xref: /openbmc/linux/mm/zsmalloc.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109 
110 #ifdef CONFIG_ZPOOL
111 /*
112  * The second least-significant bit in the object's header identifies if the
113  * value stored at the header is a deferred handle from the last reclaim
114  * attempt.
115  *
116  * As noted above, this is valid because we have room for two bits.
117  */
118 #define OBJ_DEFERRED_HANDLE_TAG	2
119 #define OBJ_TAG_BITS	2
120 #define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121 #else
122 #define OBJ_TAG_BITS	1
123 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
125 
126 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128 
129 #define HUGE_BITS	1
130 #define FULLNESS_BITS	2
131 #define CLASS_BITS	8
132 #define ISOLATED_BITS	5
133 #define MAGIC_VAL_BITS	8
134 
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136 
137 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138 
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
144 
145 /*
146  * On systems with 4K page size, this gives 255 size classes! There is a
147  * trader-off here:
148  *  - Large number of size classes is potentially wasteful as free page are
149  *    spread across these classes
150  *  - Small number of size classes causes large internal fragmentation
151  *  - Probably its better to use specific size classes (empirically
152  *    determined). NOTE: all those class sizes must be set as multiple of
153  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154  *
155  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156  *  (reason above)
157  */
158 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 				      ZS_SIZE_CLASS_DELTA) + 1)
161 
162 enum fullness_group {
163 	ZS_EMPTY,
164 	ZS_ALMOST_EMPTY,
165 	ZS_ALMOST_FULL,
166 	ZS_FULL,
167 	NR_ZS_FULLNESS,
168 };
169 
170 enum class_stat_type {
171 	CLASS_EMPTY,
172 	CLASS_ALMOST_EMPTY,
173 	CLASS_ALMOST_FULL,
174 	CLASS_FULL,
175 	OBJ_ALLOCATED,
176 	OBJ_USED,
177 	NR_ZS_STAT_TYPE,
178 };
179 
180 struct zs_size_stat {
181 	unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183 
184 #ifdef CONFIG_ZSMALLOC_STAT
185 static struct dentry *zs_stat_root;
186 #endif
187 
188 /*
189  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
190  *	n <= N / f, where
191  * n = number of allocated objects
192  * N = total number of objects zspage can store
193  * f = fullness_threshold_frac
194  *
195  * Similarly, we assign zspage to:
196  *	ZS_ALMOST_FULL	when n > N / f
197  *	ZS_EMPTY	when n == 0
198  *	ZS_FULL		when n == N
199  *
200  * (see: fix_fullness_group())
201  */
202 static const int fullness_threshold_frac = 4;
203 static size_t huge_class_size;
204 
205 struct size_class {
206 	struct list_head fullness_list[NR_ZS_FULLNESS];
207 	/*
208 	 * Size of objects stored in this class. Must be multiple
209 	 * of ZS_ALIGN.
210 	 */
211 	int size;
212 	int objs_per_zspage;
213 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
214 	int pages_per_zspage;
215 
216 	unsigned int index;
217 	struct zs_size_stat stats;
218 };
219 
220 /*
221  * Placed within free objects to form a singly linked list.
222  * For every zspage, zspage->freeobj gives head of this list.
223  *
224  * This must be power of 2 and less than or equal to ZS_ALIGN
225  */
226 struct link_free {
227 	union {
228 		/*
229 		 * Free object index;
230 		 * It's valid for non-allocated object
231 		 */
232 		unsigned long next;
233 		/*
234 		 * Handle of allocated object.
235 		 */
236 		unsigned long handle;
237 #ifdef CONFIG_ZPOOL
238 		/*
239 		 * Deferred handle of a reclaimed object.
240 		 */
241 		unsigned long deferred_handle;
242 #endif
243 	};
244 };
245 
246 struct zs_pool {
247 	const char *name;
248 
249 	struct size_class *size_class[ZS_SIZE_CLASSES];
250 	struct kmem_cache *handle_cachep;
251 	struct kmem_cache *zspage_cachep;
252 
253 	atomic_long_t pages_allocated;
254 
255 	struct zs_pool_stats stats;
256 
257 	/* Compact classes */
258 	struct shrinker shrinker;
259 
260 #ifdef CONFIG_ZPOOL
261 	/* List tracking the zspages in LRU order by most recently added object */
262 	struct list_head lru;
263 	struct zpool *zpool;
264 	const struct zpool_ops *zpool_ops;
265 #endif
266 
267 #ifdef CONFIG_ZSMALLOC_STAT
268 	struct dentry *stat_dentry;
269 #endif
270 #ifdef CONFIG_COMPACTION
271 	struct work_struct free_work;
272 #endif
273 	spinlock_t lock;
274 };
275 
276 struct zspage {
277 	struct {
278 		unsigned int huge:HUGE_BITS;
279 		unsigned int fullness:FULLNESS_BITS;
280 		unsigned int class:CLASS_BITS + 1;
281 		unsigned int isolated:ISOLATED_BITS;
282 		unsigned int magic:MAGIC_VAL_BITS;
283 	};
284 	unsigned int inuse;
285 	unsigned int freeobj;
286 	struct page *first_page;
287 	struct list_head list; /* fullness list */
288 
289 #ifdef CONFIG_ZPOOL
290 	/* links the zspage to the lru list in the pool */
291 	struct list_head lru;
292 	bool under_reclaim;
293 #endif
294 
295 	struct zs_pool *pool;
296 	rwlock_t lock;
297 };
298 
299 struct mapping_area {
300 	local_lock_t lock;
301 	char *vm_buf; /* copy buffer for objects that span pages */
302 	char *vm_addr; /* address of kmap_atomic()'ed pages */
303 	enum zs_mapmode vm_mm; /* mapping mode */
304 };
305 
306 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
307 static void SetZsHugePage(struct zspage *zspage)
308 {
309 	zspage->huge = 1;
310 }
311 
312 static bool ZsHugePage(struct zspage *zspage)
313 {
314 	return zspage->huge;
315 }
316 
317 static void migrate_lock_init(struct zspage *zspage);
318 static void migrate_read_lock(struct zspage *zspage);
319 static void migrate_read_unlock(struct zspage *zspage);
320 
321 #ifdef CONFIG_COMPACTION
322 static void migrate_write_lock(struct zspage *zspage);
323 static void migrate_write_lock_nested(struct zspage *zspage);
324 static void migrate_write_unlock(struct zspage *zspage);
325 static void kick_deferred_free(struct zs_pool *pool);
326 static void init_deferred_free(struct zs_pool *pool);
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
328 #else
329 static void migrate_write_lock(struct zspage *zspage) {}
330 static void migrate_write_lock_nested(struct zspage *zspage) {}
331 static void migrate_write_unlock(struct zspage *zspage) {}
332 static void kick_deferred_free(struct zs_pool *pool) {}
333 static void init_deferred_free(struct zs_pool *pool) {}
334 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
335 #endif
336 
337 static int create_cache(struct zs_pool *pool)
338 {
339 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
340 					0, 0, NULL);
341 	if (!pool->handle_cachep)
342 		return 1;
343 
344 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
345 					0, 0, NULL);
346 	if (!pool->zspage_cachep) {
347 		kmem_cache_destroy(pool->handle_cachep);
348 		pool->handle_cachep = NULL;
349 		return 1;
350 	}
351 
352 	return 0;
353 }
354 
355 static void destroy_cache(struct zs_pool *pool)
356 {
357 	kmem_cache_destroy(pool->handle_cachep);
358 	kmem_cache_destroy(pool->zspage_cachep);
359 }
360 
361 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
362 {
363 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
364 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 }
366 
367 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
368 {
369 	kmem_cache_free(pool->handle_cachep, (void *)handle);
370 }
371 
372 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
373 {
374 	return kmem_cache_zalloc(pool->zspage_cachep,
375 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
376 }
377 
378 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
379 {
380 	kmem_cache_free(pool->zspage_cachep, zspage);
381 }
382 
383 /* pool->lock(which owns the handle) synchronizes races */
384 static void record_obj(unsigned long handle, unsigned long obj)
385 {
386 	*(unsigned long *)handle = obj;
387 }
388 
389 /* zpool driver */
390 
391 #ifdef CONFIG_ZPOOL
392 
393 static void *zs_zpool_create(const char *name, gfp_t gfp,
394 			     const struct zpool_ops *zpool_ops,
395 			     struct zpool *zpool)
396 {
397 	/*
398 	 * Ignore global gfp flags: zs_malloc() may be invoked from
399 	 * different contexts and its caller must provide a valid
400 	 * gfp mask.
401 	 */
402 	struct zs_pool *pool = zs_create_pool(name);
403 
404 	if (pool) {
405 		pool->zpool = zpool;
406 		pool->zpool_ops = zpool_ops;
407 	}
408 
409 	return pool;
410 }
411 
412 static void zs_zpool_destroy(void *pool)
413 {
414 	zs_destroy_pool(pool);
415 }
416 
417 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
418 			unsigned long *handle)
419 {
420 	*handle = zs_malloc(pool, size, gfp);
421 
422 	if (IS_ERR_VALUE(*handle))
423 		return PTR_ERR((void *)*handle);
424 	return 0;
425 }
426 static void zs_zpool_free(void *pool, unsigned long handle)
427 {
428 	zs_free(pool, handle);
429 }
430 
431 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
432 
433 static int zs_zpool_shrink(void *pool, unsigned int pages,
434 			unsigned int *reclaimed)
435 {
436 	unsigned int total = 0;
437 	int ret = -EINVAL;
438 
439 	while (total < pages) {
440 		ret = zs_reclaim_page(pool, 8);
441 		if (ret < 0)
442 			break;
443 		total++;
444 	}
445 
446 	if (reclaimed)
447 		*reclaimed = total;
448 
449 	return ret;
450 }
451 
452 static void *zs_zpool_map(void *pool, unsigned long handle,
453 			enum zpool_mapmode mm)
454 {
455 	enum zs_mapmode zs_mm;
456 
457 	switch (mm) {
458 	case ZPOOL_MM_RO:
459 		zs_mm = ZS_MM_RO;
460 		break;
461 	case ZPOOL_MM_WO:
462 		zs_mm = ZS_MM_WO;
463 		break;
464 	case ZPOOL_MM_RW:
465 	default:
466 		zs_mm = ZS_MM_RW;
467 		break;
468 	}
469 
470 	return zs_map_object(pool, handle, zs_mm);
471 }
472 static void zs_zpool_unmap(void *pool, unsigned long handle)
473 {
474 	zs_unmap_object(pool, handle);
475 }
476 
477 static u64 zs_zpool_total_size(void *pool)
478 {
479 	return zs_get_total_pages(pool) << PAGE_SHIFT;
480 }
481 
482 static struct zpool_driver zs_zpool_driver = {
483 	.type =			  "zsmalloc",
484 	.owner =		  THIS_MODULE,
485 	.create =		  zs_zpool_create,
486 	.destroy =		  zs_zpool_destroy,
487 	.malloc_support_movable = true,
488 	.malloc =		  zs_zpool_malloc,
489 	.free =			  zs_zpool_free,
490 	.shrink =		  zs_zpool_shrink,
491 	.map =			  zs_zpool_map,
492 	.unmap =		  zs_zpool_unmap,
493 	.total_size =		  zs_zpool_total_size,
494 };
495 
496 MODULE_ALIAS("zpool-zsmalloc");
497 #endif /* CONFIG_ZPOOL */
498 
499 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
500 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
501 	.lock	= INIT_LOCAL_LOCK(lock),
502 };
503 
504 static __maybe_unused int is_first_page(struct page *page)
505 {
506 	return PagePrivate(page);
507 }
508 
509 /* Protected by pool->lock */
510 static inline int get_zspage_inuse(struct zspage *zspage)
511 {
512 	return zspage->inuse;
513 }
514 
515 
516 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
517 {
518 	zspage->inuse += val;
519 }
520 
521 static inline struct page *get_first_page(struct zspage *zspage)
522 {
523 	struct page *first_page = zspage->first_page;
524 
525 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
526 	return first_page;
527 }
528 
529 static inline unsigned int get_first_obj_offset(struct page *page)
530 {
531 	return page->page_type;
532 }
533 
534 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
535 {
536 	page->page_type = offset;
537 }
538 
539 static inline unsigned int get_freeobj(struct zspage *zspage)
540 {
541 	return zspage->freeobj;
542 }
543 
544 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
545 {
546 	zspage->freeobj = obj;
547 }
548 
549 static void get_zspage_mapping(struct zspage *zspage,
550 				unsigned int *class_idx,
551 				enum fullness_group *fullness)
552 {
553 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
554 
555 	*fullness = zspage->fullness;
556 	*class_idx = zspage->class;
557 }
558 
559 static struct size_class *zspage_class(struct zs_pool *pool,
560 					     struct zspage *zspage)
561 {
562 	return pool->size_class[zspage->class];
563 }
564 
565 static void set_zspage_mapping(struct zspage *zspage,
566 				unsigned int class_idx,
567 				enum fullness_group fullness)
568 {
569 	zspage->class = class_idx;
570 	zspage->fullness = fullness;
571 }
572 
573 /*
574  * zsmalloc divides the pool into various size classes where each
575  * class maintains a list of zspages where each zspage is divided
576  * into equal sized chunks. Each allocation falls into one of these
577  * classes depending on its size. This function returns index of the
578  * size class which has chunk size big enough to hold the given size.
579  */
580 static int get_size_class_index(int size)
581 {
582 	int idx = 0;
583 
584 	if (likely(size > ZS_MIN_ALLOC_SIZE))
585 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
586 				ZS_SIZE_CLASS_DELTA);
587 
588 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
589 }
590 
591 /* type can be of enum type class_stat_type or fullness_group */
592 static inline void class_stat_inc(struct size_class *class,
593 				int type, unsigned long cnt)
594 {
595 	class->stats.objs[type] += cnt;
596 }
597 
598 /* type can be of enum type class_stat_type or fullness_group */
599 static inline void class_stat_dec(struct size_class *class,
600 				int type, unsigned long cnt)
601 {
602 	class->stats.objs[type] -= cnt;
603 }
604 
605 /* type can be of enum type class_stat_type or fullness_group */
606 static inline unsigned long zs_stat_get(struct size_class *class,
607 				int type)
608 {
609 	return class->stats.objs[type];
610 }
611 
612 #ifdef CONFIG_ZSMALLOC_STAT
613 
614 static void __init zs_stat_init(void)
615 {
616 	if (!debugfs_initialized()) {
617 		pr_warn("debugfs not available, stat dir not created\n");
618 		return;
619 	}
620 
621 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
622 }
623 
624 static void __exit zs_stat_exit(void)
625 {
626 	debugfs_remove_recursive(zs_stat_root);
627 }
628 
629 static unsigned long zs_can_compact(struct size_class *class);
630 
631 static int zs_stats_size_show(struct seq_file *s, void *v)
632 {
633 	int i;
634 	struct zs_pool *pool = s->private;
635 	struct size_class *class;
636 	int objs_per_zspage;
637 	unsigned long class_almost_full, class_almost_empty;
638 	unsigned long obj_allocated, obj_used, pages_used, freeable;
639 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
640 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
641 	unsigned long total_freeable = 0;
642 
643 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
644 			"class", "size", "almost_full", "almost_empty",
645 			"obj_allocated", "obj_used", "pages_used",
646 			"pages_per_zspage", "freeable");
647 
648 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
649 		class = pool->size_class[i];
650 
651 		if (class->index != i)
652 			continue;
653 
654 		spin_lock(&pool->lock);
655 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
656 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
657 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
658 		obj_used = zs_stat_get(class, OBJ_USED);
659 		freeable = zs_can_compact(class);
660 		spin_unlock(&pool->lock);
661 
662 		objs_per_zspage = class->objs_per_zspage;
663 		pages_used = obj_allocated / objs_per_zspage *
664 				class->pages_per_zspage;
665 
666 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
667 				" %10lu %10lu %16d %8lu\n",
668 			i, class->size, class_almost_full, class_almost_empty,
669 			obj_allocated, obj_used, pages_used,
670 			class->pages_per_zspage, freeable);
671 
672 		total_class_almost_full += class_almost_full;
673 		total_class_almost_empty += class_almost_empty;
674 		total_objs += obj_allocated;
675 		total_used_objs += obj_used;
676 		total_pages += pages_used;
677 		total_freeable += freeable;
678 	}
679 
680 	seq_puts(s, "\n");
681 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
682 			"Total", "", total_class_almost_full,
683 			total_class_almost_empty, total_objs,
684 			total_used_objs, total_pages, "", total_freeable);
685 
686 	return 0;
687 }
688 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
689 
690 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
691 {
692 	if (!zs_stat_root) {
693 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
694 		return;
695 	}
696 
697 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
698 
699 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
700 			    &zs_stats_size_fops);
701 }
702 
703 static void zs_pool_stat_destroy(struct zs_pool *pool)
704 {
705 	debugfs_remove_recursive(pool->stat_dentry);
706 }
707 
708 #else /* CONFIG_ZSMALLOC_STAT */
709 static void __init zs_stat_init(void)
710 {
711 }
712 
713 static void __exit zs_stat_exit(void)
714 {
715 }
716 
717 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
718 {
719 }
720 
721 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
722 {
723 }
724 #endif
725 
726 
727 /*
728  * For each size class, zspages are divided into different groups
729  * depending on how "full" they are. This was done so that we could
730  * easily find empty or nearly empty zspages when we try to shrink
731  * the pool (not yet implemented). This function returns fullness
732  * status of the given page.
733  */
734 static enum fullness_group get_fullness_group(struct size_class *class,
735 						struct zspage *zspage)
736 {
737 	int inuse, objs_per_zspage;
738 	enum fullness_group fg;
739 
740 	inuse = get_zspage_inuse(zspage);
741 	objs_per_zspage = class->objs_per_zspage;
742 
743 	if (inuse == 0)
744 		fg = ZS_EMPTY;
745 	else if (inuse == objs_per_zspage)
746 		fg = ZS_FULL;
747 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
748 		fg = ZS_ALMOST_EMPTY;
749 	else
750 		fg = ZS_ALMOST_FULL;
751 
752 	return fg;
753 }
754 
755 /*
756  * Each size class maintains various freelists and zspages are assigned
757  * to one of these freelists based on the number of live objects they
758  * have. This functions inserts the given zspage into the freelist
759  * identified by <class, fullness_group>.
760  */
761 static void insert_zspage(struct size_class *class,
762 				struct zspage *zspage,
763 				enum fullness_group fullness)
764 {
765 	struct zspage *head;
766 
767 	class_stat_inc(class, fullness, 1);
768 	head = list_first_entry_or_null(&class->fullness_list[fullness],
769 					struct zspage, list);
770 	/*
771 	 * We want to see more ZS_FULL pages and less almost empty/full.
772 	 * Put pages with higher ->inuse first.
773 	 */
774 	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
775 		list_add(&zspage->list, &head->list);
776 	else
777 		list_add(&zspage->list, &class->fullness_list[fullness]);
778 }
779 
780 /*
781  * This function removes the given zspage from the freelist identified
782  * by <class, fullness_group>.
783  */
784 static void remove_zspage(struct size_class *class,
785 				struct zspage *zspage,
786 				enum fullness_group fullness)
787 {
788 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
789 
790 	list_del_init(&zspage->list);
791 	class_stat_dec(class, fullness, 1);
792 }
793 
794 /*
795  * Each size class maintains zspages in different fullness groups depending
796  * on the number of live objects they contain. When allocating or freeing
797  * objects, the fullness status of the page can change, say, from ALMOST_FULL
798  * to ALMOST_EMPTY when freeing an object. This function checks if such
799  * a status change has occurred for the given page and accordingly moves the
800  * page from the freelist of the old fullness group to that of the new
801  * fullness group.
802  */
803 static enum fullness_group fix_fullness_group(struct size_class *class,
804 						struct zspage *zspage)
805 {
806 	int class_idx;
807 	enum fullness_group currfg, newfg;
808 
809 	get_zspage_mapping(zspage, &class_idx, &currfg);
810 	newfg = get_fullness_group(class, zspage);
811 	if (newfg == currfg)
812 		goto out;
813 
814 	remove_zspage(class, zspage, currfg);
815 	insert_zspage(class, zspage, newfg);
816 	set_zspage_mapping(zspage, class_idx, newfg);
817 out:
818 	return newfg;
819 }
820 
821 static struct zspage *get_zspage(struct page *page)
822 {
823 	struct zspage *zspage = (struct zspage *)page_private(page);
824 
825 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
826 	return zspage;
827 }
828 
829 static struct page *get_next_page(struct page *page)
830 {
831 	struct zspage *zspage = get_zspage(page);
832 
833 	if (unlikely(ZsHugePage(zspage)))
834 		return NULL;
835 
836 	return (struct page *)page->index;
837 }
838 
839 /**
840  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
841  * @obj: the encoded object value
842  * @page: page object resides in zspage
843  * @obj_idx: object index
844  */
845 static void obj_to_location(unsigned long obj, struct page **page,
846 				unsigned int *obj_idx)
847 {
848 	obj >>= OBJ_TAG_BITS;
849 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850 	*obj_idx = (obj & OBJ_INDEX_MASK);
851 }
852 
853 static void obj_to_page(unsigned long obj, struct page **page)
854 {
855 	obj >>= OBJ_TAG_BITS;
856 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
857 }
858 
859 /**
860  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
861  * @page: page object resides in zspage
862  * @obj_idx: object index
863  */
864 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
865 {
866 	unsigned long obj;
867 
868 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
869 	obj |= obj_idx & OBJ_INDEX_MASK;
870 	obj <<= OBJ_TAG_BITS;
871 
872 	return obj;
873 }
874 
875 static unsigned long handle_to_obj(unsigned long handle)
876 {
877 	return *(unsigned long *)handle;
878 }
879 
880 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
881 		int tag)
882 {
883 	unsigned long handle;
884 	struct zspage *zspage = get_zspage(page);
885 
886 	if (unlikely(ZsHugePage(zspage))) {
887 		VM_BUG_ON_PAGE(!is_first_page(page), page);
888 		handle = page->index;
889 	} else
890 		handle = *(unsigned long *)obj;
891 
892 	if (!(handle & tag))
893 		return false;
894 
895 	/* Clear all tags before returning the handle */
896 	*phandle = handle & ~OBJ_TAG_MASK;
897 	return true;
898 }
899 
900 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
901 {
902 	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
903 }
904 
905 #ifdef CONFIG_ZPOOL
906 static bool obj_stores_deferred_handle(struct page *page, void *obj,
907 		unsigned long *phandle)
908 {
909 	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
910 }
911 #endif
912 
913 static void reset_page(struct page *page)
914 {
915 	__ClearPageMovable(page);
916 	ClearPagePrivate(page);
917 	set_page_private(page, 0);
918 	page_mapcount_reset(page);
919 	page->index = 0;
920 }
921 
922 static int trylock_zspage(struct zspage *zspage)
923 {
924 	struct page *cursor, *fail;
925 
926 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
927 					get_next_page(cursor)) {
928 		if (!trylock_page(cursor)) {
929 			fail = cursor;
930 			goto unlock;
931 		}
932 	}
933 
934 	return 1;
935 unlock:
936 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
937 					get_next_page(cursor))
938 		unlock_page(cursor);
939 
940 	return 0;
941 }
942 
943 #ifdef CONFIG_ZPOOL
944 static unsigned long find_deferred_handle_obj(struct size_class *class,
945 		struct page *page, int *obj_idx);
946 
947 /*
948  * Free all the deferred handles whose objects are freed in zs_free.
949  */
950 static void free_handles(struct zs_pool *pool, struct size_class *class,
951 		struct zspage *zspage)
952 {
953 	int obj_idx = 0;
954 	struct page *page = get_first_page(zspage);
955 	unsigned long handle;
956 
957 	while (1) {
958 		handle = find_deferred_handle_obj(class, page, &obj_idx);
959 		if (!handle) {
960 			page = get_next_page(page);
961 			if (!page)
962 				break;
963 			obj_idx = 0;
964 			continue;
965 		}
966 
967 		cache_free_handle(pool, handle);
968 		obj_idx++;
969 	}
970 }
971 #else
972 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
973 		struct zspage *zspage) {}
974 #endif
975 
976 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
977 				struct zspage *zspage)
978 {
979 	struct page *page, *next;
980 	enum fullness_group fg;
981 	unsigned int class_idx;
982 
983 	get_zspage_mapping(zspage, &class_idx, &fg);
984 
985 	assert_spin_locked(&pool->lock);
986 
987 	VM_BUG_ON(get_zspage_inuse(zspage));
988 	VM_BUG_ON(fg != ZS_EMPTY);
989 
990 	/* Free all deferred handles from zs_free */
991 	free_handles(pool, class, zspage);
992 
993 	next = page = get_first_page(zspage);
994 	do {
995 		VM_BUG_ON_PAGE(!PageLocked(page), page);
996 		next = get_next_page(page);
997 		reset_page(page);
998 		unlock_page(page);
999 		dec_zone_page_state(page, NR_ZSPAGES);
1000 		put_page(page);
1001 		page = next;
1002 	} while (page != NULL);
1003 
1004 	cache_free_zspage(pool, zspage);
1005 
1006 	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1007 	atomic_long_sub(class->pages_per_zspage,
1008 					&pool->pages_allocated);
1009 }
1010 
1011 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1012 				struct zspage *zspage)
1013 {
1014 	VM_BUG_ON(get_zspage_inuse(zspage));
1015 	VM_BUG_ON(list_empty(&zspage->list));
1016 
1017 	/*
1018 	 * Since zs_free couldn't be sleepable, this function cannot call
1019 	 * lock_page. The page locks trylock_zspage got will be released
1020 	 * by __free_zspage.
1021 	 */
1022 	if (!trylock_zspage(zspage)) {
1023 		kick_deferred_free(pool);
1024 		return;
1025 	}
1026 
1027 	remove_zspage(class, zspage, ZS_EMPTY);
1028 #ifdef CONFIG_ZPOOL
1029 	list_del(&zspage->lru);
1030 #endif
1031 	__free_zspage(pool, class, zspage);
1032 }
1033 
1034 /* Initialize a newly allocated zspage */
1035 static void init_zspage(struct size_class *class, struct zspage *zspage)
1036 {
1037 	unsigned int freeobj = 1;
1038 	unsigned long off = 0;
1039 	struct page *page = get_first_page(zspage);
1040 
1041 	while (page) {
1042 		struct page *next_page;
1043 		struct link_free *link;
1044 		void *vaddr;
1045 
1046 		set_first_obj_offset(page, off);
1047 
1048 		vaddr = kmap_atomic(page);
1049 		link = (struct link_free *)vaddr + off / sizeof(*link);
1050 
1051 		while ((off += class->size) < PAGE_SIZE) {
1052 			link->next = freeobj++ << OBJ_TAG_BITS;
1053 			link += class->size / sizeof(*link);
1054 		}
1055 
1056 		/*
1057 		 * We now come to the last (full or partial) object on this
1058 		 * page, which must point to the first object on the next
1059 		 * page (if present)
1060 		 */
1061 		next_page = get_next_page(page);
1062 		if (next_page) {
1063 			link->next = freeobj++ << OBJ_TAG_BITS;
1064 		} else {
1065 			/*
1066 			 * Reset OBJ_TAG_BITS bit to last link to tell
1067 			 * whether it's allocated object or not.
1068 			 */
1069 			link->next = -1UL << OBJ_TAG_BITS;
1070 		}
1071 		kunmap_atomic(vaddr);
1072 		page = next_page;
1073 		off %= PAGE_SIZE;
1074 	}
1075 
1076 #ifdef CONFIG_ZPOOL
1077 	INIT_LIST_HEAD(&zspage->lru);
1078 	zspage->under_reclaim = false;
1079 #endif
1080 
1081 	set_freeobj(zspage, 0);
1082 }
1083 
1084 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1085 				struct page *pages[])
1086 {
1087 	int i;
1088 	struct page *page;
1089 	struct page *prev_page = NULL;
1090 	int nr_pages = class->pages_per_zspage;
1091 
1092 	/*
1093 	 * Allocate individual pages and link them together as:
1094 	 * 1. all pages are linked together using page->index
1095 	 * 2. each sub-page point to zspage using page->private
1096 	 *
1097 	 * we set PG_private to identify the first page (i.e. no other sub-page
1098 	 * has this flag set).
1099 	 */
1100 	for (i = 0; i < nr_pages; i++) {
1101 		page = pages[i];
1102 		set_page_private(page, (unsigned long)zspage);
1103 		page->index = 0;
1104 		if (i == 0) {
1105 			zspage->first_page = page;
1106 			SetPagePrivate(page);
1107 			if (unlikely(class->objs_per_zspage == 1 &&
1108 					class->pages_per_zspage == 1))
1109 				SetZsHugePage(zspage);
1110 		} else {
1111 			prev_page->index = (unsigned long)page;
1112 		}
1113 		prev_page = page;
1114 	}
1115 }
1116 
1117 /*
1118  * Allocate a zspage for the given size class
1119  */
1120 static struct zspage *alloc_zspage(struct zs_pool *pool,
1121 					struct size_class *class,
1122 					gfp_t gfp)
1123 {
1124 	int i;
1125 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1126 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1127 
1128 	if (!zspage)
1129 		return NULL;
1130 
1131 	zspage->magic = ZSPAGE_MAGIC;
1132 	migrate_lock_init(zspage);
1133 
1134 	for (i = 0; i < class->pages_per_zspage; i++) {
1135 		struct page *page;
1136 
1137 		page = alloc_page(gfp);
1138 		if (!page) {
1139 			while (--i >= 0) {
1140 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1141 				__free_page(pages[i]);
1142 			}
1143 			cache_free_zspage(pool, zspage);
1144 			return NULL;
1145 		}
1146 
1147 		inc_zone_page_state(page, NR_ZSPAGES);
1148 		pages[i] = page;
1149 	}
1150 
1151 	create_page_chain(class, zspage, pages);
1152 	init_zspage(class, zspage);
1153 	zspage->pool = pool;
1154 
1155 	return zspage;
1156 }
1157 
1158 static struct zspage *find_get_zspage(struct size_class *class)
1159 {
1160 	int i;
1161 	struct zspage *zspage;
1162 
1163 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1164 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1165 				struct zspage, list);
1166 		if (zspage)
1167 			break;
1168 	}
1169 
1170 	return zspage;
1171 }
1172 
1173 static inline int __zs_cpu_up(struct mapping_area *area)
1174 {
1175 	/*
1176 	 * Make sure we don't leak memory if a cpu UP notification
1177 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1178 	 */
1179 	if (area->vm_buf)
1180 		return 0;
1181 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1182 	if (!area->vm_buf)
1183 		return -ENOMEM;
1184 	return 0;
1185 }
1186 
1187 static inline void __zs_cpu_down(struct mapping_area *area)
1188 {
1189 	kfree(area->vm_buf);
1190 	area->vm_buf = NULL;
1191 }
1192 
1193 static void *__zs_map_object(struct mapping_area *area,
1194 			struct page *pages[2], int off, int size)
1195 {
1196 	int sizes[2];
1197 	void *addr;
1198 	char *buf = area->vm_buf;
1199 
1200 	/* disable page faults to match kmap_atomic() return conditions */
1201 	pagefault_disable();
1202 
1203 	/* no read fastpath */
1204 	if (area->vm_mm == ZS_MM_WO)
1205 		goto out;
1206 
1207 	sizes[0] = PAGE_SIZE - off;
1208 	sizes[1] = size - sizes[0];
1209 
1210 	/* copy object to per-cpu buffer */
1211 	addr = kmap_atomic(pages[0]);
1212 	memcpy(buf, addr + off, sizes[0]);
1213 	kunmap_atomic(addr);
1214 	addr = kmap_atomic(pages[1]);
1215 	memcpy(buf + sizes[0], addr, sizes[1]);
1216 	kunmap_atomic(addr);
1217 out:
1218 	return area->vm_buf;
1219 }
1220 
1221 static void __zs_unmap_object(struct mapping_area *area,
1222 			struct page *pages[2], int off, int size)
1223 {
1224 	int sizes[2];
1225 	void *addr;
1226 	char *buf;
1227 
1228 	/* no write fastpath */
1229 	if (area->vm_mm == ZS_MM_RO)
1230 		goto out;
1231 
1232 	buf = area->vm_buf;
1233 	buf = buf + ZS_HANDLE_SIZE;
1234 	size -= ZS_HANDLE_SIZE;
1235 	off += ZS_HANDLE_SIZE;
1236 
1237 	sizes[0] = PAGE_SIZE - off;
1238 	sizes[1] = size - sizes[0];
1239 
1240 	/* copy per-cpu buffer to object */
1241 	addr = kmap_atomic(pages[0]);
1242 	memcpy(addr + off, buf, sizes[0]);
1243 	kunmap_atomic(addr);
1244 	addr = kmap_atomic(pages[1]);
1245 	memcpy(addr, buf + sizes[0], sizes[1]);
1246 	kunmap_atomic(addr);
1247 
1248 out:
1249 	/* enable page faults to match kunmap_atomic() return conditions */
1250 	pagefault_enable();
1251 }
1252 
1253 static int zs_cpu_prepare(unsigned int cpu)
1254 {
1255 	struct mapping_area *area;
1256 
1257 	area = &per_cpu(zs_map_area, cpu);
1258 	return __zs_cpu_up(area);
1259 }
1260 
1261 static int zs_cpu_dead(unsigned int cpu)
1262 {
1263 	struct mapping_area *area;
1264 
1265 	area = &per_cpu(zs_map_area, cpu);
1266 	__zs_cpu_down(area);
1267 	return 0;
1268 }
1269 
1270 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1271 					int objs_per_zspage)
1272 {
1273 	if (prev->pages_per_zspage == pages_per_zspage &&
1274 		prev->objs_per_zspage == objs_per_zspage)
1275 		return true;
1276 
1277 	return false;
1278 }
1279 
1280 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1281 {
1282 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1283 }
1284 
1285 /**
1286  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1287  * that hold objects of the provided size.
1288  * @pool: zsmalloc pool to use
1289  * @size: object size
1290  *
1291  * Context: Any context.
1292  *
1293  * Return: the index of the zsmalloc &size_class that hold objects of the
1294  * provided size.
1295  */
1296 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1297 {
1298 	struct size_class *class;
1299 
1300 	class = pool->size_class[get_size_class_index(size)];
1301 
1302 	return class->index;
1303 }
1304 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1305 
1306 unsigned long zs_get_total_pages(struct zs_pool *pool)
1307 {
1308 	return atomic_long_read(&pool->pages_allocated);
1309 }
1310 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1311 
1312 /**
1313  * zs_map_object - get address of allocated object from handle.
1314  * @pool: pool from which the object was allocated
1315  * @handle: handle returned from zs_malloc
1316  * @mm: mapping mode to use
1317  *
1318  * Before using an object allocated from zs_malloc, it must be mapped using
1319  * this function. When done with the object, it must be unmapped using
1320  * zs_unmap_object.
1321  *
1322  * Only one object can be mapped per cpu at a time. There is no protection
1323  * against nested mappings.
1324  *
1325  * This function returns with preemption and page faults disabled.
1326  */
1327 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1328 			enum zs_mapmode mm)
1329 {
1330 	struct zspage *zspage;
1331 	struct page *page;
1332 	unsigned long obj, off;
1333 	unsigned int obj_idx;
1334 
1335 	struct size_class *class;
1336 	struct mapping_area *area;
1337 	struct page *pages[2];
1338 	void *ret;
1339 
1340 	/*
1341 	 * Because we use per-cpu mapping areas shared among the
1342 	 * pools/users, we can't allow mapping in interrupt context
1343 	 * because it can corrupt another users mappings.
1344 	 */
1345 	BUG_ON(in_interrupt());
1346 
1347 	/* It guarantees it can get zspage from handle safely */
1348 	spin_lock(&pool->lock);
1349 	obj = handle_to_obj(handle);
1350 	obj_to_location(obj, &page, &obj_idx);
1351 	zspage = get_zspage(page);
1352 
1353 #ifdef CONFIG_ZPOOL
1354 	/*
1355 	 * Move the zspage to front of pool's LRU.
1356 	 *
1357 	 * Note that this is swap-specific, so by definition there are no ongoing
1358 	 * accesses to the memory while the page is swapped out that would make
1359 	 * it "hot". A new entry is hot, then ages to the tail until it gets either
1360 	 * written back or swaps back in.
1361 	 *
1362 	 * Furthermore, map is also called during writeback. We must not put an
1363 	 * isolated page on the LRU mid-reclaim.
1364 	 *
1365 	 * As a result, only update the LRU when the page is mapped for write
1366 	 * when it's first instantiated.
1367 	 *
1368 	 * This is a deviation from the other backends, which perform this update
1369 	 * in the allocation function (zbud_alloc, z3fold_alloc).
1370 	 */
1371 	if (mm == ZS_MM_WO) {
1372 		if (!list_empty(&zspage->lru))
1373 			list_del(&zspage->lru);
1374 		list_add(&zspage->lru, &pool->lru);
1375 	}
1376 #endif
1377 
1378 	/*
1379 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1380 	 * is too heavy since callers would take some time until they calls
1381 	 * zs_unmap_object API so delegate the locking from class to zspage
1382 	 * which is smaller granularity.
1383 	 */
1384 	migrate_read_lock(zspage);
1385 	spin_unlock(&pool->lock);
1386 
1387 	class = zspage_class(pool, zspage);
1388 	off = (class->size * obj_idx) & ~PAGE_MASK;
1389 
1390 	local_lock(&zs_map_area.lock);
1391 	area = this_cpu_ptr(&zs_map_area);
1392 	area->vm_mm = mm;
1393 	if (off + class->size <= PAGE_SIZE) {
1394 		/* this object is contained entirely within a page */
1395 		area->vm_addr = kmap_atomic(page);
1396 		ret = area->vm_addr + off;
1397 		goto out;
1398 	}
1399 
1400 	/* this object spans two pages */
1401 	pages[0] = page;
1402 	pages[1] = get_next_page(page);
1403 	BUG_ON(!pages[1]);
1404 
1405 	ret = __zs_map_object(area, pages, off, class->size);
1406 out:
1407 	if (likely(!ZsHugePage(zspage)))
1408 		ret += ZS_HANDLE_SIZE;
1409 
1410 	return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(zs_map_object);
1413 
1414 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1415 {
1416 	struct zspage *zspage;
1417 	struct page *page;
1418 	unsigned long obj, off;
1419 	unsigned int obj_idx;
1420 
1421 	struct size_class *class;
1422 	struct mapping_area *area;
1423 
1424 	obj = handle_to_obj(handle);
1425 	obj_to_location(obj, &page, &obj_idx);
1426 	zspage = get_zspage(page);
1427 	class = zspage_class(pool, zspage);
1428 	off = (class->size * obj_idx) & ~PAGE_MASK;
1429 
1430 	area = this_cpu_ptr(&zs_map_area);
1431 	if (off + class->size <= PAGE_SIZE)
1432 		kunmap_atomic(area->vm_addr);
1433 	else {
1434 		struct page *pages[2];
1435 
1436 		pages[0] = page;
1437 		pages[1] = get_next_page(page);
1438 		BUG_ON(!pages[1]);
1439 
1440 		__zs_unmap_object(area, pages, off, class->size);
1441 	}
1442 	local_unlock(&zs_map_area.lock);
1443 
1444 	migrate_read_unlock(zspage);
1445 }
1446 EXPORT_SYMBOL_GPL(zs_unmap_object);
1447 
1448 /**
1449  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1450  *                        zsmalloc &size_class.
1451  * @pool: zsmalloc pool to use
1452  *
1453  * The function returns the size of the first huge class - any object of equal
1454  * or bigger size will be stored in zspage consisting of a single physical
1455  * page.
1456  *
1457  * Context: Any context.
1458  *
1459  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1460  */
1461 size_t zs_huge_class_size(struct zs_pool *pool)
1462 {
1463 	return huge_class_size;
1464 }
1465 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1466 
1467 static unsigned long obj_malloc(struct zs_pool *pool,
1468 				struct zspage *zspage, unsigned long handle)
1469 {
1470 	int i, nr_page, offset;
1471 	unsigned long obj;
1472 	struct link_free *link;
1473 	struct size_class *class;
1474 
1475 	struct page *m_page;
1476 	unsigned long m_offset;
1477 	void *vaddr;
1478 
1479 	class = pool->size_class[zspage->class];
1480 	handle |= OBJ_ALLOCATED_TAG;
1481 	obj = get_freeobj(zspage);
1482 
1483 	offset = obj * class->size;
1484 	nr_page = offset >> PAGE_SHIFT;
1485 	m_offset = offset & ~PAGE_MASK;
1486 	m_page = get_first_page(zspage);
1487 
1488 	for (i = 0; i < nr_page; i++)
1489 		m_page = get_next_page(m_page);
1490 
1491 	vaddr = kmap_atomic(m_page);
1492 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1493 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1494 	if (likely(!ZsHugePage(zspage)))
1495 		/* record handle in the header of allocated chunk */
1496 		link->handle = handle;
1497 	else
1498 		/* record handle to page->index */
1499 		zspage->first_page->index = handle;
1500 
1501 	kunmap_atomic(vaddr);
1502 	mod_zspage_inuse(zspage, 1);
1503 
1504 	obj = location_to_obj(m_page, obj);
1505 
1506 	return obj;
1507 }
1508 
1509 
1510 /**
1511  * zs_malloc - Allocate block of given size from pool.
1512  * @pool: pool to allocate from
1513  * @size: size of block to allocate
1514  * @gfp: gfp flags when allocating object
1515  *
1516  * On success, handle to the allocated object is returned,
1517  * otherwise an ERR_PTR().
1518  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1519  */
1520 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1521 {
1522 	unsigned long handle, obj;
1523 	struct size_class *class;
1524 	enum fullness_group newfg;
1525 	struct zspage *zspage;
1526 
1527 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1528 		return (unsigned long)ERR_PTR(-EINVAL);
1529 
1530 	handle = cache_alloc_handle(pool, gfp);
1531 	if (!handle)
1532 		return (unsigned long)ERR_PTR(-ENOMEM);
1533 
1534 	/* extra space in chunk to keep the handle */
1535 	size += ZS_HANDLE_SIZE;
1536 	class = pool->size_class[get_size_class_index(size)];
1537 
1538 	/* pool->lock effectively protects the zpage migration */
1539 	spin_lock(&pool->lock);
1540 	zspage = find_get_zspage(class);
1541 	if (likely(zspage)) {
1542 		obj = obj_malloc(pool, zspage, handle);
1543 		/* Now move the zspage to another fullness group, if required */
1544 		fix_fullness_group(class, zspage);
1545 		record_obj(handle, obj);
1546 		class_stat_inc(class, OBJ_USED, 1);
1547 		spin_unlock(&pool->lock);
1548 
1549 		return handle;
1550 	}
1551 
1552 	spin_unlock(&pool->lock);
1553 
1554 	zspage = alloc_zspage(pool, class, gfp);
1555 	if (!zspage) {
1556 		cache_free_handle(pool, handle);
1557 		return (unsigned long)ERR_PTR(-ENOMEM);
1558 	}
1559 
1560 	spin_lock(&pool->lock);
1561 	obj = obj_malloc(pool, zspage, handle);
1562 	newfg = get_fullness_group(class, zspage);
1563 	insert_zspage(class, zspage, newfg);
1564 	set_zspage_mapping(zspage, class->index, newfg);
1565 	record_obj(handle, obj);
1566 	atomic_long_add(class->pages_per_zspage,
1567 				&pool->pages_allocated);
1568 	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1569 	class_stat_inc(class, OBJ_USED, 1);
1570 
1571 	/* We completely set up zspage so mark them as movable */
1572 	SetZsPageMovable(pool, zspage);
1573 	spin_unlock(&pool->lock);
1574 
1575 	return handle;
1576 }
1577 EXPORT_SYMBOL_GPL(zs_malloc);
1578 
1579 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1580 {
1581 	struct link_free *link;
1582 	struct zspage *zspage;
1583 	struct page *f_page;
1584 	unsigned long f_offset;
1585 	unsigned int f_objidx;
1586 	void *vaddr;
1587 
1588 	obj_to_location(obj, &f_page, &f_objidx);
1589 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1590 	zspage = get_zspage(f_page);
1591 
1592 	vaddr = kmap_atomic(f_page);
1593 	link = (struct link_free *)(vaddr + f_offset);
1594 
1595 	if (handle) {
1596 #ifdef CONFIG_ZPOOL
1597 		/* Stores the (deferred) handle in the object's header */
1598 		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1599 		*handle &= ~OBJ_ALLOCATED_TAG;
1600 
1601 		if (likely(!ZsHugePage(zspage)))
1602 			link->deferred_handle = *handle;
1603 		else
1604 			f_page->index = *handle;
1605 #endif
1606 	} else {
1607 		/* Insert this object in containing zspage's freelist */
1608 		if (likely(!ZsHugePage(zspage)))
1609 			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1610 		else
1611 			f_page->index = 0;
1612 		set_freeobj(zspage, f_objidx);
1613 	}
1614 
1615 	kunmap_atomic(vaddr);
1616 	mod_zspage_inuse(zspage, -1);
1617 }
1618 
1619 void zs_free(struct zs_pool *pool, unsigned long handle)
1620 {
1621 	struct zspage *zspage;
1622 	struct page *f_page;
1623 	unsigned long obj;
1624 	struct size_class *class;
1625 	enum fullness_group fullness;
1626 
1627 	if (IS_ERR_OR_NULL((void *)handle))
1628 		return;
1629 
1630 	/*
1631 	 * The pool->lock protects the race with zpage's migration
1632 	 * so it's safe to get the page from handle.
1633 	 */
1634 	spin_lock(&pool->lock);
1635 	obj = handle_to_obj(handle);
1636 	obj_to_page(obj, &f_page);
1637 	zspage = get_zspage(f_page);
1638 	class = zspage_class(pool, zspage);
1639 
1640 	class_stat_dec(class, OBJ_USED, 1);
1641 
1642 #ifdef CONFIG_ZPOOL
1643 	if (zspage->under_reclaim) {
1644 		/*
1645 		 * Reclaim needs the handles during writeback. It'll free
1646 		 * them along with the zspage when it's done with them.
1647 		 *
1648 		 * Record current deferred handle in the object's header.
1649 		 */
1650 		obj_free(class->size, obj, &handle);
1651 		spin_unlock(&pool->lock);
1652 		return;
1653 	}
1654 #endif
1655 	obj_free(class->size, obj, NULL);
1656 
1657 	fullness = fix_fullness_group(class, zspage);
1658 	if (fullness == ZS_EMPTY)
1659 		free_zspage(pool, class, zspage);
1660 
1661 	spin_unlock(&pool->lock);
1662 	cache_free_handle(pool, handle);
1663 }
1664 EXPORT_SYMBOL_GPL(zs_free);
1665 
1666 static void zs_object_copy(struct size_class *class, unsigned long dst,
1667 				unsigned long src)
1668 {
1669 	struct page *s_page, *d_page;
1670 	unsigned int s_objidx, d_objidx;
1671 	unsigned long s_off, d_off;
1672 	void *s_addr, *d_addr;
1673 	int s_size, d_size, size;
1674 	int written = 0;
1675 
1676 	s_size = d_size = class->size;
1677 
1678 	obj_to_location(src, &s_page, &s_objidx);
1679 	obj_to_location(dst, &d_page, &d_objidx);
1680 
1681 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1682 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1683 
1684 	if (s_off + class->size > PAGE_SIZE)
1685 		s_size = PAGE_SIZE - s_off;
1686 
1687 	if (d_off + class->size > PAGE_SIZE)
1688 		d_size = PAGE_SIZE - d_off;
1689 
1690 	s_addr = kmap_atomic(s_page);
1691 	d_addr = kmap_atomic(d_page);
1692 
1693 	while (1) {
1694 		size = min(s_size, d_size);
1695 		memcpy(d_addr + d_off, s_addr + s_off, size);
1696 		written += size;
1697 
1698 		if (written == class->size)
1699 			break;
1700 
1701 		s_off += size;
1702 		s_size -= size;
1703 		d_off += size;
1704 		d_size -= size;
1705 
1706 		/*
1707 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1708 		 * calls must occurs in reverse order of calls to kmap_atomic().
1709 		 * So, to call kunmap_atomic(s_addr) we should first call
1710 		 * kunmap_atomic(d_addr). For more details see
1711 		 * Documentation/mm/highmem.rst.
1712 		 */
1713 		if (s_off >= PAGE_SIZE) {
1714 			kunmap_atomic(d_addr);
1715 			kunmap_atomic(s_addr);
1716 			s_page = get_next_page(s_page);
1717 			s_addr = kmap_atomic(s_page);
1718 			d_addr = kmap_atomic(d_page);
1719 			s_size = class->size - written;
1720 			s_off = 0;
1721 		}
1722 
1723 		if (d_off >= PAGE_SIZE) {
1724 			kunmap_atomic(d_addr);
1725 			d_page = get_next_page(d_page);
1726 			d_addr = kmap_atomic(d_page);
1727 			d_size = class->size - written;
1728 			d_off = 0;
1729 		}
1730 	}
1731 
1732 	kunmap_atomic(d_addr);
1733 	kunmap_atomic(s_addr);
1734 }
1735 
1736 /*
1737  * Find object with a certain tag in zspage from index object and
1738  * return handle.
1739  */
1740 static unsigned long find_tagged_obj(struct size_class *class,
1741 					struct page *page, int *obj_idx, int tag)
1742 {
1743 	unsigned int offset;
1744 	int index = *obj_idx;
1745 	unsigned long handle = 0;
1746 	void *addr = kmap_atomic(page);
1747 
1748 	offset = get_first_obj_offset(page);
1749 	offset += class->size * index;
1750 
1751 	while (offset < PAGE_SIZE) {
1752 		if (obj_tagged(page, addr + offset, &handle, tag))
1753 			break;
1754 
1755 		offset += class->size;
1756 		index++;
1757 	}
1758 
1759 	kunmap_atomic(addr);
1760 
1761 	*obj_idx = index;
1762 
1763 	return handle;
1764 }
1765 
1766 /*
1767  * Find alloced object in zspage from index object and
1768  * return handle.
1769  */
1770 static unsigned long find_alloced_obj(struct size_class *class,
1771 					struct page *page, int *obj_idx)
1772 {
1773 	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1774 }
1775 
1776 #ifdef CONFIG_ZPOOL
1777 /*
1778  * Find object storing a deferred handle in header in zspage from index object
1779  * and return handle.
1780  */
1781 static unsigned long find_deferred_handle_obj(struct size_class *class,
1782 		struct page *page, int *obj_idx)
1783 {
1784 	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1785 }
1786 #endif
1787 
1788 struct zs_compact_control {
1789 	/* Source spage for migration which could be a subpage of zspage */
1790 	struct page *s_page;
1791 	/* Destination page for migration which should be a first page
1792 	 * of zspage. */
1793 	struct page *d_page;
1794 	 /* Starting object index within @s_page which used for live object
1795 	  * in the subpage. */
1796 	int obj_idx;
1797 };
1798 
1799 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1800 				struct zs_compact_control *cc)
1801 {
1802 	unsigned long used_obj, free_obj;
1803 	unsigned long handle;
1804 	struct page *s_page = cc->s_page;
1805 	struct page *d_page = cc->d_page;
1806 	int obj_idx = cc->obj_idx;
1807 	int ret = 0;
1808 
1809 	while (1) {
1810 		handle = find_alloced_obj(class, s_page, &obj_idx);
1811 		if (!handle) {
1812 			s_page = get_next_page(s_page);
1813 			if (!s_page)
1814 				break;
1815 			obj_idx = 0;
1816 			continue;
1817 		}
1818 
1819 		/* Stop if there is no more space */
1820 		if (zspage_full(class, get_zspage(d_page))) {
1821 			ret = -ENOMEM;
1822 			break;
1823 		}
1824 
1825 		used_obj = handle_to_obj(handle);
1826 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1827 		zs_object_copy(class, free_obj, used_obj);
1828 		obj_idx++;
1829 		record_obj(handle, free_obj);
1830 		obj_free(class->size, used_obj, NULL);
1831 	}
1832 
1833 	/* Remember last position in this iteration */
1834 	cc->s_page = s_page;
1835 	cc->obj_idx = obj_idx;
1836 
1837 	return ret;
1838 }
1839 
1840 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1841 {
1842 	int i;
1843 	struct zspage *zspage;
1844 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1845 
1846 	if (!source) {
1847 		fg[0] = ZS_ALMOST_FULL;
1848 		fg[1] = ZS_ALMOST_EMPTY;
1849 	}
1850 
1851 	for (i = 0; i < 2; i++) {
1852 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1853 							struct zspage, list);
1854 		if (zspage) {
1855 			remove_zspage(class, zspage, fg[i]);
1856 			return zspage;
1857 		}
1858 	}
1859 
1860 	return zspage;
1861 }
1862 
1863 /*
1864  * putback_zspage - add @zspage into right class's fullness list
1865  * @class: destination class
1866  * @zspage: target page
1867  *
1868  * Return @zspage's fullness_group
1869  */
1870 static enum fullness_group putback_zspage(struct size_class *class,
1871 			struct zspage *zspage)
1872 {
1873 	enum fullness_group fullness;
1874 
1875 	fullness = get_fullness_group(class, zspage);
1876 	insert_zspage(class, zspage, fullness);
1877 	set_zspage_mapping(zspage, class->index, fullness);
1878 
1879 	return fullness;
1880 }
1881 
1882 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1883 /*
1884  * To prevent zspage destroy during migration, zspage freeing should
1885  * hold locks of all pages in the zspage.
1886  */
1887 static void lock_zspage(struct zspage *zspage)
1888 {
1889 	struct page *curr_page, *page;
1890 
1891 	/*
1892 	 * Pages we haven't locked yet can be migrated off the list while we're
1893 	 * trying to lock them, so we need to be careful and only attempt to
1894 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1895 	 * may no longer belong to the zspage. This means that we may wait for
1896 	 * the wrong page to unlock, so we must take a reference to the page
1897 	 * prior to waiting for it to unlock outside migrate_read_lock().
1898 	 */
1899 	while (1) {
1900 		migrate_read_lock(zspage);
1901 		page = get_first_page(zspage);
1902 		if (trylock_page(page))
1903 			break;
1904 		get_page(page);
1905 		migrate_read_unlock(zspage);
1906 		wait_on_page_locked(page);
1907 		put_page(page);
1908 	}
1909 
1910 	curr_page = page;
1911 	while ((page = get_next_page(curr_page))) {
1912 		if (trylock_page(page)) {
1913 			curr_page = page;
1914 		} else {
1915 			get_page(page);
1916 			migrate_read_unlock(zspage);
1917 			wait_on_page_locked(page);
1918 			put_page(page);
1919 			migrate_read_lock(zspage);
1920 		}
1921 	}
1922 	migrate_read_unlock(zspage);
1923 }
1924 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1925 
1926 #ifdef CONFIG_ZPOOL
1927 /*
1928  * Unlocks all the pages of the zspage.
1929  *
1930  * pool->lock must be held before this function is called
1931  * to prevent the underlying pages from migrating.
1932  */
1933 static void unlock_zspage(struct zspage *zspage)
1934 {
1935 	struct page *page = get_first_page(zspage);
1936 
1937 	do {
1938 		unlock_page(page);
1939 	} while ((page = get_next_page(page)) != NULL);
1940 }
1941 #endif /* CONFIG_ZPOOL */
1942 
1943 static void migrate_lock_init(struct zspage *zspage)
1944 {
1945 	rwlock_init(&zspage->lock);
1946 }
1947 
1948 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1949 {
1950 	read_lock(&zspage->lock);
1951 }
1952 
1953 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1954 {
1955 	read_unlock(&zspage->lock);
1956 }
1957 
1958 #ifdef CONFIG_COMPACTION
1959 static void migrate_write_lock(struct zspage *zspage)
1960 {
1961 	write_lock(&zspage->lock);
1962 }
1963 
1964 static void migrate_write_lock_nested(struct zspage *zspage)
1965 {
1966 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1967 }
1968 
1969 static void migrate_write_unlock(struct zspage *zspage)
1970 {
1971 	write_unlock(&zspage->lock);
1972 }
1973 
1974 /* Number of isolated subpage for *page migration* in this zspage */
1975 static void inc_zspage_isolation(struct zspage *zspage)
1976 {
1977 	zspage->isolated++;
1978 }
1979 
1980 static void dec_zspage_isolation(struct zspage *zspage)
1981 {
1982 	VM_BUG_ON(zspage->isolated == 0);
1983 	zspage->isolated--;
1984 }
1985 
1986 static const struct movable_operations zsmalloc_mops;
1987 
1988 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1989 				struct page *newpage, struct page *oldpage)
1990 {
1991 	struct page *page;
1992 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1993 	int idx = 0;
1994 
1995 	page = get_first_page(zspage);
1996 	do {
1997 		if (page == oldpage)
1998 			pages[idx] = newpage;
1999 		else
2000 			pages[idx] = page;
2001 		idx++;
2002 	} while ((page = get_next_page(page)) != NULL);
2003 
2004 	create_page_chain(class, zspage, pages);
2005 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2006 	if (unlikely(ZsHugePage(zspage)))
2007 		newpage->index = oldpage->index;
2008 	__SetPageMovable(newpage, &zsmalloc_mops);
2009 }
2010 
2011 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2012 {
2013 	struct zspage *zspage;
2014 
2015 	/*
2016 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
2017 	 * lock_zspage in free_zspage.
2018 	 */
2019 	VM_BUG_ON_PAGE(PageIsolated(page), page);
2020 
2021 	zspage = get_zspage(page);
2022 	migrate_write_lock(zspage);
2023 	inc_zspage_isolation(zspage);
2024 	migrate_write_unlock(zspage);
2025 
2026 	return true;
2027 }
2028 
2029 static int zs_page_migrate(struct page *newpage, struct page *page,
2030 		enum migrate_mode mode)
2031 {
2032 	struct zs_pool *pool;
2033 	struct size_class *class;
2034 	struct zspage *zspage;
2035 	struct page *dummy;
2036 	void *s_addr, *d_addr, *addr;
2037 	unsigned int offset;
2038 	unsigned long handle;
2039 	unsigned long old_obj, new_obj;
2040 	unsigned int obj_idx;
2041 
2042 	/*
2043 	 * We cannot support the _NO_COPY case here, because copy needs to
2044 	 * happen under the zs lock, which does not work with
2045 	 * MIGRATE_SYNC_NO_COPY workflow.
2046 	 */
2047 	if (mode == MIGRATE_SYNC_NO_COPY)
2048 		return -EINVAL;
2049 
2050 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2051 
2052 	/* The page is locked, so this pointer must remain valid */
2053 	zspage = get_zspage(page);
2054 	pool = zspage->pool;
2055 
2056 	/*
2057 	 * The pool's lock protects the race between zpage migration
2058 	 * and zs_free.
2059 	 */
2060 	spin_lock(&pool->lock);
2061 	class = zspage_class(pool, zspage);
2062 
2063 	/* the migrate_write_lock protects zpage access via zs_map_object */
2064 	migrate_write_lock(zspage);
2065 
2066 	offset = get_first_obj_offset(page);
2067 	s_addr = kmap_atomic(page);
2068 
2069 	/*
2070 	 * Here, any user cannot access all objects in the zspage so let's move.
2071 	 */
2072 	d_addr = kmap_atomic(newpage);
2073 	memcpy(d_addr, s_addr, PAGE_SIZE);
2074 	kunmap_atomic(d_addr);
2075 
2076 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2077 					addr += class->size) {
2078 		if (obj_allocated(page, addr, &handle)) {
2079 
2080 			old_obj = handle_to_obj(handle);
2081 			obj_to_location(old_obj, &dummy, &obj_idx);
2082 			new_obj = (unsigned long)location_to_obj(newpage,
2083 								obj_idx);
2084 			record_obj(handle, new_obj);
2085 		}
2086 	}
2087 	kunmap_atomic(s_addr);
2088 
2089 	replace_sub_page(class, zspage, newpage, page);
2090 	/*
2091 	 * Since we complete the data copy and set up new zspage structure,
2092 	 * it's okay to release the pool's lock.
2093 	 */
2094 	spin_unlock(&pool->lock);
2095 	dec_zspage_isolation(zspage);
2096 	migrate_write_unlock(zspage);
2097 
2098 	get_page(newpage);
2099 	if (page_zone(newpage) != page_zone(page)) {
2100 		dec_zone_page_state(page, NR_ZSPAGES);
2101 		inc_zone_page_state(newpage, NR_ZSPAGES);
2102 	}
2103 
2104 	reset_page(page);
2105 	put_page(page);
2106 
2107 	return MIGRATEPAGE_SUCCESS;
2108 }
2109 
2110 static void zs_page_putback(struct page *page)
2111 {
2112 	struct zspage *zspage;
2113 
2114 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2115 
2116 	zspage = get_zspage(page);
2117 	migrate_write_lock(zspage);
2118 	dec_zspage_isolation(zspage);
2119 	migrate_write_unlock(zspage);
2120 }
2121 
2122 static const struct movable_operations zsmalloc_mops = {
2123 	.isolate_page = zs_page_isolate,
2124 	.migrate_page = zs_page_migrate,
2125 	.putback_page = zs_page_putback,
2126 };
2127 
2128 /*
2129  * Caller should hold page_lock of all pages in the zspage
2130  * In here, we cannot use zspage meta data.
2131  */
2132 static void async_free_zspage(struct work_struct *work)
2133 {
2134 	int i;
2135 	struct size_class *class;
2136 	unsigned int class_idx;
2137 	enum fullness_group fullness;
2138 	struct zspage *zspage, *tmp;
2139 	LIST_HEAD(free_pages);
2140 	struct zs_pool *pool = container_of(work, struct zs_pool,
2141 					free_work);
2142 
2143 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2144 		class = pool->size_class[i];
2145 		if (class->index != i)
2146 			continue;
2147 
2148 		spin_lock(&pool->lock);
2149 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2150 		spin_unlock(&pool->lock);
2151 	}
2152 
2153 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2154 		list_del(&zspage->list);
2155 		lock_zspage(zspage);
2156 
2157 		get_zspage_mapping(zspage, &class_idx, &fullness);
2158 		VM_BUG_ON(fullness != ZS_EMPTY);
2159 		class = pool->size_class[class_idx];
2160 		spin_lock(&pool->lock);
2161 #ifdef CONFIG_ZPOOL
2162 		list_del(&zspage->lru);
2163 #endif
2164 		__free_zspage(pool, class, zspage);
2165 		spin_unlock(&pool->lock);
2166 	}
2167 };
2168 
2169 static void kick_deferred_free(struct zs_pool *pool)
2170 {
2171 	schedule_work(&pool->free_work);
2172 }
2173 
2174 static void zs_flush_migration(struct zs_pool *pool)
2175 {
2176 	flush_work(&pool->free_work);
2177 }
2178 
2179 static void init_deferred_free(struct zs_pool *pool)
2180 {
2181 	INIT_WORK(&pool->free_work, async_free_zspage);
2182 }
2183 
2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185 {
2186 	struct page *page = get_first_page(zspage);
2187 
2188 	do {
2189 		WARN_ON(!trylock_page(page));
2190 		__SetPageMovable(page, &zsmalloc_mops);
2191 		unlock_page(page);
2192 	} while ((page = get_next_page(page)) != NULL);
2193 }
2194 #else
2195 static inline void zs_flush_migration(struct zs_pool *pool) { }
2196 #endif
2197 
2198 /*
2199  *
2200  * Based on the number of unused allocated objects calculate
2201  * and return the number of pages that we can free.
2202  */
2203 static unsigned long zs_can_compact(struct size_class *class)
2204 {
2205 	unsigned long obj_wasted;
2206 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2207 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2208 
2209 	if (obj_allocated <= obj_used)
2210 		return 0;
2211 
2212 	obj_wasted = obj_allocated - obj_used;
2213 	obj_wasted /= class->objs_per_zspage;
2214 
2215 	return obj_wasted * class->pages_per_zspage;
2216 }
2217 
2218 static unsigned long __zs_compact(struct zs_pool *pool,
2219 				  struct size_class *class)
2220 {
2221 	struct zs_compact_control cc;
2222 	struct zspage *src_zspage;
2223 	struct zspage *dst_zspage = NULL;
2224 	unsigned long pages_freed = 0;
2225 
2226 	/*
2227 	 * protect the race between zpage migration and zs_free
2228 	 * as well as zpage allocation/free
2229 	 */
2230 	spin_lock(&pool->lock);
2231 	while ((src_zspage = isolate_zspage(class, true))) {
2232 		/* protect someone accessing the zspage(i.e., zs_map_object) */
2233 		migrate_write_lock(src_zspage);
2234 
2235 		if (!zs_can_compact(class))
2236 			break;
2237 
2238 		cc.obj_idx = 0;
2239 		cc.s_page = get_first_page(src_zspage);
2240 
2241 		while ((dst_zspage = isolate_zspage(class, false))) {
2242 			migrate_write_lock_nested(dst_zspage);
2243 
2244 			cc.d_page = get_first_page(dst_zspage);
2245 			/*
2246 			 * If there is no more space in dst_page, resched
2247 			 * and see if anyone had allocated another zspage.
2248 			 */
2249 			if (!migrate_zspage(pool, class, &cc))
2250 				break;
2251 
2252 			putback_zspage(class, dst_zspage);
2253 			migrate_write_unlock(dst_zspage);
2254 			dst_zspage = NULL;
2255 			if (spin_is_contended(&pool->lock))
2256 				break;
2257 		}
2258 
2259 		/* Stop if we couldn't find slot */
2260 		if (dst_zspage == NULL)
2261 			break;
2262 
2263 		putback_zspage(class, dst_zspage);
2264 		migrate_write_unlock(dst_zspage);
2265 
2266 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2267 			migrate_write_unlock(src_zspage);
2268 			free_zspage(pool, class, src_zspage);
2269 			pages_freed += class->pages_per_zspage;
2270 		} else
2271 			migrate_write_unlock(src_zspage);
2272 		spin_unlock(&pool->lock);
2273 		cond_resched();
2274 		spin_lock(&pool->lock);
2275 	}
2276 
2277 	if (src_zspage) {
2278 		putback_zspage(class, src_zspage);
2279 		migrate_write_unlock(src_zspage);
2280 	}
2281 
2282 	spin_unlock(&pool->lock);
2283 
2284 	return pages_freed;
2285 }
2286 
2287 unsigned long zs_compact(struct zs_pool *pool)
2288 {
2289 	int i;
2290 	struct size_class *class;
2291 	unsigned long pages_freed = 0;
2292 
2293 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2294 		class = pool->size_class[i];
2295 		if (class->index != i)
2296 			continue;
2297 		pages_freed += __zs_compact(pool, class);
2298 	}
2299 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2300 
2301 	return pages_freed;
2302 }
2303 EXPORT_SYMBOL_GPL(zs_compact);
2304 
2305 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2306 {
2307 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2308 }
2309 EXPORT_SYMBOL_GPL(zs_pool_stats);
2310 
2311 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2312 		struct shrink_control *sc)
2313 {
2314 	unsigned long pages_freed;
2315 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2316 			shrinker);
2317 
2318 	/*
2319 	 * Compact classes and calculate compaction delta.
2320 	 * Can run concurrently with a manually triggered
2321 	 * (by user) compaction.
2322 	 */
2323 	pages_freed = zs_compact(pool);
2324 
2325 	return pages_freed ? pages_freed : SHRINK_STOP;
2326 }
2327 
2328 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2329 		struct shrink_control *sc)
2330 {
2331 	int i;
2332 	struct size_class *class;
2333 	unsigned long pages_to_free = 0;
2334 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2335 			shrinker);
2336 
2337 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2338 		class = pool->size_class[i];
2339 		if (class->index != i)
2340 			continue;
2341 
2342 		pages_to_free += zs_can_compact(class);
2343 	}
2344 
2345 	return pages_to_free;
2346 }
2347 
2348 static void zs_unregister_shrinker(struct zs_pool *pool)
2349 {
2350 	unregister_shrinker(&pool->shrinker);
2351 }
2352 
2353 static int zs_register_shrinker(struct zs_pool *pool)
2354 {
2355 	pool->shrinker.scan_objects = zs_shrinker_scan;
2356 	pool->shrinker.count_objects = zs_shrinker_count;
2357 	pool->shrinker.batch = 0;
2358 	pool->shrinker.seeks = DEFAULT_SEEKS;
2359 
2360 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2361 				 pool->name);
2362 }
2363 
2364 static int calculate_zspage_chain_size(int class_size)
2365 {
2366 	int i, min_waste = INT_MAX;
2367 	int chain_size = 1;
2368 
2369 	if (is_power_of_2(class_size))
2370 		return chain_size;
2371 
2372 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2373 		int waste;
2374 
2375 		waste = (i * PAGE_SIZE) % class_size;
2376 		if (waste < min_waste) {
2377 			min_waste = waste;
2378 			chain_size = i;
2379 		}
2380 	}
2381 
2382 	return chain_size;
2383 }
2384 
2385 /**
2386  * zs_create_pool - Creates an allocation pool to work from.
2387  * @name: pool name to be created
2388  *
2389  * This function must be called before anything when using
2390  * the zsmalloc allocator.
2391  *
2392  * On success, a pointer to the newly created pool is returned,
2393  * otherwise NULL.
2394  */
2395 struct zs_pool *zs_create_pool(const char *name)
2396 {
2397 	int i;
2398 	struct zs_pool *pool;
2399 	struct size_class *prev_class = NULL;
2400 
2401 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2402 	if (!pool)
2403 		return NULL;
2404 
2405 	init_deferred_free(pool);
2406 	spin_lock_init(&pool->lock);
2407 
2408 	pool->name = kstrdup(name, GFP_KERNEL);
2409 	if (!pool->name)
2410 		goto err;
2411 
2412 	if (create_cache(pool))
2413 		goto err;
2414 
2415 	/*
2416 	 * Iterate reversely, because, size of size_class that we want to use
2417 	 * for merging should be larger or equal to current size.
2418 	 */
2419 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2420 		int size;
2421 		int pages_per_zspage;
2422 		int objs_per_zspage;
2423 		struct size_class *class;
2424 		int fullness = 0;
2425 
2426 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2427 		if (size > ZS_MAX_ALLOC_SIZE)
2428 			size = ZS_MAX_ALLOC_SIZE;
2429 		pages_per_zspage = calculate_zspage_chain_size(size);
2430 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2431 
2432 		/*
2433 		 * We iterate from biggest down to smallest classes,
2434 		 * so huge_class_size holds the size of the first huge
2435 		 * class. Any object bigger than or equal to that will
2436 		 * endup in the huge class.
2437 		 */
2438 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2439 				!huge_class_size) {
2440 			huge_class_size = size;
2441 			/*
2442 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2443 			 * handle. We need to subtract it, because zs_malloc()
2444 			 * unconditionally adds handle size before it performs
2445 			 * size class search - so object may be smaller than
2446 			 * huge class size, yet it still can end up in the huge
2447 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2448 			 * right before class lookup.
2449 			 */
2450 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2451 		}
2452 
2453 		/*
2454 		 * size_class is used for normal zsmalloc operation such
2455 		 * as alloc/free for that size. Although it is natural that we
2456 		 * have one size_class for each size, there is a chance that we
2457 		 * can get more memory utilization if we use one size_class for
2458 		 * many different sizes whose size_class have same
2459 		 * characteristics. So, we makes size_class point to
2460 		 * previous size_class if possible.
2461 		 */
2462 		if (prev_class) {
2463 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2464 				pool->size_class[i] = prev_class;
2465 				continue;
2466 			}
2467 		}
2468 
2469 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2470 		if (!class)
2471 			goto err;
2472 
2473 		class->size = size;
2474 		class->index = i;
2475 		class->pages_per_zspage = pages_per_zspage;
2476 		class->objs_per_zspage = objs_per_zspage;
2477 		pool->size_class[i] = class;
2478 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2479 							fullness++)
2480 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2481 
2482 		prev_class = class;
2483 	}
2484 
2485 	/* debug only, don't abort if it fails */
2486 	zs_pool_stat_create(pool, name);
2487 
2488 	/*
2489 	 * Not critical since shrinker is only used to trigger internal
2490 	 * defragmentation of the pool which is pretty optional thing.  If
2491 	 * registration fails we still can use the pool normally and user can
2492 	 * trigger compaction manually. Thus, ignore return code.
2493 	 */
2494 	zs_register_shrinker(pool);
2495 
2496 #ifdef CONFIG_ZPOOL
2497 	INIT_LIST_HEAD(&pool->lru);
2498 #endif
2499 
2500 	return pool;
2501 
2502 err:
2503 	zs_destroy_pool(pool);
2504 	return NULL;
2505 }
2506 EXPORT_SYMBOL_GPL(zs_create_pool);
2507 
2508 void zs_destroy_pool(struct zs_pool *pool)
2509 {
2510 	int i;
2511 
2512 	zs_unregister_shrinker(pool);
2513 	zs_flush_migration(pool);
2514 	zs_pool_stat_destroy(pool);
2515 
2516 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2517 		int fg;
2518 		struct size_class *class = pool->size_class[i];
2519 
2520 		if (!class)
2521 			continue;
2522 
2523 		if (class->index != i)
2524 			continue;
2525 
2526 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2527 			if (!list_empty(&class->fullness_list[fg])) {
2528 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2529 					class->size, fg);
2530 			}
2531 		}
2532 		kfree(class);
2533 	}
2534 
2535 	destroy_cache(pool);
2536 	kfree(pool->name);
2537 	kfree(pool);
2538 }
2539 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2540 
2541 #ifdef CONFIG_ZPOOL
2542 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2543 		struct zspage *zspage)
2544 {
2545 	unsigned int obj_idx = 0;
2546 	unsigned long handle, off = 0; /* off is within-page offset */
2547 	struct page *page = get_first_page(zspage);
2548 	struct link_free *prev_free = NULL;
2549 	void *prev_page_vaddr = NULL;
2550 
2551 	/* in case no free object found */
2552 	set_freeobj(zspage, (unsigned int)(-1UL));
2553 
2554 	while (page) {
2555 		void *vaddr = kmap_atomic(page);
2556 		struct page *next_page;
2557 
2558 		while (off < PAGE_SIZE) {
2559 			void *obj_addr = vaddr + off;
2560 
2561 			/* skip allocated object */
2562 			if (obj_allocated(page, obj_addr, &handle)) {
2563 				obj_idx++;
2564 				off += class->size;
2565 				continue;
2566 			}
2567 
2568 			/* free deferred handle from reclaim attempt */
2569 			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2570 				cache_free_handle(pool, handle);
2571 
2572 			if (prev_free)
2573 				prev_free->next = obj_idx << OBJ_TAG_BITS;
2574 			else /* first free object found */
2575 				set_freeobj(zspage, obj_idx);
2576 
2577 			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2578 			/* if last free object in a previous page, need to unmap */
2579 			if (prev_page_vaddr) {
2580 				kunmap_atomic(prev_page_vaddr);
2581 				prev_page_vaddr = NULL;
2582 			}
2583 
2584 			obj_idx++;
2585 			off += class->size;
2586 		}
2587 
2588 		/*
2589 		 * Handle the last (full or partial) object on this page.
2590 		 */
2591 		next_page = get_next_page(page);
2592 		if (next_page) {
2593 			if (!prev_free || prev_page_vaddr) {
2594 				/*
2595 				 * There is no free object in this page, so we can safely
2596 				 * unmap it.
2597 				 */
2598 				kunmap_atomic(vaddr);
2599 			} else {
2600 				/* update prev_page_vaddr since prev_free is on this page */
2601 				prev_page_vaddr = vaddr;
2602 			}
2603 		} else { /* this is the last page */
2604 			if (prev_free) {
2605 				/*
2606 				 * Reset OBJ_TAG_BITS bit to last link to tell
2607 				 * whether it's allocated object or not.
2608 				 */
2609 				prev_free->next = -1UL << OBJ_TAG_BITS;
2610 			}
2611 
2612 			/* unmap previous page (if not done yet) */
2613 			if (prev_page_vaddr) {
2614 				kunmap_atomic(prev_page_vaddr);
2615 				prev_page_vaddr = NULL;
2616 			}
2617 
2618 			kunmap_atomic(vaddr);
2619 		}
2620 
2621 		page = next_page;
2622 		off %= PAGE_SIZE;
2623 	}
2624 }
2625 
2626 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2627 {
2628 	int i, obj_idx, ret = 0;
2629 	unsigned long handle;
2630 	struct zspage *zspage;
2631 	struct page *page;
2632 	enum fullness_group fullness;
2633 
2634 	/* Lock LRU and fullness list */
2635 	spin_lock(&pool->lock);
2636 	if (list_empty(&pool->lru)) {
2637 		spin_unlock(&pool->lock);
2638 		return -EINVAL;
2639 	}
2640 
2641 	for (i = 0; i < retries; i++) {
2642 		struct size_class *class;
2643 
2644 		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2645 		list_del(&zspage->lru);
2646 
2647 		/* zs_free may free objects, but not the zspage and handles */
2648 		zspage->under_reclaim = true;
2649 
2650 		class = zspage_class(pool, zspage);
2651 		fullness = get_fullness_group(class, zspage);
2652 
2653 		/* Lock out object allocations and object compaction */
2654 		remove_zspage(class, zspage, fullness);
2655 
2656 		spin_unlock(&pool->lock);
2657 		cond_resched();
2658 
2659 		/* Lock backing pages into place */
2660 		lock_zspage(zspage);
2661 
2662 		obj_idx = 0;
2663 		page = get_first_page(zspage);
2664 		while (1) {
2665 			handle = find_alloced_obj(class, page, &obj_idx);
2666 			if (!handle) {
2667 				page = get_next_page(page);
2668 				if (!page)
2669 					break;
2670 				obj_idx = 0;
2671 				continue;
2672 			}
2673 
2674 			/*
2675 			 * This will write the object and call zs_free.
2676 			 *
2677 			 * zs_free will free the object, but the
2678 			 * under_reclaim flag prevents it from freeing
2679 			 * the zspage altogether. This is necessary so
2680 			 * that we can continue working with the
2681 			 * zspage potentially after the last object
2682 			 * has been freed.
2683 			 */
2684 			ret = pool->zpool_ops->evict(pool->zpool, handle);
2685 			if (ret)
2686 				goto next;
2687 
2688 			obj_idx++;
2689 		}
2690 
2691 next:
2692 		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2693 		spin_lock(&pool->lock);
2694 		zspage->under_reclaim = false;
2695 
2696 		if (!get_zspage_inuse(zspage)) {
2697 			/*
2698 			 * Fullness went stale as zs_free() won't touch it
2699 			 * while the page is removed from the pool. Fix it
2700 			 * up for the check in __free_zspage().
2701 			 */
2702 			zspage->fullness = ZS_EMPTY;
2703 
2704 			__free_zspage(pool, class, zspage);
2705 			spin_unlock(&pool->lock);
2706 			return 0;
2707 		}
2708 
2709 		/*
2710 		 * Eviction fails on one of the handles, so we need to restore zspage.
2711 		 * We need to rebuild its freelist (and free stored deferred handles),
2712 		 * put it back to the correct size class, and add it to the LRU list.
2713 		 */
2714 		restore_freelist(pool, class, zspage);
2715 		putback_zspage(class, zspage);
2716 		list_add(&zspage->lru, &pool->lru);
2717 		unlock_zspage(zspage);
2718 	}
2719 
2720 	spin_unlock(&pool->lock);
2721 	return -EAGAIN;
2722 }
2723 #endif /* CONFIG_ZPOOL */
2724 
2725 static int __init zs_init(void)
2726 {
2727 	int ret;
2728 
2729 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2730 				zs_cpu_prepare, zs_cpu_dead);
2731 	if (ret)
2732 		goto out;
2733 
2734 #ifdef CONFIG_ZPOOL
2735 	zpool_register_driver(&zs_zpool_driver);
2736 #endif
2737 
2738 	zs_stat_init();
2739 
2740 	return 0;
2741 
2742 out:
2743 	return ret;
2744 }
2745 
2746 static void __exit zs_exit(void)
2747 {
2748 #ifdef CONFIG_ZPOOL
2749 	zpool_unregister_driver(&zs_zpool_driver);
2750 #endif
2751 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2752 
2753 	zs_stat_exit();
2754 }
2755 
2756 module_init(zs_init);
2757 module_exit(zs_exit);
2758 
2759 MODULE_LICENSE("Dual BSD/GPL");
2760 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2761