1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <linux/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than of equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * a single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING 297 struct vm_struct *vm; /* vm area for mapping object that span pages */ 298 #else 299 char *vm_buf; /* copy buffer for objects that span pages */ 300 #endif 301 char *vm_addr; /* address of kmap_atomic()'ed pages */ 302 enum zs_mapmode vm_mm; /* mapping mode */ 303 }; 304 305 #ifdef CONFIG_COMPACTION 306 static int zs_register_migration(struct zs_pool *pool); 307 static void zs_unregister_migration(struct zs_pool *pool); 308 static void migrate_lock_init(struct zspage *zspage); 309 static void migrate_read_lock(struct zspage *zspage); 310 static void migrate_read_unlock(struct zspage *zspage); 311 static void kick_deferred_free(struct zs_pool *pool); 312 static void init_deferred_free(struct zs_pool *pool); 313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 314 #else 315 static int zsmalloc_mount(void) { return 0; } 316 static void zsmalloc_unmount(void) {} 317 static int zs_register_migration(struct zs_pool *pool) { return 0; } 318 static void zs_unregister_migration(struct zs_pool *pool) {} 319 static void migrate_lock_init(struct zspage *zspage) {} 320 static void migrate_read_lock(struct zspage *zspage) {} 321 static void migrate_read_unlock(struct zspage *zspage) {} 322 static void kick_deferred_free(struct zs_pool *pool) {} 323 static void init_deferred_free(struct zs_pool *pool) {} 324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 325 #endif 326 327 static int create_cache(struct zs_pool *pool) 328 { 329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 330 0, 0, NULL); 331 if (!pool->handle_cachep) 332 return 1; 333 334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 335 0, 0, NULL); 336 if (!pool->zspage_cachep) { 337 kmem_cache_destroy(pool->handle_cachep); 338 pool->handle_cachep = NULL; 339 return 1; 340 } 341 342 return 0; 343 } 344 345 static void destroy_cache(struct zs_pool *pool) 346 { 347 kmem_cache_destroy(pool->handle_cachep); 348 kmem_cache_destroy(pool->zspage_cachep); 349 } 350 351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 352 { 353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 355 } 356 357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 358 { 359 kmem_cache_free(pool->handle_cachep, (void *)handle); 360 } 361 362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 363 { 364 return kmem_cache_alloc(pool->zspage_cachep, 365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 366 } 367 368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 369 { 370 kmem_cache_free(pool->zspage_cachep, zspage); 371 } 372 373 static void record_obj(unsigned long handle, unsigned long obj) 374 { 375 /* 376 * lsb of @obj represents handle lock while other bits 377 * represent object value the handle is pointing so 378 * updating shouldn't do store tearing. 379 */ 380 WRITE_ONCE(*(unsigned long *)handle, obj); 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 return zs_create_pool(name); 397 } 398 399 static void zs_zpool_destroy(void *pool) 400 { 401 zs_destroy_pool(pool); 402 } 403 404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 405 unsigned long *handle) 406 { 407 *handle = zs_malloc(pool, size, gfp); 408 return *handle ? 0 : -1; 409 } 410 static void zs_zpool_free(void *pool, unsigned long handle) 411 { 412 zs_free(pool, handle); 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc_support_movable = true, 451 .malloc = zs_zpool_malloc, 452 .free = zs_zpool_free, 453 .map = zs_zpool_map, 454 .unmap = zs_zpool_unmap, 455 .total_size = zs_zpool_total_size, 456 }; 457 458 MODULE_ALIAS("zpool-zsmalloc"); 459 #endif /* CONFIG_ZPOOL */ 460 461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 463 464 static bool is_zspage_isolated(struct zspage *zspage) 465 { 466 return zspage->isolated; 467 } 468 469 static __maybe_unused int is_first_page(struct page *page) 470 { 471 return PagePrivate(page); 472 } 473 474 /* Protected by class->lock */ 475 static inline int get_zspage_inuse(struct zspage *zspage) 476 { 477 return zspage->inuse; 478 } 479 480 481 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 482 { 483 zspage->inuse += val; 484 } 485 486 static inline struct page *get_first_page(struct zspage *zspage) 487 { 488 struct page *first_page = zspage->first_page; 489 490 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 491 return first_page; 492 } 493 494 static inline int get_first_obj_offset(struct page *page) 495 { 496 return page->units; 497 } 498 499 static inline void set_first_obj_offset(struct page *page, int offset) 500 { 501 page->units = offset; 502 } 503 504 static inline unsigned int get_freeobj(struct zspage *zspage) 505 { 506 return zspage->freeobj; 507 } 508 509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 510 { 511 zspage->freeobj = obj; 512 } 513 514 static void get_zspage_mapping(struct zspage *zspage, 515 unsigned int *class_idx, 516 enum fullness_group *fullness) 517 { 518 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 519 520 *fullness = zspage->fullness; 521 *class_idx = zspage->class; 522 } 523 524 static void set_zspage_mapping(struct zspage *zspage, 525 unsigned int class_idx, 526 enum fullness_group fullness) 527 { 528 zspage->class = class_idx; 529 zspage->fullness = fullness; 530 } 531 532 /* 533 * zsmalloc divides the pool into various size classes where each 534 * class maintains a list of zspages where each zspage is divided 535 * into equal sized chunks. Each allocation falls into one of these 536 * classes depending on its size. This function returns index of the 537 * size class which has chunk size big enough to hold the give size. 538 */ 539 static int get_size_class_index(int size) 540 { 541 int idx = 0; 542 543 if (likely(size > ZS_MIN_ALLOC_SIZE)) 544 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 545 ZS_SIZE_CLASS_DELTA); 546 547 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 548 } 549 550 /* type can be of enum type zs_stat_type or fullness_group */ 551 static inline void zs_stat_inc(struct size_class *class, 552 int type, unsigned long cnt) 553 { 554 class->stats.objs[type] += cnt; 555 } 556 557 /* type can be of enum type zs_stat_type or fullness_group */ 558 static inline void zs_stat_dec(struct size_class *class, 559 int type, unsigned long cnt) 560 { 561 class->stats.objs[type] -= cnt; 562 } 563 564 /* type can be of enum type zs_stat_type or fullness_group */ 565 static inline unsigned long zs_stat_get(struct size_class *class, 566 int type) 567 { 568 return class->stats.objs[type]; 569 } 570 571 #ifdef CONFIG_ZSMALLOC_STAT 572 573 static void __init zs_stat_init(void) 574 { 575 if (!debugfs_initialized()) { 576 pr_warn("debugfs not available, stat dir not created\n"); 577 return; 578 } 579 580 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 581 } 582 583 static void __exit zs_stat_exit(void) 584 { 585 debugfs_remove_recursive(zs_stat_root); 586 } 587 588 static unsigned long zs_can_compact(struct size_class *class); 589 590 static int zs_stats_size_show(struct seq_file *s, void *v) 591 { 592 int i; 593 struct zs_pool *pool = s->private; 594 struct size_class *class; 595 int objs_per_zspage; 596 unsigned long class_almost_full, class_almost_empty; 597 unsigned long obj_allocated, obj_used, pages_used, freeable; 598 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 599 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 600 unsigned long total_freeable = 0; 601 602 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 603 "class", "size", "almost_full", "almost_empty", 604 "obj_allocated", "obj_used", "pages_used", 605 "pages_per_zspage", "freeable"); 606 607 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 608 class = pool->size_class[i]; 609 610 if (class->index != i) 611 continue; 612 613 spin_lock(&class->lock); 614 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 615 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 616 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 617 obj_used = zs_stat_get(class, OBJ_USED); 618 freeable = zs_can_compact(class); 619 spin_unlock(&class->lock); 620 621 objs_per_zspage = class->objs_per_zspage; 622 pages_used = obj_allocated / objs_per_zspage * 623 class->pages_per_zspage; 624 625 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 626 " %10lu %10lu %16d %8lu\n", 627 i, class->size, class_almost_full, class_almost_empty, 628 obj_allocated, obj_used, pages_used, 629 class->pages_per_zspage, freeable); 630 631 total_class_almost_full += class_almost_full; 632 total_class_almost_empty += class_almost_empty; 633 total_objs += obj_allocated; 634 total_used_objs += obj_used; 635 total_pages += pages_used; 636 total_freeable += freeable; 637 } 638 639 seq_puts(s, "\n"); 640 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 641 "Total", "", total_class_almost_full, 642 total_class_almost_empty, total_objs, 643 total_used_objs, total_pages, "", total_freeable); 644 645 return 0; 646 } 647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 648 649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 650 { 651 if (!zs_stat_root) { 652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 653 return; 654 } 655 656 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 657 658 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 659 &zs_stats_size_fops); 660 } 661 662 static void zs_pool_stat_destroy(struct zs_pool *pool) 663 { 664 debugfs_remove_recursive(pool->stat_dentry); 665 } 666 667 #else /* CONFIG_ZSMALLOC_STAT */ 668 static void __init zs_stat_init(void) 669 { 670 } 671 672 static void __exit zs_stat_exit(void) 673 { 674 } 675 676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 677 { 678 } 679 680 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 681 { 682 } 683 #endif 684 685 686 /* 687 * For each size class, zspages are divided into different groups 688 * depending on how "full" they are. This was done so that we could 689 * easily find empty or nearly empty zspages when we try to shrink 690 * the pool (not yet implemented). This function returns fullness 691 * status of the given page. 692 */ 693 static enum fullness_group get_fullness_group(struct size_class *class, 694 struct zspage *zspage) 695 { 696 int inuse, objs_per_zspage; 697 enum fullness_group fg; 698 699 inuse = get_zspage_inuse(zspage); 700 objs_per_zspage = class->objs_per_zspage; 701 702 if (inuse == 0) 703 fg = ZS_EMPTY; 704 else if (inuse == objs_per_zspage) 705 fg = ZS_FULL; 706 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 707 fg = ZS_ALMOST_EMPTY; 708 else 709 fg = ZS_ALMOST_FULL; 710 711 return fg; 712 } 713 714 /* 715 * Each size class maintains various freelists and zspages are assigned 716 * to one of these freelists based on the number of live objects they 717 * have. This functions inserts the given zspage into the freelist 718 * identified by <class, fullness_group>. 719 */ 720 static void insert_zspage(struct size_class *class, 721 struct zspage *zspage, 722 enum fullness_group fullness) 723 { 724 struct zspage *head; 725 726 zs_stat_inc(class, fullness, 1); 727 head = list_first_entry_or_null(&class->fullness_list[fullness], 728 struct zspage, list); 729 /* 730 * We want to see more ZS_FULL pages and less almost empty/full. 731 * Put pages with higher ->inuse first. 732 */ 733 if (head) { 734 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 735 list_add(&zspage->list, &head->list); 736 return; 737 } 738 } 739 list_add(&zspage->list, &class->fullness_list[fullness]); 740 } 741 742 /* 743 * This function removes the given zspage from the freelist identified 744 * by <class, fullness_group>. 745 */ 746 static void remove_zspage(struct size_class *class, 747 struct zspage *zspage, 748 enum fullness_group fullness) 749 { 750 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 751 VM_BUG_ON(is_zspage_isolated(zspage)); 752 753 list_del_init(&zspage->list); 754 zs_stat_dec(class, fullness, 1); 755 } 756 757 /* 758 * Each size class maintains zspages in different fullness groups depending 759 * on the number of live objects they contain. When allocating or freeing 760 * objects, the fullness status of the page can change, say, from ALMOST_FULL 761 * to ALMOST_EMPTY when freeing an object. This function checks if such 762 * a status change has occurred for the given page and accordingly moves the 763 * page from the freelist of the old fullness group to that of the new 764 * fullness group. 765 */ 766 static enum fullness_group fix_fullness_group(struct size_class *class, 767 struct zspage *zspage) 768 { 769 int class_idx; 770 enum fullness_group currfg, newfg; 771 772 get_zspage_mapping(zspage, &class_idx, &currfg); 773 newfg = get_fullness_group(class, zspage); 774 if (newfg == currfg) 775 goto out; 776 777 if (!is_zspage_isolated(zspage)) { 778 remove_zspage(class, zspage, currfg); 779 insert_zspage(class, zspage, newfg); 780 } 781 782 set_zspage_mapping(zspage, class_idx, newfg); 783 784 out: 785 return newfg; 786 } 787 788 /* 789 * We have to decide on how many pages to link together 790 * to form a zspage for each size class. This is important 791 * to reduce wastage due to unusable space left at end of 792 * each zspage which is given as: 793 * wastage = Zp % class_size 794 * usage = Zp - wastage 795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 796 * 797 * For example, for size class of 3/8 * PAGE_SIZE, we should 798 * link together 3 PAGE_SIZE sized pages to form a zspage 799 * since then we can perfectly fit in 8 such objects. 800 */ 801 static int get_pages_per_zspage(int class_size) 802 { 803 int i, max_usedpc = 0; 804 /* zspage order which gives maximum used size per KB */ 805 int max_usedpc_order = 1; 806 807 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 808 int zspage_size; 809 int waste, usedpc; 810 811 zspage_size = i * PAGE_SIZE; 812 waste = zspage_size % class_size; 813 usedpc = (zspage_size - waste) * 100 / zspage_size; 814 815 if (usedpc > max_usedpc) { 816 max_usedpc = usedpc; 817 max_usedpc_order = i; 818 } 819 } 820 821 return max_usedpc_order; 822 } 823 824 static struct zspage *get_zspage(struct page *page) 825 { 826 struct zspage *zspage = (struct zspage *)page->private; 827 828 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 829 return zspage; 830 } 831 832 static struct page *get_next_page(struct page *page) 833 { 834 if (unlikely(PageHugeObject(page))) 835 return NULL; 836 837 return page->freelist; 838 } 839 840 /** 841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 842 * @obj: the encoded object value 843 * @page: page object resides in zspage 844 * @obj_idx: object index 845 */ 846 static void obj_to_location(unsigned long obj, struct page **page, 847 unsigned int *obj_idx) 848 { 849 obj >>= OBJ_TAG_BITS; 850 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 851 *obj_idx = (obj & OBJ_INDEX_MASK); 852 } 853 854 /** 855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 856 * @page: page object resides in zspage 857 * @obj_idx: object index 858 */ 859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 860 { 861 unsigned long obj; 862 863 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 864 obj |= obj_idx & OBJ_INDEX_MASK; 865 obj <<= OBJ_TAG_BITS; 866 867 return obj; 868 } 869 870 static unsigned long handle_to_obj(unsigned long handle) 871 { 872 return *(unsigned long *)handle; 873 } 874 875 static unsigned long obj_to_head(struct page *page, void *obj) 876 { 877 if (unlikely(PageHugeObject(page))) { 878 VM_BUG_ON_PAGE(!is_first_page(page), page); 879 return page->index; 880 } else 881 return *(unsigned long *)obj; 882 } 883 884 static inline int testpin_tag(unsigned long handle) 885 { 886 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 887 } 888 889 static inline int trypin_tag(unsigned long handle) 890 { 891 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 892 } 893 894 static void pin_tag(unsigned long handle) __acquires(bitlock) 895 { 896 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 897 } 898 899 static void unpin_tag(unsigned long handle) __releases(bitlock) 900 { 901 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 902 } 903 904 static void reset_page(struct page *page) 905 { 906 __ClearPageMovable(page); 907 ClearPagePrivate(page); 908 set_page_private(page, 0); 909 page_mapcount_reset(page); 910 ClearPageHugeObject(page); 911 page->freelist = NULL; 912 } 913 914 static int trylock_zspage(struct zspage *zspage) 915 { 916 struct page *cursor, *fail; 917 918 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 919 get_next_page(cursor)) { 920 if (!trylock_page(cursor)) { 921 fail = cursor; 922 goto unlock; 923 } 924 } 925 926 return 1; 927 unlock: 928 for (cursor = get_first_page(zspage); cursor != fail; cursor = 929 get_next_page(cursor)) 930 unlock_page(cursor); 931 932 return 0; 933 } 934 935 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 936 struct zspage *zspage) 937 { 938 struct page *page, *next; 939 enum fullness_group fg; 940 unsigned int class_idx; 941 942 get_zspage_mapping(zspage, &class_idx, &fg); 943 944 assert_spin_locked(&class->lock); 945 946 VM_BUG_ON(get_zspage_inuse(zspage)); 947 VM_BUG_ON(fg != ZS_EMPTY); 948 949 next = page = get_first_page(zspage); 950 do { 951 VM_BUG_ON_PAGE(!PageLocked(page), page); 952 next = get_next_page(page); 953 reset_page(page); 954 unlock_page(page); 955 dec_zone_page_state(page, NR_ZSPAGES); 956 put_page(page); 957 page = next; 958 } while (page != NULL); 959 960 cache_free_zspage(pool, zspage); 961 962 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 963 atomic_long_sub(class->pages_per_zspage, 964 &pool->pages_allocated); 965 } 966 967 static void free_zspage(struct zs_pool *pool, struct size_class *class, 968 struct zspage *zspage) 969 { 970 VM_BUG_ON(get_zspage_inuse(zspage)); 971 VM_BUG_ON(list_empty(&zspage->list)); 972 973 if (!trylock_zspage(zspage)) { 974 kick_deferred_free(pool); 975 return; 976 } 977 978 remove_zspage(class, zspage, ZS_EMPTY); 979 __free_zspage(pool, class, zspage); 980 } 981 982 /* Initialize a newly allocated zspage */ 983 static void init_zspage(struct size_class *class, struct zspage *zspage) 984 { 985 unsigned int freeobj = 1; 986 unsigned long off = 0; 987 struct page *page = get_first_page(zspage); 988 989 while (page) { 990 struct page *next_page; 991 struct link_free *link; 992 void *vaddr; 993 994 set_first_obj_offset(page, off); 995 996 vaddr = kmap_atomic(page); 997 link = (struct link_free *)vaddr + off / sizeof(*link); 998 999 while ((off += class->size) < PAGE_SIZE) { 1000 link->next = freeobj++ << OBJ_TAG_BITS; 1001 link += class->size / sizeof(*link); 1002 } 1003 1004 /* 1005 * We now come to the last (full or partial) object on this 1006 * page, which must point to the first object on the next 1007 * page (if present) 1008 */ 1009 next_page = get_next_page(page); 1010 if (next_page) { 1011 link->next = freeobj++ << OBJ_TAG_BITS; 1012 } else { 1013 /* 1014 * Reset OBJ_TAG_BITS bit to last link to tell 1015 * whether it's allocated object or not. 1016 */ 1017 link->next = -1UL << OBJ_TAG_BITS; 1018 } 1019 kunmap_atomic(vaddr); 1020 page = next_page; 1021 off %= PAGE_SIZE; 1022 } 1023 1024 set_freeobj(zspage, 0); 1025 } 1026 1027 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1028 struct page *pages[]) 1029 { 1030 int i; 1031 struct page *page; 1032 struct page *prev_page = NULL; 1033 int nr_pages = class->pages_per_zspage; 1034 1035 /* 1036 * Allocate individual pages and link them together as: 1037 * 1. all pages are linked together using page->freelist 1038 * 2. each sub-page point to zspage using page->private 1039 * 1040 * we set PG_private to identify the first page (i.e. no other sub-page 1041 * has this flag set). 1042 */ 1043 for (i = 0; i < nr_pages; i++) { 1044 page = pages[i]; 1045 set_page_private(page, (unsigned long)zspage); 1046 page->freelist = NULL; 1047 if (i == 0) { 1048 zspage->first_page = page; 1049 SetPagePrivate(page); 1050 if (unlikely(class->objs_per_zspage == 1 && 1051 class->pages_per_zspage == 1)) 1052 SetPageHugeObject(page); 1053 } else { 1054 prev_page->freelist = page; 1055 } 1056 prev_page = page; 1057 } 1058 } 1059 1060 /* 1061 * Allocate a zspage for the given size class 1062 */ 1063 static struct zspage *alloc_zspage(struct zs_pool *pool, 1064 struct size_class *class, 1065 gfp_t gfp) 1066 { 1067 int i; 1068 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1069 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1070 1071 if (!zspage) 1072 return NULL; 1073 1074 memset(zspage, 0, sizeof(struct zspage)); 1075 zspage->magic = ZSPAGE_MAGIC; 1076 migrate_lock_init(zspage); 1077 1078 for (i = 0; i < class->pages_per_zspage; i++) { 1079 struct page *page; 1080 1081 page = alloc_page(gfp); 1082 if (!page) { 1083 while (--i >= 0) { 1084 dec_zone_page_state(pages[i], NR_ZSPAGES); 1085 __free_page(pages[i]); 1086 } 1087 cache_free_zspage(pool, zspage); 1088 return NULL; 1089 } 1090 1091 inc_zone_page_state(page, NR_ZSPAGES); 1092 pages[i] = page; 1093 } 1094 1095 create_page_chain(class, zspage, pages); 1096 init_zspage(class, zspage); 1097 1098 return zspage; 1099 } 1100 1101 static struct zspage *find_get_zspage(struct size_class *class) 1102 { 1103 int i; 1104 struct zspage *zspage; 1105 1106 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1107 zspage = list_first_entry_or_null(&class->fullness_list[i], 1108 struct zspage, list); 1109 if (zspage) 1110 break; 1111 } 1112 1113 return zspage; 1114 } 1115 1116 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING 1117 static inline int __zs_cpu_up(struct mapping_area *area) 1118 { 1119 /* 1120 * Make sure we don't leak memory if a cpu UP notification 1121 * and zs_init() race and both call zs_cpu_up() on the same cpu 1122 */ 1123 if (area->vm) 1124 return 0; 1125 area->vm = get_vm_area(PAGE_SIZE * 2, 0); 1126 if (!area->vm) 1127 return -ENOMEM; 1128 1129 /* 1130 * Populate ptes in advance to avoid pte allocation with GFP_KERNEL 1131 * in non-preemtible context of zs_map_object. 1132 */ 1133 return apply_to_page_range(&init_mm, (unsigned long)area->vm->addr, 1134 PAGE_SIZE * 2, NULL, NULL); 1135 } 1136 1137 static inline void __zs_cpu_down(struct mapping_area *area) 1138 { 1139 if (area->vm) 1140 free_vm_area(area->vm); 1141 area->vm = NULL; 1142 } 1143 1144 static inline void *__zs_map_object(struct mapping_area *area, 1145 struct page *pages[2], int off, int size) 1146 { 1147 unsigned long addr = (unsigned long)area->vm->addr; 1148 1149 BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0); 1150 area->vm_addr = area->vm->addr; 1151 return area->vm_addr + off; 1152 } 1153 1154 static inline void __zs_unmap_object(struct mapping_area *area, 1155 struct page *pages[2], int off, int size) 1156 { 1157 unsigned long addr = (unsigned long)area->vm_addr; 1158 1159 unmap_kernel_range(addr, PAGE_SIZE * 2); 1160 } 1161 1162 #else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */ 1163 1164 static inline int __zs_cpu_up(struct mapping_area *area) 1165 { 1166 /* 1167 * Make sure we don't leak memory if a cpu UP notification 1168 * and zs_init() race and both call zs_cpu_up() on the same cpu 1169 */ 1170 if (area->vm_buf) 1171 return 0; 1172 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1173 if (!area->vm_buf) 1174 return -ENOMEM; 1175 return 0; 1176 } 1177 1178 static inline void __zs_cpu_down(struct mapping_area *area) 1179 { 1180 kfree(area->vm_buf); 1181 area->vm_buf = NULL; 1182 } 1183 1184 static void *__zs_map_object(struct mapping_area *area, 1185 struct page *pages[2], int off, int size) 1186 { 1187 int sizes[2]; 1188 void *addr; 1189 char *buf = area->vm_buf; 1190 1191 /* disable page faults to match kmap_atomic() return conditions */ 1192 pagefault_disable(); 1193 1194 /* no read fastpath */ 1195 if (area->vm_mm == ZS_MM_WO) 1196 goto out; 1197 1198 sizes[0] = PAGE_SIZE - off; 1199 sizes[1] = size - sizes[0]; 1200 1201 /* copy object to per-cpu buffer */ 1202 addr = kmap_atomic(pages[0]); 1203 memcpy(buf, addr + off, sizes[0]); 1204 kunmap_atomic(addr); 1205 addr = kmap_atomic(pages[1]); 1206 memcpy(buf + sizes[0], addr, sizes[1]); 1207 kunmap_atomic(addr); 1208 out: 1209 return area->vm_buf; 1210 } 1211 1212 static void __zs_unmap_object(struct mapping_area *area, 1213 struct page *pages[2], int off, int size) 1214 { 1215 int sizes[2]; 1216 void *addr; 1217 char *buf; 1218 1219 /* no write fastpath */ 1220 if (area->vm_mm == ZS_MM_RO) 1221 goto out; 1222 1223 buf = area->vm_buf; 1224 buf = buf + ZS_HANDLE_SIZE; 1225 size -= ZS_HANDLE_SIZE; 1226 off += ZS_HANDLE_SIZE; 1227 1228 sizes[0] = PAGE_SIZE - off; 1229 sizes[1] = size - sizes[0]; 1230 1231 /* copy per-cpu buffer to object */ 1232 addr = kmap_atomic(pages[0]); 1233 memcpy(addr + off, buf, sizes[0]); 1234 kunmap_atomic(addr); 1235 addr = kmap_atomic(pages[1]); 1236 memcpy(addr, buf + sizes[0], sizes[1]); 1237 kunmap_atomic(addr); 1238 1239 out: 1240 /* enable page faults to match kunmap_atomic() return conditions */ 1241 pagefault_enable(); 1242 } 1243 1244 #endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */ 1245 1246 static int zs_cpu_prepare(unsigned int cpu) 1247 { 1248 struct mapping_area *area; 1249 1250 area = &per_cpu(zs_map_area, cpu); 1251 return __zs_cpu_up(area); 1252 } 1253 1254 static int zs_cpu_dead(unsigned int cpu) 1255 { 1256 struct mapping_area *area; 1257 1258 area = &per_cpu(zs_map_area, cpu); 1259 __zs_cpu_down(area); 1260 return 0; 1261 } 1262 1263 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1264 int objs_per_zspage) 1265 { 1266 if (prev->pages_per_zspage == pages_per_zspage && 1267 prev->objs_per_zspage == objs_per_zspage) 1268 return true; 1269 1270 return false; 1271 } 1272 1273 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1274 { 1275 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1276 } 1277 1278 unsigned long zs_get_total_pages(struct zs_pool *pool) 1279 { 1280 return atomic_long_read(&pool->pages_allocated); 1281 } 1282 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1283 1284 /** 1285 * zs_map_object - get address of allocated object from handle. 1286 * @pool: pool from which the object was allocated 1287 * @handle: handle returned from zs_malloc 1288 * @mm: maping mode to use 1289 * 1290 * Before using an object allocated from zs_malloc, it must be mapped using 1291 * this function. When done with the object, it must be unmapped using 1292 * zs_unmap_object. 1293 * 1294 * Only one object can be mapped per cpu at a time. There is no protection 1295 * against nested mappings. 1296 * 1297 * This function returns with preemption and page faults disabled. 1298 */ 1299 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1300 enum zs_mapmode mm) 1301 { 1302 struct zspage *zspage; 1303 struct page *page; 1304 unsigned long obj, off; 1305 unsigned int obj_idx; 1306 1307 unsigned int class_idx; 1308 enum fullness_group fg; 1309 struct size_class *class; 1310 struct mapping_area *area; 1311 struct page *pages[2]; 1312 void *ret; 1313 1314 /* 1315 * Because we use per-cpu mapping areas shared among the 1316 * pools/users, we can't allow mapping in interrupt context 1317 * because it can corrupt another users mappings. 1318 */ 1319 BUG_ON(in_interrupt()); 1320 1321 /* From now on, migration cannot move the object */ 1322 pin_tag(handle); 1323 1324 obj = handle_to_obj(handle); 1325 obj_to_location(obj, &page, &obj_idx); 1326 zspage = get_zspage(page); 1327 1328 /* migration cannot move any subpage in this zspage */ 1329 migrate_read_lock(zspage); 1330 1331 get_zspage_mapping(zspage, &class_idx, &fg); 1332 class = pool->size_class[class_idx]; 1333 off = (class->size * obj_idx) & ~PAGE_MASK; 1334 1335 area = &get_cpu_var(zs_map_area); 1336 area->vm_mm = mm; 1337 if (off + class->size <= PAGE_SIZE) { 1338 /* this object is contained entirely within a page */ 1339 area->vm_addr = kmap_atomic(page); 1340 ret = area->vm_addr + off; 1341 goto out; 1342 } 1343 1344 /* this object spans two pages */ 1345 pages[0] = page; 1346 pages[1] = get_next_page(page); 1347 BUG_ON(!pages[1]); 1348 1349 ret = __zs_map_object(area, pages, off, class->size); 1350 out: 1351 if (likely(!PageHugeObject(page))) 1352 ret += ZS_HANDLE_SIZE; 1353 1354 return ret; 1355 } 1356 EXPORT_SYMBOL_GPL(zs_map_object); 1357 1358 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1359 { 1360 struct zspage *zspage; 1361 struct page *page; 1362 unsigned long obj, off; 1363 unsigned int obj_idx; 1364 1365 unsigned int class_idx; 1366 enum fullness_group fg; 1367 struct size_class *class; 1368 struct mapping_area *area; 1369 1370 obj = handle_to_obj(handle); 1371 obj_to_location(obj, &page, &obj_idx); 1372 zspage = get_zspage(page); 1373 get_zspage_mapping(zspage, &class_idx, &fg); 1374 class = pool->size_class[class_idx]; 1375 off = (class->size * obj_idx) & ~PAGE_MASK; 1376 1377 area = this_cpu_ptr(&zs_map_area); 1378 if (off + class->size <= PAGE_SIZE) 1379 kunmap_atomic(area->vm_addr); 1380 else { 1381 struct page *pages[2]; 1382 1383 pages[0] = page; 1384 pages[1] = get_next_page(page); 1385 BUG_ON(!pages[1]); 1386 1387 __zs_unmap_object(area, pages, off, class->size); 1388 } 1389 put_cpu_var(zs_map_area); 1390 1391 migrate_read_unlock(zspage); 1392 unpin_tag(handle); 1393 } 1394 EXPORT_SYMBOL_GPL(zs_unmap_object); 1395 1396 /** 1397 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1398 * zsmalloc &size_class. 1399 * @pool: zsmalloc pool to use 1400 * 1401 * The function returns the size of the first huge class - any object of equal 1402 * or bigger size will be stored in zspage consisting of a single physical 1403 * page. 1404 * 1405 * Context: Any context. 1406 * 1407 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1408 */ 1409 size_t zs_huge_class_size(struct zs_pool *pool) 1410 { 1411 return huge_class_size; 1412 } 1413 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1414 1415 static unsigned long obj_malloc(struct size_class *class, 1416 struct zspage *zspage, unsigned long handle) 1417 { 1418 int i, nr_page, offset; 1419 unsigned long obj; 1420 struct link_free *link; 1421 1422 struct page *m_page; 1423 unsigned long m_offset; 1424 void *vaddr; 1425 1426 handle |= OBJ_ALLOCATED_TAG; 1427 obj = get_freeobj(zspage); 1428 1429 offset = obj * class->size; 1430 nr_page = offset >> PAGE_SHIFT; 1431 m_offset = offset & ~PAGE_MASK; 1432 m_page = get_first_page(zspage); 1433 1434 for (i = 0; i < nr_page; i++) 1435 m_page = get_next_page(m_page); 1436 1437 vaddr = kmap_atomic(m_page); 1438 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1439 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1440 if (likely(!PageHugeObject(m_page))) 1441 /* record handle in the header of allocated chunk */ 1442 link->handle = handle; 1443 else 1444 /* record handle to page->index */ 1445 zspage->first_page->index = handle; 1446 1447 kunmap_atomic(vaddr); 1448 mod_zspage_inuse(zspage, 1); 1449 zs_stat_inc(class, OBJ_USED, 1); 1450 1451 obj = location_to_obj(m_page, obj); 1452 1453 return obj; 1454 } 1455 1456 1457 /** 1458 * zs_malloc - Allocate block of given size from pool. 1459 * @pool: pool to allocate from 1460 * @size: size of block to allocate 1461 * @gfp: gfp flags when allocating object 1462 * 1463 * On success, handle to the allocated object is returned, 1464 * otherwise 0. 1465 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1466 */ 1467 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1468 { 1469 unsigned long handle, obj; 1470 struct size_class *class; 1471 enum fullness_group newfg; 1472 struct zspage *zspage; 1473 1474 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1475 return 0; 1476 1477 handle = cache_alloc_handle(pool, gfp); 1478 if (!handle) 1479 return 0; 1480 1481 /* extra space in chunk to keep the handle */ 1482 size += ZS_HANDLE_SIZE; 1483 class = pool->size_class[get_size_class_index(size)]; 1484 1485 spin_lock(&class->lock); 1486 zspage = find_get_zspage(class); 1487 if (likely(zspage)) { 1488 obj = obj_malloc(class, zspage, handle); 1489 /* Now move the zspage to another fullness group, if required */ 1490 fix_fullness_group(class, zspage); 1491 record_obj(handle, obj); 1492 spin_unlock(&class->lock); 1493 1494 return handle; 1495 } 1496 1497 spin_unlock(&class->lock); 1498 1499 zspage = alloc_zspage(pool, class, gfp); 1500 if (!zspage) { 1501 cache_free_handle(pool, handle); 1502 return 0; 1503 } 1504 1505 spin_lock(&class->lock); 1506 obj = obj_malloc(class, zspage, handle); 1507 newfg = get_fullness_group(class, zspage); 1508 insert_zspage(class, zspage, newfg); 1509 set_zspage_mapping(zspage, class->index, newfg); 1510 record_obj(handle, obj); 1511 atomic_long_add(class->pages_per_zspage, 1512 &pool->pages_allocated); 1513 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1514 1515 /* We completely set up zspage so mark them as movable */ 1516 SetZsPageMovable(pool, zspage); 1517 spin_unlock(&class->lock); 1518 1519 return handle; 1520 } 1521 EXPORT_SYMBOL_GPL(zs_malloc); 1522 1523 static void obj_free(struct size_class *class, unsigned long obj) 1524 { 1525 struct link_free *link; 1526 struct zspage *zspage; 1527 struct page *f_page; 1528 unsigned long f_offset; 1529 unsigned int f_objidx; 1530 void *vaddr; 1531 1532 obj &= ~OBJ_ALLOCATED_TAG; 1533 obj_to_location(obj, &f_page, &f_objidx); 1534 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1535 zspage = get_zspage(f_page); 1536 1537 vaddr = kmap_atomic(f_page); 1538 1539 /* Insert this object in containing zspage's freelist */ 1540 link = (struct link_free *)(vaddr + f_offset); 1541 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1542 kunmap_atomic(vaddr); 1543 set_freeobj(zspage, f_objidx); 1544 mod_zspage_inuse(zspage, -1); 1545 zs_stat_dec(class, OBJ_USED, 1); 1546 } 1547 1548 void zs_free(struct zs_pool *pool, unsigned long handle) 1549 { 1550 struct zspage *zspage; 1551 struct page *f_page; 1552 unsigned long obj; 1553 unsigned int f_objidx; 1554 int class_idx; 1555 struct size_class *class; 1556 enum fullness_group fullness; 1557 bool isolated; 1558 1559 if (unlikely(!handle)) 1560 return; 1561 1562 pin_tag(handle); 1563 obj = handle_to_obj(handle); 1564 obj_to_location(obj, &f_page, &f_objidx); 1565 zspage = get_zspage(f_page); 1566 1567 migrate_read_lock(zspage); 1568 1569 get_zspage_mapping(zspage, &class_idx, &fullness); 1570 class = pool->size_class[class_idx]; 1571 1572 spin_lock(&class->lock); 1573 obj_free(class, obj); 1574 fullness = fix_fullness_group(class, zspage); 1575 if (fullness != ZS_EMPTY) { 1576 migrate_read_unlock(zspage); 1577 goto out; 1578 } 1579 1580 isolated = is_zspage_isolated(zspage); 1581 migrate_read_unlock(zspage); 1582 /* If zspage is isolated, zs_page_putback will free the zspage */ 1583 if (likely(!isolated)) 1584 free_zspage(pool, class, zspage); 1585 out: 1586 1587 spin_unlock(&class->lock); 1588 unpin_tag(handle); 1589 cache_free_handle(pool, handle); 1590 } 1591 EXPORT_SYMBOL_GPL(zs_free); 1592 1593 static void zs_object_copy(struct size_class *class, unsigned long dst, 1594 unsigned long src) 1595 { 1596 struct page *s_page, *d_page; 1597 unsigned int s_objidx, d_objidx; 1598 unsigned long s_off, d_off; 1599 void *s_addr, *d_addr; 1600 int s_size, d_size, size; 1601 int written = 0; 1602 1603 s_size = d_size = class->size; 1604 1605 obj_to_location(src, &s_page, &s_objidx); 1606 obj_to_location(dst, &d_page, &d_objidx); 1607 1608 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1609 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1610 1611 if (s_off + class->size > PAGE_SIZE) 1612 s_size = PAGE_SIZE - s_off; 1613 1614 if (d_off + class->size > PAGE_SIZE) 1615 d_size = PAGE_SIZE - d_off; 1616 1617 s_addr = kmap_atomic(s_page); 1618 d_addr = kmap_atomic(d_page); 1619 1620 while (1) { 1621 size = min(s_size, d_size); 1622 memcpy(d_addr + d_off, s_addr + s_off, size); 1623 written += size; 1624 1625 if (written == class->size) 1626 break; 1627 1628 s_off += size; 1629 s_size -= size; 1630 d_off += size; 1631 d_size -= size; 1632 1633 if (s_off >= PAGE_SIZE) { 1634 kunmap_atomic(d_addr); 1635 kunmap_atomic(s_addr); 1636 s_page = get_next_page(s_page); 1637 s_addr = kmap_atomic(s_page); 1638 d_addr = kmap_atomic(d_page); 1639 s_size = class->size - written; 1640 s_off = 0; 1641 } 1642 1643 if (d_off >= PAGE_SIZE) { 1644 kunmap_atomic(d_addr); 1645 d_page = get_next_page(d_page); 1646 d_addr = kmap_atomic(d_page); 1647 d_size = class->size - written; 1648 d_off = 0; 1649 } 1650 } 1651 1652 kunmap_atomic(d_addr); 1653 kunmap_atomic(s_addr); 1654 } 1655 1656 /* 1657 * Find alloced object in zspage from index object and 1658 * return handle. 1659 */ 1660 static unsigned long find_alloced_obj(struct size_class *class, 1661 struct page *page, int *obj_idx) 1662 { 1663 unsigned long head; 1664 int offset = 0; 1665 int index = *obj_idx; 1666 unsigned long handle = 0; 1667 void *addr = kmap_atomic(page); 1668 1669 offset = get_first_obj_offset(page); 1670 offset += class->size * index; 1671 1672 while (offset < PAGE_SIZE) { 1673 head = obj_to_head(page, addr + offset); 1674 if (head & OBJ_ALLOCATED_TAG) { 1675 handle = head & ~OBJ_ALLOCATED_TAG; 1676 if (trypin_tag(handle)) 1677 break; 1678 handle = 0; 1679 } 1680 1681 offset += class->size; 1682 index++; 1683 } 1684 1685 kunmap_atomic(addr); 1686 1687 *obj_idx = index; 1688 1689 return handle; 1690 } 1691 1692 struct zs_compact_control { 1693 /* Source spage for migration which could be a subpage of zspage */ 1694 struct page *s_page; 1695 /* Destination page for migration which should be a first page 1696 * of zspage. */ 1697 struct page *d_page; 1698 /* Starting object index within @s_page which used for live object 1699 * in the subpage. */ 1700 int obj_idx; 1701 }; 1702 1703 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1704 struct zs_compact_control *cc) 1705 { 1706 unsigned long used_obj, free_obj; 1707 unsigned long handle; 1708 struct page *s_page = cc->s_page; 1709 struct page *d_page = cc->d_page; 1710 int obj_idx = cc->obj_idx; 1711 int ret = 0; 1712 1713 while (1) { 1714 handle = find_alloced_obj(class, s_page, &obj_idx); 1715 if (!handle) { 1716 s_page = get_next_page(s_page); 1717 if (!s_page) 1718 break; 1719 obj_idx = 0; 1720 continue; 1721 } 1722 1723 /* Stop if there is no more space */ 1724 if (zspage_full(class, get_zspage(d_page))) { 1725 unpin_tag(handle); 1726 ret = -ENOMEM; 1727 break; 1728 } 1729 1730 used_obj = handle_to_obj(handle); 1731 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1732 zs_object_copy(class, free_obj, used_obj); 1733 obj_idx++; 1734 /* 1735 * record_obj updates handle's value to free_obj and it will 1736 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1737 * breaks synchronization using pin_tag(e,g, zs_free) so 1738 * let's keep the lock bit. 1739 */ 1740 free_obj |= BIT(HANDLE_PIN_BIT); 1741 record_obj(handle, free_obj); 1742 unpin_tag(handle); 1743 obj_free(class, used_obj); 1744 } 1745 1746 /* Remember last position in this iteration */ 1747 cc->s_page = s_page; 1748 cc->obj_idx = obj_idx; 1749 1750 return ret; 1751 } 1752 1753 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1754 { 1755 int i; 1756 struct zspage *zspage; 1757 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1758 1759 if (!source) { 1760 fg[0] = ZS_ALMOST_FULL; 1761 fg[1] = ZS_ALMOST_EMPTY; 1762 } 1763 1764 for (i = 0; i < 2; i++) { 1765 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1766 struct zspage, list); 1767 if (zspage) { 1768 VM_BUG_ON(is_zspage_isolated(zspage)); 1769 remove_zspage(class, zspage, fg[i]); 1770 return zspage; 1771 } 1772 } 1773 1774 return zspage; 1775 } 1776 1777 /* 1778 * putback_zspage - add @zspage into right class's fullness list 1779 * @class: destination class 1780 * @zspage: target page 1781 * 1782 * Return @zspage's fullness_group 1783 */ 1784 static enum fullness_group putback_zspage(struct size_class *class, 1785 struct zspage *zspage) 1786 { 1787 enum fullness_group fullness; 1788 1789 VM_BUG_ON(is_zspage_isolated(zspage)); 1790 1791 fullness = get_fullness_group(class, zspage); 1792 insert_zspage(class, zspage, fullness); 1793 set_zspage_mapping(zspage, class->index, fullness); 1794 1795 return fullness; 1796 } 1797 1798 #ifdef CONFIG_COMPACTION 1799 /* 1800 * To prevent zspage destroy during migration, zspage freeing should 1801 * hold locks of all pages in the zspage. 1802 */ 1803 static void lock_zspage(struct zspage *zspage) 1804 { 1805 struct page *page = get_first_page(zspage); 1806 1807 do { 1808 lock_page(page); 1809 } while ((page = get_next_page(page)) != NULL); 1810 } 1811 1812 static int zs_init_fs_context(struct fs_context *fc) 1813 { 1814 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1815 } 1816 1817 static struct file_system_type zsmalloc_fs = { 1818 .name = "zsmalloc", 1819 .init_fs_context = zs_init_fs_context, 1820 .kill_sb = kill_anon_super, 1821 }; 1822 1823 static int zsmalloc_mount(void) 1824 { 1825 int ret = 0; 1826 1827 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1828 if (IS_ERR(zsmalloc_mnt)) 1829 ret = PTR_ERR(zsmalloc_mnt); 1830 1831 return ret; 1832 } 1833 1834 static void zsmalloc_unmount(void) 1835 { 1836 kern_unmount(zsmalloc_mnt); 1837 } 1838 1839 static void migrate_lock_init(struct zspage *zspage) 1840 { 1841 rwlock_init(&zspage->lock); 1842 } 1843 1844 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1845 { 1846 read_lock(&zspage->lock); 1847 } 1848 1849 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1850 { 1851 read_unlock(&zspage->lock); 1852 } 1853 1854 static void migrate_write_lock(struct zspage *zspage) 1855 { 1856 write_lock(&zspage->lock); 1857 } 1858 1859 static void migrate_write_unlock(struct zspage *zspage) 1860 { 1861 write_unlock(&zspage->lock); 1862 } 1863 1864 /* Number of isolated subpage for *page migration* in this zspage */ 1865 static void inc_zspage_isolation(struct zspage *zspage) 1866 { 1867 zspage->isolated++; 1868 } 1869 1870 static void dec_zspage_isolation(struct zspage *zspage) 1871 { 1872 zspage->isolated--; 1873 } 1874 1875 static void putback_zspage_deferred(struct zs_pool *pool, 1876 struct size_class *class, 1877 struct zspage *zspage) 1878 { 1879 enum fullness_group fg; 1880 1881 fg = putback_zspage(class, zspage); 1882 if (fg == ZS_EMPTY) 1883 schedule_work(&pool->free_work); 1884 1885 } 1886 1887 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1888 { 1889 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1890 atomic_long_dec(&pool->isolated_pages); 1891 /* 1892 * There's no possibility of racing, since wait_for_isolated_drain() 1893 * checks the isolated count under &class->lock after enqueuing 1894 * on migration_wait. 1895 */ 1896 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1897 wake_up_all(&pool->migration_wait); 1898 } 1899 1900 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1901 struct page *newpage, struct page *oldpage) 1902 { 1903 struct page *page; 1904 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1905 int idx = 0; 1906 1907 page = get_first_page(zspage); 1908 do { 1909 if (page == oldpage) 1910 pages[idx] = newpage; 1911 else 1912 pages[idx] = page; 1913 idx++; 1914 } while ((page = get_next_page(page)) != NULL); 1915 1916 create_page_chain(class, zspage, pages); 1917 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1918 if (unlikely(PageHugeObject(oldpage))) 1919 newpage->index = oldpage->index; 1920 __SetPageMovable(newpage, page_mapping(oldpage)); 1921 } 1922 1923 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1924 { 1925 struct zs_pool *pool; 1926 struct size_class *class; 1927 int class_idx; 1928 enum fullness_group fullness; 1929 struct zspage *zspage; 1930 struct address_space *mapping; 1931 1932 /* 1933 * Page is locked so zspage couldn't be destroyed. For detail, look at 1934 * lock_zspage in free_zspage. 1935 */ 1936 VM_BUG_ON_PAGE(!PageMovable(page), page); 1937 VM_BUG_ON_PAGE(PageIsolated(page), page); 1938 1939 zspage = get_zspage(page); 1940 1941 /* 1942 * Without class lock, fullness could be stale while class_idx is okay 1943 * because class_idx is constant unless page is freed so we should get 1944 * fullness again under class lock. 1945 */ 1946 get_zspage_mapping(zspage, &class_idx, &fullness); 1947 mapping = page_mapping(page); 1948 pool = mapping->private_data; 1949 class = pool->size_class[class_idx]; 1950 1951 spin_lock(&class->lock); 1952 if (get_zspage_inuse(zspage) == 0) { 1953 spin_unlock(&class->lock); 1954 return false; 1955 } 1956 1957 /* zspage is isolated for object migration */ 1958 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1959 spin_unlock(&class->lock); 1960 return false; 1961 } 1962 1963 /* 1964 * If this is first time isolation for the zspage, isolate zspage from 1965 * size_class to prevent further object allocation from the zspage. 1966 */ 1967 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1968 get_zspage_mapping(zspage, &class_idx, &fullness); 1969 atomic_long_inc(&pool->isolated_pages); 1970 remove_zspage(class, zspage, fullness); 1971 } 1972 1973 inc_zspage_isolation(zspage); 1974 spin_unlock(&class->lock); 1975 1976 return true; 1977 } 1978 1979 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1980 struct page *page, enum migrate_mode mode) 1981 { 1982 struct zs_pool *pool; 1983 struct size_class *class; 1984 int class_idx; 1985 enum fullness_group fullness; 1986 struct zspage *zspage; 1987 struct page *dummy; 1988 void *s_addr, *d_addr, *addr; 1989 int offset, pos; 1990 unsigned long handle, head; 1991 unsigned long old_obj, new_obj; 1992 unsigned int obj_idx; 1993 int ret = -EAGAIN; 1994 1995 /* 1996 * We cannot support the _NO_COPY case here, because copy needs to 1997 * happen under the zs lock, which does not work with 1998 * MIGRATE_SYNC_NO_COPY workflow. 1999 */ 2000 if (mode == MIGRATE_SYNC_NO_COPY) 2001 return -EINVAL; 2002 2003 VM_BUG_ON_PAGE(!PageMovable(page), page); 2004 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2005 2006 zspage = get_zspage(page); 2007 2008 /* Concurrent compactor cannot migrate any subpage in zspage */ 2009 migrate_write_lock(zspage); 2010 get_zspage_mapping(zspage, &class_idx, &fullness); 2011 pool = mapping->private_data; 2012 class = pool->size_class[class_idx]; 2013 offset = get_first_obj_offset(page); 2014 2015 spin_lock(&class->lock); 2016 if (!get_zspage_inuse(zspage)) { 2017 /* 2018 * Set "offset" to end of the page so that every loops 2019 * skips unnecessary object scanning. 2020 */ 2021 offset = PAGE_SIZE; 2022 } 2023 2024 pos = offset; 2025 s_addr = kmap_atomic(page); 2026 while (pos < PAGE_SIZE) { 2027 head = obj_to_head(page, s_addr + pos); 2028 if (head & OBJ_ALLOCATED_TAG) { 2029 handle = head & ~OBJ_ALLOCATED_TAG; 2030 if (!trypin_tag(handle)) 2031 goto unpin_objects; 2032 } 2033 pos += class->size; 2034 } 2035 2036 /* 2037 * Here, any user cannot access all objects in the zspage so let's move. 2038 */ 2039 d_addr = kmap_atomic(newpage); 2040 memcpy(d_addr, s_addr, PAGE_SIZE); 2041 kunmap_atomic(d_addr); 2042 2043 for (addr = s_addr + offset; addr < s_addr + pos; 2044 addr += class->size) { 2045 head = obj_to_head(page, addr); 2046 if (head & OBJ_ALLOCATED_TAG) { 2047 handle = head & ~OBJ_ALLOCATED_TAG; 2048 if (!testpin_tag(handle)) 2049 BUG(); 2050 2051 old_obj = handle_to_obj(handle); 2052 obj_to_location(old_obj, &dummy, &obj_idx); 2053 new_obj = (unsigned long)location_to_obj(newpage, 2054 obj_idx); 2055 new_obj |= BIT(HANDLE_PIN_BIT); 2056 record_obj(handle, new_obj); 2057 } 2058 } 2059 2060 replace_sub_page(class, zspage, newpage, page); 2061 get_page(newpage); 2062 2063 dec_zspage_isolation(zspage); 2064 2065 /* 2066 * Page migration is done so let's putback isolated zspage to 2067 * the list if @page is final isolated subpage in the zspage. 2068 */ 2069 if (!is_zspage_isolated(zspage)) { 2070 /* 2071 * We cannot race with zs_destroy_pool() here because we wait 2072 * for isolation to hit zero before we start destroying. 2073 * Also, we ensure that everyone can see pool->destroying before 2074 * we start waiting. 2075 */ 2076 putback_zspage_deferred(pool, class, zspage); 2077 zs_pool_dec_isolated(pool); 2078 } 2079 2080 if (page_zone(newpage) != page_zone(page)) { 2081 dec_zone_page_state(page, NR_ZSPAGES); 2082 inc_zone_page_state(newpage, NR_ZSPAGES); 2083 } 2084 2085 reset_page(page); 2086 put_page(page); 2087 page = newpage; 2088 2089 ret = MIGRATEPAGE_SUCCESS; 2090 unpin_objects: 2091 for (addr = s_addr + offset; addr < s_addr + pos; 2092 addr += class->size) { 2093 head = obj_to_head(page, addr); 2094 if (head & OBJ_ALLOCATED_TAG) { 2095 handle = head & ~OBJ_ALLOCATED_TAG; 2096 if (!testpin_tag(handle)) 2097 BUG(); 2098 unpin_tag(handle); 2099 } 2100 } 2101 kunmap_atomic(s_addr); 2102 spin_unlock(&class->lock); 2103 migrate_write_unlock(zspage); 2104 2105 return ret; 2106 } 2107 2108 static void zs_page_putback(struct page *page) 2109 { 2110 struct zs_pool *pool; 2111 struct size_class *class; 2112 int class_idx; 2113 enum fullness_group fg; 2114 struct address_space *mapping; 2115 struct zspage *zspage; 2116 2117 VM_BUG_ON_PAGE(!PageMovable(page), page); 2118 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2119 2120 zspage = get_zspage(page); 2121 get_zspage_mapping(zspage, &class_idx, &fg); 2122 mapping = page_mapping(page); 2123 pool = mapping->private_data; 2124 class = pool->size_class[class_idx]; 2125 2126 spin_lock(&class->lock); 2127 dec_zspage_isolation(zspage); 2128 if (!is_zspage_isolated(zspage)) { 2129 /* 2130 * Due to page_lock, we cannot free zspage immediately 2131 * so let's defer. 2132 */ 2133 putback_zspage_deferred(pool, class, zspage); 2134 zs_pool_dec_isolated(pool); 2135 } 2136 spin_unlock(&class->lock); 2137 } 2138 2139 static const struct address_space_operations zsmalloc_aops = { 2140 .isolate_page = zs_page_isolate, 2141 .migratepage = zs_page_migrate, 2142 .putback_page = zs_page_putback, 2143 }; 2144 2145 static int zs_register_migration(struct zs_pool *pool) 2146 { 2147 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2148 if (IS_ERR(pool->inode)) { 2149 pool->inode = NULL; 2150 return 1; 2151 } 2152 2153 pool->inode->i_mapping->private_data = pool; 2154 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2155 return 0; 2156 } 2157 2158 static bool pool_isolated_are_drained(struct zs_pool *pool) 2159 { 2160 return atomic_long_read(&pool->isolated_pages) == 0; 2161 } 2162 2163 /* Function for resolving migration */ 2164 static void wait_for_isolated_drain(struct zs_pool *pool) 2165 { 2166 2167 /* 2168 * We're in the process of destroying the pool, so there are no 2169 * active allocations. zs_page_isolate() fails for completely free 2170 * zspages, so we need only wait for the zs_pool's isolated 2171 * count to hit zero. 2172 */ 2173 wait_event(pool->migration_wait, 2174 pool_isolated_are_drained(pool)); 2175 } 2176 2177 static void zs_unregister_migration(struct zs_pool *pool) 2178 { 2179 pool->destroying = true; 2180 /* 2181 * We need a memory barrier here to ensure global visibility of 2182 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2183 * case we don't care, or it will be > 0 and pool->destroying will 2184 * ensure that we wake up once isolation hits 0. 2185 */ 2186 smp_mb(); 2187 wait_for_isolated_drain(pool); /* This can block */ 2188 flush_work(&pool->free_work); 2189 iput(pool->inode); 2190 } 2191 2192 /* 2193 * Caller should hold page_lock of all pages in the zspage 2194 * In here, we cannot use zspage meta data. 2195 */ 2196 static void async_free_zspage(struct work_struct *work) 2197 { 2198 int i; 2199 struct size_class *class; 2200 unsigned int class_idx; 2201 enum fullness_group fullness; 2202 struct zspage *zspage, *tmp; 2203 LIST_HEAD(free_pages); 2204 struct zs_pool *pool = container_of(work, struct zs_pool, 2205 free_work); 2206 2207 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2208 class = pool->size_class[i]; 2209 if (class->index != i) 2210 continue; 2211 2212 spin_lock(&class->lock); 2213 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2214 spin_unlock(&class->lock); 2215 } 2216 2217 2218 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2219 list_del(&zspage->list); 2220 lock_zspage(zspage); 2221 2222 get_zspage_mapping(zspage, &class_idx, &fullness); 2223 VM_BUG_ON(fullness != ZS_EMPTY); 2224 class = pool->size_class[class_idx]; 2225 spin_lock(&class->lock); 2226 __free_zspage(pool, pool->size_class[class_idx], zspage); 2227 spin_unlock(&class->lock); 2228 } 2229 }; 2230 2231 static void kick_deferred_free(struct zs_pool *pool) 2232 { 2233 schedule_work(&pool->free_work); 2234 } 2235 2236 static void init_deferred_free(struct zs_pool *pool) 2237 { 2238 INIT_WORK(&pool->free_work, async_free_zspage); 2239 } 2240 2241 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2242 { 2243 struct page *page = get_first_page(zspage); 2244 2245 do { 2246 WARN_ON(!trylock_page(page)); 2247 __SetPageMovable(page, pool->inode->i_mapping); 2248 unlock_page(page); 2249 } while ((page = get_next_page(page)) != NULL); 2250 } 2251 #endif 2252 2253 /* 2254 * 2255 * Based on the number of unused allocated objects calculate 2256 * and return the number of pages that we can free. 2257 */ 2258 static unsigned long zs_can_compact(struct size_class *class) 2259 { 2260 unsigned long obj_wasted; 2261 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2262 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2263 2264 if (obj_allocated <= obj_used) 2265 return 0; 2266 2267 obj_wasted = obj_allocated - obj_used; 2268 obj_wasted /= class->objs_per_zspage; 2269 2270 return obj_wasted * class->pages_per_zspage; 2271 } 2272 2273 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2274 { 2275 struct zs_compact_control cc; 2276 struct zspage *src_zspage; 2277 struct zspage *dst_zspage = NULL; 2278 2279 spin_lock(&class->lock); 2280 while ((src_zspage = isolate_zspage(class, true))) { 2281 2282 if (!zs_can_compact(class)) 2283 break; 2284 2285 cc.obj_idx = 0; 2286 cc.s_page = get_first_page(src_zspage); 2287 2288 while ((dst_zspage = isolate_zspage(class, false))) { 2289 cc.d_page = get_first_page(dst_zspage); 2290 /* 2291 * If there is no more space in dst_page, resched 2292 * and see if anyone had allocated another zspage. 2293 */ 2294 if (!migrate_zspage(pool, class, &cc)) 2295 break; 2296 2297 putback_zspage(class, dst_zspage); 2298 } 2299 2300 /* Stop if we couldn't find slot */ 2301 if (dst_zspage == NULL) 2302 break; 2303 2304 putback_zspage(class, dst_zspage); 2305 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2306 free_zspage(pool, class, src_zspage); 2307 pool->stats.pages_compacted += class->pages_per_zspage; 2308 } 2309 spin_unlock(&class->lock); 2310 cond_resched(); 2311 spin_lock(&class->lock); 2312 } 2313 2314 if (src_zspage) 2315 putback_zspage(class, src_zspage); 2316 2317 spin_unlock(&class->lock); 2318 } 2319 2320 unsigned long zs_compact(struct zs_pool *pool) 2321 { 2322 int i; 2323 struct size_class *class; 2324 2325 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2326 class = pool->size_class[i]; 2327 if (!class) 2328 continue; 2329 if (class->index != i) 2330 continue; 2331 __zs_compact(pool, class); 2332 } 2333 2334 return pool->stats.pages_compacted; 2335 } 2336 EXPORT_SYMBOL_GPL(zs_compact); 2337 2338 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2339 { 2340 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2341 } 2342 EXPORT_SYMBOL_GPL(zs_pool_stats); 2343 2344 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2345 struct shrink_control *sc) 2346 { 2347 unsigned long pages_freed; 2348 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2349 shrinker); 2350 2351 pages_freed = pool->stats.pages_compacted; 2352 /* 2353 * Compact classes and calculate compaction delta. 2354 * Can run concurrently with a manually triggered 2355 * (by user) compaction. 2356 */ 2357 pages_freed = zs_compact(pool) - pages_freed; 2358 2359 return pages_freed ? pages_freed : SHRINK_STOP; 2360 } 2361 2362 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2363 struct shrink_control *sc) 2364 { 2365 int i; 2366 struct size_class *class; 2367 unsigned long pages_to_free = 0; 2368 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2369 shrinker); 2370 2371 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2372 class = pool->size_class[i]; 2373 if (!class) 2374 continue; 2375 if (class->index != i) 2376 continue; 2377 2378 pages_to_free += zs_can_compact(class); 2379 } 2380 2381 return pages_to_free; 2382 } 2383 2384 static void zs_unregister_shrinker(struct zs_pool *pool) 2385 { 2386 unregister_shrinker(&pool->shrinker); 2387 } 2388 2389 static int zs_register_shrinker(struct zs_pool *pool) 2390 { 2391 pool->shrinker.scan_objects = zs_shrinker_scan; 2392 pool->shrinker.count_objects = zs_shrinker_count; 2393 pool->shrinker.batch = 0; 2394 pool->shrinker.seeks = DEFAULT_SEEKS; 2395 2396 return register_shrinker(&pool->shrinker); 2397 } 2398 2399 /** 2400 * zs_create_pool - Creates an allocation pool to work from. 2401 * @name: pool name to be created 2402 * 2403 * This function must be called before anything when using 2404 * the zsmalloc allocator. 2405 * 2406 * On success, a pointer to the newly created pool is returned, 2407 * otherwise NULL. 2408 */ 2409 struct zs_pool *zs_create_pool(const char *name) 2410 { 2411 int i; 2412 struct zs_pool *pool; 2413 struct size_class *prev_class = NULL; 2414 2415 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2416 if (!pool) 2417 return NULL; 2418 2419 init_deferred_free(pool); 2420 2421 pool->name = kstrdup(name, GFP_KERNEL); 2422 if (!pool->name) 2423 goto err; 2424 2425 #ifdef CONFIG_COMPACTION 2426 init_waitqueue_head(&pool->migration_wait); 2427 #endif 2428 2429 if (create_cache(pool)) 2430 goto err; 2431 2432 /* 2433 * Iterate reversely, because, size of size_class that we want to use 2434 * for merging should be larger or equal to current size. 2435 */ 2436 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2437 int size; 2438 int pages_per_zspage; 2439 int objs_per_zspage; 2440 struct size_class *class; 2441 int fullness = 0; 2442 2443 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2444 if (size > ZS_MAX_ALLOC_SIZE) 2445 size = ZS_MAX_ALLOC_SIZE; 2446 pages_per_zspage = get_pages_per_zspage(size); 2447 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2448 2449 /* 2450 * We iterate from biggest down to smallest classes, 2451 * so huge_class_size holds the size of the first huge 2452 * class. Any object bigger than or equal to that will 2453 * endup in the huge class. 2454 */ 2455 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2456 !huge_class_size) { 2457 huge_class_size = size; 2458 /* 2459 * The object uses ZS_HANDLE_SIZE bytes to store the 2460 * handle. We need to subtract it, because zs_malloc() 2461 * unconditionally adds handle size before it performs 2462 * size class search - so object may be smaller than 2463 * huge class size, yet it still can end up in the huge 2464 * class because it grows by ZS_HANDLE_SIZE extra bytes 2465 * right before class lookup. 2466 */ 2467 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2468 } 2469 2470 /* 2471 * size_class is used for normal zsmalloc operation such 2472 * as alloc/free for that size. Although it is natural that we 2473 * have one size_class for each size, there is a chance that we 2474 * can get more memory utilization if we use one size_class for 2475 * many different sizes whose size_class have same 2476 * characteristics. So, we makes size_class point to 2477 * previous size_class if possible. 2478 */ 2479 if (prev_class) { 2480 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2481 pool->size_class[i] = prev_class; 2482 continue; 2483 } 2484 } 2485 2486 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2487 if (!class) 2488 goto err; 2489 2490 class->size = size; 2491 class->index = i; 2492 class->pages_per_zspage = pages_per_zspage; 2493 class->objs_per_zspage = objs_per_zspage; 2494 spin_lock_init(&class->lock); 2495 pool->size_class[i] = class; 2496 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2497 fullness++) 2498 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2499 2500 prev_class = class; 2501 } 2502 2503 /* debug only, don't abort if it fails */ 2504 zs_pool_stat_create(pool, name); 2505 2506 if (zs_register_migration(pool)) 2507 goto err; 2508 2509 /* 2510 * Not critical since shrinker is only used to trigger internal 2511 * defragmentation of the pool which is pretty optional thing. If 2512 * registration fails we still can use the pool normally and user can 2513 * trigger compaction manually. Thus, ignore return code. 2514 */ 2515 zs_register_shrinker(pool); 2516 2517 return pool; 2518 2519 err: 2520 zs_destroy_pool(pool); 2521 return NULL; 2522 } 2523 EXPORT_SYMBOL_GPL(zs_create_pool); 2524 2525 void zs_destroy_pool(struct zs_pool *pool) 2526 { 2527 int i; 2528 2529 zs_unregister_shrinker(pool); 2530 zs_unregister_migration(pool); 2531 zs_pool_stat_destroy(pool); 2532 2533 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2534 int fg; 2535 struct size_class *class = pool->size_class[i]; 2536 2537 if (!class) 2538 continue; 2539 2540 if (class->index != i) 2541 continue; 2542 2543 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2544 if (!list_empty(&class->fullness_list[fg])) { 2545 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2546 class->size, fg); 2547 } 2548 } 2549 kfree(class); 2550 } 2551 2552 destroy_cache(pool); 2553 kfree(pool->name); 2554 kfree(pool); 2555 } 2556 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2557 2558 static int __init zs_init(void) 2559 { 2560 int ret; 2561 2562 ret = zsmalloc_mount(); 2563 if (ret) 2564 goto out; 2565 2566 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2567 zs_cpu_prepare, zs_cpu_dead); 2568 if (ret) 2569 goto hp_setup_fail; 2570 2571 #ifdef CONFIG_ZPOOL 2572 zpool_register_driver(&zs_zpool_driver); 2573 #endif 2574 2575 zs_stat_init(); 2576 2577 return 0; 2578 2579 hp_setup_fail: 2580 zsmalloc_unmount(); 2581 out: 2582 return ret; 2583 } 2584 2585 static void __exit zs_exit(void) 2586 { 2587 #ifdef CONFIG_ZPOOL 2588 zpool_unregister_driver(&zs_zpool_driver); 2589 #endif 2590 zsmalloc_unmount(); 2591 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2592 2593 zs_stat_exit(); 2594 } 2595 2596 module_init(zs_init); 2597 module_exit(zs_exit); 2598 2599 MODULE_LICENSE("Dual BSD/GPL"); 2600 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2601