1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <linux/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than of equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * a single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 char *vm_buf; /* copy buffer for objects that span pages */ 297 char *vm_addr; /* address of kmap_atomic()'ed pages */ 298 enum zs_mapmode vm_mm; /* mapping mode */ 299 }; 300 301 #ifdef CONFIG_COMPACTION 302 static int zs_register_migration(struct zs_pool *pool); 303 static void zs_unregister_migration(struct zs_pool *pool); 304 static void migrate_lock_init(struct zspage *zspage); 305 static void migrate_read_lock(struct zspage *zspage); 306 static void migrate_read_unlock(struct zspage *zspage); 307 static void kick_deferred_free(struct zs_pool *pool); 308 static void init_deferred_free(struct zs_pool *pool); 309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 310 #else 311 static int zsmalloc_mount(void) { return 0; } 312 static void zsmalloc_unmount(void) {} 313 static int zs_register_migration(struct zs_pool *pool) { return 0; } 314 static void zs_unregister_migration(struct zs_pool *pool) {} 315 static void migrate_lock_init(struct zspage *zspage) {} 316 static void migrate_read_lock(struct zspage *zspage) {} 317 static void migrate_read_unlock(struct zspage *zspage) {} 318 static void kick_deferred_free(struct zs_pool *pool) {} 319 static void init_deferred_free(struct zs_pool *pool) {} 320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 321 #endif 322 323 static int create_cache(struct zs_pool *pool) 324 { 325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 326 0, 0, NULL); 327 if (!pool->handle_cachep) 328 return 1; 329 330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 331 0, 0, NULL); 332 if (!pool->zspage_cachep) { 333 kmem_cache_destroy(pool->handle_cachep); 334 pool->handle_cachep = NULL; 335 return 1; 336 } 337 338 return 0; 339 } 340 341 static void destroy_cache(struct zs_pool *pool) 342 { 343 kmem_cache_destroy(pool->handle_cachep); 344 kmem_cache_destroy(pool->zspage_cachep); 345 } 346 347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 348 { 349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 351 } 352 353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 354 { 355 kmem_cache_free(pool->handle_cachep, (void *)handle); 356 } 357 358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 359 { 360 return kmem_cache_alloc(pool->zspage_cachep, 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 362 } 363 364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 365 { 366 kmem_cache_free(pool->zspage_cachep, zspage); 367 } 368 369 static void record_obj(unsigned long handle, unsigned long obj) 370 { 371 /* 372 * lsb of @obj represents handle lock while other bits 373 * represent object value the handle is pointing so 374 * updating shouldn't do store tearing. 375 */ 376 WRITE_ONCE(*(unsigned long *)handle, obj); 377 } 378 379 /* zpool driver */ 380 381 #ifdef CONFIG_ZPOOL 382 383 static void *zs_zpool_create(const char *name, gfp_t gfp, 384 const struct zpool_ops *zpool_ops, 385 struct zpool *zpool) 386 { 387 /* 388 * Ignore global gfp flags: zs_malloc() may be invoked from 389 * different contexts and its caller must provide a valid 390 * gfp mask. 391 */ 392 return zs_create_pool(name); 393 } 394 395 static void zs_zpool_destroy(void *pool) 396 { 397 zs_destroy_pool(pool); 398 } 399 400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 401 unsigned long *handle) 402 { 403 *handle = zs_malloc(pool, size, gfp); 404 return *handle ? 0 : -1; 405 } 406 static void zs_zpool_free(void *pool, unsigned long handle) 407 { 408 zs_free(pool, handle); 409 } 410 411 static void *zs_zpool_map(void *pool, unsigned long handle, 412 enum zpool_mapmode mm) 413 { 414 enum zs_mapmode zs_mm; 415 416 switch (mm) { 417 case ZPOOL_MM_RO: 418 zs_mm = ZS_MM_RO; 419 break; 420 case ZPOOL_MM_WO: 421 zs_mm = ZS_MM_WO; 422 break; 423 case ZPOOL_MM_RW: 424 default: 425 zs_mm = ZS_MM_RW; 426 break; 427 } 428 429 return zs_map_object(pool, handle, zs_mm); 430 } 431 static void zs_zpool_unmap(void *pool, unsigned long handle) 432 { 433 zs_unmap_object(pool, handle); 434 } 435 436 static u64 zs_zpool_total_size(void *pool) 437 { 438 return zs_get_total_pages(pool) << PAGE_SHIFT; 439 } 440 441 static struct zpool_driver zs_zpool_driver = { 442 .type = "zsmalloc", 443 .owner = THIS_MODULE, 444 .create = zs_zpool_create, 445 .destroy = zs_zpool_destroy, 446 .malloc_support_movable = true, 447 .malloc = zs_zpool_malloc, 448 .free = zs_zpool_free, 449 .map = zs_zpool_map, 450 .unmap = zs_zpool_unmap, 451 .total_size = zs_zpool_total_size, 452 }; 453 454 MODULE_ALIAS("zpool-zsmalloc"); 455 #endif /* CONFIG_ZPOOL */ 456 457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 459 460 static bool is_zspage_isolated(struct zspage *zspage) 461 { 462 return zspage->isolated; 463 } 464 465 static __maybe_unused int is_first_page(struct page *page) 466 { 467 return PagePrivate(page); 468 } 469 470 /* Protected by class->lock */ 471 static inline int get_zspage_inuse(struct zspage *zspage) 472 { 473 return zspage->inuse; 474 } 475 476 477 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 478 { 479 zspage->inuse += val; 480 } 481 482 static inline struct page *get_first_page(struct zspage *zspage) 483 { 484 struct page *first_page = zspage->first_page; 485 486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 487 return first_page; 488 } 489 490 static inline int get_first_obj_offset(struct page *page) 491 { 492 return page->units; 493 } 494 495 static inline void set_first_obj_offset(struct page *page, int offset) 496 { 497 page->units = offset; 498 } 499 500 static inline unsigned int get_freeobj(struct zspage *zspage) 501 { 502 return zspage->freeobj; 503 } 504 505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 506 { 507 zspage->freeobj = obj; 508 } 509 510 static void get_zspage_mapping(struct zspage *zspage, 511 unsigned int *class_idx, 512 enum fullness_group *fullness) 513 { 514 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 515 516 *fullness = zspage->fullness; 517 *class_idx = zspage->class; 518 } 519 520 static void set_zspage_mapping(struct zspage *zspage, 521 unsigned int class_idx, 522 enum fullness_group fullness) 523 { 524 zspage->class = class_idx; 525 zspage->fullness = fullness; 526 } 527 528 /* 529 * zsmalloc divides the pool into various size classes where each 530 * class maintains a list of zspages where each zspage is divided 531 * into equal sized chunks. Each allocation falls into one of these 532 * classes depending on its size. This function returns index of the 533 * size class which has chunk size big enough to hold the give size. 534 */ 535 static int get_size_class_index(int size) 536 { 537 int idx = 0; 538 539 if (likely(size > ZS_MIN_ALLOC_SIZE)) 540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 541 ZS_SIZE_CLASS_DELTA); 542 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 544 } 545 546 /* type can be of enum type zs_stat_type or fullness_group */ 547 static inline void zs_stat_inc(struct size_class *class, 548 int type, unsigned long cnt) 549 { 550 class->stats.objs[type] += cnt; 551 } 552 553 /* type can be of enum type zs_stat_type or fullness_group */ 554 static inline void zs_stat_dec(struct size_class *class, 555 int type, unsigned long cnt) 556 { 557 class->stats.objs[type] -= cnt; 558 } 559 560 /* type can be of enum type zs_stat_type or fullness_group */ 561 static inline unsigned long zs_stat_get(struct size_class *class, 562 int type) 563 { 564 return class->stats.objs[type]; 565 } 566 567 #ifdef CONFIG_ZSMALLOC_STAT 568 569 static void __init zs_stat_init(void) 570 { 571 if (!debugfs_initialized()) { 572 pr_warn("debugfs not available, stat dir not created\n"); 573 return; 574 } 575 576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 577 } 578 579 static void __exit zs_stat_exit(void) 580 { 581 debugfs_remove_recursive(zs_stat_root); 582 } 583 584 static unsigned long zs_can_compact(struct size_class *class); 585 586 static int zs_stats_size_show(struct seq_file *s, void *v) 587 { 588 int i; 589 struct zs_pool *pool = s->private; 590 struct size_class *class; 591 int objs_per_zspage; 592 unsigned long class_almost_full, class_almost_empty; 593 unsigned long obj_allocated, obj_used, pages_used, freeable; 594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 596 unsigned long total_freeable = 0; 597 598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 599 "class", "size", "almost_full", "almost_empty", 600 "obj_allocated", "obj_used", "pages_used", 601 "pages_per_zspage", "freeable"); 602 603 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 604 class = pool->size_class[i]; 605 606 if (class->index != i) 607 continue; 608 609 spin_lock(&class->lock); 610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 613 obj_used = zs_stat_get(class, OBJ_USED); 614 freeable = zs_can_compact(class); 615 spin_unlock(&class->lock); 616 617 objs_per_zspage = class->objs_per_zspage; 618 pages_used = obj_allocated / objs_per_zspage * 619 class->pages_per_zspage; 620 621 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 622 " %10lu %10lu %16d %8lu\n", 623 i, class->size, class_almost_full, class_almost_empty, 624 obj_allocated, obj_used, pages_used, 625 class->pages_per_zspage, freeable); 626 627 total_class_almost_full += class_almost_full; 628 total_class_almost_empty += class_almost_empty; 629 total_objs += obj_allocated; 630 total_used_objs += obj_used; 631 total_pages += pages_used; 632 total_freeable += freeable; 633 } 634 635 seq_puts(s, "\n"); 636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 637 "Total", "", total_class_almost_full, 638 total_class_almost_empty, total_objs, 639 total_used_objs, total_pages, "", total_freeable); 640 641 return 0; 642 } 643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 644 645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 646 { 647 if (!zs_stat_root) { 648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 649 return; 650 } 651 652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 653 654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 655 &zs_stats_size_fops); 656 } 657 658 static void zs_pool_stat_destroy(struct zs_pool *pool) 659 { 660 debugfs_remove_recursive(pool->stat_dentry); 661 } 662 663 #else /* CONFIG_ZSMALLOC_STAT */ 664 static void __init zs_stat_init(void) 665 { 666 } 667 668 static void __exit zs_stat_exit(void) 669 { 670 } 671 672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 673 { 674 } 675 676 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 677 { 678 } 679 #endif 680 681 682 /* 683 * For each size class, zspages are divided into different groups 684 * depending on how "full" they are. This was done so that we could 685 * easily find empty or nearly empty zspages when we try to shrink 686 * the pool (not yet implemented). This function returns fullness 687 * status of the given page. 688 */ 689 static enum fullness_group get_fullness_group(struct size_class *class, 690 struct zspage *zspage) 691 { 692 int inuse, objs_per_zspage; 693 enum fullness_group fg; 694 695 inuse = get_zspage_inuse(zspage); 696 objs_per_zspage = class->objs_per_zspage; 697 698 if (inuse == 0) 699 fg = ZS_EMPTY; 700 else if (inuse == objs_per_zspage) 701 fg = ZS_FULL; 702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 703 fg = ZS_ALMOST_EMPTY; 704 else 705 fg = ZS_ALMOST_FULL; 706 707 return fg; 708 } 709 710 /* 711 * Each size class maintains various freelists and zspages are assigned 712 * to one of these freelists based on the number of live objects they 713 * have. This functions inserts the given zspage into the freelist 714 * identified by <class, fullness_group>. 715 */ 716 static void insert_zspage(struct size_class *class, 717 struct zspage *zspage, 718 enum fullness_group fullness) 719 { 720 struct zspage *head; 721 722 zs_stat_inc(class, fullness, 1); 723 head = list_first_entry_or_null(&class->fullness_list[fullness], 724 struct zspage, list); 725 /* 726 * We want to see more ZS_FULL pages and less almost empty/full. 727 * Put pages with higher ->inuse first. 728 */ 729 if (head) { 730 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 731 list_add(&zspage->list, &head->list); 732 return; 733 } 734 } 735 list_add(&zspage->list, &class->fullness_list[fullness]); 736 } 737 738 /* 739 * This function removes the given zspage from the freelist identified 740 * by <class, fullness_group>. 741 */ 742 static void remove_zspage(struct size_class *class, 743 struct zspage *zspage, 744 enum fullness_group fullness) 745 { 746 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 747 VM_BUG_ON(is_zspage_isolated(zspage)); 748 749 list_del_init(&zspage->list); 750 zs_stat_dec(class, fullness, 1); 751 } 752 753 /* 754 * Each size class maintains zspages in different fullness groups depending 755 * on the number of live objects they contain. When allocating or freeing 756 * objects, the fullness status of the page can change, say, from ALMOST_FULL 757 * to ALMOST_EMPTY when freeing an object. This function checks if such 758 * a status change has occurred for the given page and accordingly moves the 759 * page from the freelist of the old fullness group to that of the new 760 * fullness group. 761 */ 762 static enum fullness_group fix_fullness_group(struct size_class *class, 763 struct zspage *zspage) 764 { 765 int class_idx; 766 enum fullness_group currfg, newfg; 767 768 get_zspage_mapping(zspage, &class_idx, &currfg); 769 newfg = get_fullness_group(class, zspage); 770 if (newfg == currfg) 771 goto out; 772 773 if (!is_zspage_isolated(zspage)) { 774 remove_zspage(class, zspage, currfg); 775 insert_zspage(class, zspage, newfg); 776 } 777 778 set_zspage_mapping(zspage, class_idx, newfg); 779 780 out: 781 return newfg; 782 } 783 784 /* 785 * We have to decide on how many pages to link together 786 * to form a zspage for each size class. This is important 787 * to reduce wastage due to unusable space left at end of 788 * each zspage which is given as: 789 * wastage = Zp % class_size 790 * usage = Zp - wastage 791 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 792 * 793 * For example, for size class of 3/8 * PAGE_SIZE, we should 794 * link together 3 PAGE_SIZE sized pages to form a zspage 795 * since then we can perfectly fit in 8 such objects. 796 */ 797 static int get_pages_per_zspage(int class_size) 798 { 799 int i, max_usedpc = 0; 800 /* zspage order which gives maximum used size per KB */ 801 int max_usedpc_order = 1; 802 803 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 804 int zspage_size; 805 int waste, usedpc; 806 807 zspage_size = i * PAGE_SIZE; 808 waste = zspage_size % class_size; 809 usedpc = (zspage_size - waste) * 100 / zspage_size; 810 811 if (usedpc > max_usedpc) { 812 max_usedpc = usedpc; 813 max_usedpc_order = i; 814 } 815 } 816 817 return max_usedpc_order; 818 } 819 820 static struct zspage *get_zspage(struct page *page) 821 { 822 struct zspage *zspage = (struct zspage *)page->private; 823 824 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 825 return zspage; 826 } 827 828 static struct page *get_next_page(struct page *page) 829 { 830 if (unlikely(PageHugeObject(page))) 831 return NULL; 832 833 return page->freelist; 834 } 835 836 /** 837 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 838 * @obj: the encoded object value 839 * @page: page object resides in zspage 840 * @obj_idx: object index 841 */ 842 static void obj_to_location(unsigned long obj, struct page **page, 843 unsigned int *obj_idx) 844 { 845 obj >>= OBJ_TAG_BITS; 846 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 847 *obj_idx = (obj & OBJ_INDEX_MASK); 848 } 849 850 /** 851 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 852 * @page: page object resides in zspage 853 * @obj_idx: object index 854 */ 855 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 856 { 857 unsigned long obj; 858 859 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 860 obj |= obj_idx & OBJ_INDEX_MASK; 861 obj <<= OBJ_TAG_BITS; 862 863 return obj; 864 } 865 866 static unsigned long handle_to_obj(unsigned long handle) 867 { 868 return *(unsigned long *)handle; 869 } 870 871 static unsigned long obj_to_head(struct page *page, void *obj) 872 { 873 if (unlikely(PageHugeObject(page))) { 874 VM_BUG_ON_PAGE(!is_first_page(page), page); 875 return page->index; 876 } else 877 return *(unsigned long *)obj; 878 } 879 880 static inline int testpin_tag(unsigned long handle) 881 { 882 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 883 } 884 885 static inline int trypin_tag(unsigned long handle) 886 { 887 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 888 } 889 890 static void pin_tag(unsigned long handle) __acquires(bitlock) 891 { 892 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 893 } 894 895 static void unpin_tag(unsigned long handle) __releases(bitlock) 896 { 897 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 898 } 899 900 static void reset_page(struct page *page) 901 { 902 __ClearPageMovable(page); 903 ClearPagePrivate(page); 904 set_page_private(page, 0); 905 page_mapcount_reset(page); 906 ClearPageHugeObject(page); 907 page->freelist = NULL; 908 } 909 910 static int trylock_zspage(struct zspage *zspage) 911 { 912 struct page *cursor, *fail; 913 914 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 915 get_next_page(cursor)) { 916 if (!trylock_page(cursor)) { 917 fail = cursor; 918 goto unlock; 919 } 920 } 921 922 return 1; 923 unlock: 924 for (cursor = get_first_page(zspage); cursor != fail; cursor = 925 get_next_page(cursor)) 926 unlock_page(cursor); 927 928 return 0; 929 } 930 931 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 932 struct zspage *zspage) 933 { 934 struct page *page, *next; 935 enum fullness_group fg; 936 unsigned int class_idx; 937 938 get_zspage_mapping(zspage, &class_idx, &fg); 939 940 assert_spin_locked(&class->lock); 941 942 VM_BUG_ON(get_zspage_inuse(zspage)); 943 VM_BUG_ON(fg != ZS_EMPTY); 944 945 next = page = get_first_page(zspage); 946 do { 947 VM_BUG_ON_PAGE(!PageLocked(page), page); 948 next = get_next_page(page); 949 reset_page(page); 950 unlock_page(page); 951 dec_zone_page_state(page, NR_ZSPAGES); 952 put_page(page); 953 page = next; 954 } while (page != NULL); 955 956 cache_free_zspage(pool, zspage); 957 958 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 959 atomic_long_sub(class->pages_per_zspage, 960 &pool->pages_allocated); 961 } 962 963 static void free_zspage(struct zs_pool *pool, struct size_class *class, 964 struct zspage *zspage) 965 { 966 VM_BUG_ON(get_zspage_inuse(zspage)); 967 VM_BUG_ON(list_empty(&zspage->list)); 968 969 if (!trylock_zspage(zspage)) { 970 kick_deferred_free(pool); 971 return; 972 } 973 974 remove_zspage(class, zspage, ZS_EMPTY); 975 __free_zspage(pool, class, zspage); 976 } 977 978 /* Initialize a newly allocated zspage */ 979 static void init_zspage(struct size_class *class, struct zspage *zspage) 980 { 981 unsigned int freeobj = 1; 982 unsigned long off = 0; 983 struct page *page = get_first_page(zspage); 984 985 while (page) { 986 struct page *next_page; 987 struct link_free *link; 988 void *vaddr; 989 990 set_first_obj_offset(page, off); 991 992 vaddr = kmap_atomic(page); 993 link = (struct link_free *)vaddr + off / sizeof(*link); 994 995 while ((off += class->size) < PAGE_SIZE) { 996 link->next = freeobj++ << OBJ_TAG_BITS; 997 link += class->size / sizeof(*link); 998 } 999 1000 /* 1001 * We now come to the last (full or partial) object on this 1002 * page, which must point to the first object on the next 1003 * page (if present) 1004 */ 1005 next_page = get_next_page(page); 1006 if (next_page) { 1007 link->next = freeobj++ << OBJ_TAG_BITS; 1008 } else { 1009 /* 1010 * Reset OBJ_TAG_BITS bit to last link to tell 1011 * whether it's allocated object or not. 1012 */ 1013 link->next = -1UL << OBJ_TAG_BITS; 1014 } 1015 kunmap_atomic(vaddr); 1016 page = next_page; 1017 off %= PAGE_SIZE; 1018 } 1019 1020 set_freeobj(zspage, 0); 1021 } 1022 1023 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1024 struct page *pages[]) 1025 { 1026 int i; 1027 struct page *page; 1028 struct page *prev_page = NULL; 1029 int nr_pages = class->pages_per_zspage; 1030 1031 /* 1032 * Allocate individual pages and link them together as: 1033 * 1. all pages are linked together using page->freelist 1034 * 2. each sub-page point to zspage using page->private 1035 * 1036 * we set PG_private to identify the first page (i.e. no other sub-page 1037 * has this flag set). 1038 */ 1039 for (i = 0; i < nr_pages; i++) { 1040 page = pages[i]; 1041 set_page_private(page, (unsigned long)zspage); 1042 page->freelist = NULL; 1043 if (i == 0) { 1044 zspage->first_page = page; 1045 SetPagePrivate(page); 1046 if (unlikely(class->objs_per_zspage == 1 && 1047 class->pages_per_zspage == 1)) 1048 SetPageHugeObject(page); 1049 } else { 1050 prev_page->freelist = page; 1051 } 1052 prev_page = page; 1053 } 1054 } 1055 1056 /* 1057 * Allocate a zspage for the given size class 1058 */ 1059 static struct zspage *alloc_zspage(struct zs_pool *pool, 1060 struct size_class *class, 1061 gfp_t gfp) 1062 { 1063 int i; 1064 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1065 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1066 1067 if (!zspage) 1068 return NULL; 1069 1070 memset(zspage, 0, sizeof(struct zspage)); 1071 zspage->magic = ZSPAGE_MAGIC; 1072 migrate_lock_init(zspage); 1073 1074 for (i = 0; i < class->pages_per_zspage; i++) { 1075 struct page *page; 1076 1077 page = alloc_page(gfp); 1078 if (!page) { 1079 while (--i >= 0) { 1080 dec_zone_page_state(pages[i], NR_ZSPAGES); 1081 __free_page(pages[i]); 1082 } 1083 cache_free_zspage(pool, zspage); 1084 return NULL; 1085 } 1086 1087 inc_zone_page_state(page, NR_ZSPAGES); 1088 pages[i] = page; 1089 } 1090 1091 create_page_chain(class, zspage, pages); 1092 init_zspage(class, zspage); 1093 1094 return zspage; 1095 } 1096 1097 static struct zspage *find_get_zspage(struct size_class *class) 1098 { 1099 int i; 1100 struct zspage *zspage; 1101 1102 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1103 zspage = list_first_entry_or_null(&class->fullness_list[i], 1104 struct zspage, list); 1105 if (zspage) 1106 break; 1107 } 1108 1109 return zspage; 1110 } 1111 1112 static inline int __zs_cpu_up(struct mapping_area *area) 1113 { 1114 /* 1115 * Make sure we don't leak memory if a cpu UP notification 1116 * and zs_init() race and both call zs_cpu_up() on the same cpu 1117 */ 1118 if (area->vm_buf) 1119 return 0; 1120 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1121 if (!area->vm_buf) 1122 return -ENOMEM; 1123 return 0; 1124 } 1125 1126 static inline void __zs_cpu_down(struct mapping_area *area) 1127 { 1128 kfree(area->vm_buf); 1129 area->vm_buf = NULL; 1130 } 1131 1132 static void *__zs_map_object(struct mapping_area *area, 1133 struct page *pages[2], int off, int size) 1134 { 1135 int sizes[2]; 1136 void *addr; 1137 char *buf = area->vm_buf; 1138 1139 /* disable page faults to match kmap_atomic() return conditions */ 1140 pagefault_disable(); 1141 1142 /* no read fastpath */ 1143 if (area->vm_mm == ZS_MM_WO) 1144 goto out; 1145 1146 sizes[0] = PAGE_SIZE - off; 1147 sizes[1] = size - sizes[0]; 1148 1149 /* copy object to per-cpu buffer */ 1150 addr = kmap_atomic(pages[0]); 1151 memcpy(buf, addr + off, sizes[0]); 1152 kunmap_atomic(addr); 1153 addr = kmap_atomic(pages[1]); 1154 memcpy(buf + sizes[0], addr, sizes[1]); 1155 kunmap_atomic(addr); 1156 out: 1157 return area->vm_buf; 1158 } 1159 1160 static void __zs_unmap_object(struct mapping_area *area, 1161 struct page *pages[2], int off, int size) 1162 { 1163 int sizes[2]; 1164 void *addr; 1165 char *buf; 1166 1167 /* no write fastpath */ 1168 if (area->vm_mm == ZS_MM_RO) 1169 goto out; 1170 1171 buf = area->vm_buf; 1172 buf = buf + ZS_HANDLE_SIZE; 1173 size -= ZS_HANDLE_SIZE; 1174 off += ZS_HANDLE_SIZE; 1175 1176 sizes[0] = PAGE_SIZE - off; 1177 sizes[1] = size - sizes[0]; 1178 1179 /* copy per-cpu buffer to object */ 1180 addr = kmap_atomic(pages[0]); 1181 memcpy(addr + off, buf, sizes[0]); 1182 kunmap_atomic(addr); 1183 addr = kmap_atomic(pages[1]); 1184 memcpy(addr, buf + sizes[0], sizes[1]); 1185 kunmap_atomic(addr); 1186 1187 out: 1188 /* enable page faults to match kunmap_atomic() return conditions */ 1189 pagefault_enable(); 1190 } 1191 1192 static int zs_cpu_prepare(unsigned int cpu) 1193 { 1194 struct mapping_area *area; 1195 1196 area = &per_cpu(zs_map_area, cpu); 1197 return __zs_cpu_up(area); 1198 } 1199 1200 static int zs_cpu_dead(unsigned int cpu) 1201 { 1202 struct mapping_area *area; 1203 1204 area = &per_cpu(zs_map_area, cpu); 1205 __zs_cpu_down(area); 1206 return 0; 1207 } 1208 1209 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1210 int objs_per_zspage) 1211 { 1212 if (prev->pages_per_zspage == pages_per_zspage && 1213 prev->objs_per_zspage == objs_per_zspage) 1214 return true; 1215 1216 return false; 1217 } 1218 1219 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1220 { 1221 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1222 } 1223 1224 unsigned long zs_get_total_pages(struct zs_pool *pool) 1225 { 1226 return atomic_long_read(&pool->pages_allocated); 1227 } 1228 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1229 1230 /** 1231 * zs_map_object - get address of allocated object from handle. 1232 * @pool: pool from which the object was allocated 1233 * @handle: handle returned from zs_malloc 1234 * @mm: maping mode to use 1235 * 1236 * Before using an object allocated from zs_malloc, it must be mapped using 1237 * this function. When done with the object, it must be unmapped using 1238 * zs_unmap_object. 1239 * 1240 * Only one object can be mapped per cpu at a time. There is no protection 1241 * against nested mappings. 1242 * 1243 * This function returns with preemption and page faults disabled. 1244 */ 1245 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1246 enum zs_mapmode mm) 1247 { 1248 struct zspage *zspage; 1249 struct page *page; 1250 unsigned long obj, off; 1251 unsigned int obj_idx; 1252 1253 unsigned int class_idx; 1254 enum fullness_group fg; 1255 struct size_class *class; 1256 struct mapping_area *area; 1257 struct page *pages[2]; 1258 void *ret; 1259 1260 /* 1261 * Because we use per-cpu mapping areas shared among the 1262 * pools/users, we can't allow mapping in interrupt context 1263 * because it can corrupt another users mappings. 1264 */ 1265 BUG_ON(in_interrupt()); 1266 1267 /* From now on, migration cannot move the object */ 1268 pin_tag(handle); 1269 1270 obj = handle_to_obj(handle); 1271 obj_to_location(obj, &page, &obj_idx); 1272 zspage = get_zspage(page); 1273 1274 /* migration cannot move any subpage in this zspage */ 1275 migrate_read_lock(zspage); 1276 1277 get_zspage_mapping(zspage, &class_idx, &fg); 1278 class = pool->size_class[class_idx]; 1279 off = (class->size * obj_idx) & ~PAGE_MASK; 1280 1281 area = &get_cpu_var(zs_map_area); 1282 area->vm_mm = mm; 1283 if (off + class->size <= PAGE_SIZE) { 1284 /* this object is contained entirely within a page */ 1285 area->vm_addr = kmap_atomic(page); 1286 ret = area->vm_addr + off; 1287 goto out; 1288 } 1289 1290 /* this object spans two pages */ 1291 pages[0] = page; 1292 pages[1] = get_next_page(page); 1293 BUG_ON(!pages[1]); 1294 1295 ret = __zs_map_object(area, pages, off, class->size); 1296 out: 1297 if (likely(!PageHugeObject(page))) 1298 ret += ZS_HANDLE_SIZE; 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_GPL(zs_map_object); 1303 1304 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1305 { 1306 struct zspage *zspage; 1307 struct page *page; 1308 unsigned long obj, off; 1309 unsigned int obj_idx; 1310 1311 unsigned int class_idx; 1312 enum fullness_group fg; 1313 struct size_class *class; 1314 struct mapping_area *area; 1315 1316 obj = handle_to_obj(handle); 1317 obj_to_location(obj, &page, &obj_idx); 1318 zspage = get_zspage(page); 1319 get_zspage_mapping(zspage, &class_idx, &fg); 1320 class = pool->size_class[class_idx]; 1321 off = (class->size * obj_idx) & ~PAGE_MASK; 1322 1323 area = this_cpu_ptr(&zs_map_area); 1324 if (off + class->size <= PAGE_SIZE) 1325 kunmap_atomic(area->vm_addr); 1326 else { 1327 struct page *pages[2]; 1328 1329 pages[0] = page; 1330 pages[1] = get_next_page(page); 1331 BUG_ON(!pages[1]); 1332 1333 __zs_unmap_object(area, pages, off, class->size); 1334 } 1335 put_cpu_var(zs_map_area); 1336 1337 migrate_read_unlock(zspage); 1338 unpin_tag(handle); 1339 } 1340 EXPORT_SYMBOL_GPL(zs_unmap_object); 1341 1342 /** 1343 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1344 * zsmalloc &size_class. 1345 * @pool: zsmalloc pool to use 1346 * 1347 * The function returns the size of the first huge class - any object of equal 1348 * or bigger size will be stored in zspage consisting of a single physical 1349 * page. 1350 * 1351 * Context: Any context. 1352 * 1353 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1354 */ 1355 size_t zs_huge_class_size(struct zs_pool *pool) 1356 { 1357 return huge_class_size; 1358 } 1359 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1360 1361 static unsigned long obj_malloc(struct size_class *class, 1362 struct zspage *zspage, unsigned long handle) 1363 { 1364 int i, nr_page, offset; 1365 unsigned long obj; 1366 struct link_free *link; 1367 1368 struct page *m_page; 1369 unsigned long m_offset; 1370 void *vaddr; 1371 1372 handle |= OBJ_ALLOCATED_TAG; 1373 obj = get_freeobj(zspage); 1374 1375 offset = obj * class->size; 1376 nr_page = offset >> PAGE_SHIFT; 1377 m_offset = offset & ~PAGE_MASK; 1378 m_page = get_first_page(zspage); 1379 1380 for (i = 0; i < nr_page; i++) 1381 m_page = get_next_page(m_page); 1382 1383 vaddr = kmap_atomic(m_page); 1384 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1385 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1386 if (likely(!PageHugeObject(m_page))) 1387 /* record handle in the header of allocated chunk */ 1388 link->handle = handle; 1389 else 1390 /* record handle to page->index */ 1391 zspage->first_page->index = handle; 1392 1393 kunmap_atomic(vaddr); 1394 mod_zspage_inuse(zspage, 1); 1395 zs_stat_inc(class, OBJ_USED, 1); 1396 1397 obj = location_to_obj(m_page, obj); 1398 1399 return obj; 1400 } 1401 1402 1403 /** 1404 * zs_malloc - Allocate block of given size from pool. 1405 * @pool: pool to allocate from 1406 * @size: size of block to allocate 1407 * @gfp: gfp flags when allocating object 1408 * 1409 * On success, handle to the allocated object is returned, 1410 * otherwise 0. 1411 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1412 */ 1413 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1414 { 1415 unsigned long handle, obj; 1416 struct size_class *class; 1417 enum fullness_group newfg; 1418 struct zspage *zspage; 1419 1420 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1421 return 0; 1422 1423 handle = cache_alloc_handle(pool, gfp); 1424 if (!handle) 1425 return 0; 1426 1427 /* extra space in chunk to keep the handle */ 1428 size += ZS_HANDLE_SIZE; 1429 class = pool->size_class[get_size_class_index(size)]; 1430 1431 spin_lock(&class->lock); 1432 zspage = find_get_zspage(class); 1433 if (likely(zspage)) { 1434 obj = obj_malloc(class, zspage, handle); 1435 /* Now move the zspage to another fullness group, if required */ 1436 fix_fullness_group(class, zspage); 1437 record_obj(handle, obj); 1438 spin_unlock(&class->lock); 1439 1440 return handle; 1441 } 1442 1443 spin_unlock(&class->lock); 1444 1445 zspage = alloc_zspage(pool, class, gfp); 1446 if (!zspage) { 1447 cache_free_handle(pool, handle); 1448 return 0; 1449 } 1450 1451 spin_lock(&class->lock); 1452 obj = obj_malloc(class, zspage, handle); 1453 newfg = get_fullness_group(class, zspage); 1454 insert_zspage(class, zspage, newfg); 1455 set_zspage_mapping(zspage, class->index, newfg); 1456 record_obj(handle, obj); 1457 atomic_long_add(class->pages_per_zspage, 1458 &pool->pages_allocated); 1459 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1460 1461 /* We completely set up zspage so mark them as movable */ 1462 SetZsPageMovable(pool, zspage); 1463 spin_unlock(&class->lock); 1464 1465 return handle; 1466 } 1467 EXPORT_SYMBOL_GPL(zs_malloc); 1468 1469 static void obj_free(struct size_class *class, unsigned long obj) 1470 { 1471 struct link_free *link; 1472 struct zspage *zspage; 1473 struct page *f_page; 1474 unsigned long f_offset; 1475 unsigned int f_objidx; 1476 void *vaddr; 1477 1478 obj &= ~OBJ_ALLOCATED_TAG; 1479 obj_to_location(obj, &f_page, &f_objidx); 1480 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1481 zspage = get_zspage(f_page); 1482 1483 vaddr = kmap_atomic(f_page); 1484 1485 /* Insert this object in containing zspage's freelist */ 1486 link = (struct link_free *)(vaddr + f_offset); 1487 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1488 kunmap_atomic(vaddr); 1489 set_freeobj(zspage, f_objidx); 1490 mod_zspage_inuse(zspage, -1); 1491 zs_stat_dec(class, OBJ_USED, 1); 1492 } 1493 1494 void zs_free(struct zs_pool *pool, unsigned long handle) 1495 { 1496 struct zspage *zspage; 1497 struct page *f_page; 1498 unsigned long obj; 1499 unsigned int f_objidx; 1500 int class_idx; 1501 struct size_class *class; 1502 enum fullness_group fullness; 1503 bool isolated; 1504 1505 if (unlikely(!handle)) 1506 return; 1507 1508 pin_tag(handle); 1509 obj = handle_to_obj(handle); 1510 obj_to_location(obj, &f_page, &f_objidx); 1511 zspage = get_zspage(f_page); 1512 1513 migrate_read_lock(zspage); 1514 1515 get_zspage_mapping(zspage, &class_idx, &fullness); 1516 class = pool->size_class[class_idx]; 1517 1518 spin_lock(&class->lock); 1519 obj_free(class, obj); 1520 fullness = fix_fullness_group(class, zspage); 1521 if (fullness != ZS_EMPTY) { 1522 migrate_read_unlock(zspage); 1523 goto out; 1524 } 1525 1526 isolated = is_zspage_isolated(zspage); 1527 migrate_read_unlock(zspage); 1528 /* If zspage is isolated, zs_page_putback will free the zspage */ 1529 if (likely(!isolated)) 1530 free_zspage(pool, class, zspage); 1531 out: 1532 1533 spin_unlock(&class->lock); 1534 unpin_tag(handle); 1535 cache_free_handle(pool, handle); 1536 } 1537 EXPORT_SYMBOL_GPL(zs_free); 1538 1539 static void zs_object_copy(struct size_class *class, unsigned long dst, 1540 unsigned long src) 1541 { 1542 struct page *s_page, *d_page; 1543 unsigned int s_objidx, d_objidx; 1544 unsigned long s_off, d_off; 1545 void *s_addr, *d_addr; 1546 int s_size, d_size, size; 1547 int written = 0; 1548 1549 s_size = d_size = class->size; 1550 1551 obj_to_location(src, &s_page, &s_objidx); 1552 obj_to_location(dst, &d_page, &d_objidx); 1553 1554 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1555 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1556 1557 if (s_off + class->size > PAGE_SIZE) 1558 s_size = PAGE_SIZE - s_off; 1559 1560 if (d_off + class->size > PAGE_SIZE) 1561 d_size = PAGE_SIZE - d_off; 1562 1563 s_addr = kmap_atomic(s_page); 1564 d_addr = kmap_atomic(d_page); 1565 1566 while (1) { 1567 size = min(s_size, d_size); 1568 memcpy(d_addr + d_off, s_addr + s_off, size); 1569 written += size; 1570 1571 if (written == class->size) 1572 break; 1573 1574 s_off += size; 1575 s_size -= size; 1576 d_off += size; 1577 d_size -= size; 1578 1579 if (s_off >= PAGE_SIZE) { 1580 kunmap_atomic(d_addr); 1581 kunmap_atomic(s_addr); 1582 s_page = get_next_page(s_page); 1583 s_addr = kmap_atomic(s_page); 1584 d_addr = kmap_atomic(d_page); 1585 s_size = class->size - written; 1586 s_off = 0; 1587 } 1588 1589 if (d_off >= PAGE_SIZE) { 1590 kunmap_atomic(d_addr); 1591 d_page = get_next_page(d_page); 1592 d_addr = kmap_atomic(d_page); 1593 d_size = class->size - written; 1594 d_off = 0; 1595 } 1596 } 1597 1598 kunmap_atomic(d_addr); 1599 kunmap_atomic(s_addr); 1600 } 1601 1602 /* 1603 * Find alloced object in zspage from index object and 1604 * return handle. 1605 */ 1606 static unsigned long find_alloced_obj(struct size_class *class, 1607 struct page *page, int *obj_idx) 1608 { 1609 unsigned long head; 1610 int offset = 0; 1611 int index = *obj_idx; 1612 unsigned long handle = 0; 1613 void *addr = kmap_atomic(page); 1614 1615 offset = get_first_obj_offset(page); 1616 offset += class->size * index; 1617 1618 while (offset < PAGE_SIZE) { 1619 head = obj_to_head(page, addr + offset); 1620 if (head & OBJ_ALLOCATED_TAG) { 1621 handle = head & ~OBJ_ALLOCATED_TAG; 1622 if (trypin_tag(handle)) 1623 break; 1624 handle = 0; 1625 } 1626 1627 offset += class->size; 1628 index++; 1629 } 1630 1631 kunmap_atomic(addr); 1632 1633 *obj_idx = index; 1634 1635 return handle; 1636 } 1637 1638 struct zs_compact_control { 1639 /* Source spage for migration which could be a subpage of zspage */ 1640 struct page *s_page; 1641 /* Destination page for migration which should be a first page 1642 * of zspage. */ 1643 struct page *d_page; 1644 /* Starting object index within @s_page which used for live object 1645 * in the subpage. */ 1646 int obj_idx; 1647 }; 1648 1649 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1650 struct zs_compact_control *cc) 1651 { 1652 unsigned long used_obj, free_obj; 1653 unsigned long handle; 1654 struct page *s_page = cc->s_page; 1655 struct page *d_page = cc->d_page; 1656 int obj_idx = cc->obj_idx; 1657 int ret = 0; 1658 1659 while (1) { 1660 handle = find_alloced_obj(class, s_page, &obj_idx); 1661 if (!handle) { 1662 s_page = get_next_page(s_page); 1663 if (!s_page) 1664 break; 1665 obj_idx = 0; 1666 continue; 1667 } 1668 1669 /* Stop if there is no more space */ 1670 if (zspage_full(class, get_zspage(d_page))) { 1671 unpin_tag(handle); 1672 ret = -ENOMEM; 1673 break; 1674 } 1675 1676 used_obj = handle_to_obj(handle); 1677 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1678 zs_object_copy(class, free_obj, used_obj); 1679 obj_idx++; 1680 /* 1681 * record_obj updates handle's value to free_obj and it will 1682 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1683 * breaks synchronization using pin_tag(e,g, zs_free) so 1684 * let's keep the lock bit. 1685 */ 1686 free_obj |= BIT(HANDLE_PIN_BIT); 1687 record_obj(handle, free_obj); 1688 unpin_tag(handle); 1689 obj_free(class, used_obj); 1690 } 1691 1692 /* Remember last position in this iteration */ 1693 cc->s_page = s_page; 1694 cc->obj_idx = obj_idx; 1695 1696 return ret; 1697 } 1698 1699 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1700 { 1701 int i; 1702 struct zspage *zspage; 1703 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1704 1705 if (!source) { 1706 fg[0] = ZS_ALMOST_FULL; 1707 fg[1] = ZS_ALMOST_EMPTY; 1708 } 1709 1710 for (i = 0; i < 2; i++) { 1711 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1712 struct zspage, list); 1713 if (zspage) { 1714 VM_BUG_ON(is_zspage_isolated(zspage)); 1715 remove_zspage(class, zspage, fg[i]); 1716 return zspage; 1717 } 1718 } 1719 1720 return zspage; 1721 } 1722 1723 /* 1724 * putback_zspage - add @zspage into right class's fullness list 1725 * @class: destination class 1726 * @zspage: target page 1727 * 1728 * Return @zspage's fullness_group 1729 */ 1730 static enum fullness_group putback_zspage(struct size_class *class, 1731 struct zspage *zspage) 1732 { 1733 enum fullness_group fullness; 1734 1735 VM_BUG_ON(is_zspage_isolated(zspage)); 1736 1737 fullness = get_fullness_group(class, zspage); 1738 insert_zspage(class, zspage, fullness); 1739 set_zspage_mapping(zspage, class->index, fullness); 1740 1741 return fullness; 1742 } 1743 1744 #ifdef CONFIG_COMPACTION 1745 /* 1746 * To prevent zspage destroy during migration, zspage freeing should 1747 * hold locks of all pages in the zspage. 1748 */ 1749 static void lock_zspage(struct zspage *zspage) 1750 { 1751 struct page *page = get_first_page(zspage); 1752 1753 do { 1754 lock_page(page); 1755 } while ((page = get_next_page(page)) != NULL); 1756 } 1757 1758 static int zs_init_fs_context(struct fs_context *fc) 1759 { 1760 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1761 } 1762 1763 static struct file_system_type zsmalloc_fs = { 1764 .name = "zsmalloc", 1765 .init_fs_context = zs_init_fs_context, 1766 .kill_sb = kill_anon_super, 1767 }; 1768 1769 static int zsmalloc_mount(void) 1770 { 1771 int ret = 0; 1772 1773 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1774 if (IS_ERR(zsmalloc_mnt)) 1775 ret = PTR_ERR(zsmalloc_mnt); 1776 1777 return ret; 1778 } 1779 1780 static void zsmalloc_unmount(void) 1781 { 1782 kern_unmount(zsmalloc_mnt); 1783 } 1784 1785 static void migrate_lock_init(struct zspage *zspage) 1786 { 1787 rwlock_init(&zspage->lock); 1788 } 1789 1790 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1791 { 1792 read_lock(&zspage->lock); 1793 } 1794 1795 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1796 { 1797 read_unlock(&zspage->lock); 1798 } 1799 1800 static void migrate_write_lock(struct zspage *zspage) 1801 { 1802 write_lock(&zspage->lock); 1803 } 1804 1805 static void migrate_write_unlock(struct zspage *zspage) 1806 { 1807 write_unlock(&zspage->lock); 1808 } 1809 1810 /* Number of isolated subpage for *page migration* in this zspage */ 1811 static void inc_zspage_isolation(struct zspage *zspage) 1812 { 1813 zspage->isolated++; 1814 } 1815 1816 static void dec_zspage_isolation(struct zspage *zspage) 1817 { 1818 zspage->isolated--; 1819 } 1820 1821 static void putback_zspage_deferred(struct zs_pool *pool, 1822 struct size_class *class, 1823 struct zspage *zspage) 1824 { 1825 enum fullness_group fg; 1826 1827 fg = putback_zspage(class, zspage); 1828 if (fg == ZS_EMPTY) 1829 schedule_work(&pool->free_work); 1830 1831 } 1832 1833 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1834 { 1835 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1836 atomic_long_dec(&pool->isolated_pages); 1837 /* 1838 * There's no possibility of racing, since wait_for_isolated_drain() 1839 * checks the isolated count under &class->lock after enqueuing 1840 * on migration_wait. 1841 */ 1842 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1843 wake_up_all(&pool->migration_wait); 1844 } 1845 1846 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1847 struct page *newpage, struct page *oldpage) 1848 { 1849 struct page *page; 1850 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1851 int idx = 0; 1852 1853 page = get_first_page(zspage); 1854 do { 1855 if (page == oldpage) 1856 pages[idx] = newpage; 1857 else 1858 pages[idx] = page; 1859 idx++; 1860 } while ((page = get_next_page(page)) != NULL); 1861 1862 create_page_chain(class, zspage, pages); 1863 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1864 if (unlikely(PageHugeObject(oldpage))) 1865 newpage->index = oldpage->index; 1866 __SetPageMovable(newpage, page_mapping(oldpage)); 1867 } 1868 1869 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1870 { 1871 struct zs_pool *pool; 1872 struct size_class *class; 1873 int class_idx; 1874 enum fullness_group fullness; 1875 struct zspage *zspage; 1876 struct address_space *mapping; 1877 1878 /* 1879 * Page is locked so zspage couldn't be destroyed. For detail, look at 1880 * lock_zspage in free_zspage. 1881 */ 1882 VM_BUG_ON_PAGE(!PageMovable(page), page); 1883 VM_BUG_ON_PAGE(PageIsolated(page), page); 1884 1885 zspage = get_zspage(page); 1886 1887 /* 1888 * Without class lock, fullness could be stale while class_idx is okay 1889 * because class_idx is constant unless page is freed so we should get 1890 * fullness again under class lock. 1891 */ 1892 get_zspage_mapping(zspage, &class_idx, &fullness); 1893 mapping = page_mapping(page); 1894 pool = mapping->private_data; 1895 class = pool->size_class[class_idx]; 1896 1897 spin_lock(&class->lock); 1898 if (get_zspage_inuse(zspage) == 0) { 1899 spin_unlock(&class->lock); 1900 return false; 1901 } 1902 1903 /* zspage is isolated for object migration */ 1904 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1905 spin_unlock(&class->lock); 1906 return false; 1907 } 1908 1909 /* 1910 * If this is first time isolation for the zspage, isolate zspage from 1911 * size_class to prevent further object allocation from the zspage. 1912 */ 1913 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1914 get_zspage_mapping(zspage, &class_idx, &fullness); 1915 atomic_long_inc(&pool->isolated_pages); 1916 remove_zspage(class, zspage, fullness); 1917 } 1918 1919 inc_zspage_isolation(zspage); 1920 spin_unlock(&class->lock); 1921 1922 return true; 1923 } 1924 1925 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1926 struct page *page, enum migrate_mode mode) 1927 { 1928 struct zs_pool *pool; 1929 struct size_class *class; 1930 int class_idx; 1931 enum fullness_group fullness; 1932 struct zspage *zspage; 1933 struct page *dummy; 1934 void *s_addr, *d_addr, *addr; 1935 int offset, pos; 1936 unsigned long handle, head; 1937 unsigned long old_obj, new_obj; 1938 unsigned int obj_idx; 1939 int ret = -EAGAIN; 1940 1941 /* 1942 * We cannot support the _NO_COPY case here, because copy needs to 1943 * happen under the zs lock, which does not work with 1944 * MIGRATE_SYNC_NO_COPY workflow. 1945 */ 1946 if (mode == MIGRATE_SYNC_NO_COPY) 1947 return -EINVAL; 1948 1949 VM_BUG_ON_PAGE(!PageMovable(page), page); 1950 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1951 1952 zspage = get_zspage(page); 1953 1954 /* Concurrent compactor cannot migrate any subpage in zspage */ 1955 migrate_write_lock(zspage); 1956 get_zspage_mapping(zspage, &class_idx, &fullness); 1957 pool = mapping->private_data; 1958 class = pool->size_class[class_idx]; 1959 offset = get_first_obj_offset(page); 1960 1961 spin_lock(&class->lock); 1962 if (!get_zspage_inuse(zspage)) { 1963 /* 1964 * Set "offset" to end of the page so that every loops 1965 * skips unnecessary object scanning. 1966 */ 1967 offset = PAGE_SIZE; 1968 } 1969 1970 pos = offset; 1971 s_addr = kmap_atomic(page); 1972 while (pos < PAGE_SIZE) { 1973 head = obj_to_head(page, s_addr + pos); 1974 if (head & OBJ_ALLOCATED_TAG) { 1975 handle = head & ~OBJ_ALLOCATED_TAG; 1976 if (!trypin_tag(handle)) 1977 goto unpin_objects; 1978 } 1979 pos += class->size; 1980 } 1981 1982 /* 1983 * Here, any user cannot access all objects in the zspage so let's move. 1984 */ 1985 d_addr = kmap_atomic(newpage); 1986 memcpy(d_addr, s_addr, PAGE_SIZE); 1987 kunmap_atomic(d_addr); 1988 1989 for (addr = s_addr + offset; addr < s_addr + pos; 1990 addr += class->size) { 1991 head = obj_to_head(page, addr); 1992 if (head & OBJ_ALLOCATED_TAG) { 1993 handle = head & ~OBJ_ALLOCATED_TAG; 1994 if (!testpin_tag(handle)) 1995 BUG(); 1996 1997 old_obj = handle_to_obj(handle); 1998 obj_to_location(old_obj, &dummy, &obj_idx); 1999 new_obj = (unsigned long)location_to_obj(newpage, 2000 obj_idx); 2001 new_obj |= BIT(HANDLE_PIN_BIT); 2002 record_obj(handle, new_obj); 2003 } 2004 } 2005 2006 replace_sub_page(class, zspage, newpage, page); 2007 get_page(newpage); 2008 2009 dec_zspage_isolation(zspage); 2010 2011 /* 2012 * Page migration is done so let's putback isolated zspage to 2013 * the list if @page is final isolated subpage in the zspage. 2014 */ 2015 if (!is_zspage_isolated(zspage)) { 2016 /* 2017 * We cannot race with zs_destroy_pool() here because we wait 2018 * for isolation to hit zero before we start destroying. 2019 * Also, we ensure that everyone can see pool->destroying before 2020 * we start waiting. 2021 */ 2022 putback_zspage_deferred(pool, class, zspage); 2023 zs_pool_dec_isolated(pool); 2024 } 2025 2026 if (page_zone(newpage) != page_zone(page)) { 2027 dec_zone_page_state(page, NR_ZSPAGES); 2028 inc_zone_page_state(newpage, NR_ZSPAGES); 2029 } 2030 2031 reset_page(page); 2032 put_page(page); 2033 page = newpage; 2034 2035 ret = MIGRATEPAGE_SUCCESS; 2036 unpin_objects: 2037 for (addr = s_addr + offset; addr < s_addr + pos; 2038 addr += class->size) { 2039 head = obj_to_head(page, addr); 2040 if (head & OBJ_ALLOCATED_TAG) { 2041 handle = head & ~OBJ_ALLOCATED_TAG; 2042 if (!testpin_tag(handle)) 2043 BUG(); 2044 unpin_tag(handle); 2045 } 2046 } 2047 kunmap_atomic(s_addr); 2048 spin_unlock(&class->lock); 2049 migrate_write_unlock(zspage); 2050 2051 return ret; 2052 } 2053 2054 static void zs_page_putback(struct page *page) 2055 { 2056 struct zs_pool *pool; 2057 struct size_class *class; 2058 int class_idx; 2059 enum fullness_group fg; 2060 struct address_space *mapping; 2061 struct zspage *zspage; 2062 2063 VM_BUG_ON_PAGE(!PageMovable(page), page); 2064 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2065 2066 zspage = get_zspage(page); 2067 get_zspage_mapping(zspage, &class_idx, &fg); 2068 mapping = page_mapping(page); 2069 pool = mapping->private_data; 2070 class = pool->size_class[class_idx]; 2071 2072 spin_lock(&class->lock); 2073 dec_zspage_isolation(zspage); 2074 if (!is_zspage_isolated(zspage)) { 2075 /* 2076 * Due to page_lock, we cannot free zspage immediately 2077 * so let's defer. 2078 */ 2079 putback_zspage_deferred(pool, class, zspage); 2080 zs_pool_dec_isolated(pool); 2081 } 2082 spin_unlock(&class->lock); 2083 } 2084 2085 static const struct address_space_operations zsmalloc_aops = { 2086 .isolate_page = zs_page_isolate, 2087 .migratepage = zs_page_migrate, 2088 .putback_page = zs_page_putback, 2089 }; 2090 2091 static int zs_register_migration(struct zs_pool *pool) 2092 { 2093 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2094 if (IS_ERR(pool->inode)) { 2095 pool->inode = NULL; 2096 return 1; 2097 } 2098 2099 pool->inode->i_mapping->private_data = pool; 2100 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2101 return 0; 2102 } 2103 2104 static bool pool_isolated_are_drained(struct zs_pool *pool) 2105 { 2106 return atomic_long_read(&pool->isolated_pages) == 0; 2107 } 2108 2109 /* Function for resolving migration */ 2110 static void wait_for_isolated_drain(struct zs_pool *pool) 2111 { 2112 2113 /* 2114 * We're in the process of destroying the pool, so there are no 2115 * active allocations. zs_page_isolate() fails for completely free 2116 * zspages, so we need only wait for the zs_pool's isolated 2117 * count to hit zero. 2118 */ 2119 wait_event(pool->migration_wait, 2120 pool_isolated_are_drained(pool)); 2121 } 2122 2123 static void zs_unregister_migration(struct zs_pool *pool) 2124 { 2125 pool->destroying = true; 2126 /* 2127 * We need a memory barrier here to ensure global visibility of 2128 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2129 * case we don't care, or it will be > 0 and pool->destroying will 2130 * ensure that we wake up once isolation hits 0. 2131 */ 2132 smp_mb(); 2133 wait_for_isolated_drain(pool); /* This can block */ 2134 flush_work(&pool->free_work); 2135 iput(pool->inode); 2136 } 2137 2138 /* 2139 * Caller should hold page_lock of all pages in the zspage 2140 * In here, we cannot use zspage meta data. 2141 */ 2142 static void async_free_zspage(struct work_struct *work) 2143 { 2144 int i; 2145 struct size_class *class; 2146 unsigned int class_idx; 2147 enum fullness_group fullness; 2148 struct zspage *zspage, *tmp; 2149 LIST_HEAD(free_pages); 2150 struct zs_pool *pool = container_of(work, struct zs_pool, 2151 free_work); 2152 2153 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2154 class = pool->size_class[i]; 2155 if (class->index != i) 2156 continue; 2157 2158 spin_lock(&class->lock); 2159 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2160 spin_unlock(&class->lock); 2161 } 2162 2163 2164 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2165 list_del(&zspage->list); 2166 lock_zspage(zspage); 2167 2168 get_zspage_mapping(zspage, &class_idx, &fullness); 2169 VM_BUG_ON(fullness != ZS_EMPTY); 2170 class = pool->size_class[class_idx]; 2171 spin_lock(&class->lock); 2172 __free_zspage(pool, pool->size_class[class_idx], zspage); 2173 spin_unlock(&class->lock); 2174 } 2175 }; 2176 2177 static void kick_deferred_free(struct zs_pool *pool) 2178 { 2179 schedule_work(&pool->free_work); 2180 } 2181 2182 static void init_deferred_free(struct zs_pool *pool) 2183 { 2184 INIT_WORK(&pool->free_work, async_free_zspage); 2185 } 2186 2187 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2188 { 2189 struct page *page = get_first_page(zspage); 2190 2191 do { 2192 WARN_ON(!trylock_page(page)); 2193 __SetPageMovable(page, pool->inode->i_mapping); 2194 unlock_page(page); 2195 } while ((page = get_next_page(page)) != NULL); 2196 } 2197 #endif 2198 2199 /* 2200 * 2201 * Based on the number of unused allocated objects calculate 2202 * and return the number of pages that we can free. 2203 */ 2204 static unsigned long zs_can_compact(struct size_class *class) 2205 { 2206 unsigned long obj_wasted; 2207 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2208 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2209 2210 if (obj_allocated <= obj_used) 2211 return 0; 2212 2213 obj_wasted = obj_allocated - obj_used; 2214 obj_wasted /= class->objs_per_zspage; 2215 2216 return obj_wasted * class->pages_per_zspage; 2217 } 2218 2219 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2220 { 2221 struct zs_compact_control cc; 2222 struct zspage *src_zspage; 2223 struct zspage *dst_zspage = NULL; 2224 2225 spin_lock(&class->lock); 2226 while ((src_zspage = isolate_zspage(class, true))) { 2227 2228 if (!zs_can_compact(class)) 2229 break; 2230 2231 cc.obj_idx = 0; 2232 cc.s_page = get_first_page(src_zspage); 2233 2234 while ((dst_zspage = isolate_zspage(class, false))) { 2235 cc.d_page = get_first_page(dst_zspage); 2236 /* 2237 * If there is no more space in dst_page, resched 2238 * and see if anyone had allocated another zspage. 2239 */ 2240 if (!migrate_zspage(pool, class, &cc)) 2241 break; 2242 2243 putback_zspage(class, dst_zspage); 2244 } 2245 2246 /* Stop if we couldn't find slot */ 2247 if (dst_zspage == NULL) 2248 break; 2249 2250 putback_zspage(class, dst_zspage); 2251 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2252 free_zspage(pool, class, src_zspage); 2253 pool->stats.pages_compacted += class->pages_per_zspage; 2254 } 2255 spin_unlock(&class->lock); 2256 cond_resched(); 2257 spin_lock(&class->lock); 2258 } 2259 2260 if (src_zspage) 2261 putback_zspage(class, src_zspage); 2262 2263 spin_unlock(&class->lock); 2264 } 2265 2266 unsigned long zs_compact(struct zs_pool *pool) 2267 { 2268 int i; 2269 struct size_class *class; 2270 2271 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2272 class = pool->size_class[i]; 2273 if (!class) 2274 continue; 2275 if (class->index != i) 2276 continue; 2277 __zs_compact(pool, class); 2278 } 2279 2280 return pool->stats.pages_compacted; 2281 } 2282 EXPORT_SYMBOL_GPL(zs_compact); 2283 2284 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2285 { 2286 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2287 } 2288 EXPORT_SYMBOL_GPL(zs_pool_stats); 2289 2290 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2291 struct shrink_control *sc) 2292 { 2293 unsigned long pages_freed; 2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2295 shrinker); 2296 2297 pages_freed = pool->stats.pages_compacted; 2298 /* 2299 * Compact classes and calculate compaction delta. 2300 * Can run concurrently with a manually triggered 2301 * (by user) compaction. 2302 */ 2303 pages_freed = zs_compact(pool) - pages_freed; 2304 2305 return pages_freed ? pages_freed : SHRINK_STOP; 2306 } 2307 2308 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2309 struct shrink_control *sc) 2310 { 2311 int i; 2312 struct size_class *class; 2313 unsigned long pages_to_free = 0; 2314 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2315 shrinker); 2316 2317 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2318 class = pool->size_class[i]; 2319 if (!class) 2320 continue; 2321 if (class->index != i) 2322 continue; 2323 2324 pages_to_free += zs_can_compact(class); 2325 } 2326 2327 return pages_to_free; 2328 } 2329 2330 static void zs_unregister_shrinker(struct zs_pool *pool) 2331 { 2332 unregister_shrinker(&pool->shrinker); 2333 } 2334 2335 static int zs_register_shrinker(struct zs_pool *pool) 2336 { 2337 pool->shrinker.scan_objects = zs_shrinker_scan; 2338 pool->shrinker.count_objects = zs_shrinker_count; 2339 pool->shrinker.batch = 0; 2340 pool->shrinker.seeks = DEFAULT_SEEKS; 2341 2342 return register_shrinker(&pool->shrinker); 2343 } 2344 2345 /** 2346 * zs_create_pool - Creates an allocation pool to work from. 2347 * @name: pool name to be created 2348 * 2349 * This function must be called before anything when using 2350 * the zsmalloc allocator. 2351 * 2352 * On success, a pointer to the newly created pool is returned, 2353 * otherwise NULL. 2354 */ 2355 struct zs_pool *zs_create_pool(const char *name) 2356 { 2357 int i; 2358 struct zs_pool *pool; 2359 struct size_class *prev_class = NULL; 2360 2361 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2362 if (!pool) 2363 return NULL; 2364 2365 init_deferred_free(pool); 2366 2367 pool->name = kstrdup(name, GFP_KERNEL); 2368 if (!pool->name) 2369 goto err; 2370 2371 #ifdef CONFIG_COMPACTION 2372 init_waitqueue_head(&pool->migration_wait); 2373 #endif 2374 2375 if (create_cache(pool)) 2376 goto err; 2377 2378 /* 2379 * Iterate reversely, because, size of size_class that we want to use 2380 * for merging should be larger or equal to current size. 2381 */ 2382 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2383 int size; 2384 int pages_per_zspage; 2385 int objs_per_zspage; 2386 struct size_class *class; 2387 int fullness = 0; 2388 2389 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2390 if (size > ZS_MAX_ALLOC_SIZE) 2391 size = ZS_MAX_ALLOC_SIZE; 2392 pages_per_zspage = get_pages_per_zspage(size); 2393 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2394 2395 /* 2396 * We iterate from biggest down to smallest classes, 2397 * so huge_class_size holds the size of the first huge 2398 * class. Any object bigger than or equal to that will 2399 * endup in the huge class. 2400 */ 2401 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2402 !huge_class_size) { 2403 huge_class_size = size; 2404 /* 2405 * The object uses ZS_HANDLE_SIZE bytes to store the 2406 * handle. We need to subtract it, because zs_malloc() 2407 * unconditionally adds handle size before it performs 2408 * size class search - so object may be smaller than 2409 * huge class size, yet it still can end up in the huge 2410 * class because it grows by ZS_HANDLE_SIZE extra bytes 2411 * right before class lookup. 2412 */ 2413 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2414 } 2415 2416 /* 2417 * size_class is used for normal zsmalloc operation such 2418 * as alloc/free for that size. Although it is natural that we 2419 * have one size_class for each size, there is a chance that we 2420 * can get more memory utilization if we use one size_class for 2421 * many different sizes whose size_class have same 2422 * characteristics. So, we makes size_class point to 2423 * previous size_class if possible. 2424 */ 2425 if (prev_class) { 2426 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2427 pool->size_class[i] = prev_class; 2428 continue; 2429 } 2430 } 2431 2432 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2433 if (!class) 2434 goto err; 2435 2436 class->size = size; 2437 class->index = i; 2438 class->pages_per_zspage = pages_per_zspage; 2439 class->objs_per_zspage = objs_per_zspage; 2440 spin_lock_init(&class->lock); 2441 pool->size_class[i] = class; 2442 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2443 fullness++) 2444 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2445 2446 prev_class = class; 2447 } 2448 2449 /* debug only, don't abort if it fails */ 2450 zs_pool_stat_create(pool, name); 2451 2452 if (zs_register_migration(pool)) 2453 goto err; 2454 2455 /* 2456 * Not critical since shrinker is only used to trigger internal 2457 * defragmentation of the pool which is pretty optional thing. If 2458 * registration fails we still can use the pool normally and user can 2459 * trigger compaction manually. Thus, ignore return code. 2460 */ 2461 zs_register_shrinker(pool); 2462 2463 return pool; 2464 2465 err: 2466 zs_destroy_pool(pool); 2467 return NULL; 2468 } 2469 EXPORT_SYMBOL_GPL(zs_create_pool); 2470 2471 void zs_destroy_pool(struct zs_pool *pool) 2472 { 2473 int i; 2474 2475 zs_unregister_shrinker(pool); 2476 zs_unregister_migration(pool); 2477 zs_pool_stat_destroy(pool); 2478 2479 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2480 int fg; 2481 struct size_class *class = pool->size_class[i]; 2482 2483 if (!class) 2484 continue; 2485 2486 if (class->index != i) 2487 continue; 2488 2489 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2490 if (!list_empty(&class->fullness_list[fg])) { 2491 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2492 class->size, fg); 2493 } 2494 } 2495 kfree(class); 2496 } 2497 2498 destroy_cache(pool); 2499 kfree(pool->name); 2500 kfree(pool); 2501 } 2502 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2503 2504 static int __init zs_init(void) 2505 { 2506 int ret; 2507 2508 ret = zsmalloc_mount(); 2509 if (ret) 2510 goto out; 2511 2512 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2513 zs_cpu_prepare, zs_cpu_dead); 2514 if (ret) 2515 goto hp_setup_fail; 2516 2517 #ifdef CONFIG_ZPOOL 2518 zpool_register_driver(&zs_zpool_driver); 2519 #endif 2520 2521 zs_stat_init(); 2522 2523 return 0; 2524 2525 hp_setup_fail: 2526 zsmalloc_unmount(); 2527 out: 2528 return ret; 2529 } 2530 2531 static void __exit zs_exit(void) 2532 { 2533 #ifdef CONFIG_ZPOOL 2534 zpool_unregister_driver(&zs_zpool_driver); 2535 #endif 2536 zsmalloc_unmount(); 2537 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2538 2539 zs_stat_exit(); 2540 } 2541 2542 module_init(zs_init); 2543 module_exit(zs_exit); 2544 2545 MODULE_LICENSE("Dual BSD/GPL"); 2546 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2547