xref: /openbmc/linux/mm/zsmalloc.c (revision 94c7b6fc)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * This allocator is designed for use with zram. Thus, the allocator is
16  * supposed to work well under low memory conditions. In particular, it
17  * never attempts higher order page allocation which is very likely to
18  * fail under memory pressure. On the other hand, if we just use single
19  * (0-order) pages, it would suffer from very high fragmentation --
20  * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21  * This was one of the major issues with its predecessor (xvmalloc).
22  *
23  * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24  * and links them together using various 'struct page' fields. These linked
25  * pages act as a single higher-order page i.e. an object can span 0-order
26  * page boundaries. The code refers to these linked pages as a single entity
27  * called zspage.
28  *
29  * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30  * since this satisfies the requirements of all its current users (in the
31  * worst case, page is incompressible and is thus stored "as-is" i.e. in
32  * uncompressed form). For allocation requests larger than this size, failure
33  * is returned (see zs_malloc).
34  *
35  * Additionally, zs_malloc() does not return a dereferenceable pointer.
36  * Instead, it returns an opaque handle (unsigned long) which encodes actual
37  * location of the allocated object. The reason for this indirection is that
38  * zsmalloc does not keep zspages permanently mapped since that would cause
39  * issues on 32-bit systems where the VA region for kernel space mappings
40  * is very small. So, before using the allocating memory, the object has to
41  * be mapped using zs_map_object() to get a usable pointer and subsequently
42  * unmapped using zs_unmap_object().
43  *
44  * Following is how we use various fields and flags of underlying
45  * struct page(s) to form a zspage.
46  *
47  * Usage of struct page fields:
48  *	page->first_page: points to the first component (0-order) page
49  *	page->index (union with page->freelist): offset of the first object
50  *		starting in this page. For the first page, this is
51  *		always 0, so we use this field (aka freelist) to point
52  *		to the first free object in zspage.
53  *	page->lru: links together all component pages (except the first page)
54  *		of a zspage
55  *
56  *	For _first_ page only:
57  *
58  *	page->private (union with page->first_page): refers to the
59  *		component page after the first page
60  *	page->freelist: points to the first free object in zspage.
61  *		Free objects are linked together using in-place
62  *		metadata.
63  *	page->objects: maximum number of objects we can store in this
64  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
65  *	page->lru: links together first pages of various zspages.
66  *		Basically forming list of zspages in a fullness group.
67  *	page->mapping: class index and fullness group of the zspage
68  *
69  * Usage of struct page flags:
70  *	PG_private: identifies the first component page
71  *	PG_private2: identifies the last component page
72  *
73  */
74 
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78 
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 
96 /*
97  * This must be power of 2 and greater than of equal to sizeof(link_free).
98  * These two conditions ensure that any 'struct link_free' itself doesn't
99  * span more than 1 page which avoids complex case of mapping 2 pages simply
100  * to restore link_free pointer values.
101  */
102 #define ZS_ALIGN		8
103 
104 /*
105  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
106  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
107  */
108 #define ZS_MAX_ZSPAGE_ORDER 2
109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
110 
111 /*
112  * Object location (<PFN>, <obj_idx>) is encoded as
113  * as single (unsigned long) handle value.
114  *
115  * Note that object index <obj_idx> is relative to system
116  * page <PFN> it is stored in, so for each sub-page belonging
117  * to a zspage, obj_idx starts with 0.
118  *
119  * This is made more complicated by various memory models and PAE.
120  */
121 
122 #ifndef MAX_PHYSMEM_BITS
123 #ifdef CONFIG_HIGHMEM64G
124 #define MAX_PHYSMEM_BITS 36
125 #else /* !CONFIG_HIGHMEM64G */
126 /*
127  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
128  * be PAGE_SHIFT
129  */
130 #define MAX_PHYSMEM_BITS BITS_PER_LONG
131 #endif
132 #endif
133 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
134 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
135 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
136 
137 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
138 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
139 #define ZS_MIN_ALLOC_SIZE \
140 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
141 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
142 
143 /*
144  * On systems with 4K page size, this gives 255 size classes! There is a
145  * trader-off here:
146  *  - Large number of size classes is potentially wasteful as free page are
147  *    spread across these classes
148  *  - Small number of size classes causes large internal fragmentation
149  *  - Probably its better to use specific size classes (empirically
150  *    determined). NOTE: all those class sizes must be set as multiple of
151  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
152  *
153  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
154  *  (reason above)
155  */
156 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
157 #define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
158 					ZS_SIZE_CLASS_DELTA + 1)
159 
160 /*
161  * We do not maintain any list for completely empty or full pages
162  */
163 enum fullness_group {
164 	ZS_ALMOST_FULL,
165 	ZS_ALMOST_EMPTY,
166 	_ZS_NR_FULLNESS_GROUPS,
167 
168 	ZS_EMPTY,
169 	ZS_FULL
170 };
171 
172 /*
173  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
174  *	n <= N / f, where
175  * n = number of allocated objects
176  * N = total number of objects zspage can store
177  * f = 1/fullness_threshold_frac
178  *
179  * Similarly, we assign zspage to:
180  *	ZS_ALMOST_FULL	when n > N / f
181  *	ZS_EMPTY	when n == 0
182  *	ZS_FULL		when n == N
183  *
184  * (see: fix_fullness_group())
185  */
186 static const int fullness_threshold_frac = 4;
187 
188 struct size_class {
189 	/*
190 	 * Size of objects stored in this class. Must be multiple
191 	 * of ZS_ALIGN.
192 	 */
193 	int size;
194 	unsigned int index;
195 
196 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
197 	int pages_per_zspage;
198 
199 	spinlock_t lock;
200 
201 	/* stats */
202 	u64 pages_allocated;
203 
204 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
205 };
206 
207 /*
208  * Placed within free objects to form a singly linked list.
209  * For every zspage, first_page->freelist gives head of this list.
210  *
211  * This must be power of 2 and less than or equal to ZS_ALIGN
212  */
213 struct link_free {
214 	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
215 	void *next;
216 };
217 
218 struct zs_pool {
219 	struct size_class size_class[ZS_SIZE_CLASSES];
220 
221 	gfp_t flags;	/* allocation flags used when growing pool */
222 };
223 
224 /*
225  * A zspage's class index and fullness group
226  * are encoded in its (first)page->mapping
227  */
228 #define CLASS_IDX_BITS	28
229 #define FULLNESS_BITS	4
230 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
231 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
232 
233 struct mapping_area {
234 #ifdef CONFIG_PGTABLE_MAPPING
235 	struct vm_struct *vm; /* vm area for mapping object that span pages */
236 #else
237 	char *vm_buf; /* copy buffer for objects that span pages */
238 #endif
239 	char *vm_addr; /* address of kmap_atomic()'ed pages */
240 	enum zs_mapmode vm_mm; /* mapping mode */
241 };
242 
243 
244 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
245 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
246 
247 static int is_first_page(struct page *page)
248 {
249 	return PagePrivate(page);
250 }
251 
252 static int is_last_page(struct page *page)
253 {
254 	return PagePrivate2(page);
255 }
256 
257 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
258 				enum fullness_group *fullness)
259 {
260 	unsigned long m;
261 	BUG_ON(!is_first_page(page));
262 
263 	m = (unsigned long)page->mapping;
264 	*fullness = m & FULLNESS_MASK;
265 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
266 }
267 
268 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
269 				enum fullness_group fullness)
270 {
271 	unsigned long m;
272 	BUG_ON(!is_first_page(page));
273 
274 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
275 			(fullness & FULLNESS_MASK);
276 	page->mapping = (struct address_space *)m;
277 }
278 
279 /*
280  * zsmalloc divides the pool into various size classes where each
281  * class maintains a list of zspages where each zspage is divided
282  * into equal sized chunks. Each allocation falls into one of these
283  * classes depending on its size. This function returns index of the
284  * size class which has chunk size big enough to hold the give size.
285  */
286 static int get_size_class_index(int size)
287 {
288 	int idx = 0;
289 
290 	if (likely(size > ZS_MIN_ALLOC_SIZE))
291 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
292 				ZS_SIZE_CLASS_DELTA);
293 
294 	return idx;
295 }
296 
297 /*
298  * For each size class, zspages are divided into different groups
299  * depending on how "full" they are. This was done so that we could
300  * easily find empty or nearly empty zspages when we try to shrink
301  * the pool (not yet implemented). This function returns fullness
302  * status of the given page.
303  */
304 static enum fullness_group get_fullness_group(struct page *page)
305 {
306 	int inuse, max_objects;
307 	enum fullness_group fg;
308 	BUG_ON(!is_first_page(page));
309 
310 	inuse = page->inuse;
311 	max_objects = page->objects;
312 
313 	if (inuse == 0)
314 		fg = ZS_EMPTY;
315 	else if (inuse == max_objects)
316 		fg = ZS_FULL;
317 	else if (inuse <= max_objects / fullness_threshold_frac)
318 		fg = ZS_ALMOST_EMPTY;
319 	else
320 		fg = ZS_ALMOST_FULL;
321 
322 	return fg;
323 }
324 
325 /*
326  * Each size class maintains various freelists and zspages are assigned
327  * to one of these freelists based on the number of live objects they
328  * have. This functions inserts the given zspage into the freelist
329  * identified by <class, fullness_group>.
330  */
331 static void insert_zspage(struct page *page, struct size_class *class,
332 				enum fullness_group fullness)
333 {
334 	struct page **head;
335 
336 	BUG_ON(!is_first_page(page));
337 
338 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
339 		return;
340 
341 	head = &class->fullness_list[fullness];
342 	if (*head)
343 		list_add_tail(&page->lru, &(*head)->lru);
344 
345 	*head = page;
346 }
347 
348 /*
349  * This function removes the given zspage from the freelist identified
350  * by <class, fullness_group>.
351  */
352 static void remove_zspage(struct page *page, struct size_class *class,
353 				enum fullness_group fullness)
354 {
355 	struct page **head;
356 
357 	BUG_ON(!is_first_page(page));
358 
359 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
360 		return;
361 
362 	head = &class->fullness_list[fullness];
363 	BUG_ON(!*head);
364 	if (list_empty(&(*head)->lru))
365 		*head = NULL;
366 	else if (*head == page)
367 		*head = (struct page *)list_entry((*head)->lru.next,
368 					struct page, lru);
369 
370 	list_del_init(&page->lru);
371 }
372 
373 /*
374  * Each size class maintains zspages in different fullness groups depending
375  * on the number of live objects they contain. When allocating or freeing
376  * objects, the fullness status of the page can change, say, from ALMOST_FULL
377  * to ALMOST_EMPTY when freeing an object. This function checks if such
378  * a status change has occurred for the given page and accordingly moves the
379  * page from the freelist of the old fullness group to that of the new
380  * fullness group.
381  */
382 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
383 						struct page *page)
384 {
385 	int class_idx;
386 	struct size_class *class;
387 	enum fullness_group currfg, newfg;
388 
389 	BUG_ON(!is_first_page(page));
390 
391 	get_zspage_mapping(page, &class_idx, &currfg);
392 	newfg = get_fullness_group(page);
393 	if (newfg == currfg)
394 		goto out;
395 
396 	class = &pool->size_class[class_idx];
397 	remove_zspage(page, class, currfg);
398 	insert_zspage(page, class, newfg);
399 	set_zspage_mapping(page, class_idx, newfg);
400 
401 out:
402 	return newfg;
403 }
404 
405 /*
406  * We have to decide on how many pages to link together
407  * to form a zspage for each size class. This is important
408  * to reduce wastage due to unusable space left at end of
409  * each zspage which is given as:
410  *	wastage = Zp - Zp % size_class
411  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
412  *
413  * For example, for size class of 3/8 * PAGE_SIZE, we should
414  * link together 3 PAGE_SIZE sized pages to form a zspage
415  * since then we can perfectly fit in 8 such objects.
416  */
417 static int get_pages_per_zspage(int class_size)
418 {
419 	int i, max_usedpc = 0;
420 	/* zspage order which gives maximum used size per KB */
421 	int max_usedpc_order = 1;
422 
423 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
424 		int zspage_size;
425 		int waste, usedpc;
426 
427 		zspage_size = i * PAGE_SIZE;
428 		waste = zspage_size % class_size;
429 		usedpc = (zspage_size - waste) * 100 / zspage_size;
430 
431 		if (usedpc > max_usedpc) {
432 			max_usedpc = usedpc;
433 			max_usedpc_order = i;
434 		}
435 	}
436 
437 	return max_usedpc_order;
438 }
439 
440 /*
441  * A single 'zspage' is composed of many system pages which are
442  * linked together using fields in struct page. This function finds
443  * the first/head page, given any component page of a zspage.
444  */
445 static struct page *get_first_page(struct page *page)
446 {
447 	if (is_first_page(page))
448 		return page;
449 	else
450 		return page->first_page;
451 }
452 
453 static struct page *get_next_page(struct page *page)
454 {
455 	struct page *next;
456 
457 	if (is_last_page(page))
458 		next = NULL;
459 	else if (is_first_page(page))
460 		next = (struct page *)page_private(page);
461 	else
462 		next = list_entry(page->lru.next, struct page, lru);
463 
464 	return next;
465 }
466 
467 /*
468  * Encode <page, obj_idx> as a single handle value.
469  * On hardware platforms with physical memory starting at 0x0 the pfn
470  * could be 0 so we ensure that the handle will never be 0 by adjusting the
471  * encoded obj_idx value before encoding.
472  */
473 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
474 {
475 	unsigned long handle;
476 
477 	if (!page) {
478 		BUG_ON(obj_idx);
479 		return NULL;
480 	}
481 
482 	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
483 	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
484 
485 	return (void *)handle;
486 }
487 
488 /*
489  * Decode <page, obj_idx> pair from the given object handle. We adjust the
490  * decoded obj_idx back to its original value since it was adjusted in
491  * obj_location_to_handle().
492  */
493 static void obj_handle_to_location(unsigned long handle, struct page **page,
494 				unsigned long *obj_idx)
495 {
496 	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
497 	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
498 }
499 
500 static unsigned long obj_idx_to_offset(struct page *page,
501 				unsigned long obj_idx, int class_size)
502 {
503 	unsigned long off = 0;
504 
505 	if (!is_first_page(page))
506 		off = page->index;
507 
508 	return off + obj_idx * class_size;
509 }
510 
511 static void reset_page(struct page *page)
512 {
513 	clear_bit(PG_private, &page->flags);
514 	clear_bit(PG_private_2, &page->flags);
515 	set_page_private(page, 0);
516 	page->mapping = NULL;
517 	page->freelist = NULL;
518 	page_mapcount_reset(page);
519 }
520 
521 static void free_zspage(struct page *first_page)
522 {
523 	struct page *nextp, *tmp, *head_extra;
524 
525 	BUG_ON(!is_first_page(first_page));
526 	BUG_ON(first_page->inuse);
527 
528 	head_extra = (struct page *)page_private(first_page);
529 
530 	reset_page(first_page);
531 	__free_page(first_page);
532 
533 	/* zspage with only 1 system page */
534 	if (!head_extra)
535 		return;
536 
537 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
538 		list_del(&nextp->lru);
539 		reset_page(nextp);
540 		__free_page(nextp);
541 	}
542 	reset_page(head_extra);
543 	__free_page(head_extra);
544 }
545 
546 /* Initialize a newly allocated zspage */
547 static void init_zspage(struct page *first_page, struct size_class *class)
548 {
549 	unsigned long off = 0;
550 	struct page *page = first_page;
551 
552 	BUG_ON(!is_first_page(first_page));
553 	while (page) {
554 		struct page *next_page;
555 		struct link_free *link;
556 		unsigned int i, objs_on_page;
557 
558 		/*
559 		 * page->index stores offset of first object starting
560 		 * in the page. For the first page, this is always 0,
561 		 * so we use first_page->index (aka ->freelist) to store
562 		 * head of corresponding zspage's freelist.
563 		 */
564 		if (page != first_page)
565 			page->index = off;
566 
567 		link = (struct link_free *)kmap_atomic(page) +
568 						off / sizeof(*link);
569 		objs_on_page = (PAGE_SIZE - off) / class->size;
570 
571 		for (i = 1; i <= objs_on_page; i++) {
572 			off += class->size;
573 			if (off < PAGE_SIZE) {
574 				link->next = obj_location_to_handle(page, i);
575 				link += class->size / sizeof(*link);
576 			}
577 		}
578 
579 		/*
580 		 * We now come to the last (full or partial) object on this
581 		 * page, which must point to the first object on the next
582 		 * page (if present)
583 		 */
584 		next_page = get_next_page(page);
585 		link->next = obj_location_to_handle(next_page, 0);
586 		kunmap_atomic(link);
587 		page = next_page;
588 		off = (off + class->size) % PAGE_SIZE;
589 	}
590 }
591 
592 /*
593  * Allocate a zspage for the given size class
594  */
595 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
596 {
597 	int i, error;
598 	struct page *first_page = NULL, *uninitialized_var(prev_page);
599 
600 	/*
601 	 * Allocate individual pages and link them together as:
602 	 * 1. first page->private = first sub-page
603 	 * 2. all sub-pages are linked together using page->lru
604 	 * 3. each sub-page is linked to the first page using page->first_page
605 	 *
606 	 * For each size class, First/Head pages are linked together using
607 	 * page->lru. Also, we set PG_private to identify the first page
608 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
609 	 * identify the last page.
610 	 */
611 	error = -ENOMEM;
612 	for (i = 0; i < class->pages_per_zspage; i++) {
613 		struct page *page;
614 
615 		page = alloc_page(flags);
616 		if (!page)
617 			goto cleanup;
618 
619 		INIT_LIST_HEAD(&page->lru);
620 		if (i == 0) {	/* first page */
621 			SetPagePrivate(page);
622 			set_page_private(page, 0);
623 			first_page = page;
624 			first_page->inuse = 0;
625 		}
626 		if (i == 1)
627 			set_page_private(first_page, (unsigned long)page);
628 		if (i >= 1)
629 			page->first_page = first_page;
630 		if (i >= 2)
631 			list_add(&page->lru, &prev_page->lru);
632 		if (i == class->pages_per_zspage - 1)	/* last page */
633 			SetPagePrivate2(page);
634 		prev_page = page;
635 	}
636 
637 	init_zspage(first_page, class);
638 
639 	first_page->freelist = obj_location_to_handle(first_page, 0);
640 	/* Maximum number of objects we can store in this zspage */
641 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
642 
643 	error = 0; /* Success */
644 
645 cleanup:
646 	if (unlikely(error) && first_page) {
647 		free_zspage(first_page);
648 		first_page = NULL;
649 	}
650 
651 	return first_page;
652 }
653 
654 static struct page *find_get_zspage(struct size_class *class)
655 {
656 	int i;
657 	struct page *page;
658 
659 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
660 		page = class->fullness_list[i];
661 		if (page)
662 			break;
663 	}
664 
665 	return page;
666 }
667 
668 #ifdef CONFIG_PGTABLE_MAPPING
669 static inline int __zs_cpu_up(struct mapping_area *area)
670 {
671 	/*
672 	 * Make sure we don't leak memory if a cpu UP notification
673 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
674 	 */
675 	if (area->vm)
676 		return 0;
677 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
678 	if (!area->vm)
679 		return -ENOMEM;
680 	return 0;
681 }
682 
683 static inline void __zs_cpu_down(struct mapping_area *area)
684 {
685 	if (area->vm)
686 		free_vm_area(area->vm);
687 	area->vm = NULL;
688 }
689 
690 static inline void *__zs_map_object(struct mapping_area *area,
691 				struct page *pages[2], int off, int size)
692 {
693 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
694 	area->vm_addr = area->vm->addr;
695 	return area->vm_addr + off;
696 }
697 
698 static inline void __zs_unmap_object(struct mapping_area *area,
699 				struct page *pages[2], int off, int size)
700 {
701 	unsigned long addr = (unsigned long)area->vm_addr;
702 
703 	unmap_kernel_range(addr, PAGE_SIZE * 2);
704 }
705 
706 #else /* CONFIG_PGTABLE_MAPPING */
707 
708 static inline int __zs_cpu_up(struct mapping_area *area)
709 {
710 	/*
711 	 * Make sure we don't leak memory if a cpu UP notification
712 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
713 	 */
714 	if (area->vm_buf)
715 		return 0;
716 	area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
717 	if (!area->vm_buf)
718 		return -ENOMEM;
719 	return 0;
720 }
721 
722 static inline void __zs_cpu_down(struct mapping_area *area)
723 {
724 	if (area->vm_buf)
725 		free_page((unsigned long)area->vm_buf);
726 	area->vm_buf = NULL;
727 }
728 
729 static void *__zs_map_object(struct mapping_area *area,
730 			struct page *pages[2], int off, int size)
731 {
732 	int sizes[2];
733 	void *addr;
734 	char *buf = area->vm_buf;
735 
736 	/* disable page faults to match kmap_atomic() return conditions */
737 	pagefault_disable();
738 
739 	/* no read fastpath */
740 	if (area->vm_mm == ZS_MM_WO)
741 		goto out;
742 
743 	sizes[0] = PAGE_SIZE - off;
744 	sizes[1] = size - sizes[0];
745 
746 	/* copy object to per-cpu buffer */
747 	addr = kmap_atomic(pages[0]);
748 	memcpy(buf, addr + off, sizes[0]);
749 	kunmap_atomic(addr);
750 	addr = kmap_atomic(pages[1]);
751 	memcpy(buf + sizes[0], addr, sizes[1]);
752 	kunmap_atomic(addr);
753 out:
754 	return area->vm_buf;
755 }
756 
757 static void __zs_unmap_object(struct mapping_area *area,
758 			struct page *pages[2], int off, int size)
759 {
760 	int sizes[2];
761 	void *addr;
762 	char *buf = area->vm_buf;
763 
764 	/* no write fastpath */
765 	if (area->vm_mm == ZS_MM_RO)
766 		goto out;
767 
768 	sizes[0] = PAGE_SIZE - off;
769 	sizes[1] = size - sizes[0];
770 
771 	/* copy per-cpu buffer to object */
772 	addr = kmap_atomic(pages[0]);
773 	memcpy(addr + off, buf, sizes[0]);
774 	kunmap_atomic(addr);
775 	addr = kmap_atomic(pages[1]);
776 	memcpy(addr, buf + sizes[0], sizes[1]);
777 	kunmap_atomic(addr);
778 
779 out:
780 	/* enable page faults to match kunmap_atomic() return conditions */
781 	pagefault_enable();
782 }
783 
784 #endif /* CONFIG_PGTABLE_MAPPING */
785 
786 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
787 				void *pcpu)
788 {
789 	int ret, cpu = (long)pcpu;
790 	struct mapping_area *area;
791 
792 	switch (action) {
793 	case CPU_UP_PREPARE:
794 		area = &per_cpu(zs_map_area, cpu);
795 		ret = __zs_cpu_up(area);
796 		if (ret)
797 			return notifier_from_errno(ret);
798 		break;
799 	case CPU_DEAD:
800 	case CPU_UP_CANCELED:
801 		area = &per_cpu(zs_map_area, cpu);
802 		__zs_cpu_down(area);
803 		break;
804 	}
805 
806 	return NOTIFY_OK;
807 }
808 
809 static struct notifier_block zs_cpu_nb = {
810 	.notifier_call = zs_cpu_notifier
811 };
812 
813 static void zs_exit(void)
814 {
815 	int cpu;
816 
817 	cpu_notifier_register_begin();
818 
819 	for_each_online_cpu(cpu)
820 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
821 	__unregister_cpu_notifier(&zs_cpu_nb);
822 
823 	cpu_notifier_register_done();
824 }
825 
826 static int zs_init(void)
827 {
828 	int cpu, ret;
829 
830 	cpu_notifier_register_begin();
831 
832 	__register_cpu_notifier(&zs_cpu_nb);
833 	for_each_online_cpu(cpu) {
834 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
835 		if (notifier_to_errno(ret)) {
836 			cpu_notifier_register_done();
837 			goto fail;
838 		}
839 	}
840 
841 	cpu_notifier_register_done();
842 
843 	return 0;
844 fail:
845 	zs_exit();
846 	return notifier_to_errno(ret);
847 }
848 
849 /**
850  * zs_create_pool - Creates an allocation pool to work from.
851  * @flags: allocation flags used to allocate pool metadata
852  *
853  * This function must be called before anything when using
854  * the zsmalloc allocator.
855  *
856  * On success, a pointer to the newly created pool is returned,
857  * otherwise NULL.
858  */
859 struct zs_pool *zs_create_pool(gfp_t flags)
860 {
861 	int i, ovhd_size;
862 	struct zs_pool *pool;
863 
864 	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
865 	pool = kzalloc(ovhd_size, GFP_KERNEL);
866 	if (!pool)
867 		return NULL;
868 
869 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
870 		int size;
871 		struct size_class *class;
872 
873 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
874 		if (size > ZS_MAX_ALLOC_SIZE)
875 			size = ZS_MAX_ALLOC_SIZE;
876 
877 		class = &pool->size_class[i];
878 		class->size = size;
879 		class->index = i;
880 		spin_lock_init(&class->lock);
881 		class->pages_per_zspage = get_pages_per_zspage(size);
882 
883 	}
884 
885 	pool->flags = flags;
886 
887 	return pool;
888 }
889 EXPORT_SYMBOL_GPL(zs_create_pool);
890 
891 void zs_destroy_pool(struct zs_pool *pool)
892 {
893 	int i;
894 
895 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
896 		int fg;
897 		struct size_class *class = &pool->size_class[i];
898 
899 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
900 			if (class->fullness_list[fg]) {
901 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
902 					class->size, fg);
903 			}
904 		}
905 	}
906 	kfree(pool);
907 }
908 EXPORT_SYMBOL_GPL(zs_destroy_pool);
909 
910 /**
911  * zs_malloc - Allocate block of given size from pool.
912  * @pool: pool to allocate from
913  * @size: size of block to allocate
914  *
915  * On success, handle to the allocated object is returned,
916  * otherwise 0.
917  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
918  */
919 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
920 {
921 	unsigned long obj;
922 	struct link_free *link;
923 	int class_idx;
924 	struct size_class *class;
925 
926 	struct page *first_page, *m_page;
927 	unsigned long m_objidx, m_offset;
928 
929 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
930 		return 0;
931 
932 	class_idx = get_size_class_index(size);
933 	class = &pool->size_class[class_idx];
934 	BUG_ON(class_idx != class->index);
935 
936 	spin_lock(&class->lock);
937 	first_page = find_get_zspage(class);
938 
939 	if (!first_page) {
940 		spin_unlock(&class->lock);
941 		first_page = alloc_zspage(class, pool->flags);
942 		if (unlikely(!first_page))
943 			return 0;
944 
945 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
946 		spin_lock(&class->lock);
947 		class->pages_allocated += class->pages_per_zspage;
948 	}
949 
950 	obj = (unsigned long)first_page->freelist;
951 	obj_handle_to_location(obj, &m_page, &m_objidx);
952 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
953 
954 	link = (struct link_free *)kmap_atomic(m_page) +
955 					m_offset / sizeof(*link);
956 	first_page->freelist = link->next;
957 	memset(link, POISON_INUSE, sizeof(*link));
958 	kunmap_atomic(link);
959 
960 	first_page->inuse++;
961 	/* Now move the zspage to another fullness group, if required */
962 	fix_fullness_group(pool, first_page);
963 	spin_unlock(&class->lock);
964 
965 	return obj;
966 }
967 EXPORT_SYMBOL_GPL(zs_malloc);
968 
969 void zs_free(struct zs_pool *pool, unsigned long obj)
970 {
971 	struct link_free *link;
972 	struct page *first_page, *f_page;
973 	unsigned long f_objidx, f_offset;
974 
975 	int class_idx;
976 	struct size_class *class;
977 	enum fullness_group fullness;
978 
979 	if (unlikely(!obj))
980 		return;
981 
982 	obj_handle_to_location(obj, &f_page, &f_objidx);
983 	first_page = get_first_page(f_page);
984 
985 	get_zspage_mapping(first_page, &class_idx, &fullness);
986 	class = &pool->size_class[class_idx];
987 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
988 
989 	spin_lock(&class->lock);
990 
991 	/* Insert this object in containing zspage's freelist */
992 	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
993 							+ f_offset);
994 	link->next = first_page->freelist;
995 	kunmap_atomic(link);
996 	first_page->freelist = (void *)obj;
997 
998 	first_page->inuse--;
999 	fullness = fix_fullness_group(pool, first_page);
1000 
1001 	if (fullness == ZS_EMPTY)
1002 		class->pages_allocated -= class->pages_per_zspage;
1003 
1004 	spin_unlock(&class->lock);
1005 
1006 	if (fullness == ZS_EMPTY)
1007 		free_zspage(first_page);
1008 }
1009 EXPORT_SYMBOL_GPL(zs_free);
1010 
1011 /**
1012  * zs_map_object - get address of allocated object from handle.
1013  * @pool: pool from which the object was allocated
1014  * @handle: handle returned from zs_malloc
1015  *
1016  * Before using an object allocated from zs_malloc, it must be mapped using
1017  * this function. When done with the object, it must be unmapped using
1018  * zs_unmap_object.
1019  *
1020  * Only one object can be mapped per cpu at a time. There is no protection
1021  * against nested mappings.
1022  *
1023  * This function returns with preemption and page faults disabled.
1024  */
1025 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1026 			enum zs_mapmode mm)
1027 {
1028 	struct page *page;
1029 	unsigned long obj_idx, off;
1030 
1031 	unsigned int class_idx;
1032 	enum fullness_group fg;
1033 	struct size_class *class;
1034 	struct mapping_area *area;
1035 	struct page *pages[2];
1036 
1037 	BUG_ON(!handle);
1038 
1039 	/*
1040 	 * Because we use per-cpu mapping areas shared among the
1041 	 * pools/users, we can't allow mapping in interrupt context
1042 	 * because it can corrupt another users mappings.
1043 	 */
1044 	BUG_ON(in_interrupt());
1045 
1046 	obj_handle_to_location(handle, &page, &obj_idx);
1047 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1048 	class = &pool->size_class[class_idx];
1049 	off = obj_idx_to_offset(page, obj_idx, class->size);
1050 
1051 	area = &get_cpu_var(zs_map_area);
1052 	area->vm_mm = mm;
1053 	if (off + class->size <= PAGE_SIZE) {
1054 		/* this object is contained entirely within a page */
1055 		area->vm_addr = kmap_atomic(page);
1056 		return area->vm_addr + off;
1057 	}
1058 
1059 	/* this object spans two pages */
1060 	pages[0] = page;
1061 	pages[1] = get_next_page(page);
1062 	BUG_ON(!pages[1]);
1063 
1064 	return __zs_map_object(area, pages, off, class->size);
1065 }
1066 EXPORT_SYMBOL_GPL(zs_map_object);
1067 
1068 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1069 {
1070 	struct page *page;
1071 	unsigned long obj_idx, off;
1072 
1073 	unsigned int class_idx;
1074 	enum fullness_group fg;
1075 	struct size_class *class;
1076 	struct mapping_area *area;
1077 
1078 	BUG_ON(!handle);
1079 
1080 	obj_handle_to_location(handle, &page, &obj_idx);
1081 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1082 	class = &pool->size_class[class_idx];
1083 	off = obj_idx_to_offset(page, obj_idx, class->size);
1084 
1085 	area = this_cpu_ptr(&zs_map_area);
1086 	if (off + class->size <= PAGE_SIZE)
1087 		kunmap_atomic(area->vm_addr);
1088 	else {
1089 		struct page *pages[2];
1090 
1091 		pages[0] = page;
1092 		pages[1] = get_next_page(page);
1093 		BUG_ON(!pages[1]);
1094 
1095 		__zs_unmap_object(area, pages, off, class->size);
1096 	}
1097 	put_cpu_var(zs_map_area);
1098 }
1099 EXPORT_SYMBOL_GPL(zs_unmap_object);
1100 
1101 u64 zs_get_total_size_bytes(struct zs_pool *pool)
1102 {
1103 	int i;
1104 	u64 npages = 0;
1105 
1106 	for (i = 0; i < ZS_SIZE_CLASSES; i++)
1107 		npages += pool->size_class[i].pages_allocated;
1108 
1109 	return npages << PAGE_SHIFT;
1110 }
1111 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1112 
1113 module_init(zs_init);
1114 module_exit(zs_exit);
1115 
1116 MODULE_LICENSE("Dual BSD/GPL");
1117 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1118