xref: /openbmc/linux/mm/zsmalloc.c (revision af80559b)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/pagemap.h>
58 #include <linux/fs.h>
59 
60 #define ZSPAGE_MAGIC	0x58
61 
62 /*
63  * This must be power of 2 and greater than of equal to sizeof(link_free).
64  * These two conditions ensure that any 'struct link_free' itself doesn't
65  * span more than 1 page which avoids complex case of mapping 2 pages simply
66  * to restore link_free pointer values.
67  */
68 #define ZS_ALIGN		8
69 
70 /*
71  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73  */
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 
79 /*
80  * Object location (<PFN>, <obj_idx>) is encoded as
81  * as single (unsigned long) handle value.
82  *
83  * Note that object index <obj_idx> starts from 0.
84  *
85  * This is made more complicated by various memory models and PAE.
86  */
87 
88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
89 #ifdef MAX_PHYSMEM_BITS
90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
91 #else
92 /*
93  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94  * be PAGE_SHIFT
95  */
96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
97 #endif
98 #endif
99 
100 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
101 
102 /*
103  * Memory for allocating for handle keeps object position by
104  * encoding <page, obj_idx> and the encoded value has a room
105  * in least bit(ie, look at obj_to_location).
106  * We use the bit to synchronize between object access by
107  * user and migration.
108  */
109 #define HANDLE_PIN_BIT	0
110 
111 /*
112  * Head in allocated object should have OBJ_ALLOCATED_TAG
113  * to identify the object was allocated or not.
114  * It's okay to add the status bit in the least bit because
115  * header keeps handle which is 4byte-aligned address so we
116  * have room for two bit at least.
117  */
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 
123 #define FULLNESS_BITS	2
124 #define CLASS_BITS	8
125 #define ISOLATED_BITS	3
126 #define MAGIC_VAL_BITS	8
127 
128 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
130 #define ZS_MIN_ALLOC_SIZE \
131 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
132 /* each chunk includes extra space to keep handle */
133 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
134 
135 /*
136  * On systems with 4K page size, this gives 255 size classes! There is a
137  * trader-off here:
138  *  - Large number of size classes is potentially wasteful as free page are
139  *    spread across these classes
140  *  - Small number of size classes causes large internal fragmentation
141  *  - Probably its better to use specific size classes (empirically
142  *    determined). NOTE: all those class sizes must be set as multiple of
143  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144  *
145  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146  *  (reason above)
147  */
148 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
149 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
150 				      ZS_SIZE_CLASS_DELTA) + 1)
151 
152 enum fullness_group {
153 	ZS_EMPTY,
154 	ZS_ALMOST_EMPTY,
155 	ZS_ALMOST_FULL,
156 	ZS_FULL,
157 	NR_ZS_FULLNESS,
158 };
159 
160 enum zs_stat_type {
161 	CLASS_EMPTY,
162 	CLASS_ALMOST_EMPTY,
163 	CLASS_ALMOST_FULL,
164 	CLASS_FULL,
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	NR_ZS_STAT_TYPE,
168 };
169 
170 struct zs_size_stat {
171 	unsigned long objs[NR_ZS_STAT_TYPE];
172 };
173 
174 #ifdef CONFIG_ZSMALLOC_STAT
175 static struct dentry *zs_stat_root;
176 #endif
177 
178 #ifdef CONFIG_COMPACTION
179 static struct vfsmount *zsmalloc_mnt;
180 #endif
181 
182 /*
183  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184  *	n <= N / f, where
185  * n = number of allocated objects
186  * N = total number of objects zspage can store
187  * f = fullness_threshold_frac
188  *
189  * Similarly, we assign zspage to:
190  *	ZS_ALMOST_FULL	when n > N / f
191  *	ZS_EMPTY	when n == 0
192  *	ZS_FULL		when n == N
193  *
194  * (see: fix_fullness_group())
195  */
196 static const int fullness_threshold_frac = 4;
197 static size_t huge_class_size;
198 
199 struct size_class {
200 	spinlock_t lock;
201 	struct list_head fullness_list[NR_ZS_FULLNESS];
202 	/*
203 	 * Size of objects stored in this class. Must be multiple
204 	 * of ZS_ALIGN.
205 	 */
206 	int size;
207 	int objs_per_zspage;
208 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
209 	int pages_per_zspage;
210 
211 	unsigned int index;
212 	struct zs_size_stat stats;
213 };
214 
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 static void SetPageHugeObject(struct page *page)
217 {
218 	SetPageOwnerPriv1(page);
219 }
220 
221 static void ClearPageHugeObject(struct page *page)
222 {
223 	ClearPageOwnerPriv1(page);
224 }
225 
226 static int PageHugeObject(struct page *page)
227 {
228 	return PageOwnerPriv1(page);
229 }
230 
231 /*
232  * Placed within free objects to form a singly linked list.
233  * For every zspage, zspage->freeobj gives head of this list.
234  *
235  * This must be power of 2 and less than or equal to ZS_ALIGN
236  */
237 struct link_free {
238 	union {
239 		/*
240 		 * Free object index;
241 		 * It's valid for non-allocated object
242 		 */
243 		unsigned long next;
244 		/*
245 		 * Handle of allocated object.
246 		 */
247 		unsigned long handle;
248 	};
249 };
250 
251 struct zs_pool {
252 	const char *name;
253 
254 	struct size_class *size_class[ZS_SIZE_CLASSES];
255 	struct kmem_cache *handle_cachep;
256 	struct kmem_cache *zspage_cachep;
257 
258 	atomic_long_t pages_allocated;
259 
260 	struct zs_pool_stats stats;
261 
262 	/* Compact classes */
263 	struct shrinker shrinker;
264 
265 #ifdef CONFIG_ZSMALLOC_STAT
266 	struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 	struct inode *inode;
270 	struct work_struct free_work;
271 #endif
272 };
273 
274 struct zspage {
275 	struct {
276 		unsigned int fullness:FULLNESS_BITS;
277 		unsigned int class:CLASS_BITS + 1;
278 		unsigned int isolated:ISOLATED_BITS;
279 		unsigned int magic:MAGIC_VAL_BITS;
280 	};
281 	unsigned int inuse;
282 	unsigned int freeobj;
283 	struct page *first_page;
284 	struct list_head list; /* fullness list */
285 #ifdef CONFIG_COMPACTION
286 	rwlock_t lock;
287 #endif
288 };
289 
290 struct mapping_area {
291 #ifdef CONFIG_PGTABLE_MAPPING
292 	struct vm_struct *vm; /* vm area for mapping object that span pages */
293 #else
294 	char *vm_buf; /* copy buffer for objects that span pages */
295 #endif
296 	char *vm_addr; /* address of kmap_atomic()'ed pages */
297 	enum zs_mapmode vm_mm; /* mapping mode */
298 };
299 
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool *pool);
302 static void zs_unregister_migration(struct zs_pool *pool);
303 static void migrate_lock_init(struct zspage *zspage);
304 static void migrate_read_lock(struct zspage *zspage);
305 static void migrate_read_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void kick_deferred_free(struct zs_pool *pool) {}
318 static void init_deferred_free(struct zs_pool *pool) {}
319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 #endif
321 
322 static int create_cache(struct zs_pool *pool)
323 {
324 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325 					0, 0, NULL);
326 	if (!pool->handle_cachep)
327 		return 1;
328 
329 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330 					0, 0, NULL);
331 	if (!pool->zspage_cachep) {
332 		kmem_cache_destroy(pool->handle_cachep);
333 		pool->handle_cachep = NULL;
334 		return 1;
335 	}
336 
337 	return 0;
338 }
339 
340 static void destroy_cache(struct zs_pool *pool)
341 {
342 	kmem_cache_destroy(pool->handle_cachep);
343 	kmem_cache_destroy(pool->zspage_cachep);
344 }
345 
346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 {
348 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
349 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 }
351 
352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 {
354 	kmem_cache_free(pool->handle_cachep, (void *)handle);
355 }
356 
357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 {
359 	return kmem_cache_alloc(pool->zspage_cachep,
360 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 }
362 
363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 {
365 	kmem_cache_free(pool->zspage_cachep, zspage);
366 }
367 
368 static void record_obj(unsigned long handle, unsigned long obj)
369 {
370 	/*
371 	 * lsb of @obj represents handle lock while other bits
372 	 * represent object value the handle is pointing so
373 	 * updating shouldn't do store tearing.
374 	 */
375 	WRITE_ONCE(*(unsigned long *)handle, obj);
376 }
377 
378 /* zpool driver */
379 
380 #ifdef CONFIG_ZPOOL
381 
382 static void *zs_zpool_create(const char *name, gfp_t gfp,
383 			     const struct zpool_ops *zpool_ops,
384 			     struct zpool *zpool)
385 {
386 	/*
387 	 * Ignore global gfp flags: zs_malloc() may be invoked from
388 	 * different contexts and its caller must provide a valid
389 	 * gfp mask.
390 	 */
391 	return zs_create_pool(name);
392 }
393 
394 static void zs_zpool_destroy(void *pool)
395 {
396 	zs_destroy_pool(pool);
397 }
398 
399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400 			unsigned long *handle)
401 {
402 	*handle = zs_malloc(pool, size, gfp);
403 	return *handle ? 0 : -1;
404 }
405 static void zs_zpool_free(void *pool, unsigned long handle)
406 {
407 	zs_free(pool, handle);
408 }
409 
410 static void *zs_zpool_map(void *pool, unsigned long handle,
411 			enum zpool_mapmode mm)
412 {
413 	enum zs_mapmode zs_mm;
414 
415 	switch (mm) {
416 	case ZPOOL_MM_RO:
417 		zs_mm = ZS_MM_RO;
418 		break;
419 	case ZPOOL_MM_WO:
420 		zs_mm = ZS_MM_WO;
421 		break;
422 	case ZPOOL_MM_RW: /* fall through */
423 	default:
424 		zs_mm = ZS_MM_RW;
425 		break;
426 	}
427 
428 	return zs_map_object(pool, handle, zs_mm);
429 }
430 static void zs_zpool_unmap(void *pool, unsigned long handle)
431 {
432 	zs_unmap_object(pool, handle);
433 }
434 
435 static u64 zs_zpool_total_size(void *pool)
436 {
437 	return zs_get_total_pages(pool) << PAGE_SHIFT;
438 }
439 
440 static struct zpool_driver zs_zpool_driver = {
441 	.type =		"zsmalloc",
442 	.owner =	THIS_MODULE,
443 	.create =	zs_zpool_create,
444 	.destroy =	zs_zpool_destroy,
445 	.malloc =	zs_zpool_malloc,
446 	.free =		zs_zpool_free,
447 	.map =		zs_zpool_map,
448 	.unmap =	zs_zpool_unmap,
449 	.total_size =	zs_zpool_total_size,
450 };
451 
452 MODULE_ALIAS("zpool-zsmalloc");
453 #endif /* CONFIG_ZPOOL */
454 
455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
457 
458 static bool is_zspage_isolated(struct zspage *zspage)
459 {
460 	return zspage->isolated;
461 }
462 
463 static __maybe_unused int is_first_page(struct page *page)
464 {
465 	return PagePrivate(page);
466 }
467 
468 /* Protected by class->lock */
469 static inline int get_zspage_inuse(struct zspage *zspage)
470 {
471 	return zspage->inuse;
472 }
473 
474 static inline void set_zspage_inuse(struct zspage *zspage, int val)
475 {
476 	zspage->inuse = val;
477 }
478 
479 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
480 {
481 	zspage->inuse += val;
482 }
483 
484 static inline struct page *get_first_page(struct zspage *zspage)
485 {
486 	struct page *first_page = zspage->first_page;
487 
488 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
489 	return first_page;
490 }
491 
492 static inline int get_first_obj_offset(struct page *page)
493 {
494 	return page->units;
495 }
496 
497 static inline void set_first_obj_offset(struct page *page, int offset)
498 {
499 	page->units = offset;
500 }
501 
502 static inline unsigned int get_freeobj(struct zspage *zspage)
503 {
504 	return zspage->freeobj;
505 }
506 
507 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
508 {
509 	zspage->freeobj = obj;
510 }
511 
512 static void get_zspage_mapping(struct zspage *zspage,
513 				unsigned int *class_idx,
514 				enum fullness_group *fullness)
515 {
516 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
517 
518 	*fullness = zspage->fullness;
519 	*class_idx = zspage->class;
520 }
521 
522 static void set_zspage_mapping(struct zspage *zspage,
523 				unsigned int class_idx,
524 				enum fullness_group fullness)
525 {
526 	zspage->class = class_idx;
527 	zspage->fullness = fullness;
528 }
529 
530 /*
531  * zsmalloc divides the pool into various size classes where each
532  * class maintains a list of zspages where each zspage is divided
533  * into equal sized chunks. Each allocation falls into one of these
534  * classes depending on its size. This function returns index of the
535  * size class which has chunk size big enough to hold the give size.
536  */
537 static int get_size_class_index(int size)
538 {
539 	int idx = 0;
540 
541 	if (likely(size > ZS_MIN_ALLOC_SIZE))
542 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
543 				ZS_SIZE_CLASS_DELTA);
544 
545 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
546 }
547 
548 /* type can be of enum type zs_stat_type or fullness_group */
549 static inline void zs_stat_inc(struct size_class *class,
550 				int type, unsigned long cnt)
551 {
552 	class->stats.objs[type] += cnt;
553 }
554 
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_dec(struct size_class *class,
557 				int type, unsigned long cnt)
558 {
559 	class->stats.objs[type] -= cnt;
560 }
561 
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline unsigned long zs_stat_get(struct size_class *class,
564 				int type)
565 {
566 	return class->stats.objs[type];
567 }
568 
569 #ifdef CONFIG_ZSMALLOC_STAT
570 
571 static void __init zs_stat_init(void)
572 {
573 	if (!debugfs_initialized()) {
574 		pr_warn("debugfs not available, stat dir not created\n");
575 		return;
576 	}
577 
578 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
579 }
580 
581 static void __exit zs_stat_exit(void)
582 {
583 	debugfs_remove_recursive(zs_stat_root);
584 }
585 
586 static unsigned long zs_can_compact(struct size_class *class);
587 
588 static int zs_stats_size_show(struct seq_file *s, void *v)
589 {
590 	int i;
591 	struct zs_pool *pool = s->private;
592 	struct size_class *class;
593 	int objs_per_zspage;
594 	unsigned long class_almost_full, class_almost_empty;
595 	unsigned long obj_allocated, obj_used, pages_used, freeable;
596 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
598 	unsigned long total_freeable = 0;
599 
600 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
601 			"class", "size", "almost_full", "almost_empty",
602 			"obj_allocated", "obj_used", "pages_used",
603 			"pages_per_zspage", "freeable");
604 
605 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
606 		class = pool->size_class[i];
607 
608 		if (class->index != i)
609 			continue;
610 
611 		spin_lock(&class->lock);
612 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615 		obj_used = zs_stat_get(class, OBJ_USED);
616 		freeable = zs_can_compact(class);
617 		spin_unlock(&class->lock);
618 
619 		objs_per_zspage = class->objs_per_zspage;
620 		pages_used = obj_allocated / objs_per_zspage *
621 				class->pages_per_zspage;
622 
623 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624 				" %10lu %10lu %16d %8lu\n",
625 			i, class->size, class_almost_full, class_almost_empty,
626 			obj_allocated, obj_used, pages_used,
627 			class->pages_per_zspage, freeable);
628 
629 		total_class_almost_full += class_almost_full;
630 		total_class_almost_empty += class_almost_empty;
631 		total_objs += obj_allocated;
632 		total_used_objs += obj_used;
633 		total_pages += pages_used;
634 		total_freeable += freeable;
635 	}
636 
637 	seq_puts(s, "\n");
638 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
639 			"Total", "", total_class_almost_full,
640 			total_class_almost_empty, total_objs,
641 			total_used_objs, total_pages, "", total_freeable);
642 
643 	return 0;
644 }
645 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
646 
647 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
648 {
649 	if (!zs_stat_root) {
650 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
651 		return;
652 	}
653 
654 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
655 
656 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
657 			    &zs_stats_size_fops);
658 }
659 
660 static void zs_pool_stat_destroy(struct zs_pool *pool)
661 {
662 	debugfs_remove_recursive(pool->stat_dentry);
663 }
664 
665 #else /* CONFIG_ZSMALLOC_STAT */
666 static void __init zs_stat_init(void)
667 {
668 }
669 
670 static void __exit zs_stat_exit(void)
671 {
672 }
673 
674 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
675 {
676 }
677 
678 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
679 {
680 }
681 #endif
682 
683 
684 /*
685  * For each size class, zspages are divided into different groups
686  * depending on how "full" they are. This was done so that we could
687  * easily find empty or nearly empty zspages when we try to shrink
688  * the pool (not yet implemented). This function returns fullness
689  * status of the given page.
690  */
691 static enum fullness_group get_fullness_group(struct size_class *class,
692 						struct zspage *zspage)
693 {
694 	int inuse, objs_per_zspage;
695 	enum fullness_group fg;
696 
697 	inuse = get_zspage_inuse(zspage);
698 	objs_per_zspage = class->objs_per_zspage;
699 
700 	if (inuse == 0)
701 		fg = ZS_EMPTY;
702 	else if (inuse == objs_per_zspage)
703 		fg = ZS_FULL;
704 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
705 		fg = ZS_ALMOST_EMPTY;
706 	else
707 		fg = ZS_ALMOST_FULL;
708 
709 	return fg;
710 }
711 
712 /*
713  * Each size class maintains various freelists and zspages are assigned
714  * to one of these freelists based on the number of live objects they
715  * have. This functions inserts the given zspage into the freelist
716  * identified by <class, fullness_group>.
717  */
718 static void insert_zspage(struct size_class *class,
719 				struct zspage *zspage,
720 				enum fullness_group fullness)
721 {
722 	struct zspage *head;
723 
724 	zs_stat_inc(class, fullness, 1);
725 	head = list_first_entry_or_null(&class->fullness_list[fullness],
726 					struct zspage, list);
727 	/*
728 	 * We want to see more ZS_FULL pages and less almost empty/full.
729 	 * Put pages with higher ->inuse first.
730 	 */
731 	if (head) {
732 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
733 			list_add(&zspage->list, &head->list);
734 			return;
735 		}
736 	}
737 	list_add(&zspage->list, &class->fullness_list[fullness]);
738 }
739 
740 /*
741  * This function removes the given zspage from the freelist identified
742  * by <class, fullness_group>.
743  */
744 static void remove_zspage(struct size_class *class,
745 				struct zspage *zspage,
746 				enum fullness_group fullness)
747 {
748 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
749 	VM_BUG_ON(is_zspage_isolated(zspage));
750 
751 	list_del_init(&zspage->list);
752 	zs_stat_dec(class, fullness, 1);
753 }
754 
755 /*
756  * Each size class maintains zspages in different fullness groups depending
757  * on the number of live objects they contain. When allocating or freeing
758  * objects, the fullness status of the page can change, say, from ALMOST_FULL
759  * to ALMOST_EMPTY when freeing an object. This function checks if such
760  * a status change has occurred for the given page and accordingly moves the
761  * page from the freelist of the old fullness group to that of the new
762  * fullness group.
763  */
764 static enum fullness_group fix_fullness_group(struct size_class *class,
765 						struct zspage *zspage)
766 {
767 	int class_idx;
768 	enum fullness_group currfg, newfg;
769 
770 	get_zspage_mapping(zspage, &class_idx, &currfg);
771 	newfg = get_fullness_group(class, zspage);
772 	if (newfg == currfg)
773 		goto out;
774 
775 	if (!is_zspage_isolated(zspage)) {
776 		remove_zspage(class, zspage, currfg);
777 		insert_zspage(class, zspage, newfg);
778 	}
779 
780 	set_zspage_mapping(zspage, class_idx, newfg);
781 
782 out:
783 	return newfg;
784 }
785 
786 /*
787  * We have to decide on how many pages to link together
788  * to form a zspage for each size class. This is important
789  * to reduce wastage due to unusable space left at end of
790  * each zspage which is given as:
791  *     wastage = Zp % class_size
792  *     usage = Zp - wastage
793  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
794  *
795  * For example, for size class of 3/8 * PAGE_SIZE, we should
796  * link together 3 PAGE_SIZE sized pages to form a zspage
797  * since then we can perfectly fit in 8 such objects.
798  */
799 static int get_pages_per_zspage(int class_size)
800 {
801 	int i, max_usedpc = 0;
802 	/* zspage order which gives maximum used size per KB */
803 	int max_usedpc_order = 1;
804 
805 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
806 		int zspage_size;
807 		int waste, usedpc;
808 
809 		zspage_size = i * PAGE_SIZE;
810 		waste = zspage_size % class_size;
811 		usedpc = (zspage_size - waste) * 100 / zspage_size;
812 
813 		if (usedpc > max_usedpc) {
814 			max_usedpc = usedpc;
815 			max_usedpc_order = i;
816 		}
817 	}
818 
819 	return max_usedpc_order;
820 }
821 
822 static struct zspage *get_zspage(struct page *page)
823 {
824 	struct zspage *zspage = (struct zspage *)page->private;
825 
826 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
827 	return zspage;
828 }
829 
830 static struct page *get_next_page(struct page *page)
831 {
832 	if (unlikely(PageHugeObject(page)))
833 		return NULL;
834 
835 	return page->freelist;
836 }
837 
838 /**
839  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
840  * @obj: the encoded object value
841  * @page: page object resides in zspage
842  * @obj_idx: object index
843  */
844 static void obj_to_location(unsigned long obj, struct page **page,
845 				unsigned int *obj_idx)
846 {
847 	obj >>= OBJ_TAG_BITS;
848 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849 	*obj_idx = (obj & OBJ_INDEX_MASK);
850 }
851 
852 /**
853  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
854  * @page: page object resides in zspage
855  * @obj_idx: object index
856  */
857 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
858 {
859 	unsigned long obj;
860 
861 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
862 	obj |= obj_idx & OBJ_INDEX_MASK;
863 	obj <<= OBJ_TAG_BITS;
864 
865 	return obj;
866 }
867 
868 static unsigned long handle_to_obj(unsigned long handle)
869 {
870 	return *(unsigned long *)handle;
871 }
872 
873 static unsigned long obj_to_head(struct page *page, void *obj)
874 {
875 	if (unlikely(PageHugeObject(page))) {
876 		VM_BUG_ON_PAGE(!is_first_page(page), page);
877 		return page->index;
878 	} else
879 		return *(unsigned long *)obj;
880 }
881 
882 static inline int testpin_tag(unsigned long handle)
883 {
884 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
885 }
886 
887 static inline int trypin_tag(unsigned long handle)
888 {
889 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
890 }
891 
892 static void pin_tag(unsigned long handle)
893 {
894 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
895 }
896 
897 static void unpin_tag(unsigned long handle)
898 {
899 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
900 }
901 
902 static void reset_page(struct page *page)
903 {
904 	__ClearPageMovable(page);
905 	ClearPagePrivate(page);
906 	set_page_private(page, 0);
907 	page_mapcount_reset(page);
908 	ClearPageHugeObject(page);
909 	page->freelist = NULL;
910 }
911 
912 static int trylock_zspage(struct zspage *zspage)
913 {
914 	struct page *cursor, *fail;
915 
916 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
917 					get_next_page(cursor)) {
918 		if (!trylock_page(cursor)) {
919 			fail = cursor;
920 			goto unlock;
921 		}
922 	}
923 
924 	return 1;
925 unlock:
926 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
927 					get_next_page(cursor))
928 		unlock_page(cursor);
929 
930 	return 0;
931 }
932 
933 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
934 				struct zspage *zspage)
935 {
936 	struct page *page, *next;
937 	enum fullness_group fg;
938 	unsigned int class_idx;
939 
940 	get_zspage_mapping(zspage, &class_idx, &fg);
941 
942 	assert_spin_locked(&class->lock);
943 
944 	VM_BUG_ON(get_zspage_inuse(zspage));
945 	VM_BUG_ON(fg != ZS_EMPTY);
946 
947 	next = page = get_first_page(zspage);
948 	do {
949 		VM_BUG_ON_PAGE(!PageLocked(page), page);
950 		next = get_next_page(page);
951 		reset_page(page);
952 		unlock_page(page);
953 		dec_zone_page_state(page, NR_ZSPAGES);
954 		put_page(page);
955 		page = next;
956 	} while (page != NULL);
957 
958 	cache_free_zspage(pool, zspage);
959 
960 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
961 	atomic_long_sub(class->pages_per_zspage,
962 					&pool->pages_allocated);
963 }
964 
965 static void free_zspage(struct zs_pool *pool, struct size_class *class,
966 				struct zspage *zspage)
967 {
968 	VM_BUG_ON(get_zspage_inuse(zspage));
969 	VM_BUG_ON(list_empty(&zspage->list));
970 
971 	if (!trylock_zspage(zspage)) {
972 		kick_deferred_free(pool);
973 		return;
974 	}
975 
976 	remove_zspage(class, zspage, ZS_EMPTY);
977 	__free_zspage(pool, class, zspage);
978 }
979 
980 /* Initialize a newly allocated zspage */
981 static void init_zspage(struct size_class *class, struct zspage *zspage)
982 {
983 	unsigned int freeobj = 1;
984 	unsigned long off = 0;
985 	struct page *page = get_first_page(zspage);
986 
987 	while (page) {
988 		struct page *next_page;
989 		struct link_free *link;
990 		void *vaddr;
991 
992 		set_first_obj_offset(page, off);
993 
994 		vaddr = kmap_atomic(page);
995 		link = (struct link_free *)vaddr + off / sizeof(*link);
996 
997 		while ((off += class->size) < PAGE_SIZE) {
998 			link->next = freeobj++ << OBJ_TAG_BITS;
999 			link += class->size / sizeof(*link);
1000 		}
1001 
1002 		/*
1003 		 * We now come to the last (full or partial) object on this
1004 		 * page, which must point to the first object on the next
1005 		 * page (if present)
1006 		 */
1007 		next_page = get_next_page(page);
1008 		if (next_page) {
1009 			link->next = freeobj++ << OBJ_TAG_BITS;
1010 		} else {
1011 			/*
1012 			 * Reset OBJ_TAG_BITS bit to last link to tell
1013 			 * whether it's allocated object or not.
1014 			 */
1015 			link->next = -1UL << OBJ_TAG_BITS;
1016 		}
1017 		kunmap_atomic(vaddr);
1018 		page = next_page;
1019 		off %= PAGE_SIZE;
1020 	}
1021 
1022 	set_freeobj(zspage, 0);
1023 }
1024 
1025 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1026 				struct page *pages[])
1027 {
1028 	int i;
1029 	struct page *page;
1030 	struct page *prev_page = NULL;
1031 	int nr_pages = class->pages_per_zspage;
1032 
1033 	/*
1034 	 * Allocate individual pages and link them together as:
1035 	 * 1. all pages are linked together using page->freelist
1036 	 * 2. each sub-page point to zspage using page->private
1037 	 *
1038 	 * we set PG_private to identify the first page (i.e. no other sub-page
1039 	 * has this flag set).
1040 	 */
1041 	for (i = 0; i < nr_pages; i++) {
1042 		page = pages[i];
1043 		set_page_private(page, (unsigned long)zspage);
1044 		page->freelist = NULL;
1045 		if (i == 0) {
1046 			zspage->first_page = page;
1047 			SetPagePrivate(page);
1048 			if (unlikely(class->objs_per_zspage == 1 &&
1049 					class->pages_per_zspage == 1))
1050 				SetPageHugeObject(page);
1051 		} else {
1052 			prev_page->freelist = page;
1053 		}
1054 		prev_page = page;
1055 	}
1056 }
1057 
1058 /*
1059  * Allocate a zspage for the given size class
1060  */
1061 static struct zspage *alloc_zspage(struct zs_pool *pool,
1062 					struct size_class *class,
1063 					gfp_t gfp)
1064 {
1065 	int i;
1066 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1067 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1068 
1069 	if (!zspage)
1070 		return NULL;
1071 
1072 	memset(zspage, 0, sizeof(struct zspage));
1073 	zspage->magic = ZSPAGE_MAGIC;
1074 	migrate_lock_init(zspage);
1075 
1076 	for (i = 0; i < class->pages_per_zspage; i++) {
1077 		struct page *page;
1078 
1079 		page = alloc_page(gfp);
1080 		if (!page) {
1081 			while (--i >= 0) {
1082 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1083 				__free_page(pages[i]);
1084 			}
1085 			cache_free_zspage(pool, zspage);
1086 			return NULL;
1087 		}
1088 
1089 		inc_zone_page_state(page, NR_ZSPAGES);
1090 		pages[i] = page;
1091 	}
1092 
1093 	create_page_chain(class, zspage, pages);
1094 	init_zspage(class, zspage);
1095 
1096 	return zspage;
1097 }
1098 
1099 static struct zspage *find_get_zspage(struct size_class *class)
1100 {
1101 	int i;
1102 	struct zspage *zspage;
1103 
1104 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1105 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1106 				struct zspage, list);
1107 		if (zspage)
1108 			break;
1109 	}
1110 
1111 	return zspage;
1112 }
1113 
1114 #ifdef CONFIG_PGTABLE_MAPPING
1115 static inline int __zs_cpu_up(struct mapping_area *area)
1116 {
1117 	/*
1118 	 * Make sure we don't leak memory if a cpu UP notification
1119 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1120 	 */
1121 	if (area->vm)
1122 		return 0;
1123 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1124 	if (!area->vm)
1125 		return -ENOMEM;
1126 	return 0;
1127 }
1128 
1129 static inline void __zs_cpu_down(struct mapping_area *area)
1130 {
1131 	if (area->vm)
1132 		free_vm_area(area->vm);
1133 	area->vm = NULL;
1134 }
1135 
1136 static inline void *__zs_map_object(struct mapping_area *area,
1137 				struct page *pages[2], int off, int size)
1138 {
1139 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1140 	area->vm_addr = area->vm->addr;
1141 	return area->vm_addr + off;
1142 }
1143 
1144 static inline void __zs_unmap_object(struct mapping_area *area,
1145 				struct page *pages[2], int off, int size)
1146 {
1147 	unsigned long addr = (unsigned long)area->vm_addr;
1148 
1149 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1150 }
1151 
1152 #else /* CONFIG_PGTABLE_MAPPING */
1153 
1154 static inline int __zs_cpu_up(struct mapping_area *area)
1155 {
1156 	/*
1157 	 * Make sure we don't leak memory if a cpu UP notification
1158 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1159 	 */
1160 	if (area->vm_buf)
1161 		return 0;
1162 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1163 	if (!area->vm_buf)
1164 		return -ENOMEM;
1165 	return 0;
1166 }
1167 
1168 static inline void __zs_cpu_down(struct mapping_area *area)
1169 {
1170 	kfree(area->vm_buf);
1171 	area->vm_buf = NULL;
1172 }
1173 
1174 static void *__zs_map_object(struct mapping_area *area,
1175 			struct page *pages[2], int off, int size)
1176 {
1177 	int sizes[2];
1178 	void *addr;
1179 	char *buf = area->vm_buf;
1180 
1181 	/* disable page faults to match kmap_atomic() return conditions */
1182 	pagefault_disable();
1183 
1184 	/* no read fastpath */
1185 	if (area->vm_mm == ZS_MM_WO)
1186 		goto out;
1187 
1188 	sizes[0] = PAGE_SIZE - off;
1189 	sizes[1] = size - sizes[0];
1190 
1191 	/* copy object to per-cpu buffer */
1192 	addr = kmap_atomic(pages[0]);
1193 	memcpy(buf, addr + off, sizes[0]);
1194 	kunmap_atomic(addr);
1195 	addr = kmap_atomic(pages[1]);
1196 	memcpy(buf + sizes[0], addr, sizes[1]);
1197 	kunmap_atomic(addr);
1198 out:
1199 	return area->vm_buf;
1200 }
1201 
1202 static void __zs_unmap_object(struct mapping_area *area,
1203 			struct page *pages[2], int off, int size)
1204 {
1205 	int sizes[2];
1206 	void *addr;
1207 	char *buf;
1208 
1209 	/* no write fastpath */
1210 	if (area->vm_mm == ZS_MM_RO)
1211 		goto out;
1212 
1213 	buf = area->vm_buf;
1214 	buf = buf + ZS_HANDLE_SIZE;
1215 	size -= ZS_HANDLE_SIZE;
1216 	off += ZS_HANDLE_SIZE;
1217 
1218 	sizes[0] = PAGE_SIZE - off;
1219 	sizes[1] = size - sizes[0];
1220 
1221 	/* copy per-cpu buffer to object */
1222 	addr = kmap_atomic(pages[0]);
1223 	memcpy(addr + off, buf, sizes[0]);
1224 	kunmap_atomic(addr);
1225 	addr = kmap_atomic(pages[1]);
1226 	memcpy(addr, buf + sizes[0], sizes[1]);
1227 	kunmap_atomic(addr);
1228 
1229 out:
1230 	/* enable page faults to match kunmap_atomic() return conditions */
1231 	pagefault_enable();
1232 }
1233 
1234 #endif /* CONFIG_PGTABLE_MAPPING */
1235 
1236 static int zs_cpu_prepare(unsigned int cpu)
1237 {
1238 	struct mapping_area *area;
1239 
1240 	area = &per_cpu(zs_map_area, cpu);
1241 	return __zs_cpu_up(area);
1242 }
1243 
1244 static int zs_cpu_dead(unsigned int cpu)
1245 {
1246 	struct mapping_area *area;
1247 
1248 	area = &per_cpu(zs_map_area, cpu);
1249 	__zs_cpu_down(area);
1250 	return 0;
1251 }
1252 
1253 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1254 					int objs_per_zspage)
1255 {
1256 	if (prev->pages_per_zspage == pages_per_zspage &&
1257 		prev->objs_per_zspage == objs_per_zspage)
1258 		return true;
1259 
1260 	return false;
1261 }
1262 
1263 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1264 {
1265 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1266 }
1267 
1268 unsigned long zs_get_total_pages(struct zs_pool *pool)
1269 {
1270 	return atomic_long_read(&pool->pages_allocated);
1271 }
1272 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1273 
1274 /**
1275  * zs_map_object - get address of allocated object from handle.
1276  * @pool: pool from which the object was allocated
1277  * @handle: handle returned from zs_malloc
1278  * @mm: maping mode to use
1279  *
1280  * Before using an object allocated from zs_malloc, it must be mapped using
1281  * this function. When done with the object, it must be unmapped using
1282  * zs_unmap_object.
1283  *
1284  * Only one object can be mapped per cpu at a time. There is no protection
1285  * against nested mappings.
1286  *
1287  * This function returns with preemption and page faults disabled.
1288  */
1289 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1290 			enum zs_mapmode mm)
1291 {
1292 	struct zspage *zspage;
1293 	struct page *page;
1294 	unsigned long obj, off;
1295 	unsigned int obj_idx;
1296 
1297 	unsigned int class_idx;
1298 	enum fullness_group fg;
1299 	struct size_class *class;
1300 	struct mapping_area *area;
1301 	struct page *pages[2];
1302 	void *ret;
1303 
1304 	/*
1305 	 * Because we use per-cpu mapping areas shared among the
1306 	 * pools/users, we can't allow mapping in interrupt context
1307 	 * because it can corrupt another users mappings.
1308 	 */
1309 	BUG_ON(in_interrupt());
1310 
1311 	/* From now on, migration cannot move the object */
1312 	pin_tag(handle);
1313 
1314 	obj = handle_to_obj(handle);
1315 	obj_to_location(obj, &page, &obj_idx);
1316 	zspage = get_zspage(page);
1317 
1318 	/* migration cannot move any subpage in this zspage */
1319 	migrate_read_lock(zspage);
1320 
1321 	get_zspage_mapping(zspage, &class_idx, &fg);
1322 	class = pool->size_class[class_idx];
1323 	off = (class->size * obj_idx) & ~PAGE_MASK;
1324 
1325 	area = &get_cpu_var(zs_map_area);
1326 	area->vm_mm = mm;
1327 	if (off + class->size <= PAGE_SIZE) {
1328 		/* this object is contained entirely within a page */
1329 		area->vm_addr = kmap_atomic(page);
1330 		ret = area->vm_addr + off;
1331 		goto out;
1332 	}
1333 
1334 	/* this object spans two pages */
1335 	pages[0] = page;
1336 	pages[1] = get_next_page(page);
1337 	BUG_ON(!pages[1]);
1338 
1339 	ret = __zs_map_object(area, pages, off, class->size);
1340 out:
1341 	if (likely(!PageHugeObject(page)))
1342 		ret += ZS_HANDLE_SIZE;
1343 
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL_GPL(zs_map_object);
1347 
1348 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1349 {
1350 	struct zspage *zspage;
1351 	struct page *page;
1352 	unsigned long obj, off;
1353 	unsigned int obj_idx;
1354 
1355 	unsigned int class_idx;
1356 	enum fullness_group fg;
1357 	struct size_class *class;
1358 	struct mapping_area *area;
1359 
1360 	obj = handle_to_obj(handle);
1361 	obj_to_location(obj, &page, &obj_idx);
1362 	zspage = get_zspage(page);
1363 	get_zspage_mapping(zspage, &class_idx, &fg);
1364 	class = pool->size_class[class_idx];
1365 	off = (class->size * obj_idx) & ~PAGE_MASK;
1366 
1367 	area = this_cpu_ptr(&zs_map_area);
1368 	if (off + class->size <= PAGE_SIZE)
1369 		kunmap_atomic(area->vm_addr);
1370 	else {
1371 		struct page *pages[2];
1372 
1373 		pages[0] = page;
1374 		pages[1] = get_next_page(page);
1375 		BUG_ON(!pages[1]);
1376 
1377 		__zs_unmap_object(area, pages, off, class->size);
1378 	}
1379 	put_cpu_var(zs_map_area);
1380 
1381 	migrate_read_unlock(zspage);
1382 	unpin_tag(handle);
1383 }
1384 EXPORT_SYMBOL_GPL(zs_unmap_object);
1385 
1386 /**
1387  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1388  *                        zsmalloc &size_class.
1389  * @pool: zsmalloc pool to use
1390  *
1391  * The function returns the size of the first huge class - any object of equal
1392  * or bigger size will be stored in zspage consisting of a single physical
1393  * page.
1394  *
1395  * Context: Any context.
1396  *
1397  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1398  */
1399 size_t zs_huge_class_size(struct zs_pool *pool)
1400 {
1401 	return huge_class_size;
1402 }
1403 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1404 
1405 static unsigned long obj_malloc(struct size_class *class,
1406 				struct zspage *zspage, unsigned long handle)
1407 {
1408 	int i, nr_page, offset;
1409 	unsigned long obj;
1410 	struct link_free *link;
1411 
1412 	struct page *m_page;
1413 	unsigned long m_offset;
1414 	void *vaddr;
1415 
1416 	handle |= OBJ_ALLOCATED_TAG;
1417 	obj = get_freeobj(zspage);
1418 
1419 	offset = obj * class->size;
1420 	nr_page = offset >> PAGE_SHIFT;
1421 	m_offset = offset & ~PAGE_MASK;
1422 	m_page = get_first_page(zspage);
1423 
1424 	for (i = 0; i < nr_page; i++)
1425 		m_page = get_next_page(m_page);
1426 
1427 	vaddr = kmap_atomic(m_page);
1428 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1429 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1430 	if (likely(!PageHugeObject(m_page)))
1431 		/* record handle in the header of allocated chunk */
1432 		link->handle = handle;
1433 	else
1434 		/* record handle to page->index */
1435 		zspage->first_page->index = handle;
1436 
1437 	kunmap_atomic(vaddr);
1438 	mod_zspage_inuse(zspage, 1);
1439 	zs_stat_inc(class, OBJ_USED, 1);
1440 
1441 	obj = location_to_obj(m_page, obj);
1442 
1443 	return obj;
1444 }
1445 
1446 
1447 /**
1448  * zs_malloc - Allocate block of given size from pool.
1449  * @pool: pool to allocate from
1450  * @size: size of block to allocate
1451  * @gfp: gfp flags when allocating object
1452  *
1453  * On success, handle to the allocated object is returned,
1454  * otherwise 0.
1455  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1456  */
1457 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1458 {
1459 	unsigned long handle, obj;
1460 	struct size_class *class;
1461 	enum fullness_group newfg;
1462 	struct zspage *zspage;
1463 
1464 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1465 		return 0;
1466 
1467 	handle = cache_alloc_handle(pool, gfp);
1468 	if (!handle)
1469 		return 0;
1470 
1471 	/* extra space in chunk to keep the handle */
1472 	size += ZS_HANDLE_SIZE;
1473 	class = pool->size_class[get_size_class_index(size)];
1474 
1475 	spin_lock(&class->lock);
1476 	zspage = find_get_zspage(class);
1477 	if (likely(zspage)) {
1478 		obj = obj_malloc(class, zspage, handle);
1479 		/* Now move the zspage to another fullness group, if required */
1480 		fix_fullness_group(class, zspage);
1481 		record_obj(handle, obj);
1482 		spin_unlock(&class->lock);
1483 
1484 		return handle;
1485 	}
1486 
1487 	spin_unlock(&class->lock);
1488 
1489 	zspage = alloc_zspage(pool, class, gfp);
1490 	if (!zspage) {
1491 		cache_free_handle(pool, handle);
1492 		return 0;
1493 	}
1494 
1495 	spin_lock(&class->lock);
1496 	obj = obj_malloc(class, zspage, handle);
1497 	newfg = get_fullness_group(class, zspage);
1498 	insert_zspage(class, zspage, newfg);
1499 	set_zspage_mapping(zspage, class->index, newfg);
1500 	record_obj(handle, obj);
1501 	atomic_long_add(class->pages_per_zspage,
1502 				&pool->pages_allocated);
1503 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1504 
1505 	/* We completely set up zspage so mark them as movable */
1506 	SetZsPageMovable(pool, zspage);
1507 	spin_unlock(&class->lock);
1508 
1509 	return handle;
1510 }
1511 EXPORT_SYMBOL_GPL(zs_malloc);
1512 
1513 static void obj_free(struct size_class *class, unsigned long obj)
1514 {
1515 	struct link_free *link;
1516 	struct zspage *zspage;
1517 	struct page *f_page;
1518 	unsigned long f_offset;
1519 	unsigned int f_objidx;
1520 	void *vaddr;
1521 
1522 	obj &= ~OBJ_ALLOCATED_TAG;
1523 	obj_to_location(obj, &f_page, &f_objidx);
1524 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1525 	zspage = get_zspage(f_page);
1526 
1527 	vaddr = kmap_atomic(f_page);
1528 
1529 	/* Insert this object in containing zspage's freelist */
1530 	link = (struct link_free *)(vaddr + f_offset);
1531 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1532 	kunmap_atomic(vaddr);
1533 	set_freeobj(zspage, f_objidx);
1534 	mod_zspage_inuse(zspage, -1);
1535 	zs_stat_dec(class, OBJ_USED, 1);
1536 }
1537 
1538 void zs_free(struct zs_pool *pool, unsigned long handle)
1539 {
1540 	struct zspage *zspage;
1541 	struct page *f_page;
1542 	unsigned long obj;
1543 	unsigned int f_objidx;
1544 	int class_idx;
1545 	struct size_class *class;
1546 	enum fullness_group fullness;
1547 	bool isolated;
1548 
1549 	if (unlikely(!handle))
1550 		return;
1551 
1552 	pin_tag(handle);
1553 	obj = handle_to_obj(handle);
1554 	obj_to_location(obj, &f_page, &f_objidx);
1555 	zspage = get_zspage(f_page);
1556 
1557 	migrate_read_lock(zspage);
1558 
1559 	get_zspage_mapping(zspage, &class_idx, &fullness);
1560 	class = pool->size_class[class_idx];
1561 
1562 	spin_lock(&class->lock);
1563 	obj_free(class, obj);
1564 	fullness = fix_fullness_group(class, zspage);
1565 	if (fullness != ZS_EMPTY) {
1566 		migrate_read_unlock(zspage);
1567 		goto out;
1568 	}
1569 
1570 	isolated = is_zspage_isolated(zspage);
1571 	migrate_read_unlock(zspage);
1572 	/* If zspage is isolated, zs_page_putback will free the zspage */
1573 	if (likely(!isolated))
1574 		free_zspage(pool, class, zspage);
1575 out:
1576 
1577 	spin_unlock(&class->lock);
1578 	unpin_tag(handle);
1579 	cache_free_handle(pool, handle);
1580 }
1581 EXPORT_SYMBOL_GPL(zs_free);
1582 
1583 static void zs_object_copy(struct size_class *class, unsigned long dst,
1584 				unsigned long src)
1585 {
1586 	struct page *s_page, *d_page;
1587 	unsigned int s_objidx, d_objidx;
1588 	unsigned long s_off, d_off;
1589 	void *s_addr, *d_addr;
1590 	int s_size, d_size, size;
1591 	int written = 0;
1592 
1593 	s_size = d_size = class->size;
1594 
1595 	obj_to_location(src, &s_page, &s_objidx);
1596 	obj_to_location(dst, &d_page, &d_objidx);
1597 
1598 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1599 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1600 
1601 	if (s_off + class->size > PAGE_SIZE)
1602 		s_size = PAGE_SIZE - s_off;
1603 
1604 	if (d_off + class->size > PAGE_SIZE)
1605 		d_size = PAGE_SIZE - d_off;
1606 
1607 	s_addr = kmap_atomic(s_page);
1608 	d_addr = kmap_atomic(d_page);
1609 
1610 	while (1) {
1611 		size = min(s_size, d_size);
1612 		memcpy(d_addr + d_off, s_addr + s_off, size);
1613 		written += size;
1614 
1615 		if (written == class->size)
1616 			break;
1617 
1618 		s_off += size;
1619 		s_size -= size;
1620 		d_off += size;
1621 		d_size -= size;
1622 
1623 		if (s_off >= PAGE_SIZE) {
1624 			kunmap_atomic(d_addr);
1625 			kunmap_atomic(s_addr);
1626 			s_page = get_next_page(s_page);
1627 			s_addr = kmap_atomic(s_page);
1628 			d_addr = kmap_atomic(d_page);
1629 			s_size = class->size - written;
1630 			s_off = 0;
1631 		}
1632 
1633 		if (d_off >= PAGE_SIZE) {
1634 			kunmap_atomic(d_addr);
1635 			d_page = get_next_page(d_page);
1636 			d_addr = kmap_atomic(d_page);
1637 			d_size = class->size - written;
1638 			d_off = 0;
1639 		}
1640 	}
1641 
1642 	kunmap_atomic(d_addr);
1643 	kunmap_atomic(s_addr);
1644 }
1645 
1646 /*
1647  * Find alloced object in zspage from index object and
1648  * return handle.
1649  */
1650 static unsigned long find_alloced_obj(struct size_class *class,
1651 					struct page *page, int *obj_idx)
1652 {
1653 	unsigned long head;
1654 	int offset = 0;
1655 	int index = *obj_idx;
1656 	unsigned long handle = 0;
1657 	void *addr = kmap_atomic(page);
1658 
1659 	offset = get_first_obj_offset(page);
1660 	offset += class->size * index;
1661 
1662 	while (offset < PAGE_SIZE) {
1663 		head = obj_to_head(page, addr + offset);
1664 		if (head & OBJ_ALLOCATED_TAG) {
1665 			handle = head & ~OBJ_ALLOCATED_TAG;
1666 			if (trypin_tag(handle))
1667 				break;
1668 			handle = 0;
1669 		}
1670 
1671 		offset += class->size;
1672 		index++;
1673 	}
1674 
1675 	kunmap_atomic(addr);
1676 
1677 	*obj_idx = index;
1678 
1679 	return handle;
1680 }
1681 
1682 struct zs_compact_control {
1683 	/* Source spage for migration which could be a subpage of zspage */
1684 	struct page *s_page;
1685 	/* Destination page for migration which should be a first page
1686 	 * of zspage. */
1687 	struct page *d_page;
1688 	 /* Starting object index within @s_page which used for live object
1689 	  * in the subpage. */
1690 	int obj_idx;
1691 };
1692 
1693 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1694 				struct zs_compact_control *cc)
1695 {
1696 	unsigned long used_obj, free_obj;
1697 	unsigned long handle;
1698 	struct page *s_page = cc->s_page;
1699 	struct page *d_page = cc->d_page;
1700 	int obj_idx = cc->obj_idx;
1701 	int ret = 0;
1702 
1703 	while (1) {
1704 		handle = find_alloced_obj(class, s_page, &obj_idx);
1705 		if (!handle) {
1706 			s_page = get_next_page(s_page);
1707 			if (!s_page)
1708 				break;
1709 			obj_idx = 0;
1710 			continue;
1711 		}
1712 
1713 		/* Stop if there is no more space */
1714 		if (zspage_full(class, get_zspage(d_page))) {
1715 			unpin_tag(handle);
1716 			ret = -ENOMEM;
1717 			break;
1718 		}
1719 
1720 		used_obj = handle_to_obj(handle);
1721 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1722 		zs_object_copy(class, free_obj, used_obj);
1723 		obj_idx++;
1724 		/*
1725 		 * record_obj updates handle's value to free_obj and it will
1726 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1727 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1728 		 * let's keep the lock bit.
1729 		 */
1730 		free_obj |= BIT(HANDLE_PIN_BIT);
1731 		record_obj(handle, free_obj);
1732 		unpin_tag(handle);
1733 		obj_free(class, used_obj);
1734 	}
1735 
1736 	/* Remember last position in this iteration */
1737 	cc->s_page = s_page;
1738 	cc->obj_idx = obj_idx;
1739 
1740 	return ret;
1741 }
1742 
1743 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1744 {
1745 	int i;
1746 	struct zspage *zspage;
1747 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1748 
1749 	if (!source) {
1750 		fg[0] = ZS_ALMOST_FULL;
1751 		fg[1] = ZS_ALMOST_EMPTY;
1752 	}
1753 
1754 	for (i = 0; i < 2; i++) {
1755 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1756 							struct zspage, list);
1757 		if (zspage) {
1758 			VM_BUG_ON(is_zspage_isolated(zspage));
1759 			remove_zspage(class, zspage, fg[i]);
1760 			return zspage;
1761 		}
1762 	}
1763 
1764 	return zspage;
1765 }
1766 
1767 /*
1768  * putback_zspage - add @zspage into right class's fullness list
1769  * @class: destination class
1770  * @zspage: target page
1771  *
1772  * Return @zspage's fullness_group
1773  */
1774 static enum fullness_group putback_zspage(struct size_class *class,
1775 			struct zspage *zspage)
1776 {
1777 	enum fullness_group fullness;
1778 
1779 	VM_BUG_ON(is_zspage_isolated(zspage));
1780 
1781 	fullness = get_fullness_group(class, zspage);
1782 	insert_zspage(class, zspage, fullness);
1783 	set_zspage_mapping(zspage, class->index, fullness);
1784 
1785 	return fullness;
1786 }
1787 
1788 #ifdef CONFIG_COMPACTION
1789 /*
1790  * To prevent zspage destroy during migration, zspage freeing should
1791  * hold locks of all pages in the zspage.
1792  */
1793 static void lock_zspage(struct zspage *zspage)
1794 {
1795 	struct page *page = get_first_page(zspage);
1796 
1797 	do {
1798 		lock_page(page);
1799 	} while ((page = get_next_page(page)) != NULL);
1800 }
1801 
1802 static int zs_init_fs_context(struct fs_context *fc)
1803 {
1804 	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1805 }
1806 
1807 static struct file_system_type zsmalloc_fs = {
1808 	.name		= "zsmalloc",
1809 	.init_fs_context = zs_init_fs_context,
1810 	.kill_sb	= kill_anon_super,
1811 };
1812 
1813 static int zsmalloc_mount(void)
1814 {
1815 	int ret = 0;
1816 
1817 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1818 	if (IS_ERR(zsmalloc_mnt))
1819 		ret = PTR_ERR(zsmalloc_mnt);
1820 
1821 	return ret;
1822 }
1823 
1824 static void zsmalloc_unmount(void)
1825 {
1826 	kern_unmount(zsmalloc_mnt);
1827 }
1828 
1829 static void migrate_lock_init(struct zspage *zspage)
1830 {
1831 	rwlock_init(&zspage->lock);
1832 }
1833 
1834 static void migrate_read_lock(struct zspage *zspage)
1835 {
1836 	read_lock(&zspage->lock);
1837 }
1838 
1839 static void migrate_read_unlock(struct zspage *zspage)
1840 {
1841 	read_unlock(&zspage->lock);
1842 }
1843 
1844 static void migrate_write_lock(struct zspage *zspage)
1845 {
1846 	write_lock(&zspage->lock);
1847 }
1848 
1849 static void migrate_write_unlock(struct zspage *zspage)
1850 {
1851 	write_unlock(&zspage->lock);
1852 }
1853 
1854 /* Number of isolated subpage for *page migration* in this zspage */
1855 static void inc_zspage_isolation(struct zspage *zspage)
1856 {
1857 	zspage->isolated++;
1858 }
1859 
1860 static void dec_zspage_isolation(struct zspage *zspage)
1861 {
1862 	zspage->isolated--;
1863 }
1864 
1865 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1866 				struct page *newpage, struct page *oldpage)
1867 {
1868 	struct page *page;
1869 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1870 	int idx = 0;
1871 
1872 	page = get_first_page(zspage);
1873 	do {
1874 		if (page == oldpage)
1875 			pages[idx] = newpage;
1876 		else
1877 			pages[idx] = page;
1878 		idx++;
1879 	} while ((page = get_next_page(page)) != NULL);
1880 
1881 	create_page_chain(class, zspage, pages);
1882 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1883 	if (unlikely(PageHugeObject(oldpage)))
1884 		newpage->index = oldpage->index;
1885 	__SetPageMovable(newpage, page_mapping(oldpage));
1886 }
1887 
1888 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1889 {
1890 	struct zs_pool *pool;
1891 	struct size_class *class;
1892 	int class_idx;
1893 	enum fullness_group fullness;
1894 	struct zspage *zspage;
1895 	struct address_space *mapping;
1896 
1897 	/*
1898 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1899 	 * lock_zspage in free_zspage.
1900 	 */
1901 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1902 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1903 
1904 	zspage = get_zspage(page);
1905 
1906 	/*
1907 	 * Without class lock, fullness could be stale while class_idx is okay
1908 	 * because class_idx is constant unless page is freed so we should get
1909 	 * fullness again under class lock.
1910 	 */
1911 	get_zspage_mapping(zspage, &class_idx, &fullness);
1912 	mapping = page_mapping(page);
1913 	pool = mapping->private_data;
1914 	class = pool->size_class[class_idx];
1915 
1916 	spin_lock(&class->lock);
1917 	if (get_zspage_inuse(zspage) == 0) {
1918 		spin_unlock(&class->lock);
1919 		return false;
1920 	}
1921 
1922 	/* zspage is isolated for object migration */
1923 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1924 		spin_unlock(&class->lock);
1925 		return false;
1926 	}
1927 
1928 	/*
1929 	 * If this is first time isolation for the zspage, isolate zspage from
1930 	 * size_class to prevent further object allocation from the zspage.
1931 	 */
1932 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1933 		get_zspage_mapping(zspage, &class_idx, &fullness);
1934 		remove_zspage(class, zspage, fullness);
1935 	}
1936 
1937 	inc_zspage_isolation(zspage);
1938 	spin_unlock(&class->lock);
1939 
1940 	return true;
1941 }
1942 
1943 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1944 		struct page *page, enum migrate_mode mode)
1945 {
1946 	struct zs_pool *pool;
1947 	struct size_class *class;
1948 	int class_idx;
1949 	enum fullness_group fullness;
1950 	struct zspage *zspage;
1951 	struct page *dummy;
1952 	void *s_addr, *d_addr, *addr;
1953 	int offset, pos;
1954 	unsigned long handle, head;
1955 	unsigned long old_obj, new_obj;
1956 	unsigned int obj_idx;
1957 	int ret = -EAGAIN;
1958 
1959 	/*
1960 	 * We cannot support the _NO_COPY case here, because copy needs to
1961 	 * happen under the zs lock, which does not work with
1962 	 * MIGRATE_SYNC_NO_COPY workflow.
1963 	 */
1964 	if (mode == MIGRATE_SYNC_NO_COPY)
1965 		return -EINVAL;
1966 
1967 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1968 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1969 
1970 	zspage = get_zspage(page);
1971 
1972 	/* Concurrent compactor cannot migrate any subpage in zspage */
1973 	migrate_write_lock(zspage);
1974 	get_zspage_mapping(zspage, &class_idx, &fullness);
1975 	pool = mapping->private_data;
1976 	class = pool->size_class[class_idx];
1977 	offset = get_first_obj_offset(page);
1978 
1979 	spin_lock(&class->lock);
1980 	if (!get_zspage_inuse(zspage)) {
1981 		/*
1982 		 * Set "offset" to end of the page so that every loops
1983 		 * skips unnecessary object scanning.
1984 		 */
1985 		offset = PAGE_SIZE;
1986 	}
1987 
1988 	pos = offset;
1989 	s_addr = kmap_atomic(page);
1990 	while (pos < PAGE_SIZE) {
1991 		head = obj_to_head(page, s_addr + pos);
1992 		if (head & OBJ_ALLOCATED_TAG) {
1993 			handle = head & ~OBJ_ALLOCATED_TAG;
1994 			if (!trypin_tag(handle))
1995 				goto unpin_objects;
1996 		}
1997 		pos += class->size;
1998 	}
1999 
2000 	/*
2001 	 * Here, any user cannot access all objects in the zspage so let's move.
2002 	 */
2003 	d_addr = kmap_atomic(newpage);
2004 	memcpy(d_addr, s_addr, PAGE_SIZE);
2005 	kunmap_atomic(d_addr);
2006 
2007 	for (addr = s_addr + offset; addr < s_addr + pos;
2008 					addr += class->size) {
2009 		head = obj_to_head(page, addr);
2010 		if (head & OBJ_ALLOCATED_TAG) {
2011 			handle = head & ~OBJ_ALLOCATED_TAG;
2012 			if (!testpin_tag(handle))
2013 				BUG();
2014 
2015 			old_obj = handle_to_obj(handle);
2016 			obj_to_location(old_obj, &dummy, &obj_idx);
2017 			new_obj = (unsigned long)location_to_obj(newpage,
2018 								obj_idx);
2019 			new_obj |= BIT(HANDLE_PIN_BIT);
2020 			record_obj(handle, new_obj);
2021 		}
2022 	}
2023 
2024 	replace_sub_page(class, zspage, newpage, page);
2025 	get_page(newpage);
2026 
2027 	dec_zspage_isolation(zspage);
2028 
2029 	/*
2030 	 * Page migration is done so let's putback isolated zspage to
2031 	 * the list if @page is final isolated subpage in the zspage.
2032 	 */
2033 	if (!is_zspage_isolated(zspage))
2034 		putback_zspage(class, zspage);
2035 
2036 	reset_page(page);
2037 	put_page(page);
2038 	page = newpage;
2039 
2040 	ret = MIGRATEPAGE_SUCCESS;
2041 unpin_objects:
2042 	for (addr = s_addr + offset; addr < s_addr + pos;
2043 						addr += class->size) {
2044 		head = obj_to_head(page, addr);
2045 		if (head & OBJ_ALLOCATED_TAG) {
2046 			handle = head & ~OBJ_ALLOCATED_TAG;
2047 			if (!testpin_tag(handle))
2048 				BUG();
2049 			unpin_tag(handle);
2050 		}
2051 	}
2052 	kunmap_atomic(s_addr);
2053 	spin_unlock(&class->lock);
2054 	migrate_write_unlock(zspage);
2055 
2056 	return ret;
2057 }
2058 
2059 static void zs_page_putback(struct page *page)
2060 {
2061 	struct zs_pool *pool;
2062 	struct size_class *class;
2063 	int class_idx;
2064 	enum fullness_group fg;
2065 	struct address_space *mapping;
2066 	struct zspage *zspage;
2067 
2068 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2069 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2070 
2071 	zspage = get_zspage(page);
2072 	get_zspage_mapping(zspage, &class_idx, &fg);
2073 	mapping = page_mapping(page);
2074 	pool = mapping->private_data;
2075 	class = pool->size_class[class_idx];
2076 
2077 	spin_lock(&class->lock);
2078 	dec_zspage_isolation(zspage);
2079 	if (!is_zspage_isolated(zspage)) {
2080 		fg = putback_zspage(class, zspage);
2081 		/*
2082 		 * Due to page_lock, we cannot free zspage immediately
2083 		 * so let's defer.
2084 		 */
2085 		if (fg == ZS_EMPTY)
2086 			schedule_work(&pool->free_work);
2087 	}
2088 	spin_unlock(&class->lock);
2089 }
2090 
2091 static const struct address_space_operations zsmalloc_aops = {
2092 	.isolate_page = zs_page_isolate,
2093 	.migratepage = zs_page_migrate,
2094 	.putback_page = zs_page_putback,
2095 };
2096 
2097 static int zs_register_migration(struct zs_pool *pool)
2098 {
2099 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2100 	if (IS_ERR(pool->inode)) {
2101 		pool->inode = NULL;
2102 		return 1;
2103 	}
2104 
2105 	pool->inode->i_mapping->private_data = pool;
2106 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2107 	return 0;
2108 }
2109 
2110 static void zs_unregister_migration(struct zs_pool *pool)
2111 {
2112 	flush_work(&pool->free_work);
2113 	iput(pool->inode);
2114 }
2115 
2116 /*
2117  * Caller should hold page_lock of all pages in the zspage
2118  * In here, we cannot use zspage meta data.
2119  */
2120 static void async_free_zspage(struct work_struct *work)
2121 {
2122 	int i;
2123 	struct size_class *class;
2124 	unsigned int class_idx;
2125 	enum fullness_group fullness;
2126 	struct zspage *zspage, *tmp;
2127 	LIST_HEAD(free_pages);
2128 	struct zs_pool *pool = container_of(work, struct zs_pool,
2129 					free_work);
2130 
2131 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2132 		class = pool->size_class[i];
2133 		if (class->index != i)
2134 			continue;
2135 
2136 		spin_lock(&class->lock);
2137 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2138 		spin_unlock(&class->lock);
2139 	}
2140 
2141 
2142 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2143 		list_del(&zspage->list);
2144 		lock_zspage(zspage);
2145 
2146 		get_zspage_mapping(zspage, &class_idx, &fullness);
2147 		VM_BUG_ON(fullness != ZS_EMPTY);
2148 		class = pool->size_class[class_idx];
2149 		spin_lock(&class->lock);
2150 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2151 		spin_unlock(&class->lock);
2152 	}
2153 };
2154 
2155 static void kick_deferred_free(struct zs_pool *pool)
2156 {
2157 	schedule_work(&pool->free_work);
2158 }
2159 
2160 static void init_deferred_free(struct zs_pool *pool)
2161 {
2162 	INIT_WORK(&pool->free_work, async_free_zspage);
2163 }
2164 
2165 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2166 {
2167 	struct page *page = get_first_page(zspage);
2168 
2169 	do {
2170 		WARN_ON(!trylock_page(page));
2171 		__SetPageMovable(page, pool->inode->i_mapping);
2172 		unlock_page(page);
2173 	} while ((page = get_next_page(page)) != NULL);
2174 }
2175 #endif
2176 
2177 /*
2178  *
2179  * Based on the number of unused allocated objects calculate
2180  * and return the number of pages that we can free.
2181  */
2182 static unsigned long zs_can_compact(struct size_class *class)
2183 {
2184 	unsigned long obj_wasted;
2185 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2186 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2187 
2188 	if (obj_allocated <= obj_used)
2189 		return 0;
2190 
2191 	obj_wasted = obj_allocated - obj_used;
2192 	obj_wasted /= class->objs_per_zspage;
2193 
2194 	return obj_wasted * class->pages_per_zspage;
2195 }
2196 
2197 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2198 {
2199 	struct zs_compact_control cc;
2200 	struct zspage *src_zspage;
2201 	struct zspage *dst_zspage = NULL;
2202 
2203 	spin_lock(&class->lock);
2204 	while ((src_zspage = isolate_zspage(class, true))) {
2205 
2206 		if (!zs_can_compact(class))
2207 			break;
2208 
2209 		cc.obj_idx = 0;
2210 		cc.s_page = get_first_page(src_zspage);
2211 
2212 		while ((dst_zspage = isolate_zspage(class, false))) {
2213 			cc.d_page = get_first_page(dst_zspage);
2214 			/*
2215 			 * If there is no more space in dst_page, resched
2216 			 * and see if anyone had allocated another zspage.
2217 			 */
2218 			if (!migrate_zspage(pool, class, &cc))
2219 				break;
2220 
2221 			putback_zspage(class, dst_zspage);
2222 		}
2223 
2224 		/* Stop if we couldn't find slot */
2225 		if (dst_zspage == NULL)
2226 			break;
2227 
2228 		putback_zspage(class, dst_zspage);
2229 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2230 			free_zspage(pool, class, src_zspage);
2231 			pool->stats.pages_compacted += class->pages_per_zspage;
2232 		}
2233 		spin_unlock(&class->lock);
2234 		cond_resched();
2235 		spin_lock(&class->lock);
2236 	}
2237 
2238 	if (src_zspage)
2239 		putback_zspage(class, src_zspage);
2240 
2241 	spin_unlock(&class->lock);
2242 }
2243 
2244 unsigned long zs_compact(struct zs_pool *pool)
2245 {
2246 	int i;
2247 	struct size_class *class;
2248 
2249 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2250 		class = pool->size_class[i];
2251 		if (!class)
2252 			continue;
2253 		if (class->index != i)
2254 			continue;
2255 		__zs_compact(pool, class);
2256 	}
2257 
2258 	return pool->stats.pages_compacted;
2259 }
2260 EXPORT_SYMBOL_GPL(zs_compact);
2261 
2262 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2263 {
2264 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2265 }
2266 EXPORT_SYMBOL_GPL(zs_pool_stats);
2267 
2268 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2269 		struct shrink_control *sc)
2270 {
2271 	unsigned long pages_freed;
2272 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2273 			shrinker);
2274 
2275 	pages_freed = pool->stats.pages_compacted;
2276 	/*
2277 	 * Compact classes and calculate compaction delta.
2278 	 * Can run concurrently with a manually triggered
2279 	 * (by user) compaction.
2280 	 */
2281 	pages_freed = zs_compact(pool) - pages_freed;
2282 
2283 	return pages_freed ? pages_freed : SHRINK_STOP;
2284 }
2285 
2286 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2287 		struct shrink_control *sc)
2288 {
2289 	int i;
2290 	struct size_class *class;
2291 	unsigned long pages_to_free = 0;
2292 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2293 			shrinker);
2294 
2295 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2296 		class = pool->size_class[i];
2297 		if (!class)
2298 			continue;
2299 		if (class->index != i)
2300 			continue;
2301 
2302 		pages_to_free += zs_can_compact(class);
2303 	}
2304 
2305 	return pages_to_free;
2306 }
2307 
2308 static void zs_unregister_shrinker(struct zs_pool *pool)
2309 {
2310 	unregister_shrinker(&pool->shrinker);
2311 }
2312 
2313 static int zs_register_shrinker(struct zs_pool *pool)
2314 {
2315 	pool->shrinker.scan_objects = zs_shrinker_scan;
2316 	pool->shrinker.count_objects = zs_shrinker_count;
2317 	pool->shrinker.batch = 0;
2318 	pool->shrinker.seeks = DEFAULT_SEEKS;
2319 
2320 	return register_shrinker(&pool->shrinker);
2321 }
2322 
2323 /**
2324  * zs_create_pool - Creates an allocation pool to work from.
2325  * @name: pool name to be created
2326  *
2327  * This function must be called before anything when using
2328  * the zsmalloc allocator.
2329  *
2330  * On success, a pointer to the newly created pool is returned,
2331  * otherwise NULL.
2332  */
2333 struct zs_pool *zs_create_pool(const char *name)
2334 {
2335 	int i;
2336 	struct zs_pool *pool;
2337 	struct size_class *prev_class = NULL;
2338 
2339 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2340 	if (!pool)
2341 		return NULL;
2342 
2343 	init_deferred_free(pool);
2344 
2345 	pool->name = kstrdup(name, GFP_KERNEL);
2346 	if (!pool->name)
2347 		goto err;
2348 
2349 	if (create_cache(pool))
2350 		goto err;
2351 
2352 	/*
2353 	 * Iterate reversely, because, size of size_class that we want to use
2354 	 * for merging should be larger or equal to current size.
2355 	 */
2356 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2357 		int size;
2358 		int pages_per_zspage;
2359 		int objs_per_zspage;
2360 		struct size_class *class;
2361 		int fullness = 0;
2362 
2363 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2364 		if (size > ZS_MAX_ALLOC_SIZE)
2365 			size = ZS_MAX_ALLOC_SIZE;
2366 		pages_per_zspage = get_pages_per_zspage(size);
2367 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2368 
2369 		/*
2370 		 * We iterate from biggest down to smallest classes,
2371 		 * so huge_class_size holds the size of the first huge
2372 		 * class. Any object bigger than or equal to that will
2373 		 * endup in the huge class.
2374 		 */
2375 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2376 				!huge_class_size) {
2377 			huge_class_size = size;
2378 			/*
2379 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2380 			 * handle. We need to subtract it, because zs_malloc()
2381 			 * unconditionally adds handle size before it performs
2382 			 * size class search - so object may be smaller than
2383 			 * huge class size, yet it still can end up in the huge
2384 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2385 			 * right before class lookup.
2386 			 */
2387 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2388 		}
2389 
2390 		/*
2391 		 * size_class is used for normal zsmalloc operation such
2392 		 * as alloc/free for that size. Although it is natural that we
2393 		 * have one size_class for each size, there is a chance that we
2394 		 * can get more memory utilization if we use one size_class for
2395 		 * many different sizes whose size_class have same
2396 		 * characteristics. So, we makes size_class point to
2397 		 * previous size_class if possible.
2398 		 */
2399 		if (prev_class) {
2400 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2401 				pool->size_class[i] = prev_class;
2402 				continue;
2403 			}
2404 		}
2405 
2406 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2407 		if (!class)
2408 			goto err;
2409 
2410 		class->size = size;
2411 		class->index = i;
2412 		class->pages_per_zspage = pages_per_zspage;
2413 		class->objs_per_zspage = objs_per_zspage;
2414 		spin_lock_init(&class->lock);
2415 		pool->size_class[i] = class;
2416 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2417 							fullness++)
2418 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2419 
2420 		prev_class = class;
2421 	}
2422 
2423 	/* debug only, don't abort if it fails */
2424 	zs_pool_stat_create(pool, name);
2425 
2426 	if (zs_register_migration(pool))
2427 		goto err;
2428 
2429 	/*
2430 	 * Not critical since shrinker is only used to trigger internal
2431 	 * defragmentation of the pool which is pretty optional thing.  If
2432 	 * registration fails we still can use the pool normally and user can
2433 	 * trigger compaction manually. Thus, ignore return code.
2434 	 */
2435 	zs_register_shrinker(pool);
2436 
2437 	return pool;
2438 
2439 err:
2440 	zs_destroy_pool(pool);
2441 	return NULL;
2442 }
2443 EXPORT_SYMBOL_GPL(zs_create_pool);
2444 
2445 void zs_destroy_pool(struct zs_pool *pool)
2446 {
2447 	int i;
2448 
2449 	zs_unregister_shrinker(pool);
2450 	zs_unregister_migration(pool);
2451 	zs_pool_stat_destroy(pool);
2452 
2453 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2454 		int fg;
2455 		struct size_class *class = pool->size_class[i];
2456 
2457 		if (!class)
2458 			continue;
2459 
2460 		if (class->index != i)
2461 			continue;
2462 
2463 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2464 			if (!list_empty(&class->fullness_list[fg])) {
2465 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2466 					class->size, fg);
2467 			}
2468 		}
2469 		kfree(class);
2470 	}
2471 
2472 	destroy_cache(pool);
2473 	kfree(pool->name);
2474 	kfree(pool);
2475 }
2476 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2477 
2478 static int __init zs_init(void)
2479 {
2480 	int ret;
2481 
2482 	ret = zsmalloc_mount();
2483 	if (ret)
2484 		goto out;
2485 
2486 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2487 				zs_cpu_prepare, zs_cpu_dead);
2488 	if (ret)
2489 		goto hp_setup_fail;
2490 
2491 #ifdef CONFIG_ZPOOL
2492 	zpool_register_driver(&zs_zpool_driver);
2493 #endif
2494 
2495 	zs_stat_init();
2496 
2497 	return 0;
2498 
2499 hp_setup_fail:
2500 	zsmalloc_unmount();
2501 out:
2502 	return ret;
2503 }
2504 
2505 static void __exit zs_exit(void)
2506 {
2507 #ifdef CONFIG_ZPOOL
2508 	zpool_unregister_driver(&zs_zpool_driver);
2509 #endif
2510 	zsmalloc_unmount();
2511 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2512 
2513 	zs_stat_exit();
2514 }
2515 
2516 module_init(zs_init);
2517 module_exit(zs_exit);
2518 
2519 MODULE_LICENSE("Dual BSD/GPL");
2520 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2521