xref: /openbmc/linux/mm/zsmalloc.c (revision 9be08a27)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT	0
109 
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum zs_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180 
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *	n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *	ZS_ALMOST_FULL	when n > N / f
190  *	ZS_EMPTY	when n == 0
191  *	ZS_FULL		when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	spinlock_t lock;
200 	struct list_head fullness_list[NR_ZS_FULLNESS];
201 	/*
202 	 * Size of objects stored in this class. Must be multiple
203 	 * of ZS_ALIGN.
204 	 */
205 	int size;
206 	int objs_per_zspage;
207 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 	int pages_per_zspage;
209 
210 	unsigned int index;
211 	struct zs_size_stat stats;
212 };
213 
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
216 {
217 	SetPageOwnerPriv1(page);
218 }
219 
220 static void ClearPageHugeObject(struct page *page)
221 {
222 	ClearPageOwnerPriv1(page);
223 }
224 
225 static int PageHugeObject(struct page *page)
226 {
227 	return PageOwnerPriv1(page);
228 }
229 
230 /*
231  * Placed within free objects to form a singly linked list.
232  * For every zspage, zspage->freeobj gives head of this list.
233  *
234  * This must be power of 2 and less than or equal to ZS_ALIGN
235  */
236 struct link_free {
237 	union {
238 		/*
239 		 * Free object index;
240 		 * It's valid for non-allocated object
241 		 */
242 		unsigned long next;
243 		/*
244 		 * Handle of allocated object.
245 		 */
246 		unsigned long handle;
247 	};
248 };
249 
250 struct zs_pool {
251 	const char *name;
252 
253 	struct size_class *size_class[ZS_SIZE_CLASSES];
254 	struct kmem_cache *handle_cachep;
255 	struct kmem_cache *zspage_cachep;
256 
257 	atomic_long_t pages_allocated;
258 
259 	struct zs_pool_stats stats;
260 
261 	/* Compact classes */
262 	struct shrinker shrinker;
263 
264 #ifdef CONFIG_ZSMALLOC_STAT
265 	struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 	struct inode *inode;
269 	struct work_struct free_work;
270 #endif
271 };
272 
273 struct zspage {
274 	struct {
275 		unsigned int fullness:FULLNESS_BITS;
276 		unsigned int class:CLASS_BITS + 1;
277 		unsigned int isolated:ISOLATED_BITS;
278 		unsigned int magic:MAGIC_VAL_BITS;
279 	};
280 	unsigned int inuse;
281 	unsigned int freeobj;
282 	struct page *first_page;
283 	struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 	rwlock_t lock;
286 #endif
287 };
288 
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 	struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 	char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 	char *vm_addr; /* address of kmap_atomic()'ed pages */
296 	enum zs_mapmode vm_mm; /* mapping mode */
297 };
298 
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320 
321 static int create_cache(struct zs_pool *pool)
322 {
323 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 					0, 0, NULL);
325 	if (!pool->handle_cachep)
326 		return 1;
327 
328 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 					0, 0, NULL);
330 	if (!pool->zspage_cachep) {
331 		kmem_cache_destroy(pool->handle_cachep);
332 		pool->handle_cachep = NULL;
333 		return 1;
334 	}
335 
336 	return 0;
337 }
338 
339 static void destroy_cache(struct zs_pool *pool)
340 {
341 	kmem_cache_destroy(pool->handle_cachep);
342 	kmem_cache_destroy(pool->zspage_cachep);
343 }
344 
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350 
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353 	kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355 
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358 	return kmem_cache_alloc(pool->zspage_cachep,
359 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361 
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364 	kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366 
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369 	/*
370 	 * lsb of @obj represents handle lock while other bits
371 	 * represent object value the handle is pointing so
372 	 * updating shouldn't do store tearing.
373 	 */
374 	WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376 
377 /* zpool driver */
378 
379 #ifdef CONFIG_ZPOOL
380 
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 			     const struct zpool_ops *zpool_ops,
383 			     struct zpool *zpool)
384 {
385 	/*
386 	 * Ignore global gfp flags: zs_malloc() may be invoked from
387 	 * different contexts and its caller must provide a valid
388 	 * gfp mask.
389 	 */
390 	return zs_create_pool(name);
391 }
392 
393 static void zs_zpool_destroy(void *pool)
394 {
395 	zs_destroy_pool(pool);
396 }
397 
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 			unsigned long *handle)
400 {
401 	*handle = zs_malloc(pool, size, gfp);
402 	return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 	zs_free(pool, handle);
407 }
408 
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 			enum zpool_mapmode mm)
411 {
412 	enum zs_mapmode zs_mm;
413 
414 	switch (mm) {
415 	case ZPOOL_MM_RO:
416 		zs_mm = ZS_MM_RO;
417 		break;
418 	case ZPOOL_MM_WO:
419 		zs_mm = ZS_MM_WO;
420 		break;
421 	case ZPOOL_MM_RW: /* fallthru */
422 	default:
423 		zs_mm = ZS_MM_RW;
424 		break;
425 	}
426 
427 	return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 	zs_unmap_object(pool, handle);
432 }
433 
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 	return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438 
439 static struct zpool_driver zs_zpool_driver = {
440 	.type =		"zsmalloc",
441 	.owner =	THIS_MODULE,
442 	.create =	zs_zpool_create,
443 	.destroy =	zs_zpool_destroy,
444 	.malloc =	zs_zpool_malloc,
445 	.free =		zs_zpool_free,
446 	.map =		zs_zpool_map,
447 	.unmap =	zs_zpool_unmap,
448 	.total_size =	zs_zpool_total_size,
449 };
450 
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
453 
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456 
457 static bool is_zspage_isolated(struct zspage *zspage)
458 {
459 	return zspage->isolated;
460 }
461 
462 static __maybe_unused int is_first_page(struct page *page)
463 {
464 	return PagePrivate(page);
465 }
466 
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
469 {
470 	return zspage->inuse;
471 }
472 
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
474 {
475 	zspage->inuse = val;
476 }
477 
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 {
480 	zspage->inuse += val;
481 }
482 
483 static inline struct page *get_first_page(struct zspage *zspage)
484 {
485 	struct page *first_page = zspage->first_page;
486 
487 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 	return first_page;
489 }
490 
491 static inline int get_first_obj_offset(struct page *page)
492 {
493 	return page->units;
494 }
495 
496 static inline void set_first_obj_offset(struct page *page, int offset)
497 {
498 	page->units = offset;
499 }
500 
501 static inline unsigned int get_freeobj(struct zspage *zspage)
502 {
503 	return zspage->freeobj;
504 }
505 
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 {
508 	zspage->freeobj = obj;
509 }
510 
511 static void get_zspage_mapping(struct zspage *zspage,
512 				unsigned int *class_idx,
513 				enum fullness_group *fullness)
514 {
515 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516 
517 	*fullness = zspage->fullness;
518 	*class_idx = zspage->class;
519 }
520 
521 static void set_zspage_mapping(struct zspage *zspage,
522 				unsigned int class_idx,
523 				enum fullness_group fullness)
524 {
525 	zspage->class = class_idx;
526 	zspage->fullness = fullness;
527 }
528 
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the give size.
535  */
536 static int get_size_class_index(int size)
537 {
538 	int idx = 0;
539 
540 	if (likely(size > ZS_MIN_ALLOC_SIZE))
541 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 				ZS_SIZE_CLASS_DELTA);
543 
544 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546 
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 				int type, unsigned long cnt)
550 {
551 	class->stats.objs[type] += cnt;
552 }
553 
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 				int type, unsigned long cnt)
557 {
558 	class->stats.objs[type] -= cnt;
559 }
560 
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 				int type)
564 {
565 	return class->stats.objs[type];
566 }
567 
568 #ifdef CONFIG_ZSMALLOC_STAT
569 
570 static void __init zs_stat_init(void)
571 {
572 	if (!debugfs_initialized()) {
573 		pr_warn("debugfs not available, stat dir not created\n");
574 		return;
575 	}
576 
577 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 	if (!zs_stat_root)
579 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580 }
581 
582 static void __exit zs_stat_exit(void)
583 {
584 	debugfs_remove_recursive(zs_stat_root);
585 }
586 
587 static unsigned long zs_can_compact(struct size_class *class);
588 
589 static int zs_stats_size_show(struct seq_file *s, void *v)
590 {
591 	int i;
592 	struct zs_pool *pool = s->private;
593 	struct size_class *class;
594 	int objs_per_zspage;
595 	unsigned long class_almost_full, class_almost_empty;
596 	unsigned long obj_allocated, obj_used, pages_used, freeable;
597 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599 	unsigned long total_freeable = 0;
600 
601 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 			"class", "size", "almost_full", "almost_empty",
603 			"obj_allocated", "obj_used", "pages_used",
604 			"pages_per_zspage", "freeable");
605 
606 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607 		class = pool->size_class[i];
608 
609 		if (class->index != i)
610 			continue;
611 
612 		spin_lock(&class->lock);
613 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 		obj_used = zs_stat_get(class, OBJ_USED);
617 		freeable = zs_can_compact(class);
618 		spin_unlock(&class->lock);
619 
620 		objs_per_zspage = class->objs_per_zspage;
621 		pages_used = obj_allocated / objs_per_zspage *
622 				class->pages_per_zspage;
623 
624 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 				" %10lu %10lu %16d %8lu\n",
626 			i, class->size, class_almost_full, class_almost_empty,
627 			obj_allocated, obj_used, pages_used,
628 			class->pages_per_zspage, freeable);
629 
630 		total_class_almost_full += class_almost_full;
631 		total_class_almost_empty += class_almost_empty;
632 		total_objs += obj_allocated;
633 		total_used_objs += obj_used;
634 		total_pages += pages_used;
635 		total_freeable += freeable;
636 	}
637 
638 	seq_puts(s, "\n");
639 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 			"Total", "", total_class_almost_full,
641 			total_class_almost_empty, total_objs,
642 			total_used_objs, total_pages, "", total_freeable);
643 
644 	return 0;
645 }
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
647 
648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 {
650 	struct dentry *entry;
651 
652 	if (!zs_stat_root) {
653 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654 		return;
655 	}
656 
657 	entry = debugfs_create_dir(name, zs_stat_root);
658 	if (!entry) {
659 		pr_warn("debugfs dir <%s> creation failed\n", name);
660 		return;
661 	}
662 	pool->stat_dentry = entry;
663 
664 	entry = debugfs_create_file("classes", S_IFREG | 0444,
665 				    pool->stat_dentry, pool,
666 				    &zs_stats_size_fops);
667 	if (!entry) {
668 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
669 				name, "classes");
670 		debugfs_remove_recursive(pool->stat_dentry);
671 		pool->stat_dentry = NULL;
672 	}
673 }
674 
675 static void zs_pool_stat_destroy(struct zs_pool *pool)
676 {
677 	debugfs_remove_recursive(pool->stat_dentry);
678 }
679 
680 #else /* CONFIG_ZSMALLOC_STAT */
681 static void __init zs_stat_init(void)
682 {
683 }
684 
685 static void __exit zs_stat_exit(void)
686 {
687 }
688 
689 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
690 {
691 }
692 
693 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
694 {
695 }
696 #endif
697 
698 
699 /*
700  * For each size class, zspages are divided into different groups
701  * depending on how "full" they are. This was done so that we could
702  * easily find empty or nearly empty zspages when we try to shrink
703  * the pool (not yet implemented). This function returns fullness
704  * status of the given page.
705  */
706 static enum fullness_group get_fullness_group(struct size_class *class,
707 						struct zspage *zspage)
708 {
709 	int inuse, objs_per_zspage;
710 	enum fullness_group fg;
711 
712 	inuse = get_zspage_inuse(zspage);
713 	objs_per_zspage = class->objs_per_zspage;
714 
715 	if (inuse == 0)
716 		fg = ZS_EMPTY;
717 	else if (inuse == objs_per_zspage)
718 		fg = ZS_FULL;
719 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
720 		fg = ZS_ALMOST_EMPTY;
721 	else
722 		fg = ZS_ALMOST_FULL;
723 
724 	return fg;
725 }
726 
727 /*
728  * Each size class maintains various freelists and zspages are assigned
729  * to one of these freelists based on the number of live objects they
730  * have. This functions inserts the given zspage into the freelist
731  * identified by <class, fullness_group>.
732  */
733 static void insert_zspage(struct size_class *class,
734 				struct zspage *zspage,
735 				enum fullness_group fullness)
736 {
737 	struct zspage *head;
738 
739 	zs_stat_inc(class, fullness, 1);
740 	head = list_first_entry_or_null(&class->fullness_list[fullness],
741 					struct zspage, list);
742 	/*
743 	 * We want to see more ZS_FULL pages and less almost empty/full.
744 	 * Put pages with higher ->inuse first.
745 	 */
746 	if (head) {
747 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
748 			list_add(&zspage->list, &head->list);
749 			return;
750 		}
751 	}
752 	list_add(&zspage->list, &class->fullness_list[fullness]);
753 }
754 
755 /*
756  * This function removes the given zspage from the freelist identified
757  * by <class, fullness_group>.
758  */
759 static void remove_zspage(struct size_class *class,
760 				struct zspage *zspage,
761 				enum fullness_group fullness)
762 {
763 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
764 	VM_BUG_ON(is_zspage_isolated(zspage));
765 
766 	list_del_init(&zspage->list);
767 	zs_stat_dec(class, fullness, 1);
768 }
769 
770 /*
771  * Each size class maintains zspages in different fullness groups depending
772  * on the number of live objects they contain. When allocating or freeing
773  * objects, the fullness status of the page can change, say, from ALMOST_FULL
774  * to ALMOST_EMPTY when freeing an object. This function checks if such
775  * a status change has occurred for the given page and accordingly moves the
776  * page from the freelist of the old fullness group to that of the new
777  * fullness group.
778  */
779 static enum fullness_group fix_fullness_group(struct size_class *class,
780 						struct zspage *zspage)
781 {
782 	int class_idx;
783 	enum fullness_group currfg, newfg;
784 
785 	get_zspage_mapping(zspage, &class_idx, &currfg);
786 	newfg = get_fullness_group(class, zspage);
787 	if (newfg == currfg)
788 		goto out;
789 
790 	if (!is_zspage_isolated(zspage)) {
791 		remove_zspage(class, zspage, currfg);
792 		insert_zspage(class, zspage, newfg);
793 	}
794 
795 	set_zspage_mapping(zspage, class_idx, newfg);
796 
797 out:
798 	return newfg;
799 }
800 
801 /*
802  * We have to decide on how many pages to link together
803  * to form a zspage for each size class. This is important
804  * to reduce wastage due to unusable space left at end of
805  * each zspage which is given as:
806  *     wastage = Zp % class_size
807  *     usage = Zp - wastage
808  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
809  *
810  * For example, for size class of 3/8 * PAGE_SIZE, we should
811  * link together 3 PAGE_SIZE sized pages to form a zspage
812  * since then we can perfectly fit in 8 such objects.
813  */
814 static int get_pages_per_zspage(int class_size)
815 {
816 	int i, max_usedpc = 0;
817 	/* zspage order which gives maximum used size per KB */
818 	int max_usedpc_order = 1;
819 
820 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
821 		int zspage_size;
822 		int waste, usedpc;
823 
824 		zspage_size = i * PAGE_SIZE;
825 		waste = zspage_size % class_size;
826 		usedpc = (zspage_size - waste) * 100 / zspage_size;
827 
828 		if (usedpc > max_usedpc) {
829 			max_usedpc = usedpc;
830 			max_usedpc_order = i;
831 		}
832 	}
833 
834 	return max_usedpc_order;
835 }
836 
837 static struct zspage *get_zspage(struct page *page)
838 {
839 	struct zspage *zspage = (struct zspage *)page->private;
840 
841 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
842 	return zspage;
843 }
844 
845 static struct page *get_next_page(struct page *page)
846 {
847 	if (unlikely(PageHugeObject(page)))
848 		return NULL;
849 
850 	return page->freelist;
851 }
852 
853 /**
854  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
855  * @obj: the encoded object value
856  * @page: page object resides in zspage
857  * @obj_idx: object index
858  */
859 static void obj_to_location(unsigned long obj, struct page **page,
860 				unsigned int *obj_idx)
861 {
862 	obj >>= OBJ_TAG_BITS;
863 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
864 	*obj_idx = (obj & OBJ_INDEX_MASK);
865 }
866 
867 /**
868  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
869  * @page: page object resides in zspage
870  * @obj_idx: object index
871  */
872 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
873 {
874 	unsigned long obj;
875 
876 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
877 	obj |= obj_idx & OBJ_INDEX_MASK;
878 	obj <<= OBJ_TAG_BITS;
879 
880 	return obj;
881 }
882 
883 static unsigned long handle_to_obj(unsigned long handle)
884 {
885 	return *(unsigned long *)handle;
886 }
887 
888 static unsigned long obj_to_head(struct page *page, void *obj)
889 {
890 	if (unlikely(PageHugeObject(page))) {
891 		VM_BUG_ON_PAGE(!is_first_page(page), page);
892 		return page->index;
893 	} else
894 		return *(unsigned long *)obj;
895 }
896 
897 static inline int testpin_tag(unsigned long handle)
898 {
899 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
900 }
901 
902 static inline int trypin_tag(unsigned long handle)
903 {
904 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
905 }
906 
907 static void pin_tag(unsigned long handle)
908 {
909 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
910 }
911 
912 static void unpin_tag(unsigned long handle)
913 {
914 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916 
917 static void reset_page(struct page *page)
918 {
919 	__ClearPageMovable(page);
920 	ClearPagePrivate(page);
921 	set_page_private(page, 0);
922 	page_mapcount_reset(page);
923 	ClearPageHugeObject(page);
924 	page->freelist = NULL;
925 }
926 
927 static int trylock_zspage(struct zspage *zspage)
928 {
929 	struct page *cursor, *fail;
930 
931 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
932 					get_next_page(cursor)) {
933 		if (!trylock_page(cursor)) {
934 			fail = cursor;
935 			goto unlock;
936 		}
937 	}
938 
939 	return 1;
940 unlock:
941 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
942 					get_next_page(cursor))
943 		unlock_page(cursor);
944 
945 	return 0;
946 }
947 
948 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
949 				struct zspage *zspage)
950 {
951 	struct page *page, *next;
952 	enum fullness_group fg;
953 	unsigned int class_idx;
954 
955 	get_zspage_mapping(zspage, &class_idx, &fg);
956 
957 	assert_spin_locked(&class->lock);
958 
959 	VM_BUG_ON(get_zspage_inuse(zspage));
960 	VM_BUG_ON(fg != ZS_EMPTY);
961 
962 	next = page = get_first_page(zspage);
963 	do {
964 		VM_BUG_ON_PAGE(!PageLocked(page), page);
965 		next = get_next_page(page);
966 		reset_page(page);
967 		unlock_page(page);
968 		dec_zone_page_state(page, NR_ZSPAGES);
969 		put_page(page);
970 		page = next;
971 	} while (page != NULL);
972 
973 	cache_free_zspage(pool, zspage);
974 
975 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
976 	atomic_long_sub(class->pages_per_zspage,
977 					&pool->pages_allocated);
978 }
979 
980 static void free_zspage(struct zs_pool *pool, struct size_class *class,
981 				struct zspage *zspage)
982 {
983 	VM_BUG_ON(get_zspage_inuse(zspage));
984 	VM_BUG_ON(list_empty(&zspage->list));
985 
986 	if (!trylock_zspage(zspage)) {
987 		kick_deferred_free(pool);
988 		return;
989 	}
990 
991 	remove_zspage(class, zspage, ZS_EMPTY);
992 	__free_zspage(pool, class, zspage);
993 }
994 
995 /* Initialize a newly allocated zspage */
996 static void init_zspage(struct size_class *class, struct zspage *zspage)
997 {
998 	unsigned int freeobj = 1;
999 	unsigned long off = 0;
1000 	struct page *page = get_first_page(zspage);
1001 
1002 	while (page) {
1003 		struct page *next_page;
1004 		struct link_free *link;
1005 		void *vaddr;
1006 
1007 		set_first_obj_offset(page, off);
1008 
1009 		vaddr = kmap_atomic(page);
1010 		link = (struct link_free *)vaddr + off / sizeof(*link);
1011 
1012 		while ((off += class->size) < PAGE_SIZE) {
1013 			link->next = freeobj++ << OBJ_TAG_BITS;
1014 			link += class->size / sizeof(*link);
1015 		}
1016 
1017 		/*
1018 		 * We now come to the last (full or partial) object on this
1019 		 * page, which must point to the first object on the next
1020 		 * page (if present)
1021 		 */
1022 		next_page = get_next_page(page);
1023 		if (next_page) {
1024 			link->next = freeobj++ << OBJ_TAG_BITS;
1025 		} else {
1026 			/*
1027 			 * Reset OBJ_TAG_BITS bit to last link to tell
1028 			 * whether it's allocated object or not.
1029 			 */
1030 			link->next = -1UL << OBJ_TAG_BITS;
1031 		}
1032 		kunmap_atomic(vaddr);
1033 		page = next_page;
1034 		off %= PAGE_SIZE;
1035 	}
1036 
1037 	set_freeobj(zspage, 0);
1038 }
1039 
1040 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1041 				struct page *pages[])
1042 {
1043 	int i;
1044 	struct page *page;
1045 	struct page *prev_page = NULL;
1046 	int nr_pages = class->pages_per_zspage;
1047 
1048 	/*
1049 	 * Allocate individual pages and link them together as:
1050 	 * 1. all pages are linked together using page->freelist
1051 	 * 2. each sub-page point to zspage using page->private
1052 	 *
1053 	 * we set PG_private to identify the first page (i.e. no other sub-page
1054 	 * has this flag set).
1055 	 */
1056 	for (i = 0; i < nr_pages; i++) {
1057 		page = pages[i];
1058 		set_page_private(page, (unsigned long)zspage);
1059 		page->freelist = NULL;
1060 		if (i == 0) {
1061 			zspage->first_page = page;
1062 			SetPagePrivate(page);
1063 			if (unlikely(class->objs_per_zspage == 1 &&
1064 					class->pages_per_zspage == 1))
1065 				SetPageHugeObject(page);
1066 		} else {
1067 			prev_page->freelist = page;
1068 		}
1069 		prev_page = page;
1070 	}
1071 }
1072 
1073 /*
1074  * Allocate a zspage for the given size class
1075  */
1076 static struct zspage *alloc_zspage(struct zs_pool *pool,
1077 					struct size_class *class,
1078 					gfp_t gfp)
1079 {
1080 	int i;
1081 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1082 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1083 
1084 	if (!zspage)
1085 		return NULL;
1086 
1087 	memset(zspage, 0, sizeof(struct zspage));
1088 	zspage->magic = ZSPAGE_MAGIC;
1089 	migrate_lock_init(zspage);
1090 
1091 	for (i = 0; i < class->pages_per_zspage; i++) {
1092 		struct page *page;
1093 
1094 		page = alloc_page(gfp);
1095 		if (!page) {
1096 			while (--i >= 0) {
1097 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1098 				__free_page(pages[i]);
1099 			}
1100 			cache_free_zspage(pool, zspage);
1101 			return NULL;
1102 		}
1103 
1104 		inc_zone_page_state(page, NR_ZSPAGES);
1105 		pages[i] = page;
1106 	}
1107 
1108 	create_page_chain(class, zspage, pages);
1109 	init_zspage(class, zspage);
1110 
1111 	return zspage;
1112 }
1113 
1114 static struct zspage *find_get_zspage(struct size_class *class)
1115 {
1116 	int i;
1117 	struct zspage *zspage;
1118 
1119 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1120 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1121 				struct zspage, list);
1122 		if (zspage)
1123 			break;
1124 	}
1125 
1126 	return zspage;
1127 }
1128 
1129 #ifdef CONFIG_PGTABLE_MAPPING
1130 static inline int __zs_cpu_up(struct mapping_area *area)
1131 {
1132 	/*
1133 	 * Make sure we don't leak memory if a cpu UP notification
1134 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1135 	 */
1136 	if (area->vm)
1137 		return 0;
1138 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1139 	if (!area->vm)
1140 		return -ENOMEM;
1141 	return 0;
1142 }
1143 
1144 static inline void __zs_cpu_down(struct mapping_area *area)
1145 {
1146 	if (area->vm)
1147 		free_vm_area(area->vm);
1148 	area->vm = NULL;
1149 }
1150 
1151 static inline void *__zs_map_object(struct mapping_area *area,
1152 				struct page *pages[2], int off, int size)
1153 {
1154 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1155 	area->vm_addr = area->vm->addr;
1156 	return area->vm_addr + off;
1157 }
1158 
1159 static inline void __zs_unmap_object(struct mapping_area *area,
1160 				struct page *pages[2], int off, int size)
1161 {
1162 	unsigned long addr = (unsigned long)area->vm_addr;
1163 
1164 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1165 }
1166 
1167 #else /* CONFIG_PGTABLE_MAPPING */
1168 
1169 static inline int __zs_cpu_up(struct mapping_area *area)
1170 {
1171 	/*
1172 	 * Make sure we don't leak memory if a cpu UP notification
1173 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1174 	 */
1175 	if (area->vm_buf)
1176 		return 0;
1177 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1178 	if (!area->vm_buf)
1179 		return -ENOMEM;
1180 	return 0;
1181 }
1182 
1183 static inline void __zs_cpu_down(struct mapping_area *area)
1184 {
1185 	kfree(area->vm_buf);
1186 	area->vm_buf = NULL;
1187 }
1188 
1189 static void *__zs_map_object(struct mapping_area *area,
1190 			struct page *pages[2], int off, int size)
1191 {
1192 	int sizes[2];
1193 	void *addr;
1194 	char *buf = area->vm_buf;
1195 
1196 	/* disable page faults to match kmap_atomic() return conditions */
1197 	pagefault_disable();
1198 
1199 	/* no read fastpath */
1200 	if (area->vm_mm == ZS_MM_WO)
1201 		goto out;
1202 
1203 	sizes[0] = PAGE_SIZE - off;
1204 	sizes[1] = size - sizes[0];
1205 
1206 	/* copy object to per-cpu buffer */
1207 	addr = kmap_atomic(pages[0]);
1208 	memcpy(buf, addr + off, sizes[0]);
1209 	kunmap_atomic(addr);
1210 	addr = kmap_atomic(pages[1]);
1211 	memcpy(buf + sizes[0], addr, sizes[1]);
1212 	kunmap_atomic(addr);
1213 out:
1214 	return area->vm_buf;
1215 }
1216 
1217 static void __zs_unmap_object(struct mapping_area *area,
1218 			struct page *pages[2], int off, int size)
1219 {
1220 	int sizes[2];
1221 	void *addr;
1222 	char *buf;
1223 
1224 	/* no write fastpath */
1225 	if (area->vm_mm == ZS_MM_RO)
1226 		goto out;
1227 
1228 	buf = area->vm_buf;
1229 	buf = buf + ZS_HANDLE_SIZE;
1230 	size -= ZS_HANDLE_SIZE;
1231 	off += ZS_HANDLE_SIZE;
1232 
1233 	sizes[0] = PAGE_SIZE - off;
1234 	sizes[1] = size - sizes[0];
1235 
1236 	/* copy per-cpu buffer to object */
1237 	addr = kmap_atomic(pages[0]);
1238 	memcpy(addr + off, buf, sizes[0]);
1239 	kunmap_atomic(addr);
1240 	addr = kmap_atomic(pages[1]);
1241 	memcpy(addr, buf + sizes[0], sizes[1]);
1242 	kunmap_atomic(addr);
1243 
1244 out:
1245 	/* enable page faults to match kunmap_atomic() return conditions */
1246 	pagefault_enable();
1247 }
1248 
1249 #endif /* CONFIG_PGTABLE_MAPPING */
1250 
1251 static int zs_cpu_prepare(unsigned int cpu)
1252 {
1253 	struct mapping_area *area;
1254 
1255 	area = &per_cpu(zs_map_area, cpu);
1256 	return __zs_cpu_up(area);
1257 }
1258 
1259 static int zs_cpu_dead(unsigned int cpu)
1260 {
1261 	struct mapping_area *area;
1262 
1263 	area = &per_cpu(zs_map_area, cpu);
1264 	__zs_cpu_down(area);
1265 	return 0;
1266 }
1267 
1268 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1269 					int objs_per_zspage)
1270 {
1271 	if (prev->pages_per_zspage == pages_per_zspage &&
1272 		prev->objs_per_zspage == objs_per_zspage)
1273 		return true;
1274 
1275 	return false;
1276 }
1277 
1278 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1279 {
1280 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1281 }
1282 
1283 unsigned long zs_get_total_pages(struct zs_pool *pool)
1284 {
1285 	return atomic_long_read(&pool->pages_allocated);
1286 }
1287 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1288 
1289 /**
1290  * zs_map_object - get address of allocated object from handle.
1291  * @pool: pool from which the object was allocated
1292  * @handle: handle returned from zs_malloc
1293  * @mm: maping mode to use
1294  *
1295  * Before using an object allocated from zs_malloc, it must be mapped using
1296  * this function. When done with the object, it must be unmapped using
1297  * zs_unmap_object.
1298  *
1299  * Only one object can be mapped per cpu at a time. There is no protection
1300  * against nested mappings.
1301  *
1302  * This function returns with preemption and page faults disabled.
1303  */
1304 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1305 			enum zs_mapmode mm)
1306 {
1307 	struct zspage *zspage;
1308 	struct page *page;
1309 	unsigned long obj, off;
1310 	unsigned int obj_idx;
1311 
1312 	unsigned int class_idx;
1313 	enum fullness_group fg;
1314 	struct size_class *class;
1315 	struct mapping_area *area;
1316 	struct page *pages[2];
1317 	void *ret;
1318 
1319 	/*
1320 	 * Because we use per-cpu mapping areas shared among the
1321 	 * pools/users, we can't allow mapping in interrupt context
1322 	 * because it can corrupt another users mappings.
1323 	 */
1324 	BUG_ON(in_interrupt());
1325 
1326 	/* From now on, migration cannot move the object */
1327 	pin_tag(handle);
1328 
1329 	obj = handle_to_obj(handle);
1330 	obj_to_location(obj, &page, &obj_idx);
1331 	zspage = get_zspage(page);
1332 
1333 	/* migration cannot move any subpage in this zspage */
1334 	migrate_read_lock(zspage);
1335 
1336 	get_zspage_mapping(zspage, &class_idx, &fg);
1337 	class = pool->size_class[class_idx];
1338 	off = (class->size * obj_idx) & ~PAGE_MASK;
1339 
1340 	area = &get_cpu_var(zs_map_area);
1341 	area->vm_mm = mm;
1342 	if (off + class->size <= PAGE_SIZE) {
1343 		/* this object is contained entirely within a page */
1344 		area->vm_addr = kmap_atomic(page);
1345 		ret = area->vm_addr + off;
1346 		goto out;
1347 	}
1348 
1349 	/* this object spans two pages */
1350 	pages[0] = page;
1351 	pages[1] = get_next_page(page);
1352 	BUG_ON(!pages[1]);
1353 
1354 	ret = __zs_map_object(area, pages, off, class->size);
1355 out:
1356 	if (likely(!PageHugeObject(page)))
1357 		ret += ZS_HANDLE_SIZE;
1358 
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(zs_map_object);
1362 
1363 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1364 {
1365 	struct zspage *zspage;
1366 	struct page *page;
1367 	unsigned long obj, off;
1368 	unsigned int obj_idx;
1369 
1370 	unsigned int class_idx;
1371 	enum fullness_group fg;
1372 	struct size_class *class;
1373 	struct mapping_area *area;
1374 
1375 	obj = handle_to_obj(handle);
1376 	obj_to_location(obj, &page, &obj_idx);
1377 	zspage = get_zspage(page);
1378 	get_zspage_mapping(zspage, &class_idx, &fg);
1379 	class = pool->size_class[class_idx];
1380 	off = (class->size * obj_idx) & ~PAGE_MASK;
1381 
1382 	area = this_cpu_ptr(&zs_map_area);
1383 	if (off + class->size <= PAGE_SIZE)
1384 		kunmap_atomic(area->vm_addr);
1385 	else {
1386 		struct page *pages[2];
1387 
1388 		pages[0] = page;
1389 		pages[1] = get_next_page(page);
1390 		BUG_ON(!pages[1]);
1391 
1392 		__zs_unmap_object(area, pages, off, class->size);
1393 	}
1394 	put_cpu_var(zs_map_area);
1395 
1396 	migrate_read_unlock(zspage);
1397 	unpin_tag(handle);
1398 }
1399 EXPORT_SYMBOL_GPL(zs_unmap_object);
1400 
1401 /**
1402  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1403  *                        zsmalloc &size_class.
1404  * @pool: zsmalloc pool to use
1405  *
1406  * The function returns the size of the first huge class - any object of equal
1407  * or bigger size will be stored in zspage consisting of a single physical
1408  * page.
1409  *
1410  * Context: Any context.
1411  *
1412  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1413  */
1414 size_t zs_huge_class_size(struct zs_pool *pool)
1415 {
1416 	return huge_class_size;
1417 }
1418 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1419 
1420 static unsigned long obj_malloc(struct size_class *class,
1421 				struct zspage *zspage, unsigned long handle)
1422 {
1423 	int i, nr_page, offset;
1424 	unsigned long obj;
1425 	struct link_free *link;
1426 
1427 	struct page *m_page;
1428 	unsigned long m_offset;
1429 	void *vaddr;
1430 
1431 	handle |= OBJ_ALLOCATED_TAG;
1432 	obj = get_freeobj(zspage);
1433 
1434 	offset = obj * class->size;
1435 	nr_page = offset >> PAGE_SHIFT;
1436 	m_offset = offset & ~PAGE_MASK;
1437 	m_page = get_first_page(zspage);
1438 
1439 	for (i = 0; i < nr_page; i++)
1440 		m_page = get_next_page(m_page);
1441 
1442 	vaddr = kmap_atomic(m_page);
1443 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1444 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1445 	if (likely(!PageHugeObject(m_page)))
1446 		/* record handle in the header of allocated chunk */
1447 		link->handle = handle;
1448 	else
1449 		/* record handle to page->index */
1450 		zspage->first_page->index = handle;
1451 
1452 	kunmap_atomic(vaddr);
1453 	mod_zspage_inuse(zspage, 1);
1454 	zs_stat_inc(class, OBJ_USED, 1);
1455 
1456 	obj = location_to_obj(m_page, obj);
1457 
1458 	return obj;
1459 }
1460 
1461 
1462 /**
1463  * zs_malloc - Allocate block of given size from pool.
1464  * @pool: pool to allocate from
1465  * @size: size of block to allocate
1466  * @gfp: gfp flags when allocating object
1467  *
1468  * On success, handle to the allocated object is returned,
1469  * otherwise 0.
1470  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1471  */
1472 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1473 {
1474 	unsigned long handle, obj;
1475 	struct size_class *class;
1476 	enum fullness_group newfg;
1477 	struct zspage *zspage;
1478 
1479 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1480 		return 0;
1481 
1482 	handle = cache_alloc_handle(pool, gfp);
1483 	if (!handle)
1484 		return 0;
1485 
1486 	/* extra space in chunk to keep the handle */
1487 	size += ZS_HANDLE_SIZE;
1488 	class = pool->size_class[get_size_class_index(size)];
1489 
1490 	spin_lock(&class->lock);
1491 	zspage = find_get_zspage(class);
1492 	if (likely(zspage)) {
1493 		obj = obj_malloc(class, zspage, handle);
1494 		/* Now move the zspage to another fullness group, if required */
1495 		fix_fullness_group(class, zspage);
1496 		record_obj(handle, obj);
1497 		spin_unlock(&class->lock);
1498 
1499 		return handle;
1500 	}
1501 
1502 	spin_unlock(&class->lock);
1503 
1504 	zspage = alloc_zspage(pool, class, gfp);
1505 	if (!zspage) {
1506 		cache_free_handle(pool, handle);
1507 		return 0;
1508 	}
1509 
1510 	spin_lock(&class->lock);
1511 	obj = obj_malloc(class, zspage, handle);
1512 	newfg = get_fullness_group(class, zspage);
1513 	insert_zspage(class, zspage, newfg);
1514 	set_zspage_mapping(zspage, class->index, newfg);
1515 	record_obj(handle, obj);
1516 	atomic_long_add(class->pages_per_zspage,
1517 				&pool->pages_allocated);
1518 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1519 
1520 	/* We completely set up zspage so mark them as movable */
1521 	SetZsPageMovable(pool, zspage);
1522 	spin_unlock(&class->lock);
1523 
1524 	return handle;
1525 }
1526 EXPORT_SYMBOL_GPL(zs_malloc);
1527 
1528 static void obj_free(struct size_class *class, unsigned long obj)
1529 {
1530 	struct link_free *link;
1531 	struct zspage *zspage;
1532 	struct page *f_page;
1533 	unsigned long f_offset;
1534 	unsigned int f_objidx;
1535 	void *vaddr;
1536 
1537 	obj &= ~OBJ_ALLOCATED_TAG;
1538 	obj_to_location(obj, &f_page, &f_objidx);
1539 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1540 	zspage = get_zspage(f_page);
1541 
1542 	vaddr = kmap_atomic(f_page);
1543 
1544 	/* Insert this object in containing zspage's freelist */
1545 	link = (struct link_free *)(vaddr + f_offset);
1546 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1547 	kunmap_atomic(vaddr);
1548 	set_freeobj(zspage, f_objidx);
1549 	mod_zspage_inuse(zspage, -1);
1550 	zs_stat_dec(class, OBJ_USED, 1);
1551 }
1552 
1553 void zs_free(struct zs_pool *pool, unsigned long handle)
1554 {
1555 	struct zspage *zspage;
1556 	struct page *f_page;
1557 	unsigned long obj;
1558 	unsigned int f_objidx;
1559 	int class_idx;
1560 	struct size_class *class;
1561 	enum fullness_group fullness;
1562 	bool isolated;
1563 
1564 	if (unlikely(!handle))
1565 		return;
1566 
1567 	pin_tag(handle);
1568 	obj = handle_to_obj(handle);
1569 	obj_to_location(obj, &f_page, &f_objidx);
1570 	zspage = get_zspage(f_page);
1571 
1572 	migrate_read_lock(zspage);
1573 
1574 	get_zspage_mapping(zspage, &class_idx, &fullness);
1575 	class = pool->size_class[class_idx];
1576 
1577 	spin_lock(&class->lock);
1578 	obj_free(class, obj);
1579 	fullness = fix_fullness_group(class, zspage);
1580 	if (fullness != ZS_EMPTY) {
1581 		migrate_read_unlock(zspage);
1582 		goto out;
1583 	}
1584 
1585 	isolated = is_zspage_isolated(zspage);
1586 	migrate_read_unlock(zspage);
1587 	/* If zspage is isolated, zs_page_putback will free the zspage */
1588 	if (likely(!isolated))
1589 		free_zspage(pool, class, zspage);
1590 out:
1591 
1592 	spin_unlock(&class->lock);
1593 	unpin_tag(handle);
1594 	cache_free_handle(pool, handle);
1595 }
1596 EXPORT_SYMBOL_GPL(zs_free);
1597 
1598 static void zs_object_copy(struct size_class *class, unsigned long dst,
1599 				unsigned long src)
1600 {
1601 	struct page *s_page, *d_page;
1602 	unsigned int s_objidx, d_objidx;
1603 	unsigned long s_off, d_off;
1604 	void *s_addr, *d_addr;
1605 	int s_size, d_size, size;
1606 	int written = 0;
1607 
1608 	s_size = d_size = class->size;
1609 
1610 	obj_to_location(src, &s_page, &s_objidx);
1611 	obj_to_location(dst, &d_page, &d_objidx);
1612 
1613 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1614 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1615 
1616 	if (s_off + class->size > PAGE_SIZE)
1617 		s_size = PAGE_SIZE - s_off;
1618 
1619 	if (d_off + class->size > PAGE_SIZE)
1620 		d_size = PAGE_SIZE - d_off;
1621 
1622 	s_addr = kmap_atomic(s_page);
1623 	d_addr = kmap_atomic(d_page);
1624 
1625 	while (1) {
1626 		size = min(s_size, d_size);
1627 		memcpy(d_addr + d_off, s_addr + s_off, size);
1628 		written += size;
1629 
1630 		if (written == class->size)
1631 			break;
1632 
1633 		s_off += size;
1634 		s_size -= size;
1635 		d_off += size;
1636 		d_size -= size;
1637 
1638 		if (s_off >= PAGE_SIZE) {
1639 			kunmap_atomic(d_addr);
1640 			kunmap_atomic(s_addr);
1641 			s_page = get_next_page(s_page);
1642 			s_addr = kmap_atomic(s_page);
1643 			d_addr = kmap_atomic(d_page);
1644 			s_size = class->size - written;
1645 			s_off = 0;
1646 		}
1647 
1648 		if (d_off >= PAGE_SIZE) {
1649 			kunmap_atomic(d_addr);
1650 			d_page = get_next_page(d_page);
1651 			d_addr = kmap_atomic(d_page);
1652 			d_size = class->size - written;
1653 			d_off = 0;
1654 		}
1655 	}
1656 
1657 	kunmap_atomic(d_addr);
1658 	kunmap_atomic(s_addr);
1659 }
1660 
1661 /*
1662  * Find alloced object in zspage from index object and
1663  * return handle.
1664  */
1665 static unsigned long find_alloced_obj(struct size_class *class,
1666 					struct page *page, int *obj_idx)
1667 {
1668 	unsigned long head;
1669 	int offset = 0;
1670 	int index = *obj_idx;
1671 	unsigned long handle = 0;
1672 	void *addr = kmap_atomic(page);
1673 
1674 	offset = get_first_obj_offset(page);
1675 	offset += class->size * index;
1676 
1677 	while (offset < PAGE_SIZE) {
1678 		head = obj_to_head(page, addr + offset);
1679 		if (head & OBJ_ALLOCATED_TAG) {
1680 			handle = head & ~OBJ_ALLOCATED_TAG;
1681 			if (trypin_tag(handle))
1682 				break;
1683 			handle = 0;
1684 		}
1685 
1686 		offset += class->size;
1687 		index++;
1688 	}
1689 
1690 	kunmap_atomic(addr);
1691 
1692 	*obj_idx = index;
1693 
1694 	return handle;
1695 }
1696 
1697 struct zs_compact_control {
1698 	/* Source spage for migration which could be a subpage of zspage */
1699 	struct page *s_page;
1700 	/* Destination page for migration which should be a first page
1701 	 * of zspage. */
1702 	struct page *d_page;
1703 	 /* Starting object index within @s_page which used for live object
1704 	  * in the subpage. */
1705 	int obj_idx;
1706 };
1707 
1708 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1709 				struct zs_compact_control *cc)
1710 {
1711 	unsigned long used_obj, free_obj;
1712 	unsigned long handle;
1713 	struct page *s_page = cc->s_page;
1714 	struct page *d_page = cc->d_page;
1715 	int obj_idx = cc->obj_idx;
1716 	int ret = 0;
1717 
1718 	while (1) {
1719 		handle = find_alloced_obj(class, s_page, &obj_idx);
1720 		if (!handle) {
1721 			s_page = get_next_page(s_page);
1722 			if (!s_page)
1723 				break;
1724 			obj_idx = 0;
1725 			continue;
1726 		}
1727 
1728 		/* Stop if there is no more space */
1729 		if (zspage_full(class, get_zspage(d_page))) {
1730 			unpin_tag(handle);
1731 			ret = -ENOMEM;
1732 			break;
1733 		}
1734 
1735 		used_obj = handle_to_obj(handle);
1736 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1737 		zs_object_copy(class, free_obj, used_obj);
1738 		obj_idx++;
1739 		/*
1740 		 * record_obj updates handle's value to free_obj and it will
1741 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 		 * let's keep the lock bit.
1744 		 */
1745 		free_obj |= BIT(HANDLE_PIN_BIT);
1746 		record_obj(handle, free_obj);
1747 		unpin_tag(handle);
1748 		obj_free(class, used_obj);
1749 	}
1750 
1751 	/* Remember last position in this iteration */
1752 	cc->s_page = s_page;
1753 	cc->obj_idx = obj_idx;
1754 
1755 	return ret;
1756 }
1757 
1758 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1759 {
1760 	int i;
1761 	struct zspage *zspage;
1762 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1763 
1764 	if (!source) {
1765 		fg[0] = ZS_ALMOST_FULL;
1766 		fg[1] = ZS_ALMOST_EMPTY;
1767 	}
1768 
1769 	for (i = 0; i < 2; i++) {
1770 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1771 							struct zspage, list);
1772 		if (zspage) {
1773 			VM_BUG_ON(is_zspage_isolated(zspage));
1774 			remove_zspage(class, zspage, fg[i]);
1775 			return zspage;
1776 		}
1777 	}
1778 
1779 	return zspage;
1780 }
1781 
1782 /*
1783  * putback_zspage - add @zspage into right class's fullness list
1784  * @class: destination class
1785  * @zspage: target page
1786  *
1787  * Return @zspage's fullness_group
1788  */
1789 static enum fullness_group putback_zspage(struct size_class *class,
1790 			struct zspage *zspage)
1791 {
1792 	enum fullness_group fullness;
1793 
1794 	VM_BUG_ON(is_zspage_isolated(zspage));
1795 
1796 	fullness = get_fullness_group(class, zspage);
1797 	insert_zspage(class, zspage, fullness);
1798 	set_zspage_mapping(zspage, class->index, fullness);
1799 
1800 	return fullness;
1801 }
1802 
1803 #ifdef CONFIG_COMPACTION
1804 /*
1805  * To prevent zspage destroy during migration, zspage freeing should
1806  * hold locks of all pages in the zspage.
1807  */
1808 static void lock_zspage(struct zspage *zspage)
1809 {
1810 	struct page *page = get_first_page(zspage);
1811 
1812 	do {
1813 		lock_page(page);
1814 	} while ((page = get_next_page(page)) != NULL);
1815 }
1816 
1817 static struct dentry *zs_mount(struct file_system_type *fs_type,
1818 				int flags, const char *dev_name, void *data)
1819 {
1820 	static const struct dentry_operations ops = {
1821 		.d_dname = simple_dname,
1822 	};
1823 
1824 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1825 }
1826 
1827 static struct file_system_type zsmalloc_fs = {
1828 	.name		= "zsmalloc",
1829 	.mount		= zs_mount,
1830 	.kill_sb	= kill_anon_super,
1831 };
1832 
1833 static int zsmalloc_mount(void)
1834 {
1835 	int ret = 0;
1836 
1837 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1838 	if (IS_ERR(zsmalloc_mnt))
1839 		ret = PTR_ERR(zsmalloc_mnt);
1840 
1841 	return ret;
1842 }
1843 
1844 static void zsmalloc_unmount(void)
1845 {
1846 	kern_unmount(zsmalloc_mnt);
1847 }
1848 
1849 static void migrate_lock_init(struct zspage *zspage)
1850 {
1851 	rwlock_init(&zspage->lock);
1852 }
1853 
1854 static void migrate_read_lock(struct zspage *zspage)
1855 {
1856 	read_lock(&zspage->lock);
1857 }
1858 
1859 static void migrate_read_unlock(struct zspage *zspage)
1860 {
1861 	read_unlock(&zspage->lock);
1862 }
1863 
1864 static void migrate_write_lock(struct zspage *zspage)
1865 {
1866 	write_lock(&zspage->lock);
1867 }
1868 
1869 static void migrate_write_unlock(struct zspage *zspage)
1870 {
1871 	write_unlock(&zspage->lock);
1872 }
1873 
1874 /* Number of isolated subpage for *page migration* in this zspage */
1875 static void inc_zspage_isolation(struct zspage *zspage)
1876 {
1877 	zspage->isolated++;
1878 }
1879 
1880 static void dec_zspage_isolation(struct zspage *zspage)
1881 {
1882 	zspage->isolated--;
1883 }
1884 
1885 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1886 				struct page *newpage, struct page *oldpage)
1887 {
1888 	struct page *page;
1889 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1890 	int idx = 0;
1891 
1892 	page = get_first_page(zspage);
1893 	do {
1894 		if (page == oldpage)
1895 			pages[idx] = newpage;
1896 		else
1897 			pages[idx] = page;
1898 		idx++;
1899 	} while ((page = get_next_page(page)) != NULL);
1900 
1901 	create_page_chain(class, zspage, pages);
1902 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1903 	if (unlikely(PageHugeObject(oldpage)))
1904 		newpage->index = oldpage->index;
1905 	__SetPageMovable(newpage, page_mapping(oldpage));
1906 }
1907 
1908 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1909 {
1910 	struct zs_pool *pool;
1911 	struct size_class *class;
1912 	int class_idx;
1913 	enum fullness_group fullness;
1914 	struct zspage *zspage;
1915 	struct address_space *mapping;
1916 
1917 	/*
1918 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1919 	 * lock_zspage in free_zspage.
1920 	 */
1921 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1922 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1923 
1924 	zspage = get_zspage(page);
1925 
1926 	/*
1927 	 * Without class lock, fullness could be stale while class_idx is okay
1928 	 * because class_idx is constant unless page is freed so we should get
1929 	 * fullness again under class lock.
1930 	 */
1931 	get_zspage_mapping(zspage, &class_idx, &fullness);
1932 	mapping = page_mapping(page);
1933 	pool = mapping->private_data;
1934 	class = pool->size_class[class_idx];
1935 
1936 	spin_lock(&class->lock);
1937 	if (get_zspage_inuse(zspage) == 0) {
1938 		spin_unlock(&class->lock);
1939 		return false;
1940 	}
1941 
1942 	/* zspage is isolated for object migration */
1943 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1944 		spin_unlock(&class->lock);
1945 		return false;
1946 	}
1947 
1948 	/*
1949 	 * If this is first time isolation for the zspage, isolate zspage from
1950 	 * size_class to prevent further object allocation from the zspage.
1951 	 */
1952 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1953 		get_zspage_mapping(zspage, &class_idx, &fullness);
1954 		remove_zspage(class, zspage, fullness);
1955 	}
1956 
1957 	inc_zspage_isolation(zspage);
1958 	spin_unlock(&class->lock);
1959 
1960 	return true;
1961 }
1962 
1963 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1964 		struct page *page, enum migrate_mode mode)
1965 {
1966 	struct zs_pool *pool;
1967 	struct size_class *class;
1968 	int class_idx;
1969 	enum fullness_group fullness;
1970 	struct zspage *zspage;
1971 	struct page *dummy;
1972 	void *s_addr, *d_addr, *addr;
1973 	int offset, pos;
1974 	unsigned long handle, head;
1975 	unsigned long old_obj, new_obj;
1976 	unsigned int obj_idx;
1977 	int ret = -EAGAIN;
1978 
1979 	/*
1980 	 * We cannot support the _NO_COPY case here, because copy needs to
1981 	 * happen under the zs lock, which does not work with
1982 	 * MIGRATE_SYNC_NO_COPY workflow.
1983 	 */
1984 	if (mode == MIGRATE_SYNC_NO_COPY)
1985 		return -EINVAL;
1986 
1987 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1988 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1989 
1990 	zspage = get_zspage(page);
1991 
1992 	/* Concurrent compactor cannot migrate any subpage in zspage */
1993 	migrate_write_lock(zspage);
1994 	get_zspage_mapping(zspage, &class_idx, &fullness);
1995 	pool = mapping->private_data;
1996 	class = pool->size_class[class_idx];
1997 	offset = get_first_obj_offset(page);
1998 
1999 	spin_lock(&class->lock);
2000 	if (!get_zspage_inuse(zspage)) {
2001 		/*
2002 		 * Set "offset" to end of the page so that every loops
2003 		 * skips unnecessary object scanning.
2004 		 */
2005 		offset = PAGE_SIZE;
2006 	}
2007 
2008 	pos = offset;
2009 	s_addr = kmap_atomic(page);
2010 	while (pos < PAGE_SIZE) {
2011 		head = obj_to_head(page, s_addr + pos);
2012 		if (head & OBJ_ALLOCATED_TAG) {
2013 			handle = head & ~OBJ_ALLOCATED_TAG;
2014 			if (!trypin_tag(handle))
2015 				goto unpin_objects;
2016 		}
2017 		pos += class->size;
2018 	}
2019 
2020 	/*
2021 	 * Here, any user cannot access all objects in the zspage so let's move.
2022 	 */
2023 	d_addr = kmap_atomic(newpage);
2024 	memcpy(d_addr, s_addr, PAGE_SIZE);
2025 	kunmap_atomic(d_addr);
2026 
2027 	for (addr = s_addr + offset; addr < s_addr + pos;
2028 					addr += class->size) {
2029 		head = obj_to_head(page, addr);
2030 		if (head & OBJ_ALLOCATED_TAG) {
2031 			handle = head & ~OBJ_ALLOCATED_TAG;
2032 			if (!testpin_tag(handle))
2033 				BUG();
2034 
2035 			old_obj = handle_to_obj(handle);
2036 			obj_to_location(old_obj, &dummy, &obj_idx);
2037 			new_obj = (unsigned long)location_to_obj(newpage,
2038 								obj_idx);
2039 			new_obj |= BIT(HANDLE_PIN_BIT);
2040 			record_obj(handle, new_obj);
2041 		}
2042 	}
2043 
2044 	replace_sub_page(class, zspage, newpage, page);
2045 	get_page(newpage);
2046 
2047 	dec_zspage_isolation(zspage);
2048 
2049 	/*
2050 	 * Page migration is done so let's putback isolated zspage to
2051 	 * the list if @page is final isolated subpage in the zspage.
2052 	 */
2053 	if (!is_zspage_isolated(zspage))
2054 		putback_zspage(class, zspage);
2055 
2056 	reset_page(page);
2057 	put_page(page);
2058 	page = newpage;
2059 
2060 	ret = MIGRATEPAGE_SUCCESS;
2061 unpin_objects:
2062 	for (addr = s_addr + offset; addr < s_addr + pos;
2063 						addr += class->size) {
2064 		head = obj_to_head(page, addr);
2065 		if (head & OBJ_ALLOCATED_TAG) {
2066 			handle = head & ~OBJ_ALLOCATED_TAG;
2067 			if (!testpin_tag(handle))
2068 				BUG();
2069 			unpin_tag(handle);
2070 		}
2071 	}
2072 	kunmap_atomic(s_addr);
2073 	spin_unlock(&class->lock);
2074 	migrate_write_unlock(zspage);
2075 
2076 	return ret;
2077 }
2078 
2079 static void zs_page_putback(struct page *page)
2080 {
2081 	struct zs_pool *pool;
2082 	struct size_class *class;
2083 	int class_idx;
2084 	enum fullness_group fg;
2085 	struct address_space *mapping;
2086 	struct zspage *zspage;
2087 
2088 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2089 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2090 
2091 	zspage = get_zspage(page);
2092 	get_zspage_mapping(zspage, &class_idx, &fg);
2093 	mapping = page_mapping(page);
2094 	pool = mapping->private_data;
2095 	class = pool->size_class[class_idx];
2096 
2097 	spin_lock(&class->lock);
2098 	dec_zspage_isolation(zspage);
2099 	if (!is_zspage_isolated(zspage)) {
2100 		fg = putback_zspage(class, zspage);
2101 		/*
2102 		 * Due to page_lock, we cannot free zspage immediately
2103 		 * so let's defer.
2104 		 */
2105 		if (fg == ZS_EMPTY)
2106 			schedule_work(&pool->free_work);
2107 	}
2108 	spin_unlock(&class->lock);
2109 }
2110 
2111 static const struct address_space_operations zsmalloc_aops = {
2112 	.isolate_page = zs_page_isolate,
2113 	.migratepage = zs_page_migrate,
2114 	.putback_page = zs_page_putback,
2115 };
2116 
2117 static int zs_register_migration(struct zs_pool *pool)
2118 {
2119 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2120 	if (IS_ERR(pool->inode)) {
2121 		pool->inode = NULL;
2122 		return 1;
2123 	}
2124 
2125 	pool->inode->i_mapping->private_data = pool;
2126 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2127 	return 0;
2128 }
2129 
2130 static void zs_unregister_migration(struct zs_pool *pool)
2131 {
2132 	flush_work(&pool->free_work);
2133 	iput(pool->inode);
2134 }
2135 
2136 /*
2137  * Caller should hold page_lock of all pages in the zspage
2138  * In here, we cannot use zspage meta data.
2139  */
2140 static void async_free_zspage(struct work_struct *work)
2141 {
2142 	int i;
2143 	struct size_class *class;
2144 	unsigned int class_idx;
2145 	enum fullness_group fullness;
2146 	struct zspage *zspage, *tmp;
2147 	LIST_HEAD(free_pages);
2148 	struct zs_pool *pool = container_of(work, struct zs_pool,
2149 					free_work);
2150 
2151 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2152 		class = pool->size_class[i];
2153 		if (class->index != i)
2154 			continue;
2155 
2156 		spin_lock(&class->lock);
2157 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2158 		spin_unlock(&class->lock);
2159 	}
2160 
2161 
2162 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2163 		list_del(&zspage->list);
2164 		lock_zspage(zspage);
2165 
2166 		get_zspage_mapping(zspage, &class_idx, &fullness);
2167 		VM_BUG_ON(fullness != ZS_EMPTY);
2168 		class = pool->size_class[class_idx];
2169 		spin_lock(&class->lock);
2170 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2171 		spin_unlock(&class->lock);
2172 	}
2173 };
2174 
2175 static void kick_deferred_free(struct zs_pool *pool)
2176 {
2177 	schedule_work(&pool->free_work);
2178 }
2179 
2180 static void init_deferred_free(struct zs_pool *pool)
2181 {
2182 	INIT_WORK(&pool->free_work, async_free_zspage);
2183 }
2184 
2185 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2186 {
2187 	struct page *page = get_first_page(zspage);
2188 
2189 	do {
2190 		WARN_ON(!trylock_page(page));
2191 		__SetPageMovable(page, pool->inode->i_mapping);
2192 		unlock_page(page);
2193 	} while ((page = get_next_page(page)) != NULL);
2194 }
2195 #endif
2196 
2197 /*
2198  *
2199  * Based on the number of unused allocated objects calculate
2200  * and return the number of pages that we can free.
2201  */
2202 static unsigned long zs_can_compact(struct size_class *class)
2203 {
2204 	unsigned long obj_wasted;
2205 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2206 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2207 
2208 	if (obj_allocated <= obj_used)
2209 		return 0;
2210 
2211 	obj_wasted = obj_allocated - obj_used;
2212 	obj_wasted /= class->objs_per_zspage;
2213 
2214 	return obj_wasted * class->pages_per_zspage;
2215 }
2216 
2217 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2218 {
2219 	struct zs_compact_control cc;
2220 	struct zspage *src_zspage;
2221 	struct zspage *dst_zspage = NULL;
2222 
2223 	spin_lock(&class->lock);
2224 	while ((src_zspage = isolate_zspage(class, true))) {
2225 
2226 		if (!zs_can_compact(class))
2227 			break;
2228 
2229 		cc.obj_idx = 0;
2230 		cc.s_page = get_first_page(src_zspage);
2231 
2232 		while ((dst_zspage = isolate_zspage(class, false))) {
2233 			cc.d_page = get_first_page(dst_zspage);
2234 			/*
2235 			 * If there is no more space in dst_page, resched
2236 			 * and see if anyone had allocated another zspage.
2237 			 */
2238 			if (!migrate_zspage(pool, class, &cc))
2239 				break;
2240 
2241 			putback_zspage(class, dst_zspage);
2242 		}
2243 
2244 		/* Stop if we couldn't find slot */
2245 		if (dst_zspage == NULL)
2246 			break;
2247 
2248 		putback_zspage(class, dst_zspage);
2249 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2250 			free_zspage(pool, class, src_zspage);
2251 			pool->stats.pages_compacted += class->pages_per_zspage;
2252 		}
2253 		spin_unlock(&class->lock);
2254 		cond_resched();
2255 		spin_lock(&class->lock);
2256 	}
2257 
2258 	if (src_zspage)
2259 		putback_zspage(class, src_zspage);
2260 
2261 	spin_unlock(&class->lock);
2262 }
2263 
2264 unsigned long zs_compact(struct zs_pool *pool)
2265 {
2266 	int i;
2267 	struct size_class *class;
2268 
2269 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270 		class = pool->size_class[i];
2271 		if (!class)
2272 			continue;
2273 		if (class->index != i)
2274 			continue;
2275 		__zs_compact(pool, class);
2276 	}
2277 
2278 	return pool->stats.pages_compacted;
2279 }
2280 EXPORT_SYMBOL_GPL(zs_compact);
2281 
2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2283 {
2284 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2285 }
2286 EXPORT_SYMBOL_GPL(zs_pool_stats);
2287 
2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2289 		struct shrink_control *sc)
2290 {
2291 	unsigned long pages_freed;
2292 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2293 			shrinker);
2294 
2295 	pages_freed = pool->stats.pages_compacted;
2296 	/*
2297 	 * Compact classes and calculate compaction delta.
2298 	 * Can run concurrently with a manually triggered
2299 	 * (by user) compaction.
2300 	 */
2301 	pages_freed = zs_compact(pool) - pages_freed;
2302 
2303 	return pages_freed ? pages_freed : SHRINK_STOP;
2304 }
2305 
2306 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307 		struct shrink_control *sc)
2308 {
2309 	int i;
2310 	struct size_class *class;
2311 	unsigned long pages_to_free = 0;
2312 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313 			shrinker);
2314 
2315 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316 		class = pool->size_class[i];
2317 		if (!class)
2318 			continue;
2319 		if (class->index != i)
2320 			continue;
2321 
2322 		pages_to_free += zs_can_compact(class);
2323 	}
2324 
2325 	return pages_to_free;
2326 }
2327 
2328 static void zs_unregister_shrinker(struct zs_pool *pool)
2329 {
2330 	unregister_shrinker(&pool->shrinker);
2331 }
2332 
2333 static int zs_register_shrinker(struct zs_pool *pool)
2334 {
2335 	pool->shrinker.scan_objects = zs_shrinker_scan;
2336 	pool->shrinker.count_objects = zs_shrinker_count;
2337 	pool->shrinker.batch = 0;
2338 	pool->shrinker.seeks = DEFAULT_SEEKS;
2339 
2340 	return register_shrinker(&pool->shrinker);
2341 }
2342 
2343 /**
2344  * zs_create_pool - Creates an allocation pool to work from.
2345  * @name: pool name to be created
2346  *
2347  * This function must be called before anything when using
2348  * the zsmalloc allocator.
2349  *
2350  * On success, a pointer to the newly created pool is returned,
2351  * otherwise NULL.
2352  */
2353 struct zs_pool *zs_create_pool(const char *name)
2354 {
2355 	int i;
2356 	struct zs_pool *pool;
2357 	struct size_class *prev_class = NULL;
2358 
2359 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 	if (!pool)
2361 		return NULL;
2362 
2363 	init_deferred_free(pool);
2364 
2365 	pool->name = kstrdup(name, GFP_KERNEL);
2366 	if (!pool->name)
2367 		goto err;
2368 
2369 	if (create_cache(pool))
2370 		goto err;
2371 
2372 	/*
2373 	 * Iterate reversely, because, size of size_class that we want to use
2374 	 * for merging should be larger or equal to current size.
2375 	 */
2376 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377 		int size;
2378 		int pages_per_zspage;
2379 		int objs_per_zspage;
2380 		struct size_class *class;
2381 		int fullness = 0;
2382 
2383 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384 		if (size > ZS_MAX_ALLOC_SIZE)
2385 			size = ZS_MAX_ALLOC_SIZE;
2386 		pages_per_zspage = get_pages_per_zspage(size);
2387 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2388 
2389 		/*
2390 		 * We iterate from biggest down to smallest classes,
2391 		 * so huge_class_size holds the size of the first huge
2392 		 * class. Any object bigger than or equal to that will
2393 		 * endup in the huge class.
2394 		 */
2395 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2396 				!huge_class_size) {
2397 			huge_class_size = size;
2398 			/*
2399 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2400 			 * handle. We need to subtract it, because zs_malloc()
2401 			 * unconditionally adds handle size before it performs
2402 			 * size class search - so object may be smaller than
2403 			 * huge class size, yet it still can end up in the huge
2404 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2405 			 * right before class lookup.
2406 			 */
2407 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2408 		}
2409 
2410 		/*
2411 		 * size_class is used for normal zsmalloc operation such
2412 		 * as alloc/free for that size. Although it is natural that we
2413 		 * have one size_class for each size, there is a chance that we
2414 		 * can get more memory utilization if we use one size_class for
2415 		 * many different sizes whose size_class have same
2416 		 * characteristics. So, we makes size_class point to
2417 		 * previous size_class if possible.
2418 		 */
2419 		if (prev_class) {
2420 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2421 				pool->size_class[i] = prev_class;
2422 				continue;
2423 			}
2424 		}
2425 
2426 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2427 		if (!class)
2428 			goto err;
2429 
2430 		class->size = size;
2431 		class->index = i;
2432 		class->pages_per_zspage = pages_per_zspage;
2433 		class->objs_per_zspage = objs_per_zspage;
2434 		spin_lock_init(&class->lock);
2435 		pool->size_class[i] = class;
2436 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2437 							fullness++)
2438 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2439 
2440 		prev_class = class;
2441 	}
2442 
2443 	/* debug only, don't abort if it fails */
2444 	zs_pool_stat_create(pool, name);
2445 
2446 	if (zs_register_migration(pool))
2447 		goto err;
2448 
2449 	/*
2450 	 * Not critical since shrinker is only used to trigger internal
2451 	 * defragmentation of the pool which is pretty optional thing.  If
2452 	 * registration fails we still can use the pool normally and user can
2453 	 * trigger compaction manually. Thus, ignore return code.
2454 	 */
2455 	zs_register_shrinker(pool);
2456 
2457 	return pool;
2458 
2459 err:
2460 	zs_destroy_pool(pool);
2461 	return NULL;
2462 }
2463 EXPORT_SYMBOL_GPL(zs_create_pool);
2464 
2465 void zs_destroy_pool(struct zs_pool *pool)
2466 {
2467 	int i;
2468 
2469 	zs_unregister_shrinker(pool);
2470 	zs_unregister_migration(pool);
2471 	zs_pool_stat_destroy(pool);
2472 
2473 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2474 		int fg;
2475 		struct size_class *class = pool->size_class[i];
2476 
2477 		if (!class)
2478 			continue;
2479 
2480 		if (class->index != i)
2481 			continue;
2482 
2483 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2484 			if (!list_empty(&class->fullness_list[fg])) {
2485 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2486 					class->size, fg);
2487 			}
2488 		}
2489 		kfree(class);
2490 	}
2491 
2492 	destroy_cache(pool);
2493 	kfree(pool->name);
2494 	kfree(pool);
2495 }
2496 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2497 
2498 static int __init zs_init(void)
2499 {
2500 	int ret;
2501 
2502 	ret = zsmalloc_mount();
2503 	if (ret)
2504 		goto out;
2505 
2506 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2507 				zs_cpu_prepare, zs_cpu_dead);
2508 	if (ret)
2509 		goto hp_setup_fail;
2510 
2511 #ifdef CONFIG_ZPOOL
2512 	zpool_register_driver(&zs_zpool_driver);
2513 #endif
2514 
2515 	zs_stat_init();
2516 
2517 	return 0;
2518 
2519 hp_setup_fail:
2520 	zsmalloc_unmount();
2521 out:
2522 	return ret;
2523 }
2524 
2525 static void __exit zs_exit(void)
2526 {
2527 #ifdef CONFIG_ZPOOL
2528 	zpool_unregister_driver(&zs_zpool_driver);
2529 #endif
2530 	zsmalloc_unmount();
2531 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2532 
2533 	zs_stat_exit();
2534 }
2535 
2536 module_init(zs_init);
2537 module_exit(zs_exit);
2538 
2539 MODULE_LICENSE("Dual BSD/GPL");
2540 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2541