1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than of equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * as single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 #ifdef CONFIG_PGTABLE_MAPPING 297 struct vm_struct *vm; /* vm area for mapping object that span pages */ 298 #else 299 char *vm_buf; /* copy buffer for objects that span pages */ 300 #endif 301 char *vm_addr; /* address of kmap_atomic()'ed pages */ 302 enum zs_mapmode vm_mm; /* mapping mode */ 303 }; 304 305 #ifdef CONFIG_COMPACTION 306 static int zs_register_migration(struct zs_pool *pool); 307 static void zs_unregister_migration(struct zs_pool *pool); 308 static void migrate_lock_init(struct zspage *zspage); 309 static void migrate_read_lock(struct zspage *zspage); 310 static void migrate_read_unlock(struct zspage *zspage); 311 static void kick_deferred_free(struct zs_pool *pool); 312 static void init_deferred_free(struct zs_pool *pool); 313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 314 #else 315 static int zsmalloc_mount(void) { return 0; } 316 static void zsmalloc_unmount(void) {} 317 static int zs_register_migration(struct zs_pool *pool) { return 0; } 318 static void zs_unregister_migration(struct zs_pool *pool) {} 319 static void migrate_lock_init(struct zspage *zspage) {} 320 static void migrate_read_lock(struct zspage *zspage) {} 321 static void migrate_read_unlock(struct zspage *zspage) {} 322 static void kick_deferred_free(struct zs_pool *pool) {} 323 static void init_deferred_free(struct zs_pool *pool) {} 324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 325 #endif 326 327 static int create_cache(struct zs_pool *pool) 328 { 329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 330 0, 0, NULL); 331 if (!pool->handle_cachep) 332 return 1; 333 334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 335 0, 0, NULL); 336 if (!pool->zspage_cachep) { 337 kmem_cache_destroy(pool->handle_cachep); 338 pool->handle_cachep = NULL; 339 return 1; 340 } 341 342 return 0; 343 } 344 345 static void destroy_cache(struct zs_pool *pool) 346 { 347 kmem_cache_destroy(pool->handle_cachep); 348 kmem_cache_destroy(pool->zspage_cachep); 349 } 350 351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 352 { 353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 355 } 356 357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 358 { 359 kmem_cache_free(pool->handle_cachep, (void *)handle); 360 } 361 362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 363 { 364 return kmem_cache_alloc(pool->zspage_cachep, 365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 366 } 367 368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 369 { 370 kmem_cache_free(pool->zspage_cachep, zspage); 371 } 372 373 static void record_obj(unsigned long handle, unsigned long obj) 374 { 375 /* 376 * lsb of @obj represents handle lock while other bits 377 * represent object value the handle is pointing so 378 * updating shouldn't do store tearing. 379 */ 380 WRITE_ONCE(*(unsigned long *)handle, obj); 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 return zs_create_pool(name); 397 } 398 399 static void zs_zpool_destroy(void *pool) 400 { 401 zs_destroy_pool(pool); 402 } 403 404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 405 unsigned long *handle) 406 { 407 *handle = zs_malloc(pool, size, gfp); 408 return *handle ? 0 : -1; 409 } 410 static void zs_zpool_free(void *pool, unsigned long handle) 411 { 412 zs_free(pool, handle); 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc_support_movable = true, 451 .malloc = zs_zpool_malloc, 452 .free = zs_zpool_free, 453 .map = zs_zpool_map, 454 .unmap = zs_zpool_unmap, 455 .total_size = zs_zpool_total_size, 456 }; 457 458 MODULE_ALIAS("zpool-zsmalloc"); 459 #endif /* CONFIG_ZPOOL */ 460 461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 463 464 static bool is_zspage_isolated(struct zspage *zspage) 465 { 466 return zspage->isolated; 467 } 468 469 static __maybe_unused int is_first_page(struct page *page) 470 { 471 return PagePrivate(page); 472 } 473 474 /* Protected by class->lock */ 475 static inline int get_zspage_inuse(struct zspage *zspage) 476 { 477 return zspage->inuse; 478 } 479 480 481 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 482 { 483 zspage->inuse += val; 484 } 485 486 static inline struct page *get_first_page(struct zspage *zspage) 487 { 488 struct page *first_page = zspage->first_page; 489 490 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 491 return first_page; 492 } 493 494 static inline int get_first_obj_offset(struct page *page) 495 { 496 return page->units; 497 } 498 499 static inline void set_first_obj_offset(struct page *page, int offset) 500 { 501 page->units = offset; 502 } 503 504 static inline unsigned int get_freeobj(struct zspage *zspage) 505 { 506 return zspage->freeobj; 507 } 508 509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 510 { 511 zspage->freeobj = obj; 512 } 513 514 static void get_zspage_mapping(struct zspage *zspage, 515 unsigned int *class_idx, 516 enum fullness_group *fullness) 517 { 518 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 519 520 *fullness = zspage->fullness; 521 *class_idx = zspage->class; 522 } 523 524 static void set_zspage_mapping(struct zspage *zspage, 525 unsigned int class_idx, 526 enum fullness_group fullness) 527 { 528 zspage->class = class_idx; 529 zspage->fullness = fullness; 530 } 531 532 /* 533 * zsmalloc divides the pool into various size classes where each 534 * class maintains a list of zspages where each zspage is divided 535 * into equal sized chunks. Each allocation falls into one of these 536 * classes depending on its size. This function returns index of the 537 * size class which has chunk size big enough to hold the give size. 538 */ 539 static int get_size_class_index(int size) 540 { 541 int idx = 0; 542 543 if (likely(size > ZS_MIN_ALLOC_SIZE)) 544 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 545 ZS_SIZE_CLASS_DELTA); 546 547 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 548 } 549 550 /* type can be of enum type zs_stat_type or fullness_group */ 551 static inline void zs_stat_inc(struct size_class *class, 552 int type, unsigned long cnt) 553 { 554 class->stats.objs[type] += cnt; 555 } 556 557 /* type can be of enum type zs_stat_type or fullness_group */ 558 static inline void zs_stat_dec(struct size_class *class, 559 int type, unsigned long cnt) 560 { 561 class->stats.objs[type] -= cnt; 562 } 563 564 /* type can be of enum type zs_stat_type or fullness_group */ 565 static inline unsigned long zs_stat_get(struct size_class *class, 566 int type) 567 { 568 return class->stats.objs[type]; 569 } 570 571 #ifdef CONFIG_ZSMALLOC_STAT 572 573 static void __init zs_stat_init(void) 574 { 575 if (!debugfs_initialized()) { 576 pr_warn("debugfs not available, stat dir not created\n"); 577 return; 578 } 579 580 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 581 } 582 583 static void __exit zs_stat_exit(void) 584 { 585 debugfs_remove_recursive(zs_stat_root); 586 } 587 588 static unsigned long zs_can_compact(struct size_class *class); 589 590 static int zs_stats_size_show(struct seq_file *s, void *v) 591 { 592 int i; 593 struct zs_pool *pool = s->private; 594 struct size_class *class; 595 int objs_per_zspage; 596 unsigned long class_almost_full, class_almost_empty; 597 unsigned long obj_allocated, obj_used, pages_used, freeable; 598 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 599 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 600 unsigned long total_freeable = 0; 601 602 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 603 "class", "size", "almost_full", "almost_empty", 604 "obj_allocated", "obj_used", "pages_used", 605 "pages_per_zspage", "freeable"); 606 607 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 608 class = pool->size_class[i]; 609 610 if (class->index != i) 611 continue; 612 613 spin_lock(&class->lock); 614 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 615 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 616 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 617 obj_used = zs_stat_get(class, OBJ_USED); 618 freeable = zs_can_compact(class); 619 spin_unlock(&class->lock); 620 621 objs_per_zspage = class->objs_per_zspage; 622 pages_used = obj_allocated / objs_per_zspage * 623 class->pages_per_zspage; 624 625 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 626 " %10lu %10lu %16d %8lu\n", 627 i, class->size, class_almost_full, class_almost_empty, 628 obj_allocated, obj_used, pages_used, 629 class->pages_per_zspage, freeable); 630 631 total_class_almost_full += class_almost_full; 632 total_class_almost_empty += class_almost_empty; 633 total_objs += obj_allocated; 634 total_used_objs += obj_used; 635 total_pages += pages_used; 636 total_freeable += freeable; 637 } 638 639 seq_puts(s, "\n"); 640 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 641 "Total", "", total_class_almost_full, 642 total_class_almost_empty, total_objs, 643 total_used_objs, total_pages, "", total_freeable); 644 645 return 0; 646 } 647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 648 649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 650 { 651 if (!zs_stat_root) { 652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 653 return; 654 } 655 656 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 657 658 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 659 &zs_stats_size_fops); 660 } 661 662 static void zs_pool_stat_destroy(struct zs_pool *pool) 663 { 664 debugfs_remove_recursive(pool->stat_dentry); 665 } 666 667 #else /* CONFIG_ZSMALLOC_STAT */ 668 static void __init zs_stat_init(void) 669 { 670 } 671 672 static void __exit zs_stat_exit(void) 673 { 674 } 675 676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 677 { 678 } 679 680 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 681 { 682 } 683 #endif 684 685 686 /* 687 * For each size class, zspages are divided into different groups 688 * depending on how "full" they are. This was done so that we could 689 * easily find empty or nearly empty zspages when we try to shrink 690 * the pool (not yet implemented). This function returns fullness 691 * status of the given page. 692 */ 693 static enum fullness_group get_fullness_group(struct size_class *class, 694 struct zspage *zspage) 695 { 696 int inuse, objs_per_zspage; 697 enum fullness_group fg; 698 699 inuse = get_zspage_inuse(zspage); 700 objs_per_zspage = class->objs_per_zspage; 701 702 if (inuse == 0) 703 fg = ZS_EMPTY; 704 else if (inuse == objs_per_zspage) 705 fg = ZS_FULL; 706 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 707 fg = ZS_ALMOST_EMPTY; 708 else 709 fg = ZS_ALMOST_FULL; 710 711 return fg; 712 } 713 714 /* 715 * Each size class maintains various freelists and zspages are assigned 716 * to one of these freelists based on the number of live objects they 717 * have. This functions inserts the given zspage into the freelist 718 * identified by <class, fullness_group>. 719 */ 720 static void insert_zspage(struct size_class *class, 721 struct zspage *zspage, 722 enum fullness_group fullness) 723 { 724 struct zspage *head; 725 726 zs_stat_inc(class, fullness, 1); 727 head = list_first_entry_or_null(&class->fullness_list[fullness], 728 struct zspage, list); 729 /* 730 * We want to see more ZS_FULL pages and less almost empty/full. 731 * Put pages with higher ->inuse first. 732 */ 733 if (head) { 734 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 735 list_add(&zspage->list, &head->list); 736 return; 737 } 738 } 739 list_add(&zspage->list, &class->fullness_list[fullness]); 740 } 741 742 /* 743 * This function removes the given zspage from the freelist identified 744 * by <class, fullness_group>. 745 */ 746 static void remove_zspage(struct size_class *class, 747 struct zspage *zspage, 748 enum fullness_group fullness) 749 { 750 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 751 VM_BUG_ON(is_zspage_isolated(zspage)); 752 753 list_del_init(&zspage->list); 754 zs_stat_dec(class, fullness, 1); 755 } 756 757 /* 758 * Each size class maintains zspages in different fullness groups depending 759 * on the number of live objects they contain. When allocating or freeing 760 * objects, the fullness status of the page can change, say, from ALMOST_FULL 761 * to ALMOST_EMPTY when freeing an object. This function checks if such 762 * a status change has occurred for the given page and accordingly moves the 763 * page from the freelist of the old fullness group to that of the new 764 * fullness group. 765 */ 766 static enum fullness_group fix_fullness_group(struct size_class *class, 767 struct zspage *zspage) 768 { 769 int class_idx; 770 enum fullness_group currfg, newfg; 771 772 get_zspage_mapping(zspage, &class_idx, &currfg); 773 newfg = get_fullness_group(class, zspage); 774 if (newfg == currfg) 775 goto out; 776 777 if (!is_zspage_isolated(zspage)) { 778 remove_zspage(class, zspage, currfg); 779 insert_zspage(class, zspage, newfg); 780 } 781 782 set_zspage_mapping(zspage, class_idx, newfg); 783 784 out: 785 return newfg; 786 } 787 788 /* 789 * We have to decide on how many pages to link together 790 * to form a zspage for each size class. This is important 791 * to reduce wastage due to unusable space left at end of 792 * each zspage which is given as: 793 * wastage = Zp % class_size 794 * usage = Zp - wastage 795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 796 * 797 * For example, for size class of 3/8 * PAGE_SIZE, we should 798 * link together 3 PAGE_SIZE sized pages to form a zspage 799 * since then we can perfectly fit in 8 such objects. 800 */ 801 static int get_pages_per_zspage(int class_size) 802 { 803 int i, max_usedpc = 0; 804 /* zspage order which gives maximum used size per KB */ 805 int max_usedpc_order = 1; 806 807 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 808 int zspage_size; 809 int waste, usedpc; 810 811 zspage_size = i * PAGE_SIZE; 812 waste = zspage_size % class_size; 813 usedpc = (zspage_size - waste) * 100 / zspage_size; 814 815 if (usedpc > max_usedpc) { 816 max_usedpc = usedpc; 817 max_usedpc_order = i; 818 } 819 } 820 821 return max_usedpc_order; 822 } 823 824 static struct zspage *get_zspage(struct page *page) 825 { 826 struct zspage *zspage = (struct zspage *)page->private; 827 828 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 829 return zspage; 830 } 831 832 static struct page *get_next_page(struct page *page) 833 { 834 if (unlikely(PageHugeObject(page))) 835 return NULL; 836 837 return page->freelist; 838 } 839 840 /** 841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 842 * @obj: the encoded object value 843 * @page: page object resides in zspage 844 * @obj_idx: object index 845 */ 846 static void obj_to_location(unsigned long obj, struct page **page, 847 unsigned int *obj_idx) 848 { 849 obj >>= OBJ_TAG_BITS; 850 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 851 *obj_idx = (obj & OBJ_INDEX_MASK); 852 } 853 854 /** 855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 856 * @page: page object resides in zspage 857 * @obj_idx: object index 858 */ 859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 860 { 861 unsigned long obj; 862 863 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 864 obj |= obj_idx & OBJ_INDEX_MASK; 865 obj <<= OBJ_TAG_BITS; 866 867 return obj; 868 } 869 870 static unsigned long handle_to_obj(unsigned long handle) 871 { 872 return *(unsigned long *)handle; 873 } 874 875 static unsigned long obj_to_head(struct page *page, void *obj) 876 { 877 if (unlikely(PageHugeObject(page))) { 878 VM_BUG_ON_PAGE(!is_first_page(page), page); 879 return page->index; 880 } else 881 return *(unsigned long *)obj; 882 } 883 884 static inline int testpin_tag(unsigned long handle) 885 { 886 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 887 } 888 889 static inline int trypin_tag(unsigned long handle) 890 { 891 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 892 } 893 894 static void pin_tag(unsigned long handle) __acquires(bitlock) 895 { 896 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 897 } 898 899 static void unpin_tag(unsigned long handle) __releases(bitlock) 900 { 901 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 902 } 903 904 static void reset_page(struct page *page) 905 { 906 __ClearPageMovable(page); 907 ClearPagePrivate(page); 908 set_page_private(page, 0); 909 page_mapcount_reset(page); 910 ClearPageHugeObject(page); 911 page->freelist = NULL; 912 } 913 914 static int trylock_zspage(struct zspage *zspage) 915 { 916 struct page *cursor, *fail; 917 918 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 919 get_next_page(cursor)) { 920 if (!trylock_page(cursor)) { 921 fail = cursor; 922 goto unlock; 923 } 924 } 925 926 return 1; 927 unlock: 928 for (cursor = get_first_page(zspage); cursor != fail; cursor = 929 get_next_page(cursor)) 930 unlock_page(cursor); 931 932 return 0; 933 } 934 935 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 936 struct zspage *zspage) 937 { 938 struct page *page, *next; 939 enum fullness_group fg; 940 unsigned int class_idx; 941 942 get_zspage_mapping(zspage, &class_idx, &fg); 943 944 assert_spin_locked(&class->lock); 945 946 VM_BUG_ON(get_zspage_inuse(zspage)); 947 VM_BUG_ON(fg != ZS_EMPTY); 948 949 next = page = get_first_page(zspage); 950 do { 951 VM_BUG_ON_PAGE(!PageLocked(page), page); 952 next = get_next_page(page); 953 reset_page(page); 954 unlock_page(page); 955 dec_zone_page_state(page, NR_ZSPAGES); 956 put_page(page); 957 page = next; 958 } while (page != NULL); 959 960 cache_free_zspage(pool, zspage); 961 962 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 963 atomic_long_sub(class->pages_per_zspage, 964 &pool->pages_allocated); 965 } 966 967 static void free_zspage(struct zs_pool *pool, struct size_class *class, 968 struct zspage *zspage) 969 { 970 VM_BUG_ON(get_zspage_inuse(zspage)); 971 VM_BUG_ON(list_empty(&zspage->list)); 972 973 if (!trylock_zspage(zspage)) { 974 kick_deferred_free(pool); 975 return; 976 } 977 978 remove_zspage(class, zspage, ZS_EMPTY); 979 __free_zspage(pool, class, zspage); 980 } 981 982 /* Initialize a newly allocated zspage */ 983 static void init_zspage(struct size_class *class, struct zspage *zspage) 984 { 985 unsigned int freeobj = 1; 986 unsigned long off = 0; 987 struct page *page = get_first_page(zspage); 988 989 while (page) { 990 struct page *next_page; 991 struct link_free *link; 992 void *vaddr; 993 994 set_first_obj_offset(page, off); 995 996 vaddr = kmap_atomic(page); 997 link = (struct link_free *)vaddr + off / sizeof(*link); 998 999 while ((off += class->size) < PAGE_SIZE) { 1000 link->next = freeobj++ << OBJ_TAG_BITS; 1001 link += class->size / sizeof(*link); 1002 } 1003 1004 /* 1005 * We now come to the last (full or partial) object on this 1006 * page, which must point to the first object on the next 1007 * page (if present) 1008 */ 1009 next_page = get_next_page(page); 1010 if (next_page) { 1011 link->next = freeobj++ << OBJ_TAG_BITS; 1012 } else { 1013 /* 1014 * Reset OBJ_TAG_BITS bit to last link to tell 1015 * whether it's allocated object or not. 1016 */ 1017 link->next = -1UL << OBJ_TAG_BITS; 1018 } 1019 kunmap_atomic(vaddr); 1020 page = next_page; 1021 off %= PAGE_SIZE; 1022 } 1023 1024 set_freeobj(zspage, 0); 1025 } 1026 1027 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1028 struct page *pages[]) 1029 { 1030 int i; 1031 struct page *page; 1032 struct page *prev_page = NULL; 1033 int nr_pages = class->pages_per_zspage; 1034 1035 /* 1036 * Allocate individual pages and link them together as: 1037 * 1. all pages are linked together using page->freelist 1038 * 2. each sub-page point to zspage using page->private 1039 * 1040 * we set PG_private to identify the first page (i.e. no other sub-page 1041 * has this flag set). 1042 */ 1043 for (i = 0; i < nr_pages; i++) { 1044 page = pages[i]; 1045 set_page_private(page, (unsigned long)zspage); 1046 page->freelist = NULL; 1047 if (i == 0) { 1048 zspage->first_page = page; 1049 SetPagePrivate(page); 1050 if (unlikely(class->objs_per_zspage == 1 && 1051 class->pages_per_zspage == 1)) 1052 SetPageHugeObject(page); 1053 } else { 1054 prev_page->freelist = page; 1055 } 1056 prev_page = page; 1057 } 1058 } 1059 1060 /* 1061 * Allocate a zspage for the given size class 1062 */ 1063 static struct zspage *alloc_zspage(struct zs_pool *pool, 1064 struct size_class *class, 1065 gfp_t gfp) 1066 { 1067 int i; 1068 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1069 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1070 1071 if (!zspage) 1072 return NULL; 1073 1074 memset(zspage, 0, sizeof(struct zspage)); 1075 zspage->magic = ZSPAGE_MAGIC; 1076 migrate_lock_init(zspage); 1077 1078 for (i = 0; i < class->pages_per_zspage; i++) { 1079 struct page *page; 1080 1081 page = alloc_page(gfp); 1082 if (!page) { 1083 while (--i >= 0) { 1084 dec_zone_page_state(pages[i], NR_ZSPAGES); 1085 __free_page(pages[i]); 1086 } 1087 cache_free_zspage(pool, zspage); 1088 return NULL; 1089 } 1090 1091 inc_zone_page_state(page, NR_ZSPAGES); 1092 pages[i] = page; 1093 } 1094 1095 create_page_chain(class, zspage, pages); 1096 init_zspage(class, zspage); 1097 1098 return zspage; 1099 } 1100 1101 static struct zspage *find_get_zspage(struct size_class *class) 1102 { 1103 int i; 1104 struct zspage *zspage; 1105 1106 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1107 zspage = list_first_entry_or_null(&class->fullness_list[i], 1108 struct zspage, list); 1109 if (zspage) 1110 break; 1111 } 1112 1113 return zspage; 1114 } 1115 1116 #ifdef CONFIG_PGTABLE_MAPPING 1117 static inline int __zs_cpu_up(struct mapping_area *area) 1118 { 1119 /* 1120 * Make sure we don't leak memory if a cpu UP notification 1121 * and zs_init() race and both call zs_cpu_up() on the same cpu 1122 */ 1123 if (area->vm) 1124 return 0; 1125 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1126 if (!area->vm) 1127 return -ENOMEM; 1128 return 0; 1129 } 1130 1131 static inline void __zs_cpu_down(struct mapping_area *area) 1132 { 1133 if (area->vm) 1134 free_vm_area(area->vm); 1135 area->vm = NULL; 1136 } 1137 1138 static inline void *__zs_map_object(struct mapping_area *area, 1139 struct page *pages[2], int off, int size) 1140 { 1141 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1142 area->vm_addr = area->vm->addr; 1143 return area->vm_addr + off; 1144 } 1145 1146 static inline void __zs_unmap_object(struct mapping_area *area, 1147 struct page *pages[2], int off, int size) 1148 { 1149 unsigned long addr = (unsigned long)area->vm_addr; 1150 1151 unmap_kernel_range(addr, PAGE_SIZE * 2); 1152 } 1153 1154 #else /* CONFIG_PGTABLE_MAPPING */ 1155 1156 static inline int __zs_cpu_up(struct mapping_area *area) 1157 { 1158 /* 1159 * Make sure we don't leak memory if a cpu UP notification 1160 * and zs_init() race and both call zs_cpu_up() on the same cpu 1161 */ 1162 if (area->vm_buf) 1163 return 0; 1164 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1165 if (!area->vm_buf) 1166 return -ENOMEM; 1167 return 0; 1168 } 1169 1170 static inline void __zs_cpu_down(struct mapping_area *area) 1171 { 1172 kfree(area->vm_buf); 1173 area->vm_buf = NULL; 1174 } 1175 1176 static void *__zs_map_object(struct mapping_area *area, 1177 struct page *pages[2], int off, int size) 1178 { 1179 int sizes[2]; 1180 void *addr; 1181 char *buf = area->vm_buf; 1182 1183 /* disable page faults to match kmap_atomic() return conditions */ 1184 pagefault_disable(); 1185 1186 /* no read fastpath */ 1187 if (area->vm_mm == ZS_MM_WO) 1188 goto out; 1189 1190 sizes[0] = PAGE_SIZE - off; 1191 sizes[1] = size - sizes[0]; 1192 1193 /* copy object to per-cpu buffer */ 1194 addr = kmap_atomic(pages[0]); 1195 memcpy(buf, addr + off, sizes[0]); 1196 kunmap_atomic(addr); 1197 addr = kmap_atomic(pages[1]); 1198 memcpy(buf + sizes[0], addr, sizes[1]); 1199 kunmap_atomic(addr); 1200 out: 1201 return area->vm_buf; 1202 } 1203 1204 static void __zs_unmap_object(struct mapping_area *area, 1205 struct page *pages[2], int off, int size) 1206 { 1207 int sizes[2]; 1208 void *addr; 1209 char *buf; 1210 1211 /* no write fastpath */ 1212 if (area->vm_mm == ZS_MM_RO) 1213 goto out; 1214 1215 buf = area->vm_buf; 1216 buf = buf + ZS_HANDLE_SIZE; 1217 size -= ZS_HANDLE_SIZE; 1218 off += ZS_HANDLE_SIZE; 1219 1220 sizes[0] = PAGE_SIZE - off; 1221 sizes[1] = size - sizes[0]; 1222 1223 /* copy per-cpu buffer to object */ 1224 addr = kmap_atomic(pages[0]); 1225 memcpy(addr + off, buf, sizes[0]); 1226 kunmap_atomic(addr); 1227 addr = kmap_atomic(pages[1]); 1228 memcpy(addr, buf + sizes[0], sizes[1]); 1229 kunmap_atomic(addr); 1230 1231 out: 1232 /* enable page faults to match kunmap_atomic() return conditions */ 1233 pagefault_enable(); 1234 } 1235 1236 #endif /* CONFIG_PGTABLE_MAPPING */ 1237 1238 static int zs_cpu_prepare(unsigned int cpu) 1239 { 1240 struct mapping_area *area; 1241 1242 area = &per_cpu(zs_map_area, cpu); 1243 return __zs_cpu_up(area); 1244 } 1245 1246 static int zs_cpu_dead(unsigned int cpu) 1247 { 1248 struct mapping_area *area; 1249 1250 area = &per_cpu(zs_map_area, cpu); 1251 __zs_cpu_down(area); 1252 return 0; 1253 } 1254 1255 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1256 int objs_per_zspage) 1257 { 1258 if (prev->pages_per_zspage == pages_per_zspage && 1259 prev->objs_per_zspage == objs_per_zspage) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1266 { 1267 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1268 } 1269 1270 unsigned long zs_get_total_pages(struct zs_pool *pool) 1271 { 1272 return atomic_long_read(&pool->pages_allocated); 1273 } 1274 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1275 1276 /** 1277 * zs_map_object - get address of allocated object from handle. 1278 * @pool: pool from which the object was allocated 1279 * @handle: handle returned from zs_malloc 1280 * @mm: maping mode to use 1281 * 1282 * Before using an object allocated from zs_malloc, it must be mapped using 1283 * this function. When done with the object, it must be unmapped using 1284 * zs_unmap_object. 1285 * 1286 * Only one object can be mapped per cpu at a time. There is no protection 1287 * against nested mappings. 1288 * 1289 * This function returns with preemption and page faults disabled. 1290 */ 1291 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1292 enum zs_mapmode mm) 1293 { 1294 struct zspage *zspage; 1295 struct page *page; 1296 unsigned long obj, off; 1297 unsigned int obj_idx; 1298 1299 unsigned int class_idx; 1300 enum fullness_group fg; 1301 struct size_class *class; 1302 struct mapping_area *area; 1303 struct page *pages[2]; 1304 void *ret; 1305 1306 /* 1307 * Because we use per-cpu mapping areas shared among the 1308 * pools/users, we can't allow mapping in interrupt context 1309 * because it can corrupt another users mappings. 1310 */ 1311 BUG_ON(in_interrupt()); 1312 1313 /* From now on, migration cannot move the object */ 1314 pin_tag(handle); 1315 1316 obj = handle_to_obj(handle); 1317 obj_to_location(obj, &page, &obj_idx); 1318 zspage = get_zspage(page); 1319 1320 /* migration cannot move any subpage in this zspage */ 1321 migrate_read_lock(zspage); 1322 1323 get_zspage_mapping(zspage, &class_idx, &fg); 1324 class = pool->size_class[class_idx]; 1325 off = (class->size * obj_idx) & ~PAGE_MASK; 1326 1327 area = &get_cpu_var(zs_map_area); 1328 area->vm_mm = mm; 1329 if (off + class->size <= PAGE_SIZE) { 1330 /* this object is contained entirely within a page */ 1331 area->vm_addr = kmap_atomic(page); 1332 ret = area->vm_addr + off; 1333 goto out; 1334 } 1335 1336 /* this object spans two pages */ 1337 pages[0] = page; 1338 pages[1] = get_next_page(page); 1339 BUG_ON(!pages[1]); 1340 1341 ret = __zs_map_object(area, pages, off, class->size); 1342 out: 1343 if (likely(!PageHugeObject(page))) 1344 ret += ZS_HANDLE_SIZE; 1345 1346 return ret; 1347 } 1348 EXPORT_SYMBOL_GPL(zs_map_object); 1349 1350 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1351 { 1352 struct zspage *zspage; 1353 struct page *page; 1354 unsigned long obj, off; 1355 unsigned int obj_idx; 1356 1357 unsigned int class_idx; 1358 enum fullness_group fg; 1359 struct size_class *class; 1360 struct mapping_area *area; 1361 1362 obj = handle_to_obj(handle); 1363 obj_to_location(obj, &page, &obj_idx); 1364 zspage = get_zspage(page); 1365 get_zspage_mapping(zspage, &class_idx, &fg); 1366 class = pool->size_class[class_idx]; 1367 off = (class->size * obj_idx) & ~PAGE_MASK; 1368 1369 area = this_cpu_ptr(&zs_map_area); 1370 if (off + class->size <= PAGE_SIZE) 1371 kunmap_atomic(area->vm_addr); 1372 else { 1373 struct page *pages[2]; 1374 1375 pages[0] = page; 1376 pages[1] = get_next_page(page); 1377 BUG_ON(!pages[1]); 1378 1379 __zs_unmap_object(area, pages, off, class->size); 1380 } 1381 put_cpu_var(zs_map_area); 1382 1383 migrate_read_unlock(zspage); 1384 unpin_tag(handle); 1385 } 1386 EXPORT_SYMBOL_GPL(zs_unmap_object); 1387 1388 /** 1389 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1390 * zsmalloc &size_class. 1391 * @pool: zsmalloc pool to use 1392 * 1393 * The function returns the size of the first huge class - any object of equal 1394 * or bigger size will be stored in zspage consisting of a single physical 1395 * page. 1396 * 1397 * Context: Any context. 1398 * 1399 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1400 */ 1401 size_t zs_huge_class_size(struct zs_pool *pool) 1402 { 1403 return huge_class_size; 1404 } 1405 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1406 1407 static unsigned long obj_malloc(struct size_class *class, 1408 struct zspage *zspage, unsigned long handle) 1409 { 1410 int i, nr_page, offset; 1411 unsigned long obj; 1412 struct link_free *link; 1413 1414 struct page *m_page; 1415 unsigned long m_offset; 1416 void *vaddr; 1417 1418 handle |= OBJ_ALLOCATED_TAG; 1419 obj = get_freeobj(zspage); 1420 1421 offset = obj * class->size; 1422 nr_page = offset >> PAGE_SHIFT; 1423 m_offset = offset & ~PAGE_MASK; 1424 m_page = get_first_page(zspage); 1425 1426 for (i = 0; i < nr_page; i++) 1427 m_page = get_next_page(m_page); 1428 1429 vaddr = kmap_atomic(m_page); 1430 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1431 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1432 if (likely(!PageHugeObject(m_page))) 1433 /* record handle in the header of allocated chunk */ 1434 link->handle = handle; 1435 else 1436 /* record handle to page->index */ 1437 zspage->first_page->index = handle; 1438 1439 kunmap_atomic(vaddr); 1440 mod_zspage_inuse(zspage, 1); 1441 zs_stat_inc(class, OBJ_USED, 1); 1442 1443 obj = location_to_obj(m_page, obj); 1444 1445 return obj; 1446 } 1447 1448 1449 /** 1450 * zs_malloc - Allocate block of given size from pool. 1451 * @pool: pool to allocate from 1452 * @size: size of block to allocate 1453 * @gfp: gfp flags when allocating object 1454 * 1455 * On success, handle to the allocated object is returned, 1456 * otherwise 0. 1457 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1458 */ 1459 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1460 { 1461 unsigned long handle, obj; 1462 struct size_class *class; 1463 enum fullness_group newfg; 1464 struct zspage *zspage; 1465 1466 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1467 return 0; 1468 1469 handle = cache_alloc_handle(pool, gfp); 1470 if (!handle) 1471 return 0; 1472 1473 /* extra space in chunk to keep the handle */ 1474 size += ZS_HANDLE_SIZE; 1475 class = pool->size_class[get_size_class_index(size)]; 1476 1477 spin_lock(&class->lock); 1478 zspage = find_get_zspage(class); 1479 if (likely(zspage)) { 1480 obj = obj_malloc(class, zspage, handle); 1481 /* Now move the zspage to another fullness group, if required */ 1482 fix_fullness_group(class, zspage); 1483 record_obj(handle, obj); 1484 spin_unlock(&class->lock); 1485 1486 return handle; 1487 } 1488 1489 spin_unlock(&class->lock); 1490 1491 zspage = alloc_zspage(pool, class, gfp); 1492 if (!zspage) { 1493 cache_free_handle(pool, handle); 1494 return 0; 1495 } 1496 1497 spin_lock(&class->lock); 1498 obj = obj_malloc(class, zspage, handle); 1499 newfg = get_fullness_group(class, zspage); 1500 insert_zspage(class, zspage, newfg); 1501 set_zspage_mapping(zspage, class->index, newfg); 1502 record_obj(handle, obj); 1503 atomic_long_add(class->pages_per_zspage, 1504 &pool->pages_allocated); 1505 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1506 1507 /* We completely set up zspage so mark them as movable */ 1508 SetZsPageMovable(pool, zspage); 1509 spin_unlock(&class->lock); 1510 1511 return handle; 1512 } 1513 EXPORT_SYMBOL_GPL(zs_malloc); 1514 1515 static void obj_free(struct size_class *class, unsigned long obj) 1516 { 1517 struct link_free *link; 1518 struct zspage *zspage; 1519 struct page *f_page; 1520 unsigned long f_offset; 1521 unsigned int f_objidx; 1522 void *vaddr; 1523 1524 obj &= ~OBJ_ALLOCATED_TAG; 1525 obj_to_location(obj, &f_page, &f_objidx); 1526 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1527 zspage = get_zspage(f_page); 1528 1529 vaddr = kmap_atomic(f_page); 1530 1531 /* Insert this object in containing zspage's freelist */ 1532 link = (struct link_free *)(vaddr + f_offset); 1533 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1534 kunmap_atomic(vaddr); 1535 set_freeobj(zspage, f_objidx); 1536 mod_zspage_inuse(zspage, -1); 1537 zs_stat_dec(class, OBJ_USED, 1); 1538 } 1539 1540 void zs_free(struct zs_pool *pool, unsigned long handle) 1541 { 1542 struct zspage *zspage; 1543 struct page *f_page; 1544 unsigned long obj; 1545 unsigned int f_objidx; 1546 int class_idx; 1547 struct size_class *class; 1548 enum fullness_group fullness; 1549 bool isolated; 1550 1551 if (unlikely(!handle)) 1552 return; 1553 1554 pin_tag(handle); 1555 obj = handle_to_obj(handle); 1556 obj_to_location(obj, &f_page, &f_objidx); 1557 zspage = get_zspage(f_page); 1558 1559 migrate_read_lock(zspage); 1560 1561 get_zspage_mapping(zspage, &class_idx, &fullness); 1562 class = pool->size_class[class_idx]; 1563 1564 spin_lock(&class->lock); 1565 obj_free(class, obj); 1566 fullness = fix_fullness_group(class, zspage); 1567 if (fullness != ZS_EMPTY) { 1568 migrate_read_unlock(zspage); 1569 goto out; 1570 } 1571 1572 isolated = is_zspage_isolated(zspage); 1573 migrate_read_unlock(zspage); 1574 /* If zspage is isolated, zs_page_putback will free the zspage */ 1575 if (likely(!isolated)) 1576 free_zspage(pool, class, zspage); 1577 out: 1578 1579 spin_unlock(&class->lock); 1580 unpin_tag(handle); 1581 cache_free_handle(pool, handle); 1582 } 1583 EXPORT_SYMBOL_GPL(zs_free); 1584 1585 static void zs_object_copy(struct size_class *class, unsigned long dst, 1586 unsigned long src) 1587 { 1588 struct page *s_page, *d_page; 1589 unsigned int s_objidx, d_objidx; 1590 unsigned long s_off, d_off; 1591 void *s_addr, *d_addr; 1592 int s_size, d_size, size; 1593 int written = 0; 1594 1595 s_size = d_size = class->size; 1596 1597 obj_to_location(src, &s_page, &s_objidx); 1598 obj_to_location(dst, &d_page, &d_objidx); 1599 1600 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1601 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1602 1603 if (s_off + class->size > PAGE_SIZE) 1604 s_size = PAGE_SIZE - s_off; 1605 1606 if (d_off + class->size > PAGE_SIZE) 1607 d_size = PAGE_SIZE - d_off; 1608 1609 s_addr = kmap_atomic(s_page); 1610 d_addr = kmap_atomic(d_page); 1611 1612 while (1) { 1613 size = min(s_size, d_size); 1614 memcpy(d_addr + d_off, s_addr + s_off, size); 1615 written += size; 1616 1617 if (written == class->size) 1618 break; 1619 1620 s_off += size; 1621 s_size -= size; 1622 d_off += size; 1623 d_size -= size; 1624 1625 if (s_off >= PAGE_SIZE) { 1626 kunmap_atomic(d_addr); 1627 kunmap_atomic(s_addr); 1628 s_page = get_next_page(s_page); 1629 s_addr = kmap_atomic(s_page); 1630 d_addr = kmap_atomic(d_page); 1631 s_size = class->size - written; 1632 s_off = 0; 1633 } 1634 1635 if (d_off >= PAGE_SIZE) { 1636 kunmap_atomic(d_addr); 1637 d_page = get_next_page(d_page); 1638 d_addr = kmap_atomic(d_page); 1639 d_size = class->size - written; 1640 d_off = 0; 1641 } 1642 } 1643 1644 kunmap_atomic(d_addr); 1645 kunmap_atomic(s_addr); 1646 } 1647 1648 /* 1649 * Find alloced object in zspage from index object and 1650 * return handle. 1651 */ 1652 static unsigned long find_alloced_obj(struct size_class *class, 1653 struct page *page, int *obj_idx) 1654 { 1655 unsigned long head; 1656 int offset = 0; 1657 int index = *obj_idx; 1658 unsigned long handle = 0; 1659 void *addr = kmap_atomic(page); 1660 1661 offset = get_first_obj_offset(page); 1662 offset += class->size * index; 1663 1664 while (offset < PAGE_SIZE) { 1665 head = obj_to_head(page, addr + offset); 1666 if (head & OBJ_ALLOCATED_TAG) { 1667 handle = head & ~OBJ_ALLOCATED_TAG; 1668 if (trypin_tag(handle)) 1669 break; 1670 handle = 0; 1671 } 1672 1673 offset += class->size; 1674 index++; 1675 } 1676 1677 kunmap_atomic(addr); 1678 1679 *obj_idx = index; 1680 1681 return handle; 1682 } 1683 1684 struct zs_compact_control { 1685 /* Source spage for migration which could be a subpage of zspage */ 1686 struct page *s_page; 1687 /* Destination page for migration which should be a first page 1688 * of zspage. */ 1689 struct page *d_page; 1690 /* Starting object index within @s_page which used for live object 1691 * in the subpage. */ 1692 int obj_idx; 1693 }; 1694 1695 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1696 struct zs_compact_control *cc) 1697 { 1698 unsigned long used_obj, free_obj; 1699 unsigned long handle; 1700 struct page *s_page = cc->s_page; 1701 struct page *d_page = cc->d_page; 1702 int obj_idx = cc->obj_idx; 1703 int ret = 0; 1704 1705 while (1) { 1706 handle = find_alloced_obj(class, s_page, &obj_idx); 1707 if (!handle) { 1708 s_page = get_next_page(s_page); 1709 if (!s_page) 1710 break; 1711 obj_idx = 0; 1712 continue; 1713 } 1714 1715 /* Stop if there is no more space */ 1716 if (zspage_full(class, get_zspage(d_page))) { 1717 unpin_tag(handle); 1718 ret = -ENOMEM; 1719 break; 1720 } 1721 1722 used_obj = handle_to_obj(handle); 1723 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1724 zs_object_copy(class, free_obj, used_obj); 1725 obj_idx++; 1726 /* 1727 * record_obj updates handle's value to free_obj and it will 1728 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1729 * breaks synchronization using pin_tag(e,g, zs_free) so 1730 * let's keep the lock bit. 1731 */ 1732 free_obj |= BIT(HANDLE_PIN_BIT); 1733 record_obj(handle, free_obj); 1734 unpin_tag(handle); 1735 obj_free(class, used_obj); 1736 } 1737 1738 /* Remember last position in this iteration */ 1739 cc->s_page = s_page; 1740 cc->obj_idx = obj_idx; 1741 1742 return ret; 1743 } 1744 1745 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1746 { 1747 int i; 1748 struct zspage *zspage; 1749 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1750 1751 if (!source) { 1752 fg[0] = ZS_ALMOST_FULL; 1753 fg[1] = ZS_ALMOST_EMPTY; 1754 } 1755 1756 for (i = 0; i < 2; i++) { 1757 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1758 struct zspage, list); 1759 if (zspage) { 1760 VM_BUG_ON(is_zspage_isolated(zspage)); 1761 remove_zspage(class, zspage, fg[i]); 1762 return zspage; 1763 } 1764 } 1765 1766 return zspage; 1767 } 1768 1769 /* 1770 * putback_zspage - add @zspage into right class's fullness list 1771 * @class: destination class 1772 * @zspage: target page 1773 * 1774 * Return @zspage's fullness_group 1775 */ 1776 static enum fullness_group putback_zspage(struct size_class *class, 1777 struct zspage *zspage) 1778 { 1779 enum fullness_group fullness; 1780 1781 VM_BUG_ON(is_zspage_isolated(zspage)); 1782 1783 fullness = get_fullness_group(class, zspage); 1784 insert_zspage(class, zspage, fullness); 1785 set_zspage_mapping(zspage, class->index, fullness); 1786 1787 return fullness; 1788 } 1789 1790 #ifdef CONFIG_COMPACTION 1791 /* 1792 * To prevent zspage destroy during migration, zspage freeing should 1793 * hold locks of all pages in the zspage. 1794 */ 1795 static void lock_zspage(struct zspage *zspage) 1796 { 1797 struct page *page = get_first_page(zspage); 1798 1799 do { 1800 lock_page(page); 1801 } while ((page = get_next_page(page)) != NULL); 1802 } 1803 1804 static int zs_init_fs_context(struct fs_context *fc) 1805 { 1806 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1807 } 1808 1809 static struct file_system_type zsmalloc_fs = { 1810 .name = "zsmalloc", 1811 .init_fs_context = zs_init_fs_context, 1812 .kill_sb = kill_anon_super, 1813 }; 1814 1815 static int zsmalloc_mount(void) 1816 { 1817 int ret = 0; 1818 1819 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1820 if (IS_ERR(zsmalloc_mnt)) 1821 ret = PTR_ERR(zsmalloc_mnt); 1822 1823 return ret; 1824 } 1825 1826 static void zsmalloc_unmount(void) 1827 { 1828 kern_unmount(zsmalloc_mnt); 1829 } 1830 1831 static void migrate_lock_init(struct zspage *zspage) 1832 { 1833 rwlock_init(&zspage->lock); 1834 } 1835 1836 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1837 { 1838 read_lock(&zspage->lock); 1839 } 1840 1841 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1842 { 1843 read_unlock(&zspage->lock); 1844 } 1845 1846 static void migrate_write_lock(struct zspage *zspage) 1847 { 1848 write_lock(&zspage->lock); 1849 } 1850 1851 static void migrate_write_unlock(struct zspage *zspage) 1852 { 1853 write_unlock(&zspage->lock); 1854 } 1855 1856 /* Number of isolated subpage for *page migration* in this zspage */ 1857 static void inc_zspage_isolation(struct zspage *zspage) 1858 { 1859 zspage->isolated++; 1860 } 1861 1862 static void dec_zspage_isolation(struct zspage *zspage) 1863 { 1864 zspage->isolated--; 1865 } 1866 1867 static void putback_zspage_deferred(struct zs_pool *pool, 1868 struct size_class *class, 1869 struct zspage *zspage) 1870 { 1871 enum fullness_group fg; 1872 1873 fg = putback_zspage(class, zspage); 1874 if (fg == ZS_EMPTY) 1875 schedule_work(&pool->free_work); 1876 1877 } 1878 1879 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1880 { 1881 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1882 atomic_long_dec(&pool->isolated_pages); 1883 /* 1884 * There's no possibility of racing, since wait_for_isolated_drain() 1885 * checks the isolated count under &class->lock after enqueuing 1886 * on migration_wait. 1887 */ 1888 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1889 wake_up_all(&pool->migration_wait); 1890 } 1891 1892 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1893 struct page *newpage, struct page *oldpage) 1894 { 1895 struct page *page; 1896 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1897 int idx = 0; 1898 1899 page = get_first_page(zspage); 1900 do { 1901 if (page == oldpage) 1902 pages[idx] = newpage; 1903 else 1904 pages[idx] = page; 1905 idx++; 1906 } while ((page = get_next_page(page)) != NULL); 1907 1908 create_page_chain(class, zspage, pages); 1909 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1910 if (unlikely(PageHugeObject(oldpage))) 1911 newpage->index = oldpage->index; 1912 __SetPageMovable(newpage, page_mapping(oldpage)); 1913 } 1914 1915 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1916 { 1917 struct zs_pool *pool; 1918 struct size_class *class; 1919 int class_idx; 1920 enum fullness_group fullness; 1921 struct zspage *zspage; 1922 struct address_space *mapping; 1923 1924 /* 1925 * Page is locked so zspage couldn't be destroyed. For detail, look at 1926 * lock_zspage in free_zspage. 1927 */ 1928 VM_BUG_ON_PAGE(!PageMovable(page), page); 1929 VM_BUG_ON_PAGE(PageIsolated(page), page); 1930 1931 zspage = get_zspage(page); 1932 1933 /* 1934 * Without class lock, fullness could be stale while class_idx is okay 1935 * because class_idx is constant unless page is freed so we should get 1936 * fullness again under class lock. 1937 */ 1938 get_zspage_mapping(zspage, &class_idx, &fullness); 1939 mapping = page_mapping(page); 1940 pool = mapping->private_data; 1941 class = pool->size_class[class_idx]; 1942 1943 spin_lock(&class->lock); 1944 if (get_zspage_inuse(zspage) == 0) { 1945 spin_unlock(&class->lock); 1946 return false; 1947 } 1948 1949 /* zspage is isolated for object migration */ 1950 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1951 spin_unlock(&class->lock); 1952 return false; 1953 } 1954 1955 /* 1956 * If this is first time isolation for the zspage, isolate zspage from 1957 * size_class to prevent further object allocation from the zspage. 1958 */ 1959 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1960 get_zspage_mapping(zspage, &class_idx, &fullness); 1961 atomic_long_inc(&pool->isolated_pages); 1962 remove_zspage(class, zspage, fullness); 1963 } 1964 1965 inc_zspage_isolation(zspage); 1966 spin_unlock(&class->lock); 1967 1968 return true; 1969 } 1970 1971 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1972 struct page *page, enum migrate_mode mode) 1973 { 1974 struct zs_pool *pool; 1975 struct size_class *class; 1976 int class_idx; 1977 enum fullness_group fullness; 1978 struct zspage *zspage; 1979 struct page *dummy; 1980 void *s_addr, *d_addr, *addr; 1981 int offset, pos; 1982 unsigned long handle, head; 1983 unsigned long old_obj, new_obj; 1984 unsigned int obj_idx; 1985 int ret = -EAGAIN; 1986 1987 /* 1988 * We cannot support the _NO_COPY case here, because copy needs to 1989 * happen under the zs lock, which does not work with 1990 * MIGRATE_SYNC_NO_COPY workflow. 1991 */ 1992 if (mode == MIGRATE_SYNC_NO_COPY) 1993 return -EINVAL; 1994 1995 VM_BUG_ON_PAGE(!PageMovable(page), page); 1996 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1997 1998 zspage = get_zspage(page); 1999 2000 /* Concurrent compactor cannot migrate any subpage in zspage */ 2001 migrate_write_lock(zspage); 2002 get_zspage_mapping(zspage, &class_idx, &fullness); 2003 pool = mapping->private_data; 2004 class = pool->size_class[class_idx]; 2005 offset = get_first_obj_offset(page); 2006 2007 spin_lock(&class->lock); 2008 if (!get_zspage_inuse(zspage)) { 2009 /* 2010 * Set "offset" to end of the page so that every loops 2011 * skips unnecessary object scanning. 2012 */ 2013 offset = PAGE_SIZE; 2014 } 2015 2016 pos = offset; 2017 s_addr = kmap_atomic(page); 2018 while (pos < PAGE_SIZE) { 2019 head = obj_to_head(page, s_addr + pos); 2020 if (head & OBJ_ALLOCATED_TAG) { 2021 handle = head & ~OBJ_ALLOCATED_TAG; 2022 if (!trypin_tag(handle)) 2023 goto unpin_objects; 2024 } 2025 pos += class->size; 2026 } 2027 2028 /* 2029 * Here, any user cannot access all objects in the zspage so let's move. 2030 */ 2031 d_addr = kmap_atomic(newpage); 2032 memcpy(d_addr, s_addr, PAGE_SIZE); 2033 kunmap_atomic(d_addr); 2034 2035 for (addr = s_addr + offset; addr < s_addr + pos; 2036 addr += class->size) { 2037 head = obj_to_head(page, addr); 2038 if (head & OBJ_ALLOCATED_TAG) { 2039 handle = head & ~OBJ_ALLOCATED_TAG; 2040 if (!testpin_tag(handle)) 2041 BUG(); 2042 2043 old_obj = handle_to_obj(handle); 2044 obj_to_location(old_obj, &dummy, &obj_idx); 2045 new_obj = (unsigned long)location_to_obj(newpage, 2046 obj_idx); 2047 new_obj |= BIT(HANDLE_PIN_BIT); 2048 record_obj(handle, new_obj); 2049 } 2050 } 2051 2052 replace_sub_page(class, zspage, newpage, page); 2053 get_page(newpage); 2054 2055 dec_zspage_isolation(zspage); 2056 2057 /* 2058 * Page migration is done so let's putback isolated zspage to 2059 * the list if @page is final isolated subpage in the zspage. 2060 */ 2061 if (!is_zspage_isolated(zspage)) { 2062 /* 2063 * We cannot race with zs_destroy_pool() here because we wait 2064 * for isolation to hit zero before we start destroying. 2065 * Also, we ensure that everyone can see pool->destroying before 2066 * we start waiting. 2067 */ 2068 putback_zspage_deferred(pool, class, zspage); 2069 zs_pool_dec_isolated(pool); 2070 } 2071 2072 if (page_zone(newpage) != page_zone(page)) { 2073 dec_zone_page_state(page, NR_ZSPAGES); 2074 inc_zone_page_state(newpage, NR_ZSPAGES); 2075 } 2076 2077 reset_page(page); 2078 put_page(page); 2079 page = newpage; 2080 2081 ret = MIGRATEPAGE_SUCCESS; 2082 unpin_objects: 2083 for (addr = s_addr + offset; addr < s_addr + pos; 2084 addr += class->size) { 2085 head = obj_to_head(page, addr); 2086 if (head & OBJ_ALLOCATED_TAG) { 2087 handle = head & ~OBJ_ALLOCATED_TAG; 2088 if (!testpin_tag(handle)) 2089 BUG(); 2090 unpin_tag(handle); 2091 } 2092 } 2093 kunmap_atomic(s_addr); 2094 spin_unlock(&class->lock); 2095 migrate_write_unlock(zspage); 2096 2097 return ret; 2098 } 2099 2100 static void zs_page_putback(struct page *page) 2101 { 2102 struct zs_pool *pool; 2103 struct size_class *class; 2104 int class_idx; 2105 enum fullness_group fg; 2106 struct address_space *mapping; 2107 struct zspage *zspage; 2108 2109 VM_BUG_ON_PAGE(!PageMovable(page), page); 2110 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2111 2112 zspage = get_zspage(page); 2113 get_zspage_mapping(zspage, &class_idx, &fg); 2114 mapping = page_mapping(page); 2115 pool = mapping->private_data; 2116 class = pool->size_class[class_idx]; 2117 2118 spin_lock(&class->lock); 2119 dec_zspage_isolation(zspage); 2120 if (!is_zspage_isolated(zspage)) { 2121 /* 2122 * Due to page_lock, we cannot free zspage immediately 2123 * so let's defer. 2124 */ 2125 putback_zspage_deferred(pool, class, zspage); 2126 zs_pool_dec_isolated(pool); 2127 } 2128 spin_unlock(&class->lock); 2129 } 2130 2131 static const struct address_space_operations zsmalloc_aops = { 2132 .isolate_page = zs_page_isolate, 2133 .migratepage = zs_page_migrate, 2134 .putback_page = zs_page_putback, 2135 }; 2136 2137 static int zs_register_migration(struct zs_pool *pool) 2138 { 2139 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2140 if (IS_ERR(pool->inode)) { 2141 pool->inode = NULL; 2142 return 1; 2143 } 2144 2145 pool->inode->i_mapping->private_data = pool; 2146 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2147 return 0; 2148 } 2149 2150 static bool pool_isolated_are_drained(struct zs_pool *pool) 2151 { 2152 return atomic_long_read(&pool->isolated_pages) == 0; 2153 } 2154 2155 /* Function for resolving migration */ 2156 static void wait_for_isolated_drain(struct zs_pool *pool) 2157 { 2158 2159 /* 2160 * We're in the process of destroying the pool, so there are no 2161 * active allocations. zs_page_isolate() fails for completely free 2162 * zspages, so we need only wait for the zs_pool's isolated 2163 * count to hit zero. 2164 */ 2165 wait_event(pool->migration_wait, 2166 pool_isolated_are_drained(pool)); 2167 } 2168 2169 static void zs_unregister_migration(struct zs_pool *pool) 2170 { 2171 pool->destroying = true; 2172 /* 2173 * We need a memory barrier here to ensure global visibility of 2174 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2175 * case we don't care, or it will be > 0 and pool->destroying will 2176 * ensure that we wake up once isolation hits 0. 2177 */ 2178 smp_mb(); 2179 wait_for_isolated_drain(pool); /* This can block */ 2180 flush_work(&pool->free_work); 2181 iput(pool->inode); 2182 } 2183 2184 /* 2185 * Caller should hold page_lock of all pages in the zspage 2186 * In here, we cannot use zspage meta data. 2187 */ 2188 static void async_free_zspage(struct work_struct *work) 2189 { 2190 int i; 2191 struct size_class *class; 2192 unsigned int class_idx; 2193 enum fullness_group fullness; 2194 struct zspage *zspage, *tmp; 2195 LIST_HEAD(free_pages); 2196 struct zs_pool *pool = container_of(work, struct zs_pool, 2197 free_work); 2198 2199 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2200 class = pool->size_class[i]; 2201 if (class->index != i) 2202 continue; 2203 2204 spin_lock(&class->lock); 2205 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2206 spin_unlock(&class->lock); 2207 } 2208 2209 2210 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2211 list_del(&zspage->list); 2212 lock_zspage(zspage); 2213 2214 get_zspage_mapping(zspage, &class_idx, &fullness); 2215 VM_BUG_ON(fullness != ZS_EMPTY); 2216 class = pool->size_class[class_idx]; 2217 spin_lock(&class->lock); 2218 __free_zspage(pool, pool->size_class[class_idx], zspage); 2219 spin_unlock(&class->lock); 2220 } 2221 }; 2222 2223 static void kick_deferred_free(struct zs_pool *pool) 2224 { 2225 schedule_work(&pool->free_work); 2226 } 2227 2228 static void init_deferred_free(struct zs_pool *pool) 2229 { 2230 INIT_WORK(&pool->free_work, async_free_zspage); 2231 } 2232 2233 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2234 { 2235 struct page *page = get_first_page(zspage); 2236 2237 do { 2238 WARN_ON(!trylock_page(page)); 2239 __SetPageMovable(page, pool->inode->i_mapping); 2240 unlock_page(page); 2241 } while ((page = get_next_page(page)) != NULL); 2242 } 2243 #endif 2244 2245 /* 2246 * 2247 * Based on the number of unused allocated objects calculate 2248 * and return the number of pages that we can free. 2249 */ 2250 static unsigned long zs_can_compact(struct size_class *class) 2251 { 2252 unsigned long obj_wasted; 2253 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2254 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2255 2256 if (obj_allocated <= obj_used) 2257 return 0; 2258 2259 obj_wasted = obj_allocated - obj_used; 2260 obj_wasted /= class->objs_per_zspage; 2261 2262 return obj_wasted * class->pages_per_zspage; 2263 } 2264 2265 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2266 { 2267 struct zs_compact_control cc; 2268 struct zspage *src_zspage; 2269 struct zspage *dst_zspage = NULL; 2270 2271 spin_lock(&class->lock); 2272 while ((src_zspage = isolate_zspage(class, true))) { 2273 2274 if (!zs_can_compact(class)) 2275 break; 2276 2277 cc.obj_idx = 0; 2278 cc.s_page = get_first_page(src_zspage); 2279 2280 while ((dst_zspage = isolate_zspage(class, false))) { 2281 cc.d_page = get_first_page(dst_zspage); 2282 /* 2283 * If there is no more space in dst_page, resched 2284 * and see if anyone had allocated another zspage. 2285 */ 2286 if (!migrate_zspage(pool, class, &cc)) 2287 break; 2288 2289 putback_zspage(class, dst_zspage); 2290 } 2291 2292 /* Stop if we couldn't find slot */ 2293 if (dst_zspage == NULL) 2294 break; 2295 2296 putback_zspage(class, dst_zspage); 2297 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2298 free_zspage(pool, class, src_zspage); 2299 pool->stats.pages_compacted += class->pages_per_zspage; 2300 } 2301 spin_unlock(&class->lock); 2302 cond_resched(); 2303 spin_lock(&class->lock); 2304 } 2305 2306 if (src_zspage) 2307 putback_zspage(class, src_zspage); 2308 2309 spin_unlock(&class->lock); 2310 } 2311 2312 unsigned long zs_compact(struct zs_pool *pool) 2313 { 2314 int i; 2315 struct size_class *class; 2316 2317 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2318 class = pool->size_class[i]; 2319 if (!class) 2320 continue; 2321 if (class->index != i) 2322 continue; 2323 __zs_compact(pool, class); 2324 } 2325 2326 return pool->stats.pages_compacted; 2327 } 2328 EXPORT_SYMBOL_GPL(zs_compact); 2329 2330 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2331 { 2332 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2333 } 2334 EXPORT_SYMBOL_GPL(zs_pool_stats); 2335 2336 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2337 struct shrink_control *sc) 2338 { 2339 unsigned long pages_freed; 2340 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2341 shrinker); 2342 2343 pages_freed = pool->stats.pages_compacted; 2344 /* 2345 * Compact classes and calculate compaction delta. 2346 * Can run concurrently with a manually triggered 2347 * (by user) compaction. 2348 */ 2349 pages_freed = zs_compact(pool) - pages_freed; 2350 2351 return pages_freed ? pages_freed : SHRINK_STOP; 2352 } 2353 2354 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2355 struct shrink_control *sc) 2356 { 2357 int i; 2358 struct size_class *class; 2359 unsigned long pages_to_free = 0; 2360 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2361 shrinker); 2362 2363 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2364 class = pool->size_class[i]; 2365 if (!class) 2366 continue; 2367 if (class->index != i) 2368 continue; 2369 2370 pages_to_free += zs_can_compact(class); 2371 } 2372 2373 return pages_to_free; 2374 } 2375 2376 static void zs_unregister_shrinker(struct zs_pool *pool) 2377 { 2378 unregister_shrinker(&pool->shrinker); 2379 } 2380 2381 static int zs_register_shrinker(struct zs_pool *pool) 2382 { 2383 pool->shrinker.scan_objects = zs_shrinker_scan; 2384 pool->shrinker.count_objects = zs_shrinker_count; 2385 pool->shrinker.batch = 0; 2386 pool->shrinker.seeks = DEFAULT_SEEKS; 2387 2388 return register_shrinker(&pool->shrinker); 2389 } 2390 2391 /** 2392 * zs_create_pool - Creates an allocation pool to work from. 2393 * @name: pool name to be created 2394 * 2395 * This function must be called before anything when using 2396 * the zsmalloc allocator. 2397 * 2398 * On success, a pointer to the newly created pool is returned, 2399 * otherwise NULL. 2400 */ 2401 struct zs_pool *zs_create_pool(const char *name) 2402 { 2403 int i; 2404 struct zs_pool *pool; 2405 struct size_class *prev_class = NULL; 2406 2407 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2408 if (!pool) 2409 return NULL; 2410 2411 init_deferred_free(pool); 2412 2413 pool->name = kstrdup(name, GFP_KERNEL); 2414 if (!pool->name) 2415 goto err; 2416 2417 #ifdef CONFIG_COMPACTION 2418 init_waitqueue_head(&pool->migration_wait); 2419 #endif 2420 2421 if (create_cache(pool)) 2422 goto err; 2423 2424 /* 2425 * Iterate reversely, because, size of size_class that we want to use 2426 * for merging should be larger or equal to current size. 2427 */ 2428 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2429 int size; 2430 int pages_per_zspage; 2431 int objs_per_zspage; 2432 struct size_class *class; 2433 int fullness = 0; 2434 2435 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2436 if (size > ZS_MAX_ALLOC_SIZE) 2437 size = ZS_MAX_ALLOC_SIZE; 2438 pages_per_zspage = get_pages_per_zspage(size); 2439 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2440 2441 /* 2442 * We iterate from biggest down to smallest classes, 2443 * so huge_class_size holds the size of the first huge 2444 * class. Any object bigger than or equal to that will 2445 * endup in the huge class. 2446 */ 2447 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2448 !huge_class_size) { 2449 huge_class_size = size; 2450 /* 2451 * The object uses ZS_HANDLE_SIZE bytes to store the 2452 * handle. We need to subtract it, because zs_malloc() 2453 * unconditionally adds handle size before it performs 2454 * size class search - so object may be smaller than 2455 * huge class size, yet it still can end up in the huge 2456 * class because it grows by ZS_HANDLE_SIZE extra bytes 2457 * right before class lookup. 2458 */ 2459 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2460 } 2461 2462 /* 2463 * size_class is used for normal zsmalloc operation such 2464 * as alloc/free for that size. Although it is natural that we 2465 * have one size_class for each size, there is a chance that we 2466 * can get more memory utilization if we use one size_class for 2467 * many different sizes whose size_class have same 2468 * characteristics. So, we makes size_class point to 2469 * previous size_class if possible. 2470 */ 2471 if (prev_class) { 2472 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2473 pool->size_class[i] = prev_class; 2474 continue; 2475 } 2476 } 2477 2478 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2479 if (!class) 2480 goto err; 2481 2482 class->size = size; 2483 class->index = i; 2484 class->pages_per_zspage = pages_per_zspage; 2485 class->objs_per_zspage = objs_per_zspage; 2486 spin_lock_init(&class->lock); 2487 pool->size_class[i] = class; 2488 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2489 fullness++) 2490 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2491 2492 prev_class = class; 2493 } 2494 2495 /* debug only, don't abort if it fails */ 2496 zs_pool_stat_create(pool, name); 2497 2498 if (zs_register_migration(pool)) 2499 goto err; 2500 2501 /* 2502 * Not critical since shrinker is only used to trigger internal 2503 * defragmentation of the pool which is pretty optional thing. If 2504 * registration fails we still can use the pool normally and user can 2505 * trigger compaction manually. Thus, ignore return code. 2506 */ 2507 zs_register_shrinker(pool); 2508 2509 return pool; 2510 2511 err: 2512 zs_destroy_pool(pool); 2513 return NULL; 2514 } 2515 EXPORT_SYMBOL_GPL(zs_create_pool); 2516 2517 void zs_destroy_pool(struct zs_pool *pool) 2518 { 2519 int i; 2520 2521 zs_unregister_shrinker(pool); 2522 zs_unregister_migration(pool); 2523 zs_pool_stat_destroy(pool); 2524 2525 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2526 int fg; 2527 struct size_class *class = pool->size_class[i]; 2528 2529 if (!class) 2530 continue; 2531 2532 if (class->index != i) 2533 continue; 2534 2535 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2536 if (!list_empty(&class->fullness_list[fg])) { 2537 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2538 class->size, fg); 2539 } 2540 } 2541 kfree(class); 2542 } 2543 2544 destroy_cache(pool); 2545 kfree(pool->name); 2546 kfree(pool); 2547 } 2548 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2549 2550 static int __init zs_init(void) 2551 { 2552 int ret; 2553 2554 ret = zsmalloc_mount(); 2555 if (ret) 2556 goto out; 2557 2558 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2559 zs_cpu_prepare, zs_cpu_dead); 2560 if (ret) 2561 goto hp_setup_fail; 2562 2563 #ifdef CONFIG_ZPOOL 2564 zpool_register_driver(&zs_zpool_driver); 2565 #endif 2566 2567 zs_stat_init(); 2568 2569 return 0; 2570 2571 hp_setup_fail: 2572 zsmalloc_unmount(); 2573 out: 2574 return ret; 2575 } 2576 2577 static void __exit zs_exit(void) 2578 { 2579 #ifdef CONFIG_ZPOOL 2580 zpool_unregister_driver(&zs_zpool_driver); 2581 #endif 2582 zsmalloc_unmount(); 2583 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2584 2585 zs_stat_exit(); 2586 } 2587 2588 module_init(zs_init); 2589 module_exit(zs_exit); 2590 2591 MODULE_LICENSE("Dual BSD/GPL"); 2592 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2593