xref: /openbmc/linux/mm/zsmalloc.c (revision a2cce7a9)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->first_page: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private (union with page->first_page): refers to the
30  *		component page after the first page
31  *		If the page is first_page for huge object, it stores handle.
32  *		Look at size_class->huge.
33  *	page->freelist: points to the first free object in zspage.
34  *		Free objects are linked together using in-place
35  *		metadata.
36  *	page->objects: maximum number of objects we can store in this
37  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
38  *	page->lru: links together first pages of various zspages.
39  *		Basically forming list of zspages in a fullness group.
40  *	page->mapping: class index and fullness group of the zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67 
68 /*
69  * This must be power of 2 and greater than of equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * as single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> is relative to system
90  * page <PFN> it is stored in, so for each sub-page belonging
91  * to a zspage, obj_idx starts with 0.
92  *
93  * This is made more complicated by various memory models and PAE.
94  */
95 
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102  * be PAGE_SHIFT
103  */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Memory for allocating for handle keeps object position by
111  * encoding <page, obj_idx> and the encoded value has a room
112  * in least bit(ie, look at obj_to_location).
113  * We use the bit to synchronize between object access by
114  * user and migration.
115  */
116 #define HANDLE_PIN_BIT	0
117 
118 /*
119  * Head in allocated object should have OBJ_ALLOCATED_TAG
120  * to identify the object was allocated or not.
121  * It's okay to add the status bit in the least bit because
122  * header keeps handle which is 4byte-aligned address so we
123  * have room for two bit at least.
124  */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 
152 /*
153  * We do not maintain any list for completely empty or full pages
154  */
155 enum fullness_group {
156 	ZS_ALMOST_FULL,
157 	ZS_ALMOST_EMPTY,
158 	_ZS_NR_FULLNESS_GROUPS,
159 
160 	ZS_EMPTY,
161 	ZS_FULL
162 };
163 
164 enum zs_stat_type {
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	CLASS_ALMOST_FULL,
168 	CLASS_ALMOST_EMPTY,
169 	NR_ZS_STAT_TYPE,
170 };
171 
172 struct zs_size_stat {
173 	unsigned long objs[NR_ZS_STAT_TYPE];
174 };
175 
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
178 #endif
179 
180 /*
181  * number of size_classes
182  */
183 static int zs_size_classes;
184 
185 /*
186  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
187  *	n <= N / f, where
188  * n = number of allocated objects
189  * N = total number of objects zspage can store
190  * f = fullness_threshold_frac
191  *
192  * Similarly, we assign zspage to:
193  *	ZS_ALMOST_FULL	when n > N / f
194  *	ZS_EMPTY	when n == 0
195  *	ZS_FULL		when n == N
196  *
197  * (see: fix_fullness_group())
198  */
199 static const int fullness_threshold_frac = 4;
200 
201 struct size_class {
202 	spinlock_t lock;
203 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
204 	/*
205 	 * Size of objects stored in this class. Must be multiple
206 	 * of ZS_ALIGN.
207 	 */
208 	int size;
209 	unsigned int index;
210 
211 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 	int pages_per_zspage;
213 	struct zs_size_stat stats;
214 
215 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 	bool huge;
217 };
218 
219 /*
220  * Placed within free objects to form a singly linked list.
221  * For every zspage, first_page->freelist gives head of this list.
222  *
223  * This must be power of 2 and less than or equal to ZS_ALIGN
224  */
225 struct link_free {
226 	union {
227 		/*
228 		 * Position of next free chunk (encodes <PFN, obj_idx>)
229 		 * It's valid for non-allocated object
230 		 */
231 		void *next;
232 		/*
233 		 * Handle of allocated object.
234 		 */
235 		unsigned long handle;
236 	};
237 };
238 
239 struct zs_pool {
240 	char *name;
241 
242 	struct size_class **size_class;
243 	struct kmem_cache *handle_cachep;
244 
245 	gfp_t flags;	/* allocation flags used when growing pool */
246 	atomic_long_t pages_allocated;
247 
248 	struct zs_pool_stats stats;
249 
250 	/* Compact classes */
251 	struct shrinker shrinker;
252 	/*
253 	 * To signify that register_shrinker() was successful
254 	 * and unregister_shrinker() will not Oops.
255 	 */
256 	bool shrinker_enabled;
257 #ifdef CONFIG_ZSMALLOC_STAT
258 	struct dentry *stat_dentry;
259 #endif
260 };
261 
262 /*
263  * A zspage's class index and fullness group
264  * are encoded in its (first)page->mapping
265  */
266 #define CLASS_IDX_BITS	28
267 #define FULLNESS_BITS	4
268 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
269 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
270 
271 struct mapping_area {
272 #ifdef CONFIG_PGTABLE_MAPPING
273 	struct vm_struct *vm; /* vm area for mapping object that span pages */
274 #else
275 	char *vm_buf; /* copy buffer for objects that span pages */
276 #endif
277 	char *vm_addr; /* address of kmap_atomic()'ed pages */
278 	enum zs_mapmode vm_mm; /* mapping mode */
279 	bool huge;
280 };
281 
282 static int create_handle_cache(struct zs_pool *pool)
283 {
284 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
285 					0, 0, NULL);
286 	return pool->handle_cachep ? 0 : 1;
287 }
288 
289 static void destroy_handle_cache(struct zs_pool *pool)
290 {
291 	kmem_cache_destroy(pool->handle_cachep);
292 }
293 
294 static unsigned long alloc_handle(struct zs_pool *pool)
295 {
296 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
297 		pool->flags & ~__GFP_HIGHMEM);
298 }
299 
300 static void free_handle(struct zs_pool *pool, unsigned long handle)
301 {
302 	kmem_cache_free(pool->handle_cachep, (void *)handle);
303 }
304 
305 static void record_obj(unsigned long handle, unsigned long obj)
306 {
307 	*(unsigned long *)handle = obj;
308 }
309 
310 /* zpool driver */
311 
312 #ifdef CONFIG_ZPOOL
313 
314 static void *zs_zpool_create(char *name, gfp_t gfp,
315 			     const struct zpool_ops *zpool_ops,
316 			     struct zpool *zpool)
317 {
318 	return zs_create_pool(name, gfp);
319 }
320 
321 static void zs_zpool_destroy(void *pool)
322 {
323 	zs_destroy_pool(pool);
324 }
325 
326 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
327 			unsigned long *handle)
328 {
329 	*handle = zs_malloc(pool, size);
330 	return *handle ? 0 : -1;
331 }
332 static void zs_zpool_free(void *pool, unsigned long handle)
333 {
334 	zs_free(pool, handle);
335 }
336 
337 static int zs_zpool_shrink(void *pool, unsigned int pages,
338 			unsigned int *reclaimed)
339 {
340 	return -EINVAL;
341 }
342 
343 static void *zs_zpool_map(void *pool, unsigned long handle,
344 			enum zpool_mapmode mm)
345 {
346 	enum zs_mapmode zs_mm;
347 
348 	switch (mm) {
349 	case ZPOOL_MM_RO:
350 		zs_mm = ZS_MM_RO;
351 		break;
352 	case ZPOOL_MM_WO:
353 		zs_mm = ZS_MM_WO;
354 		break;
355 	case ZPOOL_MM_RW: /* fallthru */
356 	default:
357 		zs_mm = ZS_MM_RW;
358 		break;
359 	}
360 
361 	return zs_map_object(pool, handle, zs_mm);
362 }
363 static void zs_zpool_unmap(void *pool, unsigned long handle)
364 {
365 	zs_unmap_object(pool, handle);
366 }
367 
368 static u64 zs_zpool_total_size(void *pool)
369 {
370 	return zs_get_total_pages(pool) << PAGE_SHIFT;
371 }
372 
373 static struct zpool_driver zs_zpool_driver = {
374 	.type =		"zsmalloc",
375 	.owner =	THIS_MODULE,
376 	.create =	zs_zpool_create,
377 	.destroy =	zs_zpool_destroy,
378 	.malloc =	zs_zpool_malloc,
379 	.free =		zs_zpool_free,
380 	.shrink =	zs_zpool_shrink,
381 	.map =		zs_zpool_map,
382 	.unmap =	zs_zpool_unmap,
383 	.total_size =	zs_zpool_total_size,
384 };
385 
386 MODULE_ALIAS("zpool-zsmalloc");
387 #endif /* CONFIG_ZPOOL */
388 
389 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
390 {
391 	return pages_per_zspage * PAGE_SIZE / size;
392 }
393 
394 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
395 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
396 
397 static int is_first_page(struct page *page)
398 {
399 	return PagePrivate(page);
400 }
401 
402 static int is_last_page(struct page *page)
403 {
404 	return PagePrivate2(page);
405 }
406 
407 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
408 				enum fullness_group *fullness)
409 {
410 	unsigned long m;
411 	BUG_ON(!is_first_page(page));
412 
413 	m = (unsigned long)page->mapping;
414 	*fullness = m & FULLNESS_MASK;
415 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
416 }
417 
418 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
419 				enum fullness_group fullness)
420 {
421 	unsigned long m;
422 	BUG_ON(!is_first_page(page));
423 
424 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
425 			(fullness & FULLNESS_MASK);
426 	page->mapping = (struct address_space *)m;
427 }
428 
429 /*
430  * zsmalloc divides the pool into various size classes where each
431  * class maintains a list of zspages where each zspage is divided
432  * into equal sized chunks. Each allocation falls into one of these
433  * classes depending on its size. This function returns index of the
434  * size class which has chunk size big enough to hold the give size.
435  */
436 static int get_size_class_index(int size)
437 {
438 	int idx = 0;
439 
440 	if (likely(size > ZS_MIN_ALLOC_SIZE))
441 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
442 				ZS_SIZE_CLASS_DELTA);
443 
444 	return min(zs_size_classes - 1, idx);
445 }
446 
447 static inline void zs_stat_inc(struct size_class *class,
448 				enum zs_stat_type type, unsigned long cnt)
449 {
450 	class->stats.objs[type] += cnt;
451 }
452 
453 static inline void zs_stat_dec(struct size_class *class,
454 				enum zs_stat_type type, unsigned long cnt)
455 {
456 	class->stats.objs[type] -= cnt;
457 }
458 
459 static inline unsigned long zs_stat_get(struct size_class *class,
460 				enum zs_stat_type type)
461 {
462 	return class->stats.objs[type];
463 }
464 
465 #ifdef CONFIG_ZSMALLOC_STAT
466 
467 static int __init zs_stat_init(void)
468 {
469 	if (!debugfs_initialized())
470 		return -ENODEV;
471 
472 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
473 	if (!zs_stat_root)
474 		return -ENOMEM;
475 
476 	return 0;
477 }
478 
479 static void __exit zs_stat_exit(void)
480 {
481 	debugfs_remove_recursive(zs_stat_root);
482 }
483 
484 static int zs_stats_size_show(struct seq_file *s, void *v)
485 {
486 	int i;
487 	struct zs_pool *pool = s->private;
488 	struct size_class *class;
489 	int objs_per_zspage;
490 	unsigned long class_almost_full, class_almost_empty;
491 	unsigned long obj_allocated, obj_used, pages_used;
492 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
493 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
494 
495 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
496 			"class", "size", "almost_full", "almost_empty",
497 			"obj_allocated", "obj_used", "pages_used",
498 			"pages_per_zspage");
499 
500 	for (i = 0; i < zs_size_classes; i++) {
501 		class = pool->size_class[i];
502 
503 		if (class->index != i)
504 			continue;
505 
506 		spin_lock(&class->lock);
507 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
508 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
509 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
510 		obj_used = zs_stat_get(class, OBJ_USED);
511 		spin_unlock(&class->lock);
512 
513 		objs_per_zspage = get_maxobj_per_zspage(class->size,
514 				class->pages_per_zspage);
515 		pages_used = obj_allocated / objs_per_zspage *
516 				class->pages_per_zspage;
517 
518 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
519 			i, class->size, class_almost_full, class_almost_empty,
520 			obj_allocated, obj_used, pages_used,
521 			class->pages_per_zspage);
522 
523 		total_class_almost_full += class_almost_full;
524 		total_class_almost_empty += class_almost_empty;
525 		total_objs += obj_allocated;
526 		total_used_objs += obj_used;
527 		total_pages += pages_used;
528 	}
529 
530 	seq_puts(s, "\n");
531 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
532 			"Total", "", total_class_almost_full,
533 			total_class_almost_empty, total_objs,
534 			total_used_objs, total_pages);
535 
536 	return 0;
537 }
538 
539 static int zs_stats_size_open(struct inode *inode, struct file *file)
540 {
541 	return single_open(file, zs_stats_size_show, inode->i_private);
542 }
543 
544 static const struct file_operations zs_stat_size_ops = {
545 	.open           = zs_stats_size_open,
546 	.read           = seq_read,
547 	.llseek         = seq_lseek,
548 	.release        = single_release,
549 };
550 
551 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
552 {
553 	struct dentry *entry;
554 
555 	if (!zs_stat_root)
556 		return -ENODEV;
557 
558 	entry = debugfs_create_dir(name, zs_stat_root);
559 	if (!entry) {
560 		pr_warn("debugfs dir <%s> creation failed\n", name);
561 		return -ENOMEM;
562 	}
563 	pool->stat_dentry = entry;
564 
565 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
566 			pool->stat_dentry, pool, &zs_stat_size_ops);
567 	if (!entry) {
568 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
569 				name, "classes");
570 		return -ENOMEM;
571 	}
572 
573 	return 0;
574 }
575 
576 static void zs_pool_stat_destroy(struct zs_pool *pool)
577 {
578 	debugfs_remove_recursive(pool->stat_dentry);
579 }
580 
581 #else /* CONFIG_ZSMALLOC_STAT */
582 static int __init zs_stat_init(void)
583 {
584 	return 0;
585 }
586 
587 static void __exit zs_stat_exit(void)
588 {
589 }
590 
591 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
592 {
593 	return 0;
594 }
595 
596 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
597 {
598 }
599 #endif
600 
601 
602 /*
603  * For each size class, zspages are divided into different groups
604  * depending on how "full" they are. This was done so that we could
605  * easily find empty or nearly empty zspages when we try to shrink
606  * the pool (not yet implemented). This function returns fullness
607  * status of the given page.
608  */
609 static enum fullness_group get_fullness_group(struct page *page)
610 {
611 	int inuse, max_objects;
612 	enum fullness_group fg;
613 	BUG_ON(!is_first_page(page));
614 
615 	inuse = page->inuse;
616 	max_objects = page->objects;
617 
618 	if (inuse == 0)
619 		fg = ZS_EMPTY;
620 	else if (inuse == max_objects)
621 		fg = ZS_FULL;
622 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
623 		fg = ZS_ALMOST_EMPTY;
624 	else
625 		fg = ZS_ALMOST_FULL;
626 
627 	return fg;
628 }
629 
630 /*
631  * Each size class maintains various freelists and zspages are assigned
632  * to one of these freelists based on the number of live objects they
633  * have. This functions inserts the given zspage into the freelist
634  * identified by <class, fullness_group>.
635  */
636 static void insert_zspage(struct page *page, struct size_class *class,
637 				enum fullness_group fullness)
638 {
639 	struct page **head;
640 
641 	BUG_ON(!is_first_page(page));
642 
643 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
644 		return;
645 
646 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
647 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
648 
649 	head = &class->fullness_list[fullness];
650 	if (!*head) {
651 		*head = page;
652 		return;
653 	}
654 
655 	/*
656 	 * We want to see more ZS_FULL pages and less almost
657 	 * empty/full. Put pages with higher ->inuse first.
658 	 */
659 	list_add_tail(&page->lru, &(*head)->lru);
660 	if (page->inuse >= (*head)->inuse)
661 		*head = page;
662 }
663 
664 /*
665  * This function removes the given zspage from the freelist identified
666  * by <class, fullness_group>.
667  */
668 static void remove_zspage(struct page *page, struct size_class *class,
669 				enum fullness_group fullness)
670 {
671 	struct page **head;
672 
673 	BUG_ON(!is_first_page(page));
674 
675 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
676 		return;
677 
678 	head = &class->fullness_list[fullness];
679 	BUG_ON(!*head);
680 	if (list_empty(&(*head)->lru))
681 		*head = NULL;
682 	else if (*head == page)
683 		*head = (struct page *)list_entry((*head)->lru.next,
684 					struct page, lru);
685 
686 	list_del_init(&page->lru);
687 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
688 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
689 }
690 
691 /*
692  * Each size class maintains zspages in different fullness groups depending
693  * on the number of live objects they contain. When allocating or freeing
694  * objects, the fullness status of the page can change, say, from ALMOST_FULL
695  * to ALMOST_EMPTY when freeing an object. This function checks if such
696  * a status change has occurred for the given page and accordingly moves the
697  * page from the freelist of the old fullness group to that of the new
698  * fullness group.
699  */
700 static enum fullness_group fix_fullness_group(struct size_class *class,
701 						struct page *page)
702 {
703 	int class_idx;
704 	enum fullness_group currfg, newfg;
705 
706 	BUG_ON(!is_first_page(page));
707 
708 	get_zspage_mapping(page, &class_idx, &currfg);
709 	newfg = get_fullness_group(page);
710 	if (newfg == currfg)
711 		goto out;
712 
713 	remove_zspage(page, class, currfg);
714 	insert_zspage(page, class, newfg);
715 	set_zspage_mapping(page, class_idx, newfg);
716 
717 out:
718 	return newfg;
719 }
720 
721 /*
722  * We have to decide on how many pages to link together
723  * to form a zspage for each size class. This is important
724  * to reduce wastage due to unusable space left at end of
725  * each zspage which is given as:
726  *     wastage = Zp % class_size
727  *     usage = Zp - wastage
728  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
729  *
730  * For example, for size class of 3/8 * PAGE_SIZE, we should
731  * link together 3 PAGE_SIZE sized pages to form a zspage
732  * since then we can perfectly fit in 8 such objects.
733  */
734 static int get_pages_per_zspage(int class_size)
735 {
736 	int i, max_usedpc = 0;
737 	/* zspage order which gives maximum used size per KB */
738 	int max_usedpc_order = 1;
739 
740 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
741 		int zspage_size;
742 		int waste, usedpc;
743 
744 		zspage_size = i * PAGE_SIZE;
745 		waste = zspage_size % class_size;
746 		usedpc = (zspage_size - waste) * 100 / zspage_size;
747 
748 		if (usedpc > max_usedpc) {
749 			max_usedpc = usedpc;
750 			max_usedpc_order = i;
751 		}
752 	}
753 
754 	return max_usedpc_order;
755 }
756 
757 /*
758  * A single 'zspage' is composed of many system pages which are
759  * linked together using fields in struct page. This function finds
760  * the first/head page, given any component page of a zspage.
761  */
762 static struct page *get_first_page(struct page *page)
763 {
764 	if (is_first_page(page))
765 		return page;
766 	else
767 		return page->first_page;
768 }
769 
770 static struct page *get_next_page(struct page *page)
771 {
772 	struct page *next;
773 
774 	if (is_last_page(page))
775 		next = NULL;
776 	else if (is_first_page(page))
777 		next = (struct page *)page_private(page);
778 	else
779 		next = list_entry(page->lru.next, struct page, lru);
780 
781 	return next;
782 }
783 
784 /*
785  * Encode <page, obj_idx> as a single handle value.
786  * We use the least bit of handle for tagging.
787  */
788 static void *location_to_obj(struct page *page, unsigned long obj_idx)
789 {
790 	unsigned long obj;
791 
792 	if (!page) {
793 		BUG_ON(obj_idx);
794 		return NULL;
795 	}
796 
797 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
798 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
799 	obj <<= OBJ_TAG_BITS;
800 
801 	return (void *)obj;
802 }
803 
804 /*
805  * Decode <page, obj_idx> pair from the given object handle. We adjust the
806  * decoded obj_idx back to its original value since it was adjusted in
807  * location_to_obj().
808  */
809 static void obj_to_location(unsigned long obj, struct page **page,
810 				unsigned long *obj_idx)
811 {
812 	obj >>= OBJ_TAG_BITS;
813 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
814 	*obj_idx = (obj & OBJ_INDEX_MASK);
815 }
816 
817 static unsigned long handle_to_obj(unsigned long handle)
818 {
819 	return *(unsigned long *)handle;
820 }
821 
822 static unsigned long obj_to_head(struct size_class *class, struct page *page,
823 			void *obj)
824 {
825 	if (class->huge) {
826 		VM_BUG_ON(!is_first_page(page));
827 		return *(unsigned long *)page_private(page);
828 	} else
829 		return *(unsigned long *)obj;
830 }
831 
832 static unsigned long obj_idx_to_offset(struct page *page,
833 				unsigned long obj_idx, int class_size)
834 {
835 	unsigned long off = 0;
836 
837 	if (!is_first_page(page))
838 		off = page->index;
839 
840 	return off + obj_idx * class_size;
841 }
842 
843 static inline int trypin_tag(unsigned long handle)
844 {
845 	unsigned long *ptr = (unsigned long *)handle;
846 
847 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
848 }
849 
850 static void pin_tag(unsigned long handle)
851 {
852 	while (!trypin_tag(handle));
853 }
854 
855 static void unpin_tag(unsigned long handle)
856 {
857 	unsigned long *ptr = (unsigned long *)handle;
858 
859 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
860 }
861 
862 static void reset_page(struct page *page)
863 {
864 	clear_bit(PG_private, &page->flags);
865 	clear_bit(PG_private_2, &page->flags);
866 	set_page_private(page, 0);
867 	page->mapping = NULL;
868 	page->freelist = NULL;
869 	page_mapcount_reset(page);
870 }
871 
872 static void free_zspage(struct page *first_page)
873 {
874 	struct page *nextp, *tmp, *head_extra;
875 
876 	BUG_ON(!is_first_page(first_page));
877 	BUG_ON(first_page->inuse);
878 
879 	head_extra = (struct page *)page_private(first_page);
880 
881 	reset_page(first_page);
882 	__free_page(first_page);
883 
884 	/* zspage with only 1 system page */
885 	if (!head_extra)
886 		return;
887 
888 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
889 		list_del(&nextp->lru);
890 		reset_page(nextp);
891 		__free_page(nextp);
892 	}
893 	reset_page(head_extra);
894 	__free_page(head_extra);
895 }
896 
897 /* Initialize a newly allocated zspage */
898 static void init_zspage(struct page *first_page, struct size_class *class)
899 {
900 	unsigned long off = 0;
901 	struct page *page = first_page;
902 
903 	BUG_ON(!is_first_page(first_page));
904 	while (page) {
905 		struct page *next_page;
906 		struct link_free *link;
907 		unsigned int i = 1;
908 		void *vaddr;
909 
910 		/*
911 		 * page->index stores offset of first object starting
912 		 * in the page. For the first page, this is always 0,
913 		 * so we use first_page->index (aka ->freelist) to store
914 		 * head of corresponding zspage's freelist.
915 		 */
916 		if (page != first_page)
917 			page->index = off;
918 
919 		vaddr = kmap_atomic(page);
920 		link = (struct link_free *)vaddr + off / sizeof(*link);
921 
922 		while ((off += class->size) < PAGE_SIZE) {
923 			link->next = location_to_obj(page, i++);
924 			link += class->size / sizeof(*link);
925 		}
926 
927 		/*
928 		 * We now come to the last (full or partial) object on this
929 		 * page, which must point to the first object on the next
930 		 * page (if present)
931 		 */
932 		next_page = get_next_page(page);
933 		link->next = location_to_obj(next_page, 0);
934 		kunmap_atomic(vaddr);
935 		page = next_page;
936 		off %= PAGE_SIZE;
937 	}
938 }
939 
940 /*
941  * Allocate a zspage for the given size class
942  */
943 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
944 {
945 	int i, error;
946 	struct page *first_page = NULL, *uninitialized_var(prev_page);
947 
948 	/*
949 	 * Allocate individual pages and link them together as:
950 	 * 1. first page->private = first sub-page
951 	 * 2. all sub-pages are linked together using page->lru
952 	 * 3. each sub-page is linked to the first page using page->first_page
953 	 *
954 	 * For each size class, First/Head pages are linked together using
955 	 * page->lru. Also, we set PG_private to identify the first page
956 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
957 	 * identify the last page.
958 	 */
959 	error = -ENOMEM;
960 	for (i = 0; i < class->pages_per_zspage; i++) {
961 		struct page *page;
962 
963 		page = alloc_page(flags);
964 		if (!page)
965 			goto cleanup;
966 
967 		INIT_LIST_HEAD(&page->lru);
968 		if (i == 0) {	/* first page */
969 			SetPagePrivate(page);
970 			set_page_private(page, 0);
971 			first_page = page;
972 			first_page->inuse = 0;
973 		}
974 		if (i == 1)
975 			set_page_private(first_page, (unsigned long)page);
976 		if (i >= 1)
977 			page->first_page = first_page;
978 		if (i >= 2)
979 			list_add(&page->lru, &prev_page->lru);
980 		if (i == class->pages_per_zspage - 1)	/* last page */
981 			SetPagePrivate2(page);
982 		prev_page = page;
983 	}
984 
985 	init_zspage(first_page, class);
986 
987 	first_page->freelist = location_to_obj(first_page, 0);
988 	/* Maximum number of objects we can store in this zspage */
989 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
990 
991 	error = 0; /* Success */
992 
993 cleanup:
994 	if (unlikely(error) && first_page) {
995 		free_zspage(first_page);
996 		first_page = NULL;
997 	}
998 
999 	return first_page;
1000 }
1001 
1002 static struct page *find_get_zspage(struct size_class *class)
1003 {
1004 	int i;
1005 	struct page *page;
1006 
1007 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1008 		page = class->fullness_list[i];
1009 		if (page)
1010 			break;
1011 	}
1012 
1013 	return page;
1014 }
1015 
1016 #ifdef CONFIG_PGTABLE_MAPPING
1017 static inline int __zs_cpu_up(struct mapping_area *area)
1018 {
1019 	/*
1020 	 * Make sure we don't leak memory if a cpu UP notification
1021 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1022 	 */
1023 	if (area->vm)
1024 		return 0;
1025 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1026 	if (!area->vm)
1027 		return -ENOMEM;
1028 	return 0;
1029 }
1030 
1031 static inline void __zs_cpu_down(struct mapping_area *area)
1032 {
1033 	if (area->vm)
1034 		free_vm_area(area->vm);
1035 	area->vm = NULL;
1036 }
1037 
1038 static inline void *__zs_map_object(struct mapping_area *area,
1039 				struct page *pages[2], int off, int size)
1040 {
1041 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1042 	area->vm_addr = area->vm->addr;
1043 	return area->vm_addr + off;
1044 }
1045 
1046 static inline void __zs_unmap_object(struct mapping_area *area,
1047 				struct page *pages[2], int off, int size)
1048 {
1049 	unsigned long addr = (unsigned long)area->vm_addr;
1050 
1051 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1052 }
1053 
1054 #else /* CONFIG_PGTABLE_MAPPING */
1055 
1056 static inline int __zs_cpu_up(struct mapping_area *area)
1057 {
1058 	/*
1059 	 * Make sure we don't leak memory if a cpu UP notification
1060 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1061 	 */
1062 	if (area->vm_buf)
1063 		return 0;
1064 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1065 	if (!area->vm_buf)
1066 		return -ENOMEM;
1067 	return 0;
1068 }
1069 
1070 static inline void __zs_cpu_down(struct mapping_area *area)
1071 {
1072 	kfree(area->vm_buf);
1073 	area->vm_buf = NULL;
1074 }
1075 
1076 static void *__zs_map_object(struct mapping_area *area,
1077 			struct page *pages[2], int off, int size)
1078 {
1079 	int sizes[2];
1080 	void *addr;
1081 	char *buf = area->vm_buf;
1082 
1083 	/* disable page faults to match kmap_atomic() return conditions */
1084 	pagefault_disable();
1085 
1086 	/* no read fastpath */
1087 	if (area->vm_mm == ZS_MM_WO)
1088 		goto out;
1089 
1090 	sizes[0] = PAGE_SIZE - off;
1091 	sizes[1] = size - sizes[0];
1092 
1093 	/* copy object to per-cpu buffer */
1094 	addr = kmap_atomic(pages[0]);
1095 	memcpy(buf, addr + off, sizes[0]);
1096 	kunmap_atomic(addr);
1097 	addr = kmap_atomic(pages[1]);
1098 	memcpy(buf + sizes[0], addr, sizes[1]);
1099 	kunmap_atomic(addr);
1100 out:
1101 	return area->vm_buf;
1102 }
1103 
1104 static void __zs_unmap_object(struct mapping_area *area,
1105 			struct page *pages[2], int off, int size)
1106 {
1107 	int sizes[2];
1108 	void *addr;
1109 	char *buf;
1110 
1111 	/* no write fastpath */
1112 	if (area->vm_mm == ZS_MM_RO)
1113 		goto out;
1114 
1115 	buf = area->vm_buf;
1116 	if (!area->huge) {
1117 		buf = buf + ZS_HANDLE_SIZE;
1118 		size -= ZS_HANDLE_SIZE;
1119 		off += ZS_HANDLE_SIZE;
1120 	}
1121 
1122 	sizes[0] = PAGE_SIZE - off;
1123 	sizes[1] = size - sizes[0];
1124 
1125 	/* copy per-cpu buffer to object */
1126 	addr = kmap_atomic(pages[0]);
1127 	memcpy(addr + off, buf, sizes[0]);
1128 	kunmap_atomic(addr);
1129 	addr = kmap_atomic(pages[1]);
1130 	memcpy(addr, buf + sizes[0], sizes[1]);
1131 	kunmap_atomic(addr);
1132 
1133 out:
1134 	/* enable page faults to match kunmap_atomic() return conditions */
1135 	pagefault_enable();
1136 }
1137 
1138 #endif /* CONFIG_PGTABLE_MAPPING */
1139 
1140 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1141 				void *pcpu)
1142 {
1143 	int ret, cpu = (long)pcpu;
1144 	struct mapping_area *area;
1145 
1146 	switch (action) {
1147 	case CPU_UP_PREPARE:
1148 		area = &per_cpu(zs_map_area, cpu);
1149 		ret = __zs_cpu_up(area);
1150 		if (ret)
1151 			return notifier_from_errno(ret);
1152 		break;
1153 	case CPU_DEAD:
1154 	case CPU_UP_CANCELED:
1155 		area = &per_cpu(zs_map_area, cpu);
1156 		__zs_cpu_down(area);
1157 		break;
1158 	}
1159 
1160 	return NOTIFY_OK;
1161 }
1162 
1163 static struct notifier_block zs_cpu_nb = {
1164 	.notifier_call = zs_cpu_notifier
1165 };
1166 
1167 static int zs_register_cpu_notifier(void)
1168 {
1169 	int cpu, uninitialized_var(ret);
1170 
1171 	cpu_notifier_register_begin();
1172 
1173 	__register_cpu_notifier(&zs_cpu_nb);
1174 	for_each_online_cpu(cpu) {
1175 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1176 		if (notifier_to_errno(ret))
1177 			break;
1178 	}
1179 
1180 	cpu_notifier_register_done();
1181 	return notifier_to_errno(ret);
1182 }
1183 
1184 static void zs_unregister_cpu_notifier(void)
1185 {
1186 	int cpu;
1187 
1188 	cpu_notifier_register_begin();
1189 
1190 	for_each_online_cpu(cpu)
1191 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1192 	__unregister_cpu_notifier(&zs_cpu_nb);
1193 
1194 	cpu_notifier_register_done();
1195 }
1196 
1197 static void init_zs_size_classes(void)
1198 {
1199 	int nr;
1200 
1201 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1202 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1203 		nr += 1;
1204 
1205 	zs_size_classes = nr;
1206 }
1207 
1208 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1209 {
1210 	if (prev->pages_per_zspage != pages_per_zspage)
1211 		return false;
1212 
1213 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1214 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1215 		return false;
1216 
1217 	return true;
1218 }
1219 
1220 static bool zspage_full(struct page *page)
1221 {
1222 	BUG_ON(!is_first_page(page));
1223 
1224 	return page->inuse == page->objects;
1225 }
1226 
1227 unsigned long zs_get_total_pages(struct zs_pool *pool)
1228 {
1229 	return atomic_long_read(&pool->pages_allocated);
1230 }
1231 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1232 
1233 /**
1234  * zs_map_object - get address of allocated object from handle.
1235  * @pool: pool from which the object was allocated
1236  * @handle: handle returned from zs_malloc
1237  *
1238  * Before using an object allocated from zs_malloc, it must be mapped using
1239  * this function. When done with the object, it must be unmapped using
1240  * zs_unmap_object.
1241  *
1242  * Only one object can be mapped per cpu at a time. There is no protection
1243  * against nested mappings.
1244  *
1245  * This function returns with preemption and page faults disabled.
1246  */
1247 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1248 			enum zs_mapmode mm)
1249 {
1250 	struct page *page;
1251 	unsigned long obj, obj_idx, off;
1252 
1253 	unsigned int class_idx;
1254 	enum fullness_group fg;
1255 	struct size_class *class;
1256 	struct mapping_area *area;
1257 	struct page *pages[2];
1258 	void *ret;
1259 
1260 	BUG_ON(!handle);
1261 
1262 	/*
1263 	 * Because we use per-cpu mapping areas shared among the
1264 	 * pools/users, we can't allow mapping in interrupt context
1265 	 * because it can corrupt another users mappings.
1266 	 */
1267 	BUG_ON(in_interrupt());
1268 
1269 	/* From now on, migration cannot move the object */
1270 	pin_tag(handle);
1271 
1272 	obj = handle_to_obj(handle);
1273 	obj_to_location(obj, &page, &obj_idx);
1274 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1275 	class = pool->size_class[class_idx];
1276 	off = obj_idx_to_offset(page, obj_idx, class->size);
1277 
1278 	area = &get_cpu_var(zs_map_area);
1279 	area->vm_mm = mm;
1280 	if (off + class->size <= PAGE_SIZE) {
1281 		/* this object is contained entirely within a page */
1282 		area->vm_addr = kmap_atomic(page);
1283 		ret = area->vm_addr + off;
1284 		goto out;
1285 	}
1286 
1287 	/* this object spans two pages */
1288 	pages[0] = page;
1289 	pages[1] = get_next_page(page);
1290 	BUG_ON(!pages[1]);
1291 
1292 	ret = __zs_map_object(area, pages, off, class->size);
1293 out:
1294 	if (!class->huge)
1295 		ret += ZS_HANDLE_SIZE;
1296 
1297 	return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(zs_map_object);
1300 
1301 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1302 {
1303 	struct page *page;
1304 	unsigned long obj, obj_idx, off;
1305 
1306 	unsigned int class_idx;
1307 	enum fullness_group fg;
1308 	struct size_class *class;
1309 	struct mapping_area *area;
1310 
1311 	BUG_ON(!handle);
1312 
1313 	obj = handle_to_obj(handle);
1314 	obj_to_location(obj, &page, &obj_idx);
1315 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1316 	class = pool->size_class[class_idx];
1317 	off = obj_idx_to_offset(page, obj_idx, class->size);
1318 
1319 	area = this_cpu_ptr(&zs_map_area);
1320 	if (off + class->size <= PAGE_SIZE)
1321 		kunmap_atomic(area->vm_addr);
1322 	else {
1323 		struct page *pages[2];
1324 
1325 		pages[0] = page;
1326 		pages[1] = get_next_page(page);
1327 		BUG_ON(!pages[1]);
1328 
1329 		__zs_unmap_object(area, pages, off, class->size);
1330 	}
1331 	put_cpu_var(zs_map_area);
1332 	unpin_tag(handle);
1333 }
1334 EXPORT_SYMBOL_GPL(zs_unmap_object);
1335 
1336 static unsigned long obj_malloc(struct page *first_page,
1337 		struct size_class *class, unsigned long handle)
1338 {
1339 	unsigned long obj;
1340 	struct link_free *link;
1341 
1342 	struct page *m_page;
1343 	unsigned long m_objidx, m_offset;
1344 	void *vaddr;
1345 
1346 	handle |= OBJ_ALLOCATED_TAG;
1347 	obj = (unsigned long)first_page->freelist;
1348 	obj_to_location(obj, &m_page, &m_objidx);
1349 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1350 
1351 	vaddr = kmap_atomic(m_page);
1352 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1353 	first_page->freelist = link->next;
1354 	if (!class->huge)
1355 		/* record handle in the header of allocated chunk */
1356 		link->handle = handle;
1357 	else
1358 		/* record handle in first_page->private */
1359 		set_page_private(first_page, handle);
1360 	kunmap_atomic(vaddr);
1361 	first_page->inuse++;
1362 	zs_stat_inc(class, OBJ_USED, 1);
1363 
1364 	return obj;
1365 }
1366 
1367 
1368 /**
1369  * zs_malloc - Allocate block of given size from pool.
1370  * @pool: pool to allocate from
1371  * @size: size of block to allocate
1372  *
1373  * On success, handle to the allocated object is returned,
1374  * otherwise 0.
1375  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1376  */
1377 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1378 {
1379 	unsigned long handle, obj;
1380 	struct size_class *class;
1381 	struct page *first_page;
1382 
1383 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1384 		return 0;
1385 
1386 	handle = alloc_handle(pool);
1387 	if (!handle)
1388 		return 0;
1389 
1390 	/* extra space in chunk to keep the handle */
1391 	size += ZS_HANDLE_SIZE;
1392 	class = pool->size_class[get_size_class_index(size)];
1393 
1394 	spin_lock(&class->lock);
1395 	first_page = find_get_zspage(class);
1396 
1397 	if (!first_page) {
1398 		spin_unlock(&class->lock);
1399 		first_page = alloc_zspage(class, pool->flags);
1400 		if (unlikely(!first_page)) {
1401 			free_handle(pool, handle);
1402 			return 0;
1403 		}
1404 
1405 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1406 		atomic_long_add(class->pages_per_zspage,
1407 					&pool->pages_allocated);
1408 
1409 		spin_lock(&class->lock);
1410 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1411 				class->size, class->pages_per_zspage));
1412 	}
1413 
1414 	obj = obj_malloc(first_page, class, handle);
1415 	/* Now move the zspage to another fullness group, if required */
1416 	fix_fullness_group(class, first_page);
1417 	record_obj(handle, obj);
1418 	spin_unlock(&class->lock);
1419 
1420 	return handle;
1421 }
1422 EXPORT_SYMBOL_GPL(zs_malloc);
1423 
1424 static void obj_free(struct zs_pool *pool, struct size_class *class,
1425 			unsigned long obj)
1426 {
1427 	struct link_free *link;
1428 	struct page *first_page, *f_page;
1429 	unsigned long f_objidx, f_offset;
1430 	void *vaddr;
1431 	int class_idx;
1432 	enum fullness_group fullness;
1433 
1434 	BUG_ON(!obj);
1435 
1436 	obj &= ~OBJ_ALLOCATED_TAG;
1437 	obj_to_location(obj, &f_page, &f_objidx);
1438 	first_page = get_first_page(f_page);
1439 
1440 	get_zspage_mapping(first_page, &class_idx, &fullness);
1441 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1442 
1443 	vaddr = kmap_atomic(f_page);
1444 
1445 	/* Insert this object in containing zspage's freelist */
1446 	link = (struct link_free *)(vaddr + f_offset);
1447 	link->next = first_page->freelist;
1448 	if (class->huge)
1449 		set_page_private(first_page, 0);
1450 	kunmap_atomic(vaddr);
1451 	first_page->freelist = (void *)obj;
1452 	first_page->inuse--;
1453 	zs_stat_dec(class, OBJ_USED, 1);
1454 }
1455 
1456 void zs_free(struct zs_pool *pool, unsigned long handle)
1457 {
1458 	struct page *first_page, *f_page;
1459 	unsigned long obj, f_objidx;
1460 	int class_idx;
1461 	struct size_class *class;
1462 	enum fullness_group fullness;
1463 
1464 	if (unlikely(!handle))
1465 		return;
1466 
1467 	pin_tag(handle);
1468 	obj = handle_to_obj(handle);
1469 	obj_to_location(obj, &f_page, &f_objidx);
1470 	first_page = get_first_page(f_page);
1471 
1472 	get_zspage_mapping(first_page, &class_idx, &fullness);
1473 	class = pool->size_class[class_idx];
1474 
1475 	spin_lock(&class->lock);
1476 	obj_free(pool, class, obj);
1477 	fullness = fix_fullness_group(class, first_page);
1478 	if (fullness == ZS_EMPTY) {
1479 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1480 				class->size, class->pages_per_zspage));
1481 		atomic_long_sub(class->pages_per_zspage,
1482 				&pool->pages_allocated);
1483 		free_zspage(first_page);
1484 	}
1485 	spin_unlock(&class->lock);
1486 	unpin_tag(handle);
1487 
1488 	free_handle(pool, handle);
1489 }
1490 EXPORT_SYMBOL_GPL(zs_free);
1491 
1492 static void zs_object_copy(unsigned long dst, unsigned long src,
1493 				struct size_class *class)
1494 {
1495 	struct page *s_page, *d_page;
1496 	unsigned long s_objidx, d_objidx;
1497 	unsigned long s_off, d_off;
1498 	void *s_addr, *d_addr;
1499 	int s_size, d_size, size;
1500 	int written = 0;
1501 
1502 	s_size = d_size = class->size;
1503 
1504 	obj_to_location(src, &s_page, &s_objidx);
1505 	obj_to_location(dst, &d_page, &d_objidx);
1506 
1507 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1508 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1509 
1510 	if (s_off + class->size > PAGE_SIZE)
1511 		s_size = PAGE_SIZE - s_off;
1512 
1513 	if (d_off + class->size > PAGE_SIZE)
1514 		d_size = PAGE_SIZE - d_off;
1515 
1516 	s_addr = kmap_atomic(s_page);
1517 	d_addr = kmap_atomic(d_page);
1518 
1519 	while (1) {
1520 		size = min(s_size, d_size);
1521 		memcpy(d_addr + d_off, s_addr + s_off, size);
1522 		written += size;
1523 
1524 		if (written == class->size)
1525 			break;
1526 
1527 		s_off += size;
1528 		s_size -= size;
1529 		d_off += size;
1530 		d_size -= size;
1531 
1532 		if (s_off >= PAGE_SIZE) {
1533 			kunmap_atomic(d_addr);
1534 			kunmap_atomic(s_addr);
1535 			s_page = get_next_page(s_page);
1536 			BUG_ON(!s_page);
1537 			s_addr = kmap_atomic(s_page);
1538 			d_addr = kmap_atomic(d_page);
1539 			s_size = class->size - written;
1540 			s_off = 0;
1541 		}
1542 
1543 		if (d_off >= PAGE_SIZE) {
1544 			kunmap_atomic(d_addr);
1545 			d_page = get_next_page(d_page);
1546 			BUG_ON(!d_page);
1547 			d_addr = kmap_atomic(d_page);
1548 			d_size = class->size - written;
1549 			d_off = 0;
1550 		}
1551 	}
1552 
1553 	kunmap_atomic(d_addr);
1554 	kunmap_atomic(s_addr);
1555 }
1556 
1557 /*
1558  * Find alloced object in zspage from index object and
1559  * return handle.
1560  */
1561 static unsigned long find_alloced_obj(struct page *page, int index,
1562 					struct size_class *class)
1563 {
1564 	unsigned long head;
1565 	int offset = 0;
1566 	unsigned long handle = 0;
1567 	void *addr = kmap_atomic(page);
1568 
1569 	if (!is_first_page(page))
1570 		offset = page->index;
1571 	offset += class->size * index;
1572 
1573 	while (offset < PAGE_SIZE) {
1574 		head = obj_to_head(class, page, addr + offset);
1575 		if (head & OBJ_ALLOCATED_TAG) {
1576 			handle = head & ~OBJ_ALLOCATED_TAG;
1577 			if (trypin_tag(handle))
1578 				break;
1579 			handle = 0;
1580 		}
1581 
1582 		offset += class->size;
1583 		index++;
1584 	}
1585 
1586 	kunmap_atomic(addr);
1587 	return handle;
1588 }
1589 
1590 struct zs_compact_control {
1591 	/* Source page for migration which could be a subpage of zspage. */
1592 	struct page *s_page;
1593 	/* Destination page for migration which should be a first page
1594 	 * of zspage. */
1595 	struct page *d_page;
1596 	 /* Starting object index within @s_page which used for live object
1597 	  * in the subpage. */
1598 	int index;
1599 };
1600 
1601 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1602 				struct zs_compact_control *cc)
1603 {
1604 	unsigned long used_obj, free_obj;
1605 	unsigned long handle;
1606 	struct page *s_page = cc->s_page;
1607 	struct page *d_page = cc->d_page;
1608 	unsigned long index = cc->index;
1609 	int ret = 0;
1610 
1611 	while (1) {
1612 		handle = find_alloced_obj(s_page, index, class);
1613 		if (!handle) {
1614 			s_page = get_next_page(s_page);
1615 			if (!s_page)
1616 				break;
1617 			index = 0;
1618 			continue;
1619 		}
1620 
1621 		/* Stop if there is no more space */
1622 		if (zspage_full(d_page)) {
1623 			unpin_tag(handle);
1624 			ret = -ENOMEM;
1625 			break;
1626 		}
1627 
1628 		used_obj = handle_to_obj(handle);
1629 		free_obj = obj_malloc(d_page, class, handle);
1630 		zs_object_copy(free_obj, used_obj, class);
1631 		index++;
1632 		record_obj(handle, free_obj);
1633 		unpin_tag(handle);
1634 		obj_free(pool, class, used_obj);
1635 	}
1636 
1637 	/* Remember last position in this iteration */
1638 	cc->s_page = s_page;
1639 	cc->index = index;
1640 
1641 	return ret;
1642 }
1643 
1644 static struct page *isolate_target_page(struct size_class *class)
1645 {
1646 	int i;
1647 	struct page *page;
1648 
1649 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1650 		page = class->fullness_list[i];
1651 		if (page) {
1652 			remove_zspage(page, class, i);
1653 			break;
1654 		}
1655 	}
1656 
1657 	return page;
1658 }
1659 
1660 /*
1661  * putback_zspage - add @first_page into right class's fullness list
1662  * @pool: target pool
1663  * @class: destination class
1664  * @first_page: target page
1665  *
1666  * Return @fist_page's fullness_group
1667  */
1668 static enum fullness_group putback_zspage(struct zs_pool *pool,
1669 			struct size_class *class,
1670 			struct page *first_page)
1671 {
1672 	enum fullness_group fullness;
1673 
1674 	BUG_ON(!is_first_page(first_page));
1675 
1676 	fullness = get_fullness_group(first_page);
1677 	insert_zspage(first_page, class, fullness);
1678 	set_zspage_mapping(first_page, class->index, fullness);
1679 
1680 	if (fullness == ZS_EMPTY) {
1681 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1682 			class->size, class->pages_per_zspage));
1683 		atomic_long_sub(class->pages_per_zspage,
1684 				&pool->pages_allocated);
1685 
1686 		free_zspage(first_page);
1687 	}
1688 
1689 	return fullness;
1690 }
1691 
1692 static struct page *isolate_source_page(struct size_class *class)
1693 {
1694 	int i;
1695 	struct page *page = NULL;
1696 
1697 	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1698 		page = class->fullness_list[i];
1699 		if (!page)
1700 			continue;
1701 
1702 		remove_zspage(page, class, i);
1703 		break;
1704 	}
1705 
1706 	return page;
1707 }
1708 
1709 /*
1710  *
1711  * Based on the number of unused allocated objects calculate
1712  * and return the number of pages that we can free.
1713  */
1714 static unsigned long zs_can_compact(struct size_class *class)
1715 {
1716 	unsigned long obj_wasted;
1717 
1718 	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1719 		zs_stat_get(class, OBJ_USED);
1720 
1721 	obj_wasted /= get_maxobj_per_zspage(class->size,
1722 			class->pages_per_zspage);
1723 
1724 	return obj_wasted * class->pages_per_zspage;
1725 }
1726 
1727 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1728 {
1729 	struct zs_compact_control cc;
1730 	struct page *src_page;
1731 	struct page *dst_page = NULL;
1732 
1733 	spin_lock(&class->lock);
1734 	while ((src_page = isolate_source_page(class))) {
1735 
1736 		BUG_ON(!is_first_page(src_page));
1737 
1738 		if (!zs_can_compact(class))
1739 			break;
1740 
1741 		cc.index = 0;
1742 		cc.s_page = src_page;
1743 
1744 		while ((dst_page = isolate_target_page(class))) {
1745 			cc.d_page = dst_page;
1746 			/*
1747 			 * If there is no more space in dst_page, resched
1748 			 * and see if anyone had allocated another zspage.
1749 			 */
1750 			if (!migrate_zspage(pool, class, &cc))
1751 				break;
1752 
1753 			putback_zspage(pool, class, dst_page);
1754 		}
1755 
1756 		/* Stop if we couldn't find slot */
1757 		if (dst_page == NULL)
1758 			break;
1759 
1760 		putback_zspage(pool, class, dst_page);
1761 		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1762 			pool->stats.pages_compacted += class->pages_per_zspage;
1763 		spin_unlock(&class->lock);
1764 		cond_resched();
1765 		spin_lock(&class->lock);
1766 	}
1767 
1768 	if (src_page)
1769 		putback_zspage(pool, class, src_page);
1770 
1771 	spin_unlock(&class->lock);
1772 }
1773 
1774 unsigned long zs_compact(struct zs_pool *pool)
1775 {
1776 	int i;
1777 	struct size_class *class;
1778 
1779 	for (i = zs_size_classes - 1; i >= 0; i--) {
1780 		class = pool->size_class[i];
1781 		if (!class)
1782 			continue;
1783 		if (class->index != i)
1784 			continue;
1785 		__zs_compact(pool, class);
1786 	}
1787 
1788 	return pool->stats.pages_compacted;
1789 }
1790 EXPORT_SYMBOL_GPL(zs_compact);
1791 
1792 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1793 {
1794 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1795 }
1796 EXPORT_SYMBOL_GPL(zs_pool_stats);
1797 
1798 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1799 		struct shrink_control *sc)
1800 {
1801 	unsigned long pages_freed;
1802 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1803 			shrinker);
1804 
1805 	pages_freed = pool->stats.pages_compacted;
1806 	/*
1807 	 * Compact classes and calculate compaction delta.
1808 	 * Can run concurrently with a manually triggered
1809 	 * (by user) compaction.
1810 	 */
1811 	pages_freed = zs_compact(pool) - pages_freed;
1812 
1813 	return pages_freed ? pages_freed : SHRINK_STOP;
1814 }
1815 
1816 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1817 		struct shrink_control *sc)
1818 {
1819 	int i;
1820 	struct size_class *class;
1821 	unsigned long pages_to_free = 0;
1822 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1823 			shrinker);
1824 
1825 	if (!pool->shrinker_enabled)
1826 		return 0;
1827 
1828 	for (i = zs_size_classes - 1; i >= 0; i--) {
1829 		class = pool->size_class[i];
1830 		if (!class)
1831 			continue;
1832 		if (class->index != i)
1833 			continue;
1834 
1835 		pages_to_free += zs_can_compact(class);
1836 	}
1837 
1838 	return pages_to_free;
1839 }
1840 
1841 static void zs_unregister_shrinker(struct zs_pool *pool)
1842 {
1843 	if (pool->shrinker_enabled) {
1844 		unregister_shrinker(&pool->shrinker);
1845 		pool->shrinker_enabled = false;
1846 	}
1847 }
1848 
1849 static int zs_register_shrinker(struct zs_pool *pool)
1850 {
1851 	pool->shrinker.scan_objects = zs_shrinker_scan;
1852 	pool->shrinker.count_objects = zs_shrinker_count;
1853 	pool->shrinker.batch = 0;
1854 	pool->shrinker.seeks = DEFAULT_SEEKS;
1855 
1856 	return register_shrinker(&pool->shrinker);
1857 }
1858 
1859 /**
1860  * zs_create_pool - Creates an allocation pool to work from.
1861  * @flags: allocation flags used to allocate pool metadata
1862  *
1863  * This function must be called before anything when using
1864  * the zsmalloc allocator.
1865  *
1866  * On success, a pointer to the newly created pool is returned,
1867  * otherwise NULL.
1868  */
1869 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1870 {
1871 	int i;
1872 	struct zs_pool *pool;
1873 	struct size_class *prev_class = NULL;
1874 
1875 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1876 	if (!pool)
1877 		return NULL;
1878 
1879 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1880 			GFP_KERNEL);
1881 	if (!pool->size_class) {
1882 		kfree(pool);
1883 		return NULL;
1884 	}
1885 
1886 	pool->name = kstrdup(name, GFP_KERNEL);
1887 	if (!pool->name)
1888 		goto err;
1889 
1890 	if (create_handle_cache(pool))
1891 		goto err;
1892 
1893 	/*
1894 	 * Iterate reversly, because, size of size_class that we want to use
1895 	 * for merging should be larger or equal to current size.
1896 	 */
1897 	for (i = zs_size_classes - 1; i >= 0; i--) {
1898 		int size;
1899 		int pages_per_zspage;
1900 		struct size_class *class;
1901 
1902 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1903 		if (size > ZS_MAX_ALLOC_SIZE)
1904 			size = ZS_MAX_ALLOC_SIZE;
1905 		pages_per_zspage = get_pages_per_zspage(size);
1906 
1907 		/*
1908 		 * size_class is used for normal zsmalloc operation such
1909 		 * as alloc/free for that size. Although it is natural that we
1910 		 * have one size_class for each size, there is a chance that we
1911 		 * can get more memory utilization if we use one size_class for
1912 		 * many different sizes whose size_class have same
1913 		 * characteristics. So, we makes size_class point to
1914 		 * previous size_class if possible.
1915 		 */
1916 		if (prev_class) {
1917 			if (can_merge(prev_class, size, pages_per_zspage)) {
1918 				pool->size_class[i] = prev_class;
1919 				continue;
1920 			}
1921 		}
1922 
1923 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1924 		if (!class)
1925 			goto err;
1926 
1927 		class->size = size;
1928 		class->index = i;
1929 		class->pages_per_zspage = pages_per_zspage;
1930 		if (pages_per_zspage == 1 &&
1931 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1932 			class->huge = true;
1933 		spin_lock_init(&class->lock);
1934 		pool->size_class[i] = class;
1935 
1936 		prev_class = class;
1937 	}
1938 
1939 	pool->flags = flags;
1940 
1941 	if (zs_pool_stat_create(name, pool))
1942 		goto err;
1943 
1944 	/*
1945 	 * Not critical, we still can use the pool
1946 	 * and user can trigger compaction manually.
1947 	 */
1948 	if (zs_register_shrinker(pool) == 0)
1949 		pool->shrinker_enabled = true;
1950 	return pool;
1951 
1952 err:
1953 	zs_destroy_pool(pool);
1954 	return NULL;
1955 }
1956 EXPORT_SYMBOL_GPL(zs_create_pool);
1957 
1958 void zs_destroy_pool(struct zs_pool *pool)
1959 {
1960 	int i;
1961 
1962 	zs_unregister_shrinker(pool);
1963 	zs_pool_stat_destroy(pool);
1964 
1965 	for (i = 0; i < zs_size_classes; i++) {
1966 		int fg;
1967 		struct size_class *class = pool->size_class[i];
1968 
1969 		if (!class)
1970 			continue;
1971 
1972 		if (class->index != i)
1973 			continue;
1974 
1975 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1976 			if (class->fullness_list[fg]) {
1977 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1978 					class->size, fg);
1979 			}
1980 		}
1981 		kfree(class);
1982 	}
1983 
1984 	destroy_handle_cache(pool);
1985 	kfree(pool->size_class);
1986 	kfree(pool->name);
1987 	kfree(pool);
1988 }
1989 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1990 
1991 static int __init zs_init(void)
1992 {
1993 	int ret = zs_register_cpu_notifier();
1994 
1995 	if (ret)
1996 		goto notifier_fail;
1997 
1998 	init_zs_size_classes();
1999 
2000 #ifdef CONFIG_ZPOOL
2001 	zpool_register_driver(&zs_zpool_driver);
2002 #endif
2003 
2004 	ret = zs_stat_init();
2005 	if (ret) {
2006 		pr_err("zs stat initialization failed\n");
2007 		goto stat_fail;
2008 	}
2009 	return 0;
2010 
2011 stat_fail:
2012 #ifdef CONFIG_ZPOOL
2013 	zpool_unregister_driver(&zs_zpool_driver);
2014 #endif
2015 notifier_fail:
2016 	zs_unregister_cpu_notifier();
2017 
2018 	return ret;
2019 }
2020 
2021 static void __exit zs_exit(void)
2022 {
2023 #ifdef CONFIG_ZPOOL
2024 	zpool_unregister_driver(&zs_zpool_driver);
2025 #endif
2026 	zs_unregister_cpu_notifier();
2027 
2028 	zs_stat_exit();
2029 }
2030 
2031 module_init(zs_init);
2032 module_exit(zs_exit);
2033 
2034 MODULE_LICENSE("Dual BSD/GPL");
2035 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2036