_idx; 1117 enum fullness_group fg; 1118 struct size_class *class; 1119 struct mapping_area *area; 1120 struct page *pages[2]; 1121 1122 BUG_ON(!handle); 1123 1124 /* 1125 * Because we use per-cpu mapping areas shared among the 1126 * pools/users, we can't allow mapping in interrupt context 1127 * because it can corrupt another users mappings. 1128 */ 1129 BUG_ON(in_interrupt()); 1130 1131 obj_handle_to_location(handle, &page, &obj_idx); 1132 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1133 class = &pool->size_class[class_idx]; 1134 off = obj_idx_to_offset(page, obj_idx, class->size); 1135 1136 area = &get_cpu_var(zs_map_area); 1137 area->vm_mm = mm; 1138 if (off + class->size <= PAGE_SIZE) { 1139 /* this object is contained entirely within a page */ 1140 area->vm_addr = kmap_atomic(page); 1141 return area->vm_addr + off; 1142 } 1143 1144 /* this object spans two pages */ 1145 pages[0] = page; 1146 pages[1] = get_next_page(page); 1147 BUG_ON(!pages[1]); 1148 1149 return __zs_map_object(area, pages, off, class->size); 1150 } 1151 EXPORT_SYMBOL_GPL(zs_map_object); 1152 1153 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1154 { 1155 struct page *page; 1156 unsigned long obj_idx, off; 1157 1158 unsigned int class_idx; 1159 enum fullness_group fg; 1160 struct size_class *class; 1161 struct mapping_area *area; 1162 1163 BUG_ON(!handle); 1164 1165 obj_handle_to_location(handle, &page, &obj_idx); 1166 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1167 class = &pool->size_class[class_idx]; 1168 off = obj_idx_to_offset(page, obj_idx, class->size); 1169 1170 area = this_cpu_ptr(&zs_map_area); 1171 if (off + class->size <= PAGE_SIZE) 1172 kunmap_atomic(area->vm_addr); 1173 else { 1174 struct page *pages[2]; 1175 1176 pages[0] = page; 1177 pages[1] = get_next_page(page); 1178 BUG_ON(!pages[1]); 1179 1180 __zs_unmap_object(area, pages, off, class->size); 1181 } 1182 put_cpu_var(zs_map_area); 1183 } 1184 EXPORT_SYMBOL_GPL(zs_unmap_object); 1185 1186 u64 zs_get_total_size_bytes(struct zs_pool *pool) 1187 { 1188 int i; 1189 u64 npages = 0; 1190 1191 for (i = 0; i < ZS_SIZE_CLASSES; i++) 1192 npages += pool->size_class[i].pages_allocated; 1193 1194 return npages << PAGE_SHIFT; 1195 } 1196 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); 1197 1198 module_init(zs_init); 1199 module_exit(zs_exit); 1200 1201 MODULE_LICENSE("Dual BSD/GPL"); 1202 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1203