1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_private2: identifies the last component page 28 * PG_owner_priv_1: indentifies the huge component page 29 * 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/module.h> 35 #include <linux/kernel.h> 36 #include <linux/sched.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/types.h> 50 #include <linux/debugfs.h> 51 #include <linux/zsmalloc.h> 52 #include <linux/zpool.h> 53 #include <linux/mount.h> 54 #include <linux/migrate.h> 55 #include <linux/pagemap.h> 56 57 #define ZSPAGE_MAGIC 0x58 58 59 /* 60 * This must be power of 2 and greater than of equal to sizeof(link_free). 61 * These two conditions ensure that any 'struct link_free' itself doesn't 62 * span more than 1 page which avoids complex case of mapping 2 pages simply 63 * to restore link_free pointer values. 64 */ 65 #define ZS_ALIGN 8 66 67 /* 68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 70 */ 71 #define ZS_MAX_ZSPAGE_ORDER 2 72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 73 74 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 75 76 /* 77 * Object location (<PFN>, <obj_idx>) is encoded as 78 * as single (unsigned long) handle value. 79 * 80 * Note that object index <obj_idx> starts from 0. 81 * 82 * This is made more complicated by various memory models and PAE. 83 */ 84 85 #ifndef MAX_PHYSMEM_BITS 86 #ifdef CONFIG_HIGHMEM64G 87 #define MAX_PHYSMEM_BITS 36 88 #else /* !CONFIG_HIGHMEM64G */ 89 /* 90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 91 * be PAGE_SHIFT 92 */ 93 #define MAX_PHYSMEM_BITS BITS_PER_LONG 94 #endif 95 #endif 96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 97 98 /* 99 * Memory for allocating for handle keeps object position by 100 * encoding <page, obj_idx> and the encoded value has a room 101 * in least bit(ie, look at obj_to_location). 102 * We use the bit to synchronize between object access by 103 * user and migration. 104 */ 105 #define HANDLE_PIN_BIT 0 106 107 /* 108 * Head in allocated object should have OBJ_ALLOCATED_TAG 109 * to identify the object was allocated or not. 110 * It's okay to add the status bit in the least bit because 111 * header keeps handle which is 4byte-aligned address so we 112 * have room for two bit at least. 113 */ 114 #define OBJ_ALLOCATED_TAG 1 115 #define OBJ_TAG_BITS 1 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 121 #define ZS_MIN_ALLOC_SIZE \ 122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 123 /* each chunk includes extra space to keep handle */ 124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 125 126 /* 127 * On systems with 4K page size, this gives 255 size classes! There is a 128 * trader-off here: 129 * - Large number of size classes is potentially wasteful as free page are 130 * spread across these classes 131 * - Small number of size classes causes large internal fragmentation 132 * - Probably its better to use specific size classes (empirically 133 * determined). NOTE: all those class sizes must be set as multiple of 134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 135 * 136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 137 * (reason above) 138 */ 139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 140 141 enum fullness_group { 142 ZS_EMPTY, 143 ZS_ALMOST_EMPTY, 144 ZS_ALMOST_FULL, 145 ZS_FULL, 146 NR_ZS_FULLNESS, 147 }; 148 149 enum zs_stat_type { 150 CLASS_EMPTY, 151 CLASS_ALMOST_EMPTY, 152 CLASS_ALMOST_FULL, 153 CLASS_FULL, 154 OBJ_ALLOCATED, 155 OBJ_USED, 156 NR_ZS_STAT_TYPE, 157 }; 158 159 struct zs_size_stat { 160 unsigned long objs[NR_ZS_STAT_TYPE]; 161 }; 162 163 #ifdef CONFIG_ZSMALLOC_STAT 164 static struct dentry *zs_stat_root; 165 #endif 166 167 #ifdef CONFIG_COMPACTION 168 static struct vfsmount *zsmalloc_mnt; 169 #endif 170 171 /* 172 * number of size_classes 173 */ 174 static int zs_size_classes; 175 176 /* 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 178 * n <= N / f, where 179 * n = number of allocated objects 180 * N = total number of objects zspage can store 181 * f = fullness_threshold_frac 182 * 183 * Similarly, we assign zspage to: 184 * ZS_ALMOST_FULL when n > N / f 185 * ZS_EMPTY when n == 0 186 * ZS_FULL when n == N 187 * 188 * (see: fix_fullness_group()) 189 */ 190 static const int fullness_threshold_frac = 4; 191 192 struct size_class { 193 spinlock_t lock; 194 struct list_head fullness_list[NR_ZS_FULLNESS]; 195 /* 196 * Size of objects stored in this class. Must be multiple 197 * of ZS_ALIGN. 198 */ 199 int size; 200 int objs_per_zspage; 201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 202 int pages_per_zspage; 203 204 unsigned int index; 205 struct zs_size_stat stats; 206 }; 207 208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 209 static void SetPageHugeObject(struct page *page) 210 { 211 SetPageOwnerPriv1(page); 212 } 213 214 static void ClearPageHugeObject(struct page *page) 215 { 216 ClearPageOwnerPriv1(page); 217 } 218 219 static int PageHugeObject(struct page *page) 220 { 221 return PageOwnerPriv1(page); 222 } 223 224 /* 225 * Placed within free objects to form a singly linked list. 226 * For every zspage, zspage->freeobj gives head of this list. 227 * 228 * This must be power of 2 and less than or equal to ZS_ALIGN 229 */ 230 struct link_free { 231 union { 232 /* 233 * Free object index; 234 * It's valid for non-allocated object 235 */ 236 unsigned long next; 237 /* 238 * Handle of allocated object. 239 */ 240 unsigned long handle; 241 }; 242 }; 243 244 struct zs_pool { 245 const char *name; 246 247 struct size_class **size_class; 248 struct kmem_cache *handle_cachep; 249 struct kmem_cache *zspage_cachep; 250 251 atomic_long_t pages_allocated; 252 253 struct zs_pool_stats stats; 254 255 /* Compact classes */ 256 struct shrinker shrinker; 257 /* 258 * To signify that register_shrinker() was successful 259 * and unregister_shrinker() will not Oops. 260 */ 261 bool shrinker_enabled; 262 #ifdef CONFIG_ZSMALLOC_STAT 263 struct dentry *stat_dentry; 264 #endif 265 #ifdef CONFIG_COMPACTION 266 struct inode *inode; 267 struct work_struct free_work; 268 #endif 269 }; 270 271 /* 272 * A zspage's class index and fullness group 273 * are encoded in its (first)page->mapping 274 */ 275 #define FULLNESS_BITS 2 276 #define CLASS_BITS 8 277 #define ISOLATED_BITS 3 278 #define MAGIC_VAL_BITS 8 279 280 struct zspage { 281 struct { 282 unsigned int fullness:FULLNESS_BITS; 283 unsigned int class:CLASS_BITS; 284 unsigned int isolated:ISOLATED_BITS; 285 unsigned int magic:MAGIC_VAL_BITS; 286 }; 287 unsigned int inuse; 288 unsigned int freeobj; 289 struct page *first_page; 290 struct list_head list; /* fullness list */ 291 #ifdef CONFIG_COMPACTION 292 rwlock_t lock; 293 #endif 294 }; 295 296 struct mapping_area { 297 #ifdef CONFIG_PGTABLE_MAPPING 298 struct vm_struct *vm; /* vm area for mapping object that span pages */ 299 #else 300 char *vm_buf; /* copy buffer for objects that span pages */ 301 #endif 302 char *vm_addr; /* address of kmap_atomic()'ed pages */ 303 enum zs_mapmode vm_mm; /* mapping mode */ 304 }; 305 306 #ifdef CONFIG_COMPACTION 307 static int zs_register_migration(struct zs_pool *pool); 308 static void zs_unregister_migration(struct zs_pool *pool); 309 static void migrate_lock_init(struct zspage *zspage); 310 static void migrate_read_lock(struct zspage *zspage); 311 static void migrate_read_unlock(struct zspage *zspage); 312 static void kick_deferred_free(struct zs_pool *pool); 313 static void init_deferred_free(struct zs_pool *pool); 314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 315 #else 316 static int zsmalloc_mount(void) { return 0; } 317 static void zsmalloc_unmount(void) {} 318 static int zs_register_migration(struct zs_pool *pool) { return 0; } 319 static void zs_unregister_migration(struct zs_pool *pool) {} 320 static void migrate_lock_init(struct zspage *zspage) {} 321 static void migrate_read_lock(struct zspage *zspage) {} 322 static void migrate_read_unlock(struct zspage *zspage) {} 323 static void kick_deferred_free(struct zs_pool *pool) {} 324 static void init_deferred_free(struct zs_pool *pool) {} 325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 326 #endif 327 328 static int create_cache(struct zs_pool *pool) 329 { 330 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 331 0, 0, NULL); 332 if (!pool->handle_cachep) 333 return 1; 334 335 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 336 0, 0, NULL); 337 if (!pool->zspage_cachep) { 338 kmem_cache_destroy(pool->handle_cachep); 339 pool->handle_cachep = NULL; 340 return 1; 341 } 342 343 return 0; 344 } 345 346 static void destroy_cache(struct zs_pool *pool) 347 { 348 kmem_cache_destroy(pool->handle_cachep); 349 kmem_cache_destroy(pool->zspage_cachep); 350 } 351 352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 353 { 354 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 355 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 356 } 357 358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 359 { 360 kmem_cache_free(pool->handle_cachep, (void *)handle); 361 } 362 363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 364 { 365 return kmem_cache_alloc(pool->zspage_cachep, 366 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 367 }; 368 369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 370 { 371 kmem_cache_free(pool->zspage_cachep, zspage); 372 } 373 374 static void record_obj(unsigned long handle, unsigned long obj) 375 { 376 /* 377 * lsb of @obj represents handle lock while other bits 378 * represent object value the handle is pointing so 379 * updating shouldn't do store tearing. 380 */ 381 WRITE_ONCE(*(unsigned long *)handle, obj); 382 } 383 384 /* zpool driver */ 385 386 #ifdef CONFIG_ZPOOL 387 388 static void *zs_zpool_create(const char *name, gfp_t gfp, 389 const struct zpool_ops *zpool_ops, 390 struct zpool *zpool) 391 { 392 /* 393 * Ignore global gfp flags: zs_malloc() may be invoked from 394 * different contexts and its caller must provide a valid 395 * gfp mask. 396 */ 397 return zs_create_pool(name); 398 } 399 400 static void zs_zpool_destroy(void *pool) 401 { 402 zs_destroy_pool(pool); 403 } 404 405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 406 unsigned long *handle) 407 { 408 *handle = zs_malloc(pool, size, gfp); 409 return *handle ? 0 : -1; 410 } 411 static void zs_zpool_free(void *pool, unsigned long handle) 412 { 413 zs_free(pool, handle); 414 } 415 416 static int zs_zpool_shrink(void *pool, unsigned int pages, 417 unsigned int *reclaimed) 418 { 419 return -EINVAL; 420 } 421 422 static void *zs_zpool_map(void *pool, unsigned long handle, 423 enum zpool_mapmode mm) 424 { 425 enum zs_mapmode zs_mm; 426 427 switch (mm) { 428 case ZPOOL_MM_RO: 429 zs_mm = ZS_MM_RO; 430 break; 431 case ZPOOL_MM_WO: 432 zs_mm = ZS_MM_WO; 433 break; 434 case ZPOOL_MM_RW: /* fallthru */ 435 default: 436 zs_mm = ZS_MM_RW; 437 break; 438 } 439 440 return zs_map_object(pool, handle, zs_mm); 441 } 442 static void zs_zpool_unmap(void *pool, unsigned long handle) 443 { 444 zs_unmap_object(pool, handle); 445 } 446 447 static u64 zs_zpool_total_size(void *pool) 448 { 449 return zs_get_total_pages(pool) << PAGE_SHIFT; 450 } 451 452 static struct zpool_driver zs_zpool_driver = { 453 .type = "zsmalloc", 454 .owner = THIS_MODULE, 455 .create = zs_zpool_create, 456 .destroy = zs_zpool_destroy, 457 .malloc = zs_zpool_malloc, 458 .free = zs_zpool_free, 459 .shrink = zs_zpool_shrink, 460 .map = zs_zpool_map, 461 .unmap = zs_zpool_unmap, 462 .total_size = zs_zpool_total_size, 463 }; 464 465 MODULE_ALIAS("zpool-zsmalloc"); 466 #endif /* CONFIG_ZPOOL */ 467 468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 470 471 static bool is_zspage_isolated(struct zspage *zspage) 472 { 473 return zspage->isolated; 474 } 475 476 static int is_first_page(struct page *page) 477 { 478 return PagePrivate(page); 479 } 480 481 /* Protected by class->lock */ 482 static inline int get_zspage_inuse(struct zspage *zspage) 483 { 484 return zspage->inuse; 485 } 486 487 static inline void set_zspage_inuse(struct zspage *zspage, int val) 488 { 489 zspage->inuse = val; 490 } 491 492 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 493 { 494 zspage->inuse += val; 495 } 496 497 static inline struct page *get_first_page(struct zspage *zspage) 498 { 499 struct page *first_page = zspage->first_page; 500 501 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 502 return first_page; 503 } 504 505 static inline int get_first_obj_offset(struct page *page) 506 { 507 return page->units; 508 } 509 510 static inline void set_first_obj_offset(struct page *page, int offset) 511 { 512 page->units = offset; 513 } 514 515 static inline unsigned int get_freeobj(struct zspage *zspage) 516 { 517 return zspage->freeobj; 518 } 519 520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 521 { 522 zspage->freeobj = obj; 523 } 524 525 static void get_zspage_mapping(struct zspage *zspage, 526 unsigned int *class_idx, 527 enum fullness_group *fullness) 528 { 529 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 530 531 *fullness = zspage->fullness; 532 *class_idx = zspage->class; 533 } 534 535 static void set_zspage_mapping(struct zspage *zspage, 536 unsigned int class_idx, 537 enum fullness_group fullness) 538 { 539 zspage->class = class_idx; 540 zspage->fullness = fullness; 541 } 542 543 /* 544 * zsmalloc divides the pool into various size classes where each 545 * class maintains a list of zspages where each zspage is divided 546 * into equal sized chunks. Each allocation falls into one of these 547 * classes depending on its size. This function returns index of the 548 * size class which has chunk size big enough to hold the give size. 549 */ 550 static int get_size_class_index(int size) 551 { 552 int idx = 0; 553 554 if (likely(size > ZS_MIN_ALLOC_SIZE)) 555 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 556 ZS_SIZE_CLASS_DELTA); 557 558 return min(zs_size_classes - 1, idx); 559 } 560 561 static inline void zs_stat_inc(struct size_class *class, 562 enum zs_stat_type type, unsigned long cnt) 563 { 564 class->stats.objs[type] += cnt; 565 } 566 567 static inline void zs_stat_dec(struct size_class *class, 568 enum zs_stat_type type, unsigned long cnt) 569 { 570 class->stats.objs[type] -= cnt; 571 } 572 573 static inline unsigned long zs_stat_get(struct size_class *class, 574 enum zs_stat_type type) 575 { 576 return class->stats.objs[type]; 577 } 578 579 #ifdef CONFIG_ZSMALLOC_STAT 580 581 static void __init zs_stat_init(void) 582 { 583 if (!debugfs_initialized()) { 584 pr_warn("debugfs not available, stat dir not created\n"); 585 return; 586 } 587 588 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 589 if (!zs_stat_root) 590 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 591 } 592 593 static void __exit zs_stat_exit(void) 594 { 595 debugfs_remove_recursive(zs_stat_root); 596 } 597 598 static unsigned long zs_can_compact(struct size_class *class); 599 600 static int zs_stats_size_show(struct seq_file *s, void *v) 601 { 602 int i; 603 struct zs_pool *pool = s->private; 604 struct size_class *class; 605 int objs_per_zspage; 606 unsigned long class_almost_full, class_almost_empty; 607 unsigned long obj_allocated, obj_used, pages_used, freeable; 608 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 609 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 610 unsigned long total_freeable = 0; 611 612 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 613 "class", "size", "almost_full", "almost_empty", 614 "obj_allocated", "obj_used", "pages_used", 615 "pages_per_zspage", "freeable"); 616 617 for (i = 0; i < zs_size_classes; i++) { 618 class = pool->size_class[i]; 619 620 if (class->index != i) 621 continue; 622 623 spin_lock(&class->lock); 624 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 625 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 626 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 627 obj_used = zs_stat_get(class, OBJ_USED); 628 freeable = zs_can_compact(class); 629 spin_unlock(&class->lock); 630 631 objs_per_zspage = class->objs_per_zspage; 632 pages_used = obj_allocated / objs_per_zspage * 633 class->pages_per_zspage; 634 635 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 636 " %10lu %10lu %16d %8lu\n", 637 i, class->size, class_almost_full, class_almost_empty, 638 obj_allocated, obj_used, pages_used, 639 class->pages_per_zspage, freeable); 640 641 total_class_almost_full += class_almost_full; 642 total_class_almost_empty += class_almost_empty; 643 total_objs += obj_allocated; 644 total_used_objs += obj_used; 645 total_pages += pages_used; 646 total_freeable += freeable; 647 } 648 649 seq_puts(s, "\n"); 650 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 651 "Total", "", total_class_almost_full, 652 total_class_almost_empty, total_objs, 653 total_used_objs, total_pages, "", total_freeable); 654 655 return 0; 656 } 657 658 static int zs_stats_size_open(struct inode *inode, struct file *file) 659 { 660 return single_open(file, zs_stats_size_show, inode->i_private); 661 } 662 663 static const struct file_operations zs_stat_size_ops = { 664 .open = zs_stats_size_open, 665 .read = seq_read, 666 .llseek = seq_lseek, 667 .release = single_release, 668 }; 669 670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 671 { 672 struct dentry *entry; 673 674 if (!zs_stat_root) { 675 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 676 return; 677 } 678 679 entry = debugfs_create_dir(name, zs_stat_root); 680 if (!entry) { 681 pr_warn("debugfs dir <%s> creation failed\n", name); 682 return; 683 } 684 pool->stat_dentry = entry; 685 686 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 687 pool->stat_dentry, pool, &zs_stat_size_ops); 688 if (!entry) { 689 pr_warn("%s: debugfs file entry <%s> creation failed\n", 690 name, "classes"); 691 debugfs_remove_recursive(pool->stat_dentry); 692 pool->stat_dentry = NULL; 693 } 694 } 695 696 static void zs_pool_stat_destroy(struct zs_pool *pool) 697 { 698 debugfs_remove_recursive(pool->stat_dentry); 699 } 700 701 #else /* CONFIG_ZSMALLOC_STAT */ 702 static void __init zs_stat_init(void) 703 { 704 } 705 706 static void __exit zs_stat_exit(void) 707 { 708 } 709 710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 711 { 712 } 713 714 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 715 { 716 } 717 #endif 718 719 720 /* 721 * For each size class, zspages are divided into different groups 722 * depending on how "full" they are. This was done so that we could 723 * easily find empty or nearly empty zspages when we try to shrink 724 * the pool (not yet implemented). This function returns fullness 725 * status of the given page. 726 */ 727 static enum fullness_group get_fullness_group(struct size_class *class, 728 struct zspage *zspage) 729 { 730 int inuse, objs_per_zspage; 731 enum fullness_group fg; 732 733 inuse = get_zspage_inuse(zspage); 734 objs_per_zspage = class->objs_per_zspage; 735 736 if (inuse == 0) 737 fg = ZS_EMPTY; 738 else if (inuse == objs_per_zspage) 739 fg = ZS_FULL; 740 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 741 fg = ZS_ALMOST_EMPTY; 742 else 743 fg = ZS_ALMOST_FULL; 744 745 return fg; 746 } 747 748 /* 749 * Each size class maintains various freelists and zspages are assigned 750 * to one of these freelists based on the number of live objects they 751 * have. This functions inserts the given zspage into the freelist 752 * identified by <class, fullness_group>. 753 */ 754 static void insert_zspage(struct size_class *class, 755 struct zspage *zspage, 756 enum fullness_group fullness) 757 { 758 struct zspage *head; 759 760 zs_stat_inc(class, fullness, 1); 761 head = list_first_entry_or_null(&class->fullness_list[fullness], 762 struct zspage, list); 763 /* 764 * We want to see more ZS_FULL pages and less almost empty/full. 765 * Put pages with higher ->inuse first. 766 */ 767 if (head) { 768 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 769 list_add(&zspage->list, &head->list); 770 return; 771 } 772 } 773 list_add(&zspage->list, &class->fullness_list[fullness]); 774 } 775 776 /* 777 * This function removes the given zspage from the freelist identified 778 * by <class, fullness_group>. 779 */ 780 static void remove_zspage(struct size_class *class, 781 struct zspage *zspage, 782 enum fullness_group fullness) 783 { 784 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 785 VM_BUG_ON(is_zspage_isolated(zspage)); 786 787 list_del_init(&zspage->list); 788 zs_stat_dec(class, fullness, 1); 789 } 790 791 /* 792 * Each size class maintains zspages in different fullness groups depending 793 * on the number of live objects they contain. When allocating or freeing 794 * objects, the fullness status of the page can change, say, from ALMOST_FULL 795 * to ALMOST_EMPTY when freeing an object. This function checks if such 796 * a status change has occurred for the given page and accordingly moves the 797 * page from the freelist of the old fullness group to that of the new 798 * fullness group. 799 */ 800 static enum fullness_group fix_fullness_group(struct size_class *class, 801 struct zspage *zspage) 802 { 803 int class_idx; 804 enum fullness_group currfg, newfg; 805 806 get_zspage_mapping(zspage, &class_idx, &currfg); 807 newfg = get_fullness_group(class, zspage); 808 if (newfg == currfg) 809 goto out; 810 811 if (!is_zspage_isolated(zspage)) { 812 remove_zspage(class, zspage, currfg); 813 insert_zspage(class, zspage, newfg); 814 } 815 816 set_zspage_mapping(zspage, class_idx, newfg); 817 818 out: 819 return newfg; 820 } 821 822 /* 823 * We have to decide on how many pages to link together 824 * to form a zspage for each size class. This is important 825 * to reduce wastage due to unusable space left at end of 826 * each zspage which is given as: 827 * wastage = Zp % class_size 828 * usage = Zp - wastage 829 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 830 * 831 * For example, for size class of 3/8 * PAGE_SIZE, we should 832 * link together 3 PAGE_SIZE sized pages to form a zspage 833 * since then we can perfectly fit in 8 such objects. 834 */ 835 static int get_pages_per_zspage(int class_size) 836 { 837 int i, max_usedpc = 0; 838 /* zspage order which gives maximum used size per KB */ 839 int max_usedpc_order = 1; 840 841 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 842 int zspage_size; 843 int waste, usedpc; 844 845 zspage_size = i * PAGE_SIZE; 846 waste = zspage_size % class_size; 847 usedpc = (zspage_size - waste) * 100 / zspage_size; 848 849 if (usedpc > max_usedpc) { 850 max_usedpc = usedpc; 851 max_usedpc_order = i; 852 } 853 } 854 855 return max_usedpc_order; 856 } 857 858 static struct zspage *get_zspage(struct page *page) 859 { 860 struct zspage *zspage = (struct zspage *)page->private; 861 862 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 863 return zspage; 864 } 865 866 static struct page *get_next_page(struct page *page) 867 { 868 if (unlikely(PageHugeObject(page))) 869 return NULL; 870 871 return page->freelist; 872 } 873 874 /** 875 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 876 * @page: page object resides in zspage 877 * @obj_idx: object index 878 */ 879 static void obj_to_location(unsigned long obj, struct page **page, 880 unsigned int *obj_idx) 881 { 882 obj >>= OBJ_TAG_BITS; 883 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 884 *obj_idx = (obj & OBJ_INDEX_MASK); 885 } 886 887 /** 888 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 889 * @page: page object resides in zspage 890 * @obj_idx: object index 891 */ 892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 893 { 894 unsigned long obj; 895 896 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 897 obj |= obj_idx & OBJ_INDEX_MASK; 898 obj <<= OBJ_TAG_BITS; 899 900 return obj; 901 } 902 903 static unsigned long handle_to_obj(unsigned long handle) 904 { 905 return *(unsigned long *)handle; 906 } 907 908 static unsigned long obj_to_head(struct page *page, void *obj) 909 { 910 if (unlikely(PageHugeObject(page))) { 911 VM_BUG_ON_PAGE(!is_first_page(page), page); 912 return page->index; 913 } else 914 return *(unsigned long *)obj; 915 } 916 917 static inline int testpin_tag(unsigned long handle) 918 { 919 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 920 } 921 922 static inline int trypin_tag(unsigned long handle) 923 { 924 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 925 } 926 927 static void pin_tag(unsigned long handle) 928 { 929 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 930 } 931 932 static void unpin_tag(unsigned long handle) 933 { 934 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 935 } 936 937 static void reset_page(struct page *page) 938 { 939 __ClearPageMovable(page); 940 ClearPagePrivate(page); 941 ClearPagePrivate2(page); 942 set_page_private(page, 0); 943 page_mapcount_reset(page); 944 ClearPageHugeObject(page); 945 page->freelist = NULL; 946 } 947 948 /* 949 * To prevent zspage destroy during migration, zspage freeing should 950 * hold locks of all pages in the zspage. 951 */ 952 void lock_zspage(struct zspage *zspage) 953 { 954 struct page *page = get_first_page(zspage); 955 956 do { 957 lock_page(page); 958 } while ((page = get_next_page(page)) != NULL); 959 } 960 961 int trylock_zspage(struct zspage *zspage) 962 { 963 struct page *cursor, *fail; 964 965 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 966 get_next_page(cursor)) { 967 if (!trylock_page(cursor)) { 968 fail = cursor; 969 goto unlock; 970 } 971 } 972 973 return 1; 974 unlock: 975 for (cursor = get_first_page(zspage); cursor != fail; cursor = 976 get_next_page(cursor)) 977 unlock_page(cursor); 978 979 return 0; 980 } 981 982 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 983 struct zspage *zspage) 984 { 985 struct page *page, *next; 986 enum fullness_group fg; 987 unsigned int class_idx; 988 989 get_zspage_mapping(zspage, &class_idx, &fg); 990 991 assert_spin_locked(&class->lock); 992 993 VM_BUG_ON(get_zspage_inuse(zspage)); 994 VM_BUG_ON(fg != ZS_EMPTY); 995 996 next = page = get_first_page(zspage); 997 do { 998 VM_BUG_ON_PAGE(!PageLocked(page), page); 999 next = get_next_page(page); 1000 reset_page(page); 1001 unlock_page(page); 1002 dec_zone_page_state(page, NR_ZSPAGES); 1003 put_page(page); 1004 page = next; 1005 } while (page != NULL); 1006 1007 cache_free_zspage(pool, zspage); 1008 1009 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1010 atomic_long_sub(class->pages_per_zspage, 1011 &pool->pages_allocated); 1012 } 1013 1014 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1015 struct zspage *zspage) 1016 { 1017 VM_BUG_ON(get_zspage_inuse(zspage)); 1018 VM_BUG_ON(list_empty(&zspage->list)); 1019 1020 if (!trylock_zspage(zspage)) { 1021 kick_deferred_free(pool); 1022 return; 1023 } 1024 1025 remove_zspage(class, zspage, ZS_EMPTY); 1026 __free_zspage(pool, class, zspage); 1027 } 1028 1029 /* Initialize a newly allocated zspage */ 1030 static void init_zspage(struct size_class *class, struct zspage *zspage) 1031 { 1032 unsigned int freeobj = 1; 1033 unsigned long off = 0; 1034 struct page *page = get_first_page(zspage); 1035 1036 while (page) { 1037 struct page *next_page; 1038 struct link_free *link; 1039 void *vaddr; 1040 1041 set_first_obj_offset(page, off); 1042 1043 vaddr = kmap_atomic(page); 1044 link = (struct link_free *)vaddr + off / sizeof(*link); 1045 1046 while ((off += class->size) < PAGE_SIZE) { 1047 link->next = freeobj++ << OBJ_TAG_BITS; 1048 link += class->size / sizeof(*link); 1049 } 1050 1051 /* 1052 * We now come to the last (full or partial) object on this 1053 * page, which must point to the first object on the next 1054 * page (if present) 1055 */ 1056 next_page = get_next_page(page); 1057 if (next_page) { 1058 link->next = freeobj++ << OBJ_TAG_BITS; 1059 } else { 1060 /* 1061 * Reset OBJ_TAG_BITS bit to last link to tell 1062 * whether it's allocated object or not. 1063 */ 1064 link->next = -1 << OBJ_TAG_BITS; 1065 } 1066 kunmap_atomic(vaddr); 1067 page = next_page; 1068 off %= PAGE_SIZE; 1069 } 1070 1071 set_freeobj(zspage, 0); 1072 } 1073 1074 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1075 struct page *pages[]) 1076 { 1077 int i; 1078 struct page *page; 1079 struct page *prev_page = NULL; 1080 int nr_pages = class->pages_per_zspage; 1081 1082 /* 1083 * Allocate individual pages and link them together as: 1084 * 1. all pages are linked together using page->freelist 1085 * 2. each sub-page point to zspage using page->private 1086 * 1087 * we set PG_private to identify the first page (i.e. no other sub-page 1088 * has this flag set) and PG_private_2 to identify the last page. 1089 */ 1090 for (i = 0; i < nr_pages; i++) { 1091 page = pages[i]; 1092 set_page_private(page, (unsigned long)zspage); 1093 page->freelist = NULL; 1094 if (i == 0) { 1095 zspage->first_page = page; 1096 SetPagePrivate(page); 1097 if (unlikely(class->objs_per_zspage == 1 && 1098 class->pages_per_zspage == 1)) 1099 SetPageHugeObject(page); 1100 } else { 1101 prev_page->freelist = page; 1102 } 1103 if (i == nr_pages - 1) 1104 SetPagePrivate2(page); 1105 prev_page = page; 1106 } 1107 } 1108 1109 /* 1110 * Allocate a zspage for the given size class 1111 */ 1112 static struct zspage *alloc_zspage(struct zs_pool *pool, 1113 struct size_class *class, 1114 gfp_t gfp) 1115 { 1116 int i; 1117 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1118 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1119 1120 if (!zspage) 1121 return NULL; 1122 1123 memset(zspage, 0, sizeof(struct zspage)); 1124 zspage->magic = ZSPAGE_MAGIC; 1125 migrate_lock_init(zspage); 1126 1127 for (i = 0; i < class->pages_per_zspage; i++) { 1128 struct page *page; 1129 1130 page = alloc_page(gfp); 1131 if (!page) { 1132 while (--i >= 0) { 1133 dec_zone_page_state(pages[i], NR_ZSPAGES); 1134 __free_page(pages[i]); 1135 } 1136 cache_free_zspage(pool, zspage); 1137 return NULL; 1138 } 1139 1140 inc_zone_page_state(page, NR_ZSPAGES); 1141 pages[i] = page; 1142 } 1143 1144 create_page_chain(class, zspage, pages); 1145 init_zspage(class, zspage); 1146 1147 return zspage; 1148 } 1149 1150 static struct zspage *find_get_zspage(struct size_class *class) 1151 { 1152 int i; 1153 struct zspage *zspage; 1154 1155 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1156 zspage = list_first_entry_or_null(&class->fullness_list[i], 1157 struct zspage, list); 1158 if (zspage) 1159 break; 1160 } 1161 1162 return zspage; 1163 } 1164 1165 #ifdef CONFIG_PGTABLE_MAPPING 1166 static inline int __zs_cpu_up(struct mapping_area *area) 1167 { 1168 /* 1169 * Make sure we don't leak memory if a cpu UP notification 1170 * and zs_init() race and both call zs_cpu_up() on the same cpu 1171 */ 1172 if (area->vm) 1173 return 0; 1174 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1175 if (!area->vm) 1176 return -ENOMEM; 1177 return 0; 1178 } 1179 1180 static inline void __zs_cpu_down(struct mapping_area *area) 1181 { 1182 if (area->vm) 1183 free_vm_area(area->vm); 1184 area->vm = NULL; 1185 } 1186 1187 static inline void *__zs_map_object(struct mapping_area *area, 1188 struct page *pages[2], int off, int size) 1189 { 1190 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1191 area->vm_addr = area->vm->addr; 1192 return area->vm_addr + off; 1193 } 1194 1195 static inline void __zs_unmap_object(struct mapping_area *area, 1196 struct page *pages[2], int off, int size) 1197 { 1198 unsigned long addr = (unsigned long)area->vm_addr; 1199 1200 unmap_kernel_range(addr, PAGE_SIZE * 2); 1201 } 1202 1203 #else /* CONFIG_PGTABLE_MAPPING */ 1204 1205 static inline int __zs_cpu_up(struct mapping_area *area) 1206 { 1207 /* 1208 * Make sure we don't leak memory if a cpu UP notification 1209 * and zs_init() race and both call zs_cpu_up() on the same cpu 1210 */ 1211 if (area->vm_buf) 1212 return 0; 1213 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1214 if (!area->vm_buf) 1215 return -ENOMEM; 1216 return 0; 1217 } 1218 1219 static inline void __zs_cpu_down(struct mapping_area *area) 1220 { 1221 kfree(area->vm_buf); 1222 area->vm_buf = NULL; 1223 } 1224 1225 static void *__zs_map_object(struct mapping_area *area, 1226 struct page *pages[2], int off, int size) 1227 { 1228 int sizes[2]; 1229 void *addr; 1230 char *buf = area->vm_buf; 1231 1232 /* disable page faults to match kmap_atomic() return conditions */ 1233 pagefault_disable(); 1234 1235 /* no read fastpath */ 1236 if (area->vm_mm == ZS_MM_WO) 1237 goto out; 1238 1239 sizes[0] = PAGE_SIZE - off; 1240 sizes[1] = size - sizes[0]; 1241 1242 /* copy object to per-cpu buffer */ 1243 addr = kmap_atomic(pages[0]); 1244 memcpy(buf, addr + off, sizes[0]); 1245 kunmap_atomic(addr); 1246 addr = kmap_atomic(pages[1]); 1247 memcpy(buf + sizes[0], addr, sizes[1]); 1248 kunmap_atomic(addr); 1249 out: 1250 return area->vm_buf; 1251 } 1252 1253 static void __zs_unmap_object(struct mapping_area *area, 1254 struct page *pages[2], int off, int size) 1255 { 1256 int sizes[2]; 1257 void *addr; 1258 char *buf; 1259 1260 /* no write fastpath */ 1261 if (area->vm_mm == ZS_MM_RO) 1262 goto out; 1263 1264 buf = area->vm_buf; 1265 buf = buf + ZS_HANDLE_SIZE; 1266 size -= ZS_HANDLE_SIZE; 1267 off += ZS_HANDLE_SIZE; 1268 1269 sizes[0] = PAGE_SIZE - off; 1270 sizes[1] = size - sizes[0]; 1271 1272 /* copy per-cpu buffer to object */ 1273 addr = kmap_atomic(pages[0]); 1274 memcpy(addr + off, buf, sizes[0]); 1275 kunmap_atomic(addr); 1276 addr = kmap_atomic(pages[1]); 1277 memcpy(addr, buf + sizes[0], sizes[1]); 1278 kunmap_atomic(addr); 1279 1280 out: 1281 /* enable page faults to match kunmap_atomic() return conditions */ 1282 pagefault_enable(); 1283 } 1284 1285 #endif /* CONFIG_PGTABLE_MAPPING */ 1286 1287 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 1288 void *pcpu) 1289 { 1290 int ret, cpu = (long)pcpu; 1291 struct mapping_area *area; 1292 1293 switch (action) { 1294 case CPU_UP_PREPARE: 1295 area = &per_cpu(zs_map_area, cpu); 1296 ret = __zs_cpu_up(area); 1297 if (ret) 1298 return notifier_from_errno(ret); 1299 break; 1300 case CPU_DEAD: 1301 case CPU_UP_CANCELED: 1302 area = &per_cpu(zs_map_area, cpu); 1303 __zs_cpu_down(area); 1304 break; 1305 } 1306 1307 return NOTIFY_OK; 1308 } 1309 1310 static struct notifier_block zs_cpu_nb = { 1311 .notifier_call = zs_cpu_notifier 1312 }; 1313 1314 static int zs_register_cpu_notifier(void) 1315 { 1316 int cpu, uninitialized_var(ret); 1317 1318 cpu_notifier_register_begin(); 1319 1320 __register_cpu_notifier(&zs_cpu_nb); 1321 for_each_online_cpu(cpu) { 1322 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 1323 if (notifier_to_errno(ret)) 1324 break; 1325 } 1326 1327 cpu_notifier_register_done(); 1328 return notifier_to_errno(ret); 1329 } 1330 1331 static void zs_unregister_cpu_notifier(void) 1332 { 1333 int cpu; 1334 1335 cpu_notifier_register_begin(); 1336 1337 for_each_online_cpu(cpu) 1338 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 1339 __unregister_cpu_notifier(&zs_cpu_nb); 1340 1341 cpu_notifier_register_done(); 1342 } 1343 1344 static void __init init_zs_size_classes(void) 1345 { 1346 int nr; 1347 1348 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 1349 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 1350 nr += 1; 1351 1352 zs_size_classes = nr; 1353 } 1354 1355 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1356 int objs_per_zspage) 1357 { 1358 if (prev->pages_per_zspage == pages_per_zspage && 1359 prev->objs_per_zspage == objs_per_zspage) 1360 return true; 1361 1362 return false; 1363 } 1364 1365 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1366 { 1367 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1368 } 1369 1370 unsigned long zs_get_total_pages(struct zs_pool *pool) 1371 { 1372 return atomic_long_read(&pool->pages_allocated); 1373 } 1374 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1375 1376 /** 1377 * zs_map_object - get address of allocated object from handle. 1378 * @pool: pool from which the object was allocated 1379 * @handle: handle returned from zs_malloc 1380 * 1381 * Before using an object allocated from zs_malloc, it must be mapped using 1382 * this function. When done with the object, it must be unmapped using 1383 * zs_unmap_object. 1384 * 1385 * Only one object can be mapped per cpu at a time. There is no protection 1386 * against nested mappings. 1387 * 1388 * This function returns with preemption and page faults disabled. 1389 */ 1390 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1391 enum zs_mapmode mm) 1392 { 1393 struct zspage *zspage; 1394 struct page *page; 1395 unsigned long obj, off; 1396 unsigned int obj_idx; 1397 1398 unsigned int class_idx; 1399 enum fullness_group fg; 1400 struct size_class *class; 1401 struct mapping_area *area; 1402 struct page *pages[2]; 1403 void *ret; 1404 1405 /* 1406 * Because we use per-cpu mapping areas shared among the 1407 * pools/users, we can't allow mapping in interrupt context 1408 * because it can corrupt another users mappings. 1409 */ 1410 WARN_ON_ONCE(in_interrupt()); 1411 1412 /* From now on, migration cannot move the object */ 1413 pin_tag(handle); 1414 1415 obj = handle_to_obj(handle); 1416 obj_to_location(obj, &page, &obj_idx); 1417 zspage = get_zspage(page); 1418 1419 /* migration cannot move any subpage in this zspage */ 1420 migrate_read_lock(zspage); 1421 1422 get_zspage_mapping(zspage, &class_idx, &fg); 1423 class = pool->size_class[class_idx]; 1424 off = (class->size * obj_idx) & ~PAGE_MASK; 1425 1426 area = &get_cpu_var(zs_map_area); 1427 area->vm_mm = mm; 1428 if (off + class->size <= PAGE_SIZE) { 1429 /* this object is contained entirely within a page */ 1430 area->vm_addr = kmap_atomic(page); 1431 ret = area->vm_addr + off; 1432 goto out; 1433 } 1434 1435 /* this object spans two pages */ 1436 pages[0] = page; 1437 pages[1] = get_next_page(page); 1438 BUG_ON(!pages[1]); 1439 1440 ret = __zs_map_object(area, pages, off, class->size); 1441 out: 1442 if (likely(!PageHugeObject(page))) 1443 ret += ZS_HANDLE_SIZE; 1444 1445 return ret; 1446 } 1447 EXPORT_SYMBOL_GPL(zs_map_object); 1448 1449 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1450 { 1451 struct zspage *zspage; 1452 struct page *page; 1453 unsigned long obj, off; 1454 unsigned int obj_idx; 1455 1456 unsigned int class_idx; 1457 enum fullness_group fg; 1458 struct size_class *class; 1459 struct mapping_area *area; 1460 1461 obj = handle_to_obj(handle); 1462 obj_to_location(obj, &page, &obj_idx); 1463 zspage = get_zspage(page); 1464 get_zspage_mapping(zspage, &class_idx, &fg); 1465 class = pool->size_class[class_idx]; 1466 off = (class->size * obj_idx) & ~PAGE_MASK; 1467 1468 area = this_cpu_ptr(&zs_map_area); 1469 if (off + class->size <= PAGE_SIZE) 1470 kunmap_atomic(area->vm_addr); 1471 else { 1472 struct page *pages[2]; 1473 1474 pages[0] = page; 1475 pages[1] = get_next_page(page); 1476 BUG_ON(!pages[1]); 1477 1478 __zs_unmap_object(area, pages, off, class->size); 1479 } 1480 put_cpu_var(zs_map_area); 1481 1482 migrate_read_unlock(zspage); 1483 unpin_tag(handle); 1484 } 1485 EXPORT_SYMBOL_GPL(zs_unmap_object); 1486 1487 static unsigned long obj_malloc(struct size_class *class, 1488 struct zspage *zspage, unsigned long handle) 1489 { 1490 int i, nr_page, offset; 1491 unsigned long obj; 1492 struct link_free *link; 1493 1494 struct page *m_page; 1495 unsigned long m_offset; 1496 void *vaddr; 1497 1498 handle |= OBJ_ALLOCATED_TAG; 1499 obj = get_freeobj(zspage); 1500 1501 offset = obj * class->size; 1502 nr_page = offset >> PAGE_SHIFT; 1503 m_offset = offset & ~PAGE_MASK; 1504 m_page = get_first_page(zspage); 1505 1506 for (i = 0; i < nr_page; i++) 1507 m_page = get_next_page(m_page); 1508 1509 vaddr = kmap_atomic(m_page); 1510 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1511 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1512 if (likely(!PageHugeObject(m_page))) 1513 /* record handle in the header of allocated chunk */ 1514 link->handle = handle; 1515 else 1516 /* record handle to page->index */ 1517 zspage->first_page->index = handle; 1518 1519 kunmap_atomic(vaddr); 1520 mod_zspage_inuse(zspage, 1); 1521 zs_stat_inc(class, OBJ_USED, 1); 1522 1523 obj = location_to_obj(m_page, obj); 1524 1525 return obj; 1526 } 1527 1528 1529 /** 1530 * zs_malloc - Allocate block of given size from pool. 1531 * @pool: pool to allocate from 1532 * @size: size of block to allocate 1533 * @gfp: gfp flags when allocating object 1534 * 1535 * On success, handle to the allocated object is returned, 1536 * otherwise 0. 1537 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1538 */ 1539 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1540 { 1541 unsigned long handle, obj; 1542 struct size_class *class; 1543 enum fullness_group newfg; 1544 struct zspage *zspage; 1545 1546 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1547 return 0; 1548 1549 handle = cache_alloc_handle(pool, gfp); 1550 if (!handle) 1551 return 0; 1552 1553 /* extra space in chunk to keep the handle */ 1554 size += ZS_HANDLE_SIZE; 1555 class = pool->size_class[get_size_class_index(size)]; 1556 1557 spin_lock(&class->lock); 1558 zspage = find_get_zspage(class); 1559 if (likely(zspage)) { 1560 obj = obj_malloc(class, zspage, handle); 1561 /* Now move the zspage to another fullness group, if required */ 1562 fix_fullness_group(class, zspage); 1563 record_obj(handle, obj); 1564 spin_unlock(&class->lock); 1565 1566 return handle; 1567 } 1568 1569 spin_unlock(&class->lock); 1570 1571 zspage = alloc_zspage(pool, class, gfp); 1572 if (!zspage) { 1573 cache_free_handle(pool, handle); 1574 return 0; 1575 } 1576 1577 spin_lock(&class->lock); 1578 obj = obj_malloc(class, zspage, handle); 1579 newfg = get_fullness_group(class, zspage); 1580 insert_zspage(class, zspage, newfg); 1581 set_zspage_mapping(zspage, class->index, newfg); 1582 record_obj(handle, obj); 1583 atomic_long_add(class->pages_per_zspage, 1584 &pool->pages_allocated); 1585 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1586 1587 /* We completely set up zspage so mark them as movable */ 1588 SetZsPageMovable(pool, zspage); 1589 spin_unlock(&class->lock); 1590 1591 return handle; 1592 } 1593 EXPORT_SYMBOL_GPL(zs_malloc); 1594 1595 static void obj_free(struct size_class *class, unsigned long obj) 1596 { 1597 struct link_free *link; 1598 struct zspage *zspage; 1599 struct page *f_page; 1600 unsigned long f_offset; 1601 unsigned int f_objidx; 1602 void *vaddr; 1603 1604 obj &= ~OBJ_ALLOCATED_TAG; 1605 obj_to_location(obj, &f_page, &f_objidx); 1606 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1607 zspage = get_zspage(f_page); 1608 1609 vaddr = kmap_atomic(f_page); 1610 1611 /* Insert this object in containing zspage's freelist */ 1612 link = (struct link_free *)(vaddr + f_offset); 1613 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1614 kunmap_atomic(vaddr); 1615 set_freeobj(zspage, f_objidx); 1616 mod_zspage_inuse(zspage, -1); 1617 zs_stat_dec(class, OBJ_USED, 1); 1618 } 1619 1620 void zs_free(struct zs_pool *pool, unsigned long handle) 1621 { 1622 struct zspage *zspage; 1623 struct page *f_page; 1624 unsigned long obj; 1625 unsigned int f_objidx; 1626 int class_idx; 1627 struct size_class *class; 1628 enum fullness_group fullness; 1629 bool isolated; 1630 1631 if (unlikely(!handle)) 1632 return; 1633 1634 pin_tag(handle); 1635 obj = handle_to_obj(handle); 1636 obj_to_location(obj, &f_page, &f_objidx); 1637 zspage = get_zspage(f_page); 1638 1639 migrate_read_lock(zspage); 1640 1641 get_zspage_mapping(zspage, &class_idx, &fullness); 1642 class = pool->size_class[class_idx]; 1643 1644 spin_lock(&class->lock); 1645 obj_free(class, obj); 1646 fullness = fix_fullness_group(class, zspage); 1647 if (fullness != ZS_EMPTY) { 1648 migrate_read_unlock(zspage); 1649 goto out; 1650 } 1651 1652 isolated = is_zspage_isolated(zspage); 1653 migrate_read_unlock(zspage); 1654 /* If zspage is isolated, zs_page_putback will free the zspage */ 1655 if (likely(!isolated)) 1656 free_zspage(pool, class, zspage); 1657 out: 1658 1659 spin_unlock(&class->lock); 1660 unpin_tag(handle); 1661 cache_free_handle(pool, handle); 1662 } 1663 EXPORT_SYMBOL_GPL(zs_free); 1664 1665 static void zs_object_copy(struct size_class *class, unsigned long dst, 1666 unsigned long src) 1667 { 1668 struct page *s_page, *d_page; 1669 unsigned int s_objidx, d_objidx; 1670 unsigned long s_off, d_off; 1671 void *s_addr, *d_addr; 1672 int s_size, d_size, size; 1673 int written = 0; 1674 1675 s_size = d_size = class->size; 1676 1677 obj_to_location(src, &s_page, &s_objidx); 1678 obj_to_location(dst, &d_page, &d_objidx); 1679 1680 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1681 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1682 1683 if (s_off + class->size > PAGE_SIZE) 1684 s_size = PAGE_SIZE - s_off; 1685 1686 if (d_off + class->size > PAGE_SIZE) 1687 d_size = PAGE_SIZE - d_off; 1688 1689 s_addr = kmap_atomic(s_page); 1690 d_addr = kmap_atomic(d_page); 1691 1692 while (1) { 1693 size = min(s_size, d_size); 1694 memcpy(d_addr + d_off, s_addr + s_off, size); 1695 written += size; 1696 1697 if (written == class->size) 1698 break; 1699 1700 s_off += size; 1701 s_size -= size; 1702 d_off += size; 1703 d_size -= size; 1704 1705 if (s_off >= PAGE_SIZE) { 1706 kunmap_atomic(d_addr); 1707 kunmap_atomic(s_addr); 1708 s_page = get_next_page(s_page); 1709 s_addr = kmap_atomic(s_page); 1710 d_addr = kmap_atomic(d_page); 1711 s_size = class->size - written; 1712 s_off = 0; 1713 } 1714 1715 if (d_off >= PAGE_SIZE) { 1716 kunmap_atomic(d_addr); 1717 d_page = get_next_page(d_page); 1718 d_addr = kmap_atomic(d_page); 1719 d_size = class->size - written; 1720 d_off = 0; 1721 } 1722 } 1723 1724 kunmap_atomic(d_addr); 1725 kunmap_atomic(s_addr); 1726 } 1727 1728 /* 1729 * Find alloced object in zspage from index object and 1730 * return handle. 1731 */ 1732 static unsigned long find_alloced_obj(struct size_class *class, 1733 struct page *page, int *obj_idx) 1734 { 1735 unsigned long head; 1736 int offset = 0; 1737 int index = *obj_idx; 1738 unsigned long handle = 0; 1739 void *addr = kmap_atomic(page); 1740 1741 offset = get_first_obj_offset(page); 1742 offset += class->size * index; 1743 1744 while (offset < PAGE_SIZE) { 1745 head = obj_to_head(page, addr + offset); 1746 if (head & OBJ_ALLOCATED_TAG) { 1747 handle = head & ~OBJ_ALLOCATED_TAG; 1748 if (trypin_tag(handle)) 1749 break; 1750 handle = 0; 1751 } 1752 1753 offset += class->size; 1754 index++; 1755 } 1756 1757 kunmap_atomic(addr); 1758 1759 *obj_idx = index; 1760 1761 return handle; 1762 } 1763 1764 struct zs_compact_control { 1765 /* Source spage for migration which could be a subpage of zspage */ 1766 struct page *s_page; 1767 /* Destination page for migration which should be a first page 1768 * of zspage. */ 1769 struct page *d_page; 1770 /* Starting object index within @s_page which used for live object 1771 * in the subpage. */ 1772 int obj_idx; 1773 }; 1774 1775 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1776 struct zs_compact_control *cc) 1777 { 1778 unsigned long used_obj, free_obj; 1779 unsigned long handle; 1780 struct page *s_page = cc->s_page; 1781 struct page *d_page = cc->d_page; 1782 int obj_idx = cc->obj_idx; 1783 int ret = 0; 1784 1785 while (1) { 1786 handle = find_alloced_obj(class, s_page, &obj_idx); 1787 if (!handle) { 1788 s_page = get_next_page(s_page); 1789 if (!s_page) 1790 break; 1791 obj_idx = 0; 1792 continue; 1793 } 1794 1795 /* Stop if there is no more space */ 1796 if (zspage_full(class, get_zspage(d_page))) { 1797 unpin_tag(handle); 1798 ret = -ENOMEM; 1799 break; 1800 } 1801 1802 used_obj = handle_to_obj(handle); 1803 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1804 zs_object_copy(class, free_obj, used_obj); 1805 obj_idx++; 1806 /* 1807 * record_obj updates handle's value to free_obj and it will 1808 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1809 * breaks synchronization using pin_tag(e,g, zs_free) so 1810 * let's keep the lock bit. 1811 */ 1812 free_obj |= BIT(HANDLE_PIN_BIT); 1813 record_obj(handle, free_obj); 1814 unpin_tag(handle); 1815 obj_free(class, used_obj); 1816 } 1817 1818 /* Remember last position in this iteration */ 1819 cc->s_page = s_page; 1820 cc->obj_idx = obj_idx; 1821 1822 return ret; 1823 } 1824 1825 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1826 { 1827 int i; 1828 struct zspage *zspage; 1829 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1830 1831 if (!source) { 1832 fg[0] = ZS_ALMOST_FULL; 1833 fg[1] = ZS_ALMOST_EMPTY; 1834 } 1835 1836 for (i = 0; i < 2; i++) { 1837 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1838 struct zspage, list); 1839 if (zspage) { 1840 VM_BUG_ON(is_zspage_isolated(zspage)); 1841 remove_zspage(class, zspage, fg[i]); 1842 return zspage; 1843 } 1844 } 1845 1846 return zspage; 1847 } 1848 1849 /* 1850 * putback_zspage - add @zspage into right class's fullness list 1851 * @class: destination class 1852 * @zspage: target page 1853 * 1854 * Return @zspage's fullness_group 1855 */ 1856 static enum fullness_group putback_zspage(struct size_class *class, 1857 struct zspage *zspage) 1858 { 1859 enum fullness_group fullness; 1860 1861 VM_BUG_ON(is_zspage_isolated(zspage)); 1862 1863 fullness = get_fullness_group(class, zspage); 1864 insert_zspage(class, zspage, fullness); 1865 set_zspage_mapping(zspage, class->index, fullness); 1866 1867 return fullness; 1868 } 1869 1870 #ifdef CONFIG_COMPACTION 1871 static struct dentry *zs_mount(struct file_system_type *fs_type, 1872 int flags, const char *dev_name, void *data) 1873 { 1874 static const struct dentry_operations ops = { 1875 .d_dname = simple_dname, 1876 }; 1877 1878 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1879 } 1880 1881 static struct file_system_type zsmalloc_fs = { 1882 .name = "zsmalloc", 1883 .mount = zs_mount, 1884 .kill_sb = kill_anon_super, 1885 }; 1886 1887 static int zsmalloc_mount(void) 1888 { 1889 int ret = 0; 1890 1891 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1892 if (IS_ERR(zsmalloc_mnt)) 1893 ret = PTR_ERR(zsmalloc_mnt); 1894 1895 return ret; 1896 } 1897 1898 static void zsmalloc_unmount(void) 1899 { 1900 kern_unmount(zsmalloc_mnt); 1901 } 1902 1903 static void migrate_lock_init(struct zspage *zspage) 1904 { 1905 rwlock_init(&zspage->lock); 1906 } 1907 1908 static void migrate_read_lock(struct zspage *zspage) 1909 { 1910 read_lock(&zspage->lock); 1911 } 1912 1913 static void migrate_read_unlock(struct zspage *zspage) 1914 { 1915 read_unlock(&zspage->lock); 1916 } 1917 1918 static void migrate_write_lock(struct zspage *zspage) 1919 { 1920 write_lock(&zspage->lock); 1921 } 1922 1923 static void migrate_write_unlock(struct zspage *zspage) 1924 { 1925 write_unlock(&zspage->lock); 1926 } 1927 1928 /* Number of isolated subpage for *page migration* in this zspage */ 1929 static void inc_zspage_isolation(struct zspage *zspage) 1930 { 1931 zspage->isolated++; 1932 } 1933 1934 static void dec_zspage_isolation(struct zspage *zspage) 1935 { 1936 zspage->isolated--; 1937 } 1938 1939 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1940 struct page *newpage, struct page *oldpage) 1941 { 1942 struct page *page; 1943 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1944 int idx = 0; 1945 1946 page = get_first_page(zspage); 1947 do { 1948 if (page == oldpage) 1949 pages[idx] = newpage; 1950 else 1951 pages[idx] = page; 1952 idx++; 1953 } while ((page = get_next_page(page)) != NULL); 1954 1955 create_page_chain(class, zspage, pages); 1956 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1957 if (unlikely(PageHugeObject(oldpage))) 1958 newpage->index = oldpage->index; 1959 __SetPageMovable(newpage, page_mapping(oldpage)); 1960 } 1961 1962 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1963 { 1964 struct zs_pool *pool; 1965 struct size_class *class; 1966 int class_idx; 1967 enum fullness_group fullness; 1968 struct zspage *zspage; 1969 struct address_space *mapping; 1970 1971 /* 1972 * Page is locked so zspage couldn't be destroyed. For detail, look at 1973 * lock_zspage in free_zspage. 1974 */ 1975 VM_BUG_ON_PAGE(!PageMovable(page), page); 1976 VM_BUG_ON_PAGE(PageIsolated(page), page); 1977 1978 zspage = get_zspage(page); 1979 1980 /* 1981 * Without class lock, fullness could be stale while class_idx is okay 1982 * because class_idx is constant unless page is freed so we should get 1983 * fullness again under class lock. 1984 */ 1985 get_zspage_mapping(zspage, &class_idx, &fullness); 1986 mapping = page_mapping(page); 1987 pool = mapping->private_data; 1988 class = pool->size_class[class_idx]; 1989 1990 spin_lock(&class->lock); 1991 if (get_zspage_inuse(zspage) == 0) { 1992 spin_unlock(&class->lock); 1993 return false; 1994 } 1995 1996 /* zspage is isolated for object migration */ 1997 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1998 spin_unlock(&class->lock); 1999 return false; 2000 } 2001 2002 /* 2003 * If this is first time isolation for the zspage, isolate zspage from 2004 * size_class to prevent further object allocation from the zspage. 2005 */ 2006 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 2007 get_zspage_mapping(zspage, &class_idx, &fullness); 2008 remove_zspage(class, zspage, fullness); 2009 } 2010 2011 inc_zspage_isolation(zspage); 2012 spin_unlock(&class->lock); 2013 2014 return true; 2015 } 2016 2017 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 2018 struct page *page, enum migrate_mode mode) 2019 { 2020 struct zs_pool *pool; 2021 struct size_class *class; 2022 int class_idx; 2023 enum fullness_group fullness; 2024 struct zspage *zspage; 2025 struct page *dummy; 2026 void *s_addr, *d_addr, *addr; 2027 int offset, pos; 2028 unsigned long handle, head; 2029 unsigned long old_obj, new_obj; 2030 unsigned int obj_idx; 2031 int ret = -EAGAIN; 2032 2033 VM_BUG_ON_PAGE(!PageMovable(page), page); 2034 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2035 2036 zspage = get_zspage(page); 2037 2038 /* Concurrent compactor cannot migrate any subpage in zspage */ 2039 migrate_write_lock(zspage); 2040 get_zspage_mapping(zspage, &class_idx, &fullness); 2041 pool = mapping->private_data; 2042 class = pool->size_class[class_idx]; 2043 offset = get_first_obj_offset(page); 2044 2045 spin_lock(&class->lock); 2046 if (!get_zspage_inuse(zspage)) { 2047 ret = -EBUSY; 2048 goto unlock_class; 2049 } 2050 2051 pos = offset; 2052 s_addr = kmap_atomic(page); 2053 while (pos < PAGE_SIZE) { 2054 head = obj_to_head(page, s_addr + pos); 2055 if (head & OBJ_ALLOCATED_TAG) { 2056 handle = head & ~OBJ_ALLOCATED_TAG; 2057 if (!trypin_tag(handle)) 2058 goto unpin_objects; 2059 } 2060 pos += class->size; 2061 } 2062 2063 /* 2064 * Here, any user cannot access all objects in the zspage so let's move. 2065 */ 2066 d_addr = kmap_atomic(newpage); 2067 memcpy(d_addr, s_addr, PAGE_SIZE); 2068 kunmap_atomic(d_addr); 2069 2070 for (addr = s_addr + offset; addr < s_addr + pos; 2071 addr += class->size) { 2072 head = obj_to_head(page, addr); 2073 if (head & OBJ_ALLOCATED_TAG) { 2074 handle = head & ~OBJ_ALLOCATED_TAG; 2075 if (!testpin_tag(handle)) 2076 BUG(); 2077 2078 old_obj = handle_to_obj(handle); 2079 obj_to_location(old_obj, &dummy, &obj_idx); 2080 new_obj = (unsigned long)location_to_obj(newpage, 2081 obj_idx); 2082 new_obj |= BIT(HANDLE_PIN_BIT); 2083 record_obj(handle, new_obj); 2084 } 2085 } 2086 2087 replace_sub_page(class, zspage, newpage, page); 2088 get_page(newpage); 2089 2090 dec_zspage_isolation(zspage); 2091 2092 /* 2093 * Page migration is done so let's putback isolated zspage to 2094 * the list if @page is final isolated subpage in the zspage. 2095 */ 2096 if (!is_zspage_isolated(zspage)) 2097 putback_zspage(class, zspage); 2098 2099 reset_page(page); 2100 put_page(page); 2101 page = newpage; 2102 2103 ret = MIGRATEPAGE_SUCCESS; 2104 unpin_objects: 2105 for (addr = s_addr + offset; addr < s_addr + pos; 2106 addr += class->size) { 2107 head = obj_to_head(page, addr); 2108 if (head & OBJ_ALLOCATED_TAG) { 2109 handle = head & ~OBJ_ALLOCATED_TAG; 2110 if (!testpin_tag(handle)) 2111 BUG(); 2112 unpin_tag(handle); 2113 } 2114 } 2115 kunmap_atomic(s_addr); 2116 unlock_class: 2117 spin_unlock(&class->lock); 2118 migrate_write_unlock(zspage); 2119 2120 return ret; 2121 } 2122 2123 void zs_page_putback(struct page *page) 2124 { 2125 struct zs_pool *pool; 2126 struct size_class *class; 2127 int class_idx; 2128 enum fullness_group fg; 2129 struct address_space *mapping; 2130 struct zspage *zspage; 2131 2132 VM_BUG_ON_PAGE(!PageMovable(page), page); 2133 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2134 2135 zspage = get_zspage(page); 2136 get_zspage_mapping(zspage, &class_idx, &fg); 2137 mapping = page_mapping(page); 2138 pool = mapping->private_data; 2139 class = pool->size_class[class_idx]; 2140 2141 spin_lock(&class->lock); 2142 dec_zspage_isolation(zspage); 2143 if (!is_zspage_isolated(zspage)) { 2144 fg = putback_zspage(class, zspage); 2145 /* 2146 * Due to page_lock, we cannot free zspage immediately 2147 * so let's defer. 2148 */ 2149 if (fg == ZS_EMPTY) 2150 schedule_work(&pool->free_work); 2151 } 2152 spin_unlock(&class->lock); 2153 } 2154 2155 const struct address_space_operations zsmalloc_aops = { 2156 .isolate_page = zs_page_isolate, 2157 .migratepage = zs_page_migrate, 2158 .putback_page = zs_page_putback, 2159 }; 2160 2161 static int zs_register_migration(struct zs_pool *pool) 2162 { 2163 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2164 if (IS_ERR(pool->inode)) { 2165 pool->inode = NULL; 2166 return 1; 2167 } 2168 2169 pool->inode->i_mapping->private_data = pool; 2170 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2171 return 0; 2172 } 2173 2174 static void zs_unregister_migration(struct zs_pool *pool) 2175 { 2176 flush_work(&pool->free_work); 2177 iput(pool->inode); 2178 } 2179 2180 /* 2181 * Caller should hold page_lock of all pages in the zspage 2182 * In here, we cannot use zspage meta data. 2183 */ 2184 static void async_free_zspage(struct work_struct *work) 2185 { 2186 int i; 2187 struct size_class *class; 2188 unsigned int class_idx; 2189 enum fullness_group fullness; 2190 struct zspage *zspage, *tmp; 2191 LIST_HEAD(free_pages); 2192 struct zs_pool *pool = container_of(work, struct zs_pool, 2193 free_work); 2194 2195 for (i = 0; i < zs_size_classes; i++) { 2196 class = pool->size_class[i]; 2197 if (class->index != i) 2198 continue; 2199 2200 spin_lock(&class->lock); 2201 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2202 spin_unlock(&class->lock); 2203 } 2204 2205 2206 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2207 list_del(&zspage->list); 2208 lock_zspage(zspage); 2209 2210 get_zspage_mapping(zspage, &class_idx, &fullness); 2211 VM_BUG_ON(fullness != ZS_EMPTY); 2212 class = pool->size_class[class_idx]; 2213 spin_lock(&class->lock); 2214 __free_zspage(pool, pool->size_class[class_idx], zspage); 2215 spin_unlock(&class->lock); 2216 } 2217 }; 2218 2219 static void kick_deferred_free(struct zs_pool *pool) 2220 { 2221 schedule_work(&pool->free_work); 2222 } 2223 2224 static void init_deferred_free(struct zs_pool *pool) 2225 { 2226 INIT_WORK(&pool->free_work, async_free_zspage); 2227 } 2228 2229 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2230 { 2231 struct page *page = get_first_page(zspage); 2232 2233 do { 2234 WARN_ON(!trylock_page(page)); 2235 __SetPageMovable(page, pool->inode->i_mapping); 2236 unlock_page(page); 2237 } while ((page = get_next_page(page)) != NULL); 2238 } 2239 #endif 2240 2241 /* 2242 * 2243 * Based on the number of unused allocated objects calculate 2244 * and return the number of pages that we can free. 2245 */ 2246 static unsigned long zs_can_compact(struct size_class *class) 2247 { 2248 unsigned long obj_wasted; 2249 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2250 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2251 2252 if (obj_allocated <= obj_used) 2253 return 0; 2254 2255 obj_wasted = obj_allocated - obj_used; 2256 obj_wasted /= class->objs_per_zspage; 2257 2258 return obj_wasted * class->pages_per_zspage; 2259 } 2260 2261 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2262 { 2263 struct zs_compact_control cc; 2264 struct zspage *src_zspage; 2265 struct zspage *dst_zspage = NULL; 2266 2267 spin_lock(&class->lock); 2268 while ((src_zspage = isolate_zspage(class, true))) { 2269 2270 if (!zs_can_compact(class)) 2271 break; 2272 2273 cc.obj_idx = 0; 2274 cc.s_page = get_first_page(src_zspage); 2275 2276 while ((dst_zspage = isolate_zspage(class, false))) { 2277 cc.d_page = get_first_page(dst_zspage); 2278 /* 2279 * If there is no more space in dst_page, resched 2280 * and see if anyone had allocated another zspage. 2281 */ 2282 if (!migrate_zspage(pool, class, &cc)) 2283 break; 2284 2285 putback_zspage(class, dst_zspage); 2286 } 2287 2288 /* Stop if we couldn't find slot */ 2289 if (dst_zspage == NULL) 2290 break; 2291 2292 putback_zspage(class, dst_zspage); 2293 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2294 free_zspage(pool, class, src_zspage); 2295 pool->stats.pages_compacted += class->pages_per_zspage; 2296 } 2297 spin_unlock(&class->lock); 2298 cond_resched(); 2299 spin_lock(&class->lock); 2300 } 2301 2302 if (src_zspage) 2303 putback_zspage(class, src_zspage); 2304 2305 spin_unlock(&class->lock); 2306 } 2307 2308 unsigned long zs_compact(struct zs_pool *pool) 2309 { 2310 int i; 2311 struct size_class *class; 2312 2313 for (i = zs_size_classes - 1; i >= 0; i--) { 2314 class = pool->size_class[i]; 2315 if (!class) 2316 continue; 2317 if (class->index != i) 2318 continue; 2319 __zs_compact(pool, class); 2320 } 2321 2322 return pool->stats.pages_compacted; 2323 } 2324 EXPORT_SYMBOL_GPL(zs_compact); 2325 2326 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2327 { 2328 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2329 } 2330 EXPORT_SYMBOL_GPL(zs_pool_stats); 2331 2332 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2333 struct shrink_control *sc) 2334 { 2335 unsigned long pages_freed; 2336 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2337 shrinker); 2338 2339 pages_freed = pool->stats.pages_compacted; 2340 /* 2341 * Compact classes and calculate compaction delta. 2342 * Can run concurrently with a manually triggered 2343 * (by user) compaction. 2344 */ 2345 pages_freed = zs_compact(pool) - pages_freed; 2346 2347 return pages_freed ? pages_freed : SHRINK_STOP; 2348 } 2349 2350 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2351 struct shrink_control *sc) 2352 { 2353 int i; 2354 struct size_class *class; 2355 unsigned long pages_to_free = 0; 2356 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2357 shrinker); 2358 2359 for (i = zs_size_classes - 1; i >= 0; i--) { 2360 class = pool->size_class[i]; 2361 if (!class) 2362 continue; 2363 if (class->index != i) 2364 continue; 2365 2366 pages_to_free += zs_can_compact(class); 2367 } 2368 2369 return pages_to_free; 2370 } 2371 2372 static void zs_unregister_shrinker(struct zs_pool *pool) 2373 { 2374 if (pool->shrinker_enabled) { 2375 unregister_shrinker(&pool->shrinker); 2376 pool->shrinker_enabled = false; 2377 } 2378 } 2379 2380 static int zs_register_shrinker(struct zs_pool *pool) 2381 { 2382 pool->shrinker.scan_objects = zs_shrinker_scan; 2383 pool->shrinker.count_objects = zs_shrinker_count; 2384 pool->shrinker.batch = 0; 2385 pool->shrinker.seeks = DEFAULT_SEEKS; 2386 2387 return register_shrinker(&pool->shrinker); 2388 } 2389 2390 /** 2391 * zs_create_pool - Creates an allocation pool to work from. 2392 * @name: pool name to be created 2393 * 2394 * This function must be called before anything when using 2395 * the zsmalloc allocator. 2396 * 2397 * On success, a pointer to the newly created pool is returned, 2398 * otherwise NULL. 2399 */ 2400 struct zs_pool *zs_create_pool(const char *name) 2401 { 2402 int i; 2403 struct zs_pool *pool; 2404 struct size_class *prev_class = NULL; 2405 2406 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2407 if (!pool) 2408 return NULL; 2409 2410 init_deferred_free(pool); 2411 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 2412 GFP_KERNEL); 2413 if (!pool->size_class) { 2414 kfree(pool); 2415 return NULL; 2416 } 2417 2418 pool->name = kstrdup(name, GFP_KERNEL); 2419 if (!pool->name) 2420 goto err; 2421 2422 if (create_cache(pool)) 2423 goto err; 2424 2425 /* 2426 * Iterate reversly, because, size of size_class that we want to use 2427 * for merging should be larger or equal to current size. 2428 */ 2429 for (i = zs_size_classes - 1; i >= 0; i--) { 2430 int size; 2431 int pages_per_zspage; 2432 int objs_per_zspage; 2433 struct size_class *class; 2434 int fullness = 0; 2435 2436 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2437 if (size > ZS_MAX_ALLOC_SIZE) 2438 size = ZS_MAX_ALLOC_SIZE; 2439 pages_per_zspage = get_pages_per_zspage(size); 2440 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2441 2442 /* 2443 * size_class is used for normal zsmalloc operation such 2444 * as alloc/free for that size. Although it is natural that we 2445 * have one size_class for each size, there is a chance that we 2446 * can get more memory utilization if we use one size_class for 2447 * many different sizes whose size_class have same 2448 * characteristics. So, we makes size_class point to 2449 * previous size_class if possible. 2450 */ 2451 if (prev_class) { 2452 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2453 pool->size_class[i] = prev_class; 2454 continue; 2455 } 2456 } 2457 2458 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2459 if (!class) 2460 goto err; 2461 2462 class->size = size; 2463 class->index = i; 2464 class->pages_per_zspage = pages_per_zspage; 2465 class->objs_per_zspage = objs_per_zspage; 2466 spin_lock_init(&class->lock); 2467 pool->size_class[i] = class; 2468 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2469 fullness++) 2470 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2471 2472 prev_class = class; 2473 } 2474 2475 /* debug only, don't abort if it fails */ 2476 zs_pool_stat_create(pool, name); 2477 2478 if (zs_register_migration(pool)) 2479 goto err; 2480 2481 /* 2482 * Not critical, we still can use the pool 2483 * and user can trigger compaction manually. 2484 */ 2485 if (zs_register_shrinker(pool) == 0) 2486 pool->shrinker_enabled = true; 2487 return pool; 2488 2489 err: 2490 zs_destroy_pool(pool); 2491 return NULL; 2492 } 2493 EXPORT_SYMBOL_GPL(zs_create_pool); 2494 2495 void zs_destroy_pool(struct zs_pool *pool) 2496 { 2497 int i; 2498 2499 zs_unregister_shrinker(pool); 2500 zs_unregister_migration(pool); 2501 zs_pool_stat_destroy(pool); 2502 2503 for (i = 0; i < zs_size_classes; i++) { 2504 int fg; 2505 struct size_class *class = pool->size_class[i]; 2506 2507 if (!class) 2508 continue; 2509 2510 if (class->index != i) 2511 continue; 2512 2513 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2514 if (!list_empty(&class->fullness_list[fg])) { 2515 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2516 class->size, fg); 2517 } 2518 } 2519 kfree(class); 2520 } 2521 2522 destroy_cache(pool); 2523 kfree(pool->size_class); 2524 kfree(pool->name); 2525 kfree(pool); 2526 } 2527 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2528 2529 static int __init zs_init(void) 2530 { 2531 int ret; 2532 2533 ret = zsmalloc_mount(); 2534 if (ret) 2535 goto out; 2536 2537 ret = zs_register_cpu_notifier(); 2538 2539 if (ret) 2540 goto notifier_fail; 2541 2542 init_zs_size_classes(); 2543 2544 #ifdef CONFIG_ZPOOL 2545 zpool_register_driver(&zs_zpool_driver); 2546 #endif 2547 2548 zs_stat_init(); 2549 2550 return 0; 2551 2552 notifier_fail: 2553 zs_unregister_cpu_notifier(); 2554 zsmalloc_unmount(); 2555 out: 2556 return ret; 2557 } 2558 2559 static void __exit zs_exit(void) 2560 { 2561 #ifdef CONFIG_ZPOOL 2562 zpool_unregister_driver(&zs_zpool_driver); 2563 #endif 2564 zsmalloc_unmount(); 2565 zs_unregister_cpu_notifier(); 2566 2567 zs_stat_exit(); 2568 } 2569 2570 module_init(zs_init); 2571 module_exit(zs_exit); 2572 2573 MODULE_LICENSE("Dual BSD/GPL"); 2574 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2575