1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/types.h> 50 #include <linux/debugfs.h> 51 #include <linux/zsmalloc.h> 52 #include <linux/zpool.h> 53 #include <linux/mount.h> 54 #include <linux/migrate.h> 55 #include <linux/pagemap.h> 56 57 #define ZSPAGE_MAGIC 0x58 58 59 /* 60 * This must be power of 2 and greater than of equal to sizeof(link_free). 61 * These two conditions ensure that any 'struct link_free' itself doesn't 62 * span more than 1 page which avoids complex case of mapping 2 pages simply 63 * to restore link_free pointer values. 64 */ 65 #define ZS_ALIGN 8 66 67 /* 68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 70 */ 71 #define ZS_MAX_ZSPAGE_ORDER 2 72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 73 74 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 75 76 /* 77 * Object location (<PFN>, <obj_idx>) is encoded as 78 * as single (unsigned long) handle value. 79 * 80 * Note that object index <obj_idx> starts from 0. 81 * 82 * This is made more complicated by various memory models and PAE. 83 */ 84 85 #ifndef MAX_PHYSMEM_BITS 86 #ifdef CONFIG_HIGHMEM64G 87 #define MAX_PHYSMEM_BITS 36 88 #else /* !CONFIG_HIGHMEM64G */ 89 /* 90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 91 * be PAGE_SHIFT 92 */ 93 #define MAX_PHYSMEM_BITS BITS_PER_LONG 94 #endif 95 #endif 96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 97 98 /* 99 * Memory for allocating for handle keeps object position by 100 * encoding <page, obj_idx> and the encoded value has a room 101 * in least bit(ie, look at obj_to_location). 102 * We use the bit to synchronize between object access by 103 * user and migration. 104 */ 105 #define HANDLE_PIN_BIT 0 106 107 /* 108 * Head in allocated object should have OBJ_ALLOCATED_TAG 109 * to identify the object was allocated or not. 110 * It's okay to add the status bit in the least bit because 111 * header keeps handle which is 4byte-aligned address so we 112 * have room for two bit at least. 113 */ 114 #define OBJ_ALLOCATED_TAG 1 115 #define OBJ_TAG_BITS 1 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define FULLNESS_BITS 2 120 #define CLASS_BITS 8 121 #define ISOLATED_BITS 3 122 #define MAGIC_VAL_BITS 8 123 124 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 126 #define ZS_MIN_ALLOC_SIZE \ 127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 128 /* each chunk includes extra space to keep handle */ 129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 130 131 /* 132 * On systems with 4K page size, this gives 255 size classes! There is a 133 * trader-off here: 134 * - Large number of size classes is potentially wasteful as free page are 135 * spread across these classes 136 * - Small number of size classes causes large internal fragmentation 137 * - Probably its better to use specific size classes (empirically 138 * determined). NOTE: all those class sizes must be set as multiple of 139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 140 * 141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 142 * (reason above) 143 */ 144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 146 ZS_SIZE_CLASS_DELTA) + 1) 147 148 enum fullness_group { 149 ZS_EMPTY, 150 ZS_ALMOST_EMPTY, 151 ZS_ALMOST_FULL, 152 ZS_FULL, 153 NR_ZS_FULLNESS, 154 }; 155 156 enum zs_stat_type { 157 CLASS_EMPTY, 158 CLASS_ALMOST_EMPTY, 159 CLASS_ALMOST_FULL, 160 CLASS_FULL, 161 OBJ_ALLOCATED, 162 OBJ_USED, 163 NR_ZS_STAT_TYPE, 164 }; 165 166 struct zs_size_stat { 167 unsigned long objs[NR_ZS_STAT_TYPE]; 168 }; 169 170 #ifdef CONFIG_ZSMALLOC_STAT 171 static struct dentry *zs_stat_root; 172 #endif 173 174 #ifdef CONFIG_COMPACTION 175 static struct vfsmount *zsmalloc_mnt; 176 #endif 177 178 /* 179 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 180 * n <= N / f, where 181 * n = number of allocated objects 182 * N = total number of objects zspage can store 183 * f = fullness_threshold_frac 184 * 185 * Similarly, we assign zspage to: 186 * ZS_ALMOST_FULL when n > N / f 187 * ZS_EMPTY when n == 0 188 * ZS_FULL when n == N 189 * 190 * (see: fix_fullness_group()) 191 */ 192 static const int fullness_threshold_frac = 4; 193 194 struct size_class { 195 spinlock_t lock; 196 struct list_head fullness_list[NR_ZS_FULLNESS]; 197 /* 198 * Size of objects stored in this class. Must be multiple 199 * of ZS_ALIGN. 200 */ 201 int size; 202 int objs_per_zspage; 203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 204 int pages_per_zspage; 205 206 unsigned int index; 207 struct zs_size_stat stats; 208 }; 209 210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 211 static void SetPageHugeObject(struct page *page) 212 { 213 SetPageOwnerPriv1(page); 214 } 215 216 static void ClearPageHugeObject(struct page *page) 217 { 218 ClearPageOwnerPriv1(page); 219 } 220 221 static int PageHugeObject(struct page *page) 222 { 223 return PageOwnerPriv1(page); 224 } 225 226 /* 227 * Placed within free objects to form a singly linked list. 228 * For every zspage, zspage->freeobj gives head of this list. 229 * 230 * This must be power of 2 and less than or equal to ZS_ALIGN 231 */ 232 struct link_free { 233 union { 234 /* 235 * Free object index; 236 * It's valid for non-allocated object 237 */ 238 unsigned long next; 239 /* 240 * Handle of allocated object. 241 */ 242 unsigned long handle; 243 }; 244 }; 245 246 struct zs_pool { 247 const char *name; 248 249 struct size_class *size_class[ZS_SIZE_CLASSES]; 250 struct kmem_cache *handle_cachep; 251 struct kmem_cache *zspage_cachep; 252 253 atomic_long_t pages_allocated; 254 255 struct zs_pool_stats stats; 256 257 /* Compact classes */ 258 struct shrinker shrinker; 259 /* 260 * To signify that register_shrinker() was successful 261 * and unregister_shrinker() will not Oops. 262 */ 263 bool shrinker_enabled; 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static int zs_zpool_shrink(void *pool, unsigned int pages, 410 unsigned int *reclaimed) 411 { 412 return -EINVAL; 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: /* fallthru */ 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc = zs_zpool_malloc, 451 .free = zs_zpool_free, 452 .shrink = zs_zpool_shrink, 453 .map = zs_zpool_map, 454 .unmap = zs_zpool_unmap, 455 .total_size = zs_zpool_total_size, 456 }; 457 458 MODULE_ALIAS("zpool-zsmalloc"); 459 #endif /* CONFIG_ZPOOL */ 460 461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 463 464 static bool is_zspage_isolated(struct zspage *zspage) 465 { 466 return zspage->isolated; 467 } 468 469 static __maybe_unused int is_first_page(struct page *page) 470 { 471 return PagePrivate(page); 472 } 473 474 /* Protected by class->lock */ 475 static inline int get_zspage_inuse(struct zspage *zspage) 476 { 477 return zspage->inuse; 478 } 479 480 static inline void set_zspage_inuse(struct zspage *zspage, int val) 481 { 482 zspage->inuse = val; 483 } 484 485 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 486 { 487 zspage->inuse += val; 488 } 489 490 static inline struct page *get_first_page(struct zspage *zspage) 491 { 492 struct page *first_page = zspage->first_page; 493 494 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 495 return first_page; 496 } 497 498 static inline int get_first_obj_offset(struct page *page) 499 { 500 return page->units; 501 } 502 503 static inline void set_first_obj_offset(struct page *page, int offset) 504 { 505 page->units = offset; 506 } 507 508 static inline unsigned int get_freeobj(struct zspage *zspage) 509 { 510 return zspage->freeobj; 511 } 512 513 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 514 { 515 zspage->freeobj = obj; 516 } 517 518 static void get_zspage_mapping(struct zspage *zspage, 519 unsigned int *class_idx, 520 enum fullness_group *fullness) 521 { 522 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 523 524 *fullness = zspage->fullness; 525 *class_idx = zspage->class; 526 } 527 528 static void set_zspage_mapping(struct zspage *zspage, 529 unsigned int class_idx, 530 enum fullness_group fullness) 531 { 532 zspage->class = class_idx; 533 zspage->fullness = fullness; 534 } 535 536 /* 537 * zsmalloc divides the pool into various size classes where each 538 * class maintains a list of zspages where each zspage is divided 539 * into equal sized chunks. Each allocation falls into one of these 540 * classes depending on its size. This function returns index of the 541 * size class which has chunk size big enough to hold the give size. 542 */ 543 static int get_size_class_index(int size) 544 { 545 int idx = 0; 546 547 if (likely(size > ZS_MIN_ALLOC_SIZE)) 548 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 549 ZS_SIZE_CLASS_DELTA); 550 551 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_inc(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] += cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline void zs_stat_dec(struct size_class *class, 563 int type, unsigned long cnt) 564 { 565 class->stats.objs[type] -= cnt; 566 } 567 568 /* type can be of enum type zs_stat_type or fullness_group */ 569 static inline unsigned long zs_stat_get(struct size_class *class, 570 int type) 571 { 572 return class->stats.objs[type]; 573 } 574 575 #ifdef CONFIG_ZSMALLOC_STAT 576 577 static void __init zs_stat_init(void) 578 { 579 if (!debugfs_initialized()) { 580 pr_warn("debugfs not available, stat dir not created\n"); 581 return; 582 } 583 584 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 585 if (!zs_stat_root) 586 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 587 } 588 589 static void __exit zs_stat_exit(void) 590 { 591 debugfs_remove_recursive(zs_stat_root); 592 } 593 594 static unsigned long zs_can_compact(struct size_class *class); 595 596 static int zs_stats_size_show(struct seq_file *s, void *v) 597 { 598 int i; 599 struct zs_pool *pool = s->private; 600 struct size_class *class; 601 int objs_per_zspage; 602 unsigned long class_almost_full, class_almost_empty; 603 unsigned long obj_allocated, obj_used, pages_used, freeable; 604 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 605 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 606 unsigned long total_freeable = 0; 607 608 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 609 "class", "size", "almost_full", "almost_empty", 610 "obj_allocated", "obj_used", "pages_used", 611 "pages_per_zspage", "freeable"); 612 613 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 614 class = pool->size_class[i]; 615 616 if (class->index != i) 617 continue; 618 619 spin_lock(&class->lock); 620 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 621 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 622 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 623 obj_used = zs_stat_get(class, OBJ_USED); 624 freeable = zs_can_compact(class); 625 spin_unlock(&class->lock); 626 627 objs_per_zspage = class->objs_per_zspage; 628 pages_used = obj_allocated / objs_per_zspage * 629 class->pages_per_zspage; 630 631 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 632 " %10lu %10lu %16d %8lu\n", 633 i, class->size, class_almost_full, class_almost_empty, 634 obj_allocated, obj_used, pages_used, 635 class->pages_per_zspage, freeable); 636 637 total_class_almost_full += class_almost_full; 638 total_class_almost_empty += class_almost_empty; 639 total_objs += obj_allocated; 640 total_used_objs += obj_used; 641 total_pages += pages_used; 642 total_freeable += freeable; 643 } 644 645 seq_puts(s, "\n"); 646 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 647 "Total", "", total_class_almost_full, 648 total_class_almost_empty, total_objs, 649 total_used_objs, total_pages, "", total_freeable); 650 651 return 0; 652 } 653 654 static int zs_stats_size_open(struct inode *inode, struct file *file) 655 { 656 return single_open(file, zs_stats_size_show, inode->i_private); 657 } 658 659 static const struct file_operations zs_stat_size_ops = { 660 .open = zs_stats_size_open, 661 .read = seq_read, 662 .llseek = seq_lseek, 663 .release = single_release, 664 }; 665 666 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 667 { 668 struct dentry *entry; 669 670 if (!zs_stat_root) { 671 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 672 return; 673 } 674 675 entry = debugfs_create_dir(name, zs_stat_root); 676 if (!entry) { 677 pr_warn("debugfs dir <%s> creation failed\n", name); 678 return; 679 } 680 pool->stat_dentry = entry; 681 682 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 683 pool->stat_dentry, pool, &zs_stat_size_ops); 684 if (!entry) { 685 pr_warn("%s: debugfs file entry <%s> creation failed\n", 686 name, "classes"); 687 debugfs_remove_recursive(pool->stat_dentry); 688 pool->stat_dentry = NULL; 689 } 690 } 691 692 static void zs_pool_stat_destroy(struct zs_pool *pool) 693 { 694 debugfs_remove_recursive(pool->stat_dentry); 695 } 696 697 #else /* CONFIG_ZSMALLOC_STAT */ 698 static void __init zs_stat_init(void) 699 { 700 } 701 702 static void __exit zs_stat_exit(void) 703 { 704 } 705 706 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 707 { 708 } 709 710 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 711 { 712 } 713 #endif 714 715 716 /* 717 * For each size class, zspages are divided into different groups 718 * depending on how "full" they are. This was done so that we could 719 * easily find empty or nearly empty zspages when we try to shrink 720 * the pool (not yet implemented). This function returns fullness 721 * status of the given page. 722 */ 723 static enum fullness_group get_fullness_group(struct size_class *class, 724 struct zspage *zspage) 725 { 726 int inuse, objs_per_zspage; 727 enum fullness_group fg; 728 729 inuse = get_zspage_inuse(zspage); 730 objs_per_zspage = class->objs_per_zspage; 731 732 if (inuse == 0) 733 fg = ZS_EMPTY; 734 else if (inuse == objs_per_zspage) 735 fg = ZS_FULL; 736 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 737 fg = ZS_ALMOST_EMPTY; 738 else 739 fg = ZS_ALMOST_FULL; 740 741 return fg; 742 } 743 744 /* 745 * Each size class maintains various freelists and zspages are assigned 746 * to one of these freelists based on the number of live objects they 747 * have. This functions inserts the given zspage into the freelist 748 * identified by <class, fullness_group>. 749 */ 750 static void insert_zspage(struct size_class *class, 751 struct zspage *zspage, 752 enum fullness_group fullness) 753 { 754 struct zspage *head; 755 756 zs_stat_inc(class, fullness, 1); 757 head = list_first_entry_or_null(&class->fullness_list[fullness], 758 struct zspage, list); 759 /* 760 * We want to see more ZS_FULL pages and less almost empty/full. 761 * Put pages with higher ->inuse first. 762 */ 763 if (head) { 764 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 765 list_add(&zspage->list, &head->list); 766 return; 767 } 768 } 769 list_add(&zspage->list, &class->fullness_list[fullness]); 770 } 771 772 /* 773 * This function removes the given zspage from the freelist identified 774 * by <class, fullness_group>. 775 */ 776 static void remove_zspage(struct size_class *class, 777 struct zspage *zspage, 778 enum fullness_group fullness) 779 { 780 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 781 VM_BUG_ON(is_zspage_isolated(zspage)); 782 783 list_del_init(&zspage->list); 784 zs_stat_dec(class, fullness, 1); 785 } 786 787 /* 788 * Each size class maintains zspages in different fullness groups depending 789 * on the number of live objects they contain. When allocating or freeing 790 * objects, the fullness status of the page can change, say, from ALMOST_FULL 791 * to ALMOST_EMPTY when freeing an object. This function checks if such 792 * a status change has occurred for the given page and accordingly moves the 793 * page from the freelist of the old fullness group to that of the new 794 * fullness group. 795 */ 796 static enum fullness_group fix_fullness_group(struct size_class *class, 797 struct zspage *zspage) 798 { 799 int class_idx; 800 enum fullness_group currfg, newfg; 801 802 get_zspage_mapping(zspage, &class_idx, &currfg); 803 newfg = get_fullness_group(class, zspage); 804 if (newfg == currfg) 805 goto out; 806 807 if (!is_zspage_isolated(zspage)) { 808 remove_zspage(class, zspage, currfg); 809 insert_zspage(class, zspage, newfg); 810 } 811 812 set_zspage_mapping(zspage, class_idx, newfg); 813 814 out: 815 return newfg; 816 } 817 818 /* 819 * We have to decide on how many pages to link together 820 * to form a zspage for each size class. This is important 821 * to reduce wastage due to unusable space left at end of 822 * each zspage which is given as: 823 * wastage = Zp % class_size 824 * usage = Zp - wastage 825 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 826 * 827 * For example, for size class of 3/8 * PAGE_SIZE, we should 828 * link together 3 PAGE_SIZE sized pages to form a zspage 829 * since then we can perfectly fit in 8 such objects. 830 */ 831 static int get_pages_per_zspage(int class_size) 832 { 833 int i, max_usedpc = 0; 834 /* zspage order which gives maximum used size per KB */ 835 int max_usedpc_order = 1; 836 837 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 838 int zspage_size; 839 int waste, usedpc; 840 841 zspage_size = i * PAGE_SIZE; 842 waste = zspage_size % class_size; 843 usedpc = (zspage_size - waste) * 100 / zspage_size; 844 845 if (usedpc > max_usedpc) { 846 max_usedpc = usedpc; 847 max_usedpc_order = i; 848 } 849 } 850 851 return max_usedpc_order; 852 } 853 854 static struct zspage *get_zspage(struct page *page) 855 { 856 struct zspage *zspage = (struct zspage *)page->private; 857 858 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 859 return zspage; 860 } 861 862 static struct page *get_next_page(struct page *page) 863 { 864 if (unlikely(PageHugeObject(page))) 865 return NULL; 866 867 return page->freelist; 868 } 869 870 /** 871 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 872 * @page: page object resides in zspage 873 * @obj_idx: object index 874 */ 875 static void obj_to_location(unsigned long obj, struct page **page, 876 unsigned int *obj_idx) 877 { 878 obj >>= OBJ_TAG_BITS; 879 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 880 *obj_idx = (obj & OBJ_INDEX_MASK); 881 } 882 883 /** 884 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 885 * @page: page object resides in zspage 886 * @obj_idx: object index 887 */ 888 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 889 { 890 unsigned long obj; 891 892 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 893 obj |= obj_idx & OBJ_INDEX_MASK; 894 obj <<= OBJ_TAG_BITS; 895 896 return obj; 897 } 898 899 static unsigned long handle_to_obj(unsigned long handle) 900 { 901 return *(unsigned long *)handle; 902 } 903 904 static unsigned long obj_to_head(struct page *page, void *obj) 905 { 906 if (unlikely(PageHugeObject(page))) { 907 VM_BUG_ON_PAGE(!is_first_page(page), page); 908 return page->index; 909 } else 910 return *(unsigned long *)obj; 911 } 912 913 static inline int testpin_tag(unsigned long handle) 914 { 915 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 916 } 917 918 static inline int trypin_tag(unsigned long handle) 919 { 920 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 921 } 922 923 static void pin_tag(unsigned long handle) 924 { 925 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 926 } 927 928 static void unpin_tag(unsigned long handle) 929 { 930 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 931 } 932 933 static void reset_page(struct page *page) 934 { 935 __ClearPageMovable(page); 936 ClearPagePrivate(page); 937 set_page_private(page, 0); 938 page_mapcount_reset(page); 939 ClearPageHugeObject(page); 940 page->freelist = NULL; 941 } 942 943 /* 944 * To prevent zspage destroy during migration, zspage freeing should 945 * hold locks of all pages in the zspage. 946 */ 947 void lock_zspage(struct zspage *zspage) 948 { 949 struct page *page = get_first_page(zspage); 950 951 do { 952 lock_page(page); 953 } while ((page = get_next_page(page)) != NULL); 954 } 955 956 int trylock_zspage(struct zspage *zspage) 957 { 958 struct page *cursor, *fail; 959 960 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 961 get_next_page(cursor)) { 962 if (!trylock_page(cursor)) { 963 fail = cursor; 964 goto unlock; 965 } 966 } 967 968 return 1; 969 unlock: 970 for (cursor = get_first_page(zspage); cursor != fail; cursor = 971 get_next_page(cursor)) 972 unlock_page(cursor); 973 974 return 0; 975 } 976 977 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 978 struct zspage *zspage) 979 { 980 struct page *page, *next; 981 enum fullness_group fg; 982 unsigned int class_idx; 983 984 get_zspage_mapping(zspage, &class_idx, &fg); 985 986 assert_spin_locked(&class->lock); 987 988 VM_BUG_ON(get_zspage_inuse(zspage)); 989 VM_BUG_ON(fg != ZS_EMPTY); 990 991 next = page = get_first_page(zspage); 992 do { 993 VM_BUG_ON_PAGE(!PageLocked(page), page); 994 next = get_next_page(page); 995 reset_page(page); 996 unlock_page(page); 997 dec_zone_page_state(page, NR_ZSPAGES); 998 put_page(page); 999 page = next; 1000 } while (page != NULL); 1001 1002 cache_free_zspage(pool, zspage); 1003 1004 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1005 atomic_long_sub(class->pages_per_zspage, 1006 &pool->pages_allocated); 1007 } 1008 1009 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1010 struct zspage *zspage) 1011 { 1012 VM_BUG_ON(get_zspage_inuse(zspage)); 1013 VM_BUG_ON(list_empty(&zspage->list)); 1014 1015 if (!trylock_zspage(zspage)) { 1016 kick_deferred_free(pool); 1017 return; 1018 } 1019 1020 remove_zspage(class, zspage, ZS_EMPTY); 1021 __free_zspage(pool, class, zspage); 1022 } 1023 1024 /* Initialize a newly allocated zspage */ 1025 static void init_zspage(struct size_class *class, struct zspage *zspage) 1026 { 1027 unsigned int freeobj = 1; 1028 unsigned long off = 0; 1029 struct page *page = get_first_page(zspage); 1030 1031 while (page) { 1032 struct page *next_page; 1033 struct link_free *link; 1034 void *vaddr; 1035 1036 set_first_obj_offset(page, off); 1037 1038 vaddr = kmap_atomic(page); 1039 link = (struct link_free *)vaddr + off / sizeof(*link); 1040 1041 while ((off += class->size) < PAGE_SIZE) { 1042 link->next = freeobj++ << OBJ_TAG_BITS; 1043 link += class->size / sizeof(*link); 1044 } 1045 1046 /* 1047 * We now come to the last (full or partial) object on this 1048 * page, which must point to the first object on the next 1049 * page (if present) 1050 */ 1051 next_page = get_next_page(page); 1052 if (next_page) { 1053 link->next = freeobj++ << OBJ_TAG_BITS; 1054 } else { 1055 /* 1056 * Reset OBJ_TAG_BITS bit to last link to tell 1057 * whether it's allocated object or not. 1058 */ 1059 link->next = -1 << OBJ_TAG_BITS; 1060 } 1061 kunmap_atomic(vaddr); 1062 page = next_page; 1063 off %= PAGE_SIZE; 1064 } 1065 1066 set_freeobj(zspage, 0); 1067 } 1068 1069 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1070 struct page *pages[]) 1071 { 1072 int i; 1073 struct page *page; 1074 struct page *prev_page = NULL; 1075 int nr_pages = class->pages_per_zspage; 1076 1077 /* 1078 * Allocate individual pages and link them together as: 1079 * 1. all pages are linked together using page->freelist 1080 * 2. each sub-page point to zspage using page->private 1081 * 1082 * we set PG_private to identify the first page (i.e. no other sub-page 1083 * has this flag set). 1084 */ 1085 for (i = 0; i < nr_pages; i++) { 1086 page = pages[i]; 1087 set_page_private(page, (unsigned long)zspage); 1088 page->freelist = NULL; 1089 if (i == 0) { 1090 zspage->first_page = page; 1091 SetPagePrivate(page); 1092 if (unlikely(class->objs_per_zspage == 1 && 1093 class->pages_per_zspage == 1)) 1094 SetPageHugeObject(page); 1095 } else { 1096 prev_page->freelist = page; 1097 } 1098 prev_page = page; 1099 } 1100 } 1101 1102 /* 1103 * Allocate a zspage for the given size class 1104 */ 1105 static struct zspage *alloc_zspage(struct zs_pool *pool, 1106 struct size_class *class, 1107 gfp_t gfp) 1108 { 1109 int i; 1110 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1111 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1112 1113 if (!zspage) 1114 return NULL; 1115 1116 memset(zspage, 0, sizeof(struct zspage)); 1117 zspage->magic = ZSPAGE_MAGIC; 1118 migrate_lock_init(zspage); 1119 1120 for (i = 0; i < class->pages_per_zspage; i++) { 1121 struct page *page; 1122 1123 page = alloc_page(gfp); 1124 if (!page) { 1125 while (--i >= 0) { 1126 dec_zone_page_state(pages[i], NR_ZSPAGES); 1127 __free_page(pages[i]); 1128 } 1129 cache_free_zspage(pool, zspage); 1130 return NULL; 1131 } 1132 1133 inc_zone_page_state(page, NR_ZSPAGES); 1134 pages[i] = page; 1135 } 1136 1137 create_page_chain(class, zspage, pages); 1138 init_zspage(class, zspage); 1139 1140 return zspage; 1141 } 1142 1143 static struct zspage *find_get_zspage(struct size_class *class) 1144 { 1145 int i; 1146 struct zspage *zspage; 1147 1148 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1149 zspage = list_first_entry_or_null(&class->fullness_list[i], 1150 struct zspage, list); 1151 if (zspage) 1152 break; 1153 } 1154 1155 return zspage; 1156 } 1157 1158 #ifdef CONFIG_PGTABLE_MAPPING 1159 static inline int __zs_cpu_up(struct mapping_area *area) 1160 { 1161 /* 1162 * Make sure we don't leak memory if a cpu UP notification 1163 * and zs_init() race and both call zs_cpu_up() on the same cpu 1164 */ 1165 if (area->vm) 1166 return 0; 1167 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1168 if (!area->vm) 1169 return -ENOMEM; 1170 return 0; 1171 } 1172 1173 static inline void __zs_cpu_down(struct mapping_area *area) 1174 { 1175 if (area->vm) 1176 free_vm_area(area->vm); 1177 area->vm = NULL; 1178 } 1179 1180 static inline void *__zs_map_object(struct mapping_area *area, 1181 struct page *pages[2], int off, int size) 1182 { 1183 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1184 area->vm_addr = area->vm->addr; 1185 return area->vm_addr + off; 1186 } 1187 1188 static inline void __zs_unmap_object(struct mapping_area *area, 1189 struct page *pages[2], int off, int size) 1190 { 1191 unsigned long addr = (unsigned long)area->vm_addr; 1192 1193 unmap_kernel_range(addr, PAGE_SIZE * 2); 1194 } 1195 1196 #else /* CONFIG_PGTABLE_MAPPING */ 1197 1198 static inline int __zs_cpu_up(struct mapping_area *area) 1199 { 1200 /* 1201 * Make sure we don't leak memory if a cpu UP notification 1202 * and zs_init() race and both call zs_cpu_up() on the same cpu 1203 */ 1204 if (area->vm_buf) 1205 return 0; 1206 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1207 if (!area->vm_buf) 1208 return -ENOMEM; 1209 return 0; 1210 } 1211 1212 static inline void __zs_cpu_down(struct mapping_area *area) 1213 { 1214 kfree(area->vm_buf); 1215 area->vm_buf = NULL; 1216 } 1217 1218 static void *__zs_map_object(struct mapping_area *area, 1219 struct page *pages[2], int off, int size) 1220 { 1221 int sizes[2]; 1222 void *addr; 1223 char *buf = area->vm_buf; 1224 1225 /* disable page faults to match kmap_atomic() return conditions */ 1226 pagefault_disable(); 1227 1228 /* no read fastpath */ 1229 if (area->vm_mm == ZS_MM_WO) 1230 goto out; 1231 1232 sizes[0] = PAGE_SIZE - off; 1233 sizes[1] = size - sizes[0]; 1234 1235 /* copy object to per-cpu buffer */ 1236 addr = kmap_atomic(pages[0]); 1237 memcpy(buf, addr + off, sizes[0]); 1238 kunmap_atomic(addr); 1239 addr = kmap_atomic(pages[1]); 1240 memcpy(buf + sizes[0], addr, sizes[1]); 1241 kunmap_atomic(addr); 1242 out: 1243 return area->vm_buf; 1244 } 1245 1246 static void __zs_unmap_object(struct mapping_area *area, 1247 struct page *pages[2], int off, int size) 1248 { 1249 int sizes[2]; 1250 void *addr; 1251 char *buf; 1252 1253 /* no write fastpath */ 1254 if (area->vm_mm == ZS_MM_RO) 1255 goto out; 1256 1257 buf = area->vm_buf; 1258 buf = buf + ZS_HANDLE_SIZE; 1259 size -= ZS_HANDLE_SIZE; 1260 off += ZS_HANDLE_SIZE; 1261 1262 sizes[0] = PAGE_SIZE - off; 1263 sizes[1] = size - sizes[0]; 1264 1265 /* copy per-cpu buffer to object */ 1266 addr = kmap_atomic(pages[0]); 1267 memcpy(addr + off, buf, sizes[0]); 1268 kunmap_atomic(addr); 1269 addr = kmap_atomic(pages[1]); 1270 memcpy(addr, buf + sizes[0], sizes[1]); 1271 kunmap_atomic(addr); 1272 1273 out: 1274 /* enable page faults to match kunmap_atomic() return conditions */ 1275 pagefault_enable(); 1276 } 1277 1278 #endif /* CONFIG_PGTABLE_MAPPING */ 1279 1280 static int zs_cpu_prepare(unsigned int cpu) 1281 { 1282 struct mapping_area *area; 1283 1284 area = &per_cpu(zs_map_area, cpu); 1285 return __zs_cpu_up(area); 1286 } 1287 1288 static int zs_cpu_dead(unsigned int cpu) 1289 { 1290 struct mapping_area *area; 1291 1292 area = &per_cpu(zs_map_area, cpu); 1293 __zs_cpu_down(area); 1294 return 0; 1295 } 1296 1297 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1298 int objs_per_zspage) 1299 { 1300 if (prev->pages_per_zspage == pages_per_zspage && 1301 prev->objs_per_zspage == objs_per_zspage) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1308 { 1309 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1310 } 1311 1312 unsigned long zs_get_total_pages(struct zs_pool *pool) 1313 { 1314 return atomic_long_read(&pool->pages_allocated); 1315 } 1316 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1317 1318 /** 1319 * zs_map_object - get address of allocated object from handle. 1320 * @pool: pool from which the object was allocated 1321 * @handle: handle returned from zs_malloc 1322 * 1323 * Before using an object allocated from zs_malloc, it must be mapped using 1324 * this function. When done with the object, it must be unmapped using 1325 * zs_unmap_object. 1326 * 1327 * Only one object can be mapped per cpu at a time. There is no protection 1328 * against nested mappings. 1329 * 1330 * This function returns with preemption and page faults disabled. 1331 */ 1332 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1333 enum zs_mapmode mm) 1334 { 1335 struct zspage *zspage; 1336 struct page *page; 1337 unsigned long obj, off; 1338 unsigned int obj_idx; 1339 1340 unsigned int class_idx; 1341 enum fullness_group fg; 1342 struct size_class *class; 1343 struct mapping_area *area; 1344 struct page *pages[2]; 1345 void *ret; 1346 1347 /* 1348 * Because we use per-cpu mapping areas shared among the 1349 * pools/users, we can't allow mapping in interrupt context 1350 * because it can corrupt another users mappings. 1351 */ 1352 WARN_ON_ONCE(in_interrupt()); 1353 1354 /* From now on, migration cannot move the object */ 1355 pin_tag(handle); 1356 1357 obj = handle_to_obj(handle); 1358 obj_to_location(obj, &page, &obj_idx); 1359 zspage = get_zspage(page); 1360 1361 /* migration cannot move any subpage in this zspage */ 1362 migrate_read_lock(zspage); 1363 1364 get_zspage_mapping(zspage, &class_idx, &fg); 1365 class = pool->size_class[class_idx]; 1366 off = (class->size * obj_idx) & ~PAGE_MASK; 1367 1368 area = &get_cpu_var(zs_map_area); 1369 area->vm_mm = mm; 1370 if (off + class->size <= PAGE_SIZE) { 1371 /* this object is contained entirely within a page */ 1372 area->vm_addr = kmap_atomic(page); 1373 ret = area->vm_addr + off; 1374 goto out; 1375 } 1376 1377 /* this object spans two pages */ 1378 pages[0] = page; 1379 pages[1] = get_next_page(page); 1380 BUG_ON(!pages[1]); 1381 1382 ret = __zs_map_object(area, pages, off, class->size); 1383 out: 1384 if (likely(!PageHugeObject(page))) 1385 ret += ZS_HANDLE_SIZE; 1386 1387 return ret; 1388 } 1389 EXPORT_SYMBOL_GPL(zs_map_object); 1390 1391 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1392 { 1393 struct zspage *zspage; 1394 struct page *page; 1395 unsigned long obj, off; 1396 unsigned int obj_idx; 1397 1398 unsigned int class_idx; 1399 enum fullness_group fg; 1400 struct size_class *class; 1401 struct mapping_area *area; 1402 1403 obj = handle_to_obj(handle); 1404 obj_to_location(obj, &page, &obj_idx); 1405 zspage = get_zspage(page); 1406 get_zspage_mapping(zspage, &class_idx, &fg); 1407 class = pool->size_class[class_idx]; 1408 off = (class->size * obj_idx) & ~PAGE_MASK; 1409 1410 area = this_cpu_ptr(&zs_map_area); 1411 if (off + class->size <= PAGE_SIZE) 1412 kunmap_atomic(area->vm_addr); 1413 else { 1414 struct page *pages[2]; 1415 1416 pages[0] = page; 1417 pages[1] = get_next_page(page); 1418 BUG_ON(!pages[1]); 1419 1420 __zs_unmap_object(area, pages, off, class->size); 1421 } 1422 put_cpu_var(zs_map_area); 1423 1424 migrate_read_unlock(zspage); 1425 unpin_tag(handle); 1426 } 1427 EXPORT_SYMBOL_GPL(zs_unmap_object); 1428 1429 static unsigned long obj_malloc(struct size_class *class, 1430 struct zspage *zspage, unsigned long handle) 1431 { 1432 int i, nr_page, offset; 1433 unsigned long obj; 1434 struct link_free *link; 1435 1436 struct page *m_page; 1437 unsigned long m_offset; 1438 void *vaddr; 1439 1440 handle |= OBJ_ALLOCATED_TAG; 1441 obj = get_freeobj(zspage); 1442 1443 offset = obj * class->size; 1444 nr_page = offset >> PAGE_SHIFT; 1445 m_offset = offset & ~PAGE_MASK; 1446 m_page = get_first_page(zspage); 1447 1448 for (i = 0; i < nr_page; i++) 1449 m_page = get_next_page(m_page); 1450 1451 vaddr = kmap_atomic(m_page); 1452 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1453 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1454 if (likely(!PageHugeObject(m_page))) 1455 /* record handle in the header of allocated chunk */ 1456 link->handle = handle; 1457 else 1458 /* record handle to page->index */ 1459 zspage->first_page->index = handle; 1460 1461 kunmap_atomic(vaddr); 1462 mod_zspage_inuse(zspage, 1); 1463 zs_stat_inc(class, OBJ_USED, 1); 1464 1465 obj = location_to_obj(m_page, obj); 1466 1467 return obj; 1468 } 1469 1470 1471 /** 1472 * zs_malloc - Allocate block of given size from pool. 1473 * @pool: pool to allocate from 1474 * @size: size of block to allocate 1475 * @gfp: gfp flags when allocating object 1476 * 1477 * On success, handle to the allocated object is returned, 1478 * otherwise 0. 1479 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1480 */ 1481 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1482 { 1483 unsigned long handle, obj; 1484 struct size_class *class; 1485 enum fullness_group newfg; 1486 struct zspage *zspage; 1487 1488 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1489 return 0; 1490 1491 handle = cache_alloc_handle(pool, gfp); 1492 if (!handle) 1493 return 0; 1494 1495 /* extra space in chunk to keep the handle */ 1496 size += ZS_HANDLE_SIZE; 1497 class = pool->size_class[get_size_class_index(size)]; 1498 1499 spin_lock(&class->lock); 1500 zspage = find_get_zspage(class); 1501 if (likely(zspage)) { 1502 obj = obj_malloc(class, zspage, handle); 1503 /* Now move the zspage to another fullness group, if required */ 1504 fix_fullness_group(class, zspage); 1505 record_obj(handle, obj); 1506 spin_unlock(&class->lock); 1507 1508 return handle; 1509 } 1510 1511 spin_unlock(&class->lock); 1512 1513 zspage = alloc_zspage(pool, class, gfp); 1514 if (!zspage) { 1515 cache_free_handle(pool, handle); 1516 return 0; 1517 } 1518 1519 spin_lock(&class->lock); 1520 obj = obj_malloc(class, zspage, handle); 1521 newfg = get_fullness_group(class, zspage); 1522 insert_zspage(class, zspage, newfg); 1523 set_zspage_mapping(zspage, class->index, newfg); 1524 record_obj(handle, obj); 1525 atomic_long_add(class->pages_per_zspage, 1526 &pool->pages_allocated); 1527 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1528 1529 /* We completely set up zspage so mark them as movable */ 1530 SetZsPageMovable(pool, zspage); 1531 spin_unlock(&class->lock); 1532 1533 return handle; 1534 } 1535 EXPORT_SYMBOL_GPL(zs_malloc); 1536 1537 static void obj_free(struct size_class *class, unsigned long obj) 1538 { 1539 struct link_free *link; 1540 struct zspage *zspage; 1541 struct page *f_page; 1542 unsigned long f_offset; 1543 unsigned int f_objidx; 1544 void *vaddr; 1545 1546 obj &= ~OBJ_ALLOCATED_TAG; 1547 obj_to_location(obj, &f_page, &f_objidx); 1548 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1549 zspage = get_zspage(f_page); 1550 1551 vaddr = kmap_atomic(f_page); 1552 1553 /* Insert this object in containing zspage's freelist */ 1554 link = (struct link_free *)(vaddr + f_offset); 1555 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1556 kunmap_atomic(vaddr); 1557 set_freeobj(zspage, f_objidx); 1558 mod_zspage_inuse(zspage, -1); 1559 zs_stat_dec(class, OBJ_USED, 1); 1560 } 1561 1562 void zs_free(struct zs_pool *pool, unsigned long handle) 1563 { 1564 struct zspage *zspage; 1565 struct page *f_page; 1566 unsigned long obj; 1567 unsigned int f_objidx; 1568 int class_idx; 1569 struct size_class *class; 1570 enum fullness_group fullness; 1571 bool isolated; 1572 1573 if (unlikely(!handle)) 1574 return; 1575 1576 pin_tag(handle); 1577 obj = handle_to_obj(handle); 1578 obj_to_location(obj, &f_page, &f_objidx); 1579 zspage = get_zspage(f_page); 1580 1581 migrate_read_lock(zspage); 1582 1583 get_zspage_mapping(zspage, &class_idx, &fullness); 1584 class = pool->size_class[class_idx]; 1585 1586 spin_lock(&class->lock); 1587 obj_free(class, obj); 1588 fullness = fix_fullness_group(class, zspage); 1589 if (fullness != ZS_EMPTY) { 1590 migrate_read_unlock(zspage); 1591 goto out; 1592 } 1593 1594 isolated = is_zspage_isolated(zspage); 1595 migrate_read_unlock(zspage); 1596 /* If zspage is isolated, zs_page_putback will free the zspage */ 1597 if (likely(!isolated)) 1598 free_zspage(pool, class, zspage); 1599 out: 1600 1601 spin_unlock(&class->lock); 1602 unpin_tag(handle); 1603 cache_free_handle(pool, handle); 1604 } 1605 EXPORT_SYMBOL_GPL(zs_free); 1606 1607 static void zs_object_copy(struct size_class *class, unsigned long dst, 1608 unsigned long src) 1609 { 1610 struct page *s_page, *d_page; 1611 unsigned int s_objidx, d_objidx; 1612 unsigned long s_off, d_off; 1613 void *s_addr, *d_addr; 1614 int s_size, d_size, size; 1615 int written = 0; 1616 1617 s_size = d_size = class->size; 1618 1619 obj_to_location(src, &s_page, &s_objidx); 1620 obj_to_location(dst, &d_page, &d_objidx); 1621 1622 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1623 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1624 1625 if (s_off + class->size > PAGE_SIZE) 1626 s_size = PAGE_SIZE - s_off; 1627 1628 if (d_off + class->size > PAGE_SIZE) 1629 d_size = PAGE_SIZE - d_off; 1630 1631 s_addr = kmap_atomic(s_page); 1632 d_addr = kmap_atomic(d_page); 1633 1634 while (1) { 1635 size = min(s_size, d_size); 1636 memcpy(d_addr + d_off, s_addr + s_off, size); 1637 written += size; 1638 1639 if (written == class->size) 1640 break; 1641 1642 s_off += size; 1643 s_size -= size; 1644 d_off += size; 1645 d_size -= size; 1646 1647 if (s_off >= PAGE_SIZE) { 1648 kunmap_atomic(d_addr); 1649 kunmap_atomic(s_addr); 1650 s_page = get_next_page(s_page); 1651 s_addr = kmap_atomic(s_page); 1652 d_addr = kmap_atomic(d_page); 1653 s_size = class->size - written; 1654 s_off = 0; 1655 } 1656 1657 if (d_off >= PAGE_SIZE) { 1658 kunmap_atomic(d_addr); 1659 d_page = get_next_page(d_page); 1660 d_addr = kmap_atomic(d_page); 1661 d_size = class->size - written; 1662 d_off = 0; 1663 } 1664 } 1665 1666 kunmap_atomic(d_addr); 1667 kunmap_atomic(s_addr); 1668 } 1669 1670 /* 1671 * Find alloced object in zspage from index object and 1672 * return handle. 1673 */ 1674 static unsigned long find_alloced_obj(struct size_class *class, 1675 struct page *page, int *obj_idx) 1676 { 1677 unsigned long head; 1678 int offset = 0; 1679 int index = *obj_idx; 1680 unsigned long handle = 0; 1681 void *addr = kmap_atomic(page); 1682 1683 offset = get_first_obj_offset(page); 1684 offset += class->size * index; 1685 1686 while (offset < PAGE_SIZE) { 1687 head = obj_to_head(page, addr + offset); 1688 if (head & OBJ_ALLOCATED_TAG) { 1689 handle = head & ~OBJ_ALLOCATED_TAG; 1690 if (trypin_tag(handle)) 1691 break; 1692 handle = 0; 1693 } 1694 1695 offset += class->size; 1696 index++; 1697 } 1698 1699 kunmap_atomic(addr); 1700 1701 *obj_idx = index; 1702 1703 return handle; 1704 } 1705 1706 struct zs_compact_control { 1707 /* Source spage for migration which could be a subpage of zspage */ 1708 struct page *s_page; 1709 /* Destination page for migration which should be a first page 1710 * of zspage. */ 1711 struct page *d_page; 1712 /* Starting object index within @s_page which used for live object 1713 * in the subpage. */ 1714 int obj_idx; 1715 }; 1716 1717 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1718 struct zs_compact_control *cc) 1719 { 1720 unsigned long used_obj, free_obj; 1721 unsigned long handle; 1722 struct page *s_page = cc->s_page; 1723 struct page *d_page = cc->d_page; 1724 int obj_idx = cc->obj_idx; 1725 int ret = 0; 1726 1727 while (1) { 1728 handle = find_alloced_obj(class, s_page, &obj_idx); 1729 if (!handle) { 1730 s_page = get_next_page(s_page); 1731 if (!s_page) 1732 break; 1733 obj_idx = 0; 1734 continue; 1735 } 1736 1737 /* Stop if there is no more space */ 1738 if (zspage_full(class, get_zspage(d_page))) { 1739 unpin_tag(handle); 1740 ret = -ENOMEM; 1741 break; 1742 } 1743 1744 used_obj = handle_to_obj(handle); 1745 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1746 zs_object_copy(class, free_obj, used_obj); 1747 obj_idx++; 1748 /* 1749 * record_obj updates handle's value to free_obj and it will 1750 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1751 * breaks synchronization using pin_tag(e,g, zs_free) so 1752 * let's keep the lock bit. 1753 */ 1754 free_obj |= BIT(HANDLE_PIN_BIT); 1755 record_obj(handle, free_obj); 1756 unpin_tag(handle); 1757 obj_free(class, used_obj); 1758 } 1759 1760 /* Remember last position in this iteration */ 1761 cc->s_page = s_page; 1762 cc->obj_idx = obj_idx; 1763 1764 return ret; 1765 } 1766 1767 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1768 { 1769 int i; 1770 struct zspage *zspage; 1771 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1772 1773 if (!source) { 1774 fg[0] = ZS_ALMOST_FULL; 1775 fg[1] = ZS_ALMOST_EMPTY; 1776 } 1777 1778 for (i = 0; i < 2; i++) { 1779 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1780 struct zspage, list); 1781 if (zspage) { 1782 VM_BUG_ON(is_zspage_isolated(zspage)); 1783 remove_zspage(class, zspage, fg[i]); 1784 return zspage; 1785 } 1786 } 1787 1788 return zspage; 1789 } 1790 1791 /* 1792 * putback_zspage - add @zspage into right class's fullness list 1793 * @class: destination class 1794 * @zspage: target page 1795 * 1796 * Return @zspage's fullness_group 1797 */ 1798 static enum fullness_group putback_zspage(struct size_class *class, 1799 struct zspage *zspage) 1800 { 1801 enum fullness_group fullness; 1802 1803 VM_BUG_ON(is_zspage_isolated(zspage)); 1804 1805 fullness = get_fullness_group(class, zspage); 1806 insert_zspage(class, zspage, fullness); 1807 set_zspage_mapping(zspage, class->index, fullness); 1808 1809 return fullness; 1810 } 1811 1812 #ifdef CONFIG_COMPACTION 1813 static struct dentry *zs_mount(struct file_system_type *fs_type, 1814 int flags, const char *dev_name, void *data) 1815 { 1816 static const struct dentry_operations ops = { 1817 .d_dname = simple_dname, 1818 }; 1819 1820 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1821 } 1822 1823 static struct file_system_type zsmalloc_fs = { 1824 .name = "zsmalloc", 1825 .mount = zs_mount, 1826 .kill_sb = kill_anon_super, 1827 }; 1828 1829 static int zsmalloc_mount(void) 1830 { 1831 int ret = 0; 1832 1833 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1834 if (IS_ERR(zsmalloc_mnt)) 1835 ret = PTR_ERR(zsmalloc_mnt); 1836 1837 return ret; 1838 } 1839 1840 static void zsmalloc_unmount(void) 1841 { 1842 kern_unmount(zsmalloc_mnt); 1843 } 1844 1845 static void migrate_lock_init(struct zspage *zspage) 1846 { 1847 rwlock_init(&zspage->lock); 1848 } 1849 1850 static void migrate_read_lock(struct zspage *zspage) 1851 { 1852 read_lock(&zspage->lock); 1853 } 1854 1855 static void migrate_read_unlock(struct zspage *zspage) 1856 { 1857 read_unlock(&zspage->lock); 1858 } 1859 1860 static void migrate_write_lock(struct zspage *zspage) 1861 { 1862 write_lock(&zspage->lock); 1863 } 1864 1865 static void migrate_write_unlock(struct zspage *zspage) 1866 { 1867 write_unlock(&zspage->lock); 1868 } 1869 1870 /* Number of isolated subpage for *page migration* in this zspage */ 1871 static void inc_zspage_isolation(struct zspage *zspage) 1872 { 1873 zspage->isolated++; 1874 } 1875 1876 static void dec_zspage_isolation(struct zspage *zspage) 1877 { 1878 zspage->isolated--; 1879 } 1880 1881 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1882 struct page *newpage, struct page *oldpage) 1883 { 1884 struct page *page; 1885 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1886 int idx = 0; 1887 1888 page = get_first_page(zspage); 1889 do { 1890 if (page == oldpage) 1891 pages[idx] = newpage; 1892 else 1893 pages[idx] = page; 1894 idx++; 1895 } while ((page = get_next_page(page)) != NULL); 1896 1897 create_page_chain(class, zspage, pages); 1898 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1899 if (unlikely(PageHugeObject(oldpage))) 1900 newpage->index = oldpage->index; 1901 __SetPageMovable(newpage, page_mapping(oldpage)); 1902 } 1903 1904 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1905 { 1906 struct zs_pool *pool; 1907 struct size_class *class; 1908 int class_idx; 1909 enum fullness_group fullness; 1910 struct zspage *zspage; 1911 struct address_space *mapping; 1912 1913 /* 1914 * Page is locked so zspage couldn't be destroyed. For detail, look at 1915 * lock_zspage in free_zspage. 1916 */ 1917 VM_BUG_ON_PAGE(!PageMovable(page), page); 1918 VM_BUG_ON_PAGE(PageIsolated(page), page); 1919 1920 zspage = get_zspage(page); 1921 1922 /* 1923 * Without class lock, fullness could be stale while class_idx is okay 1924 * because class_idx is constant unless page is freed so we should get 1925 * fullness again under class lock. 1926 */ 1927 get_zspage_mapping(zspage, &class_idx, &fullness); 1928 mapping = page_mapping(page); 1929 pool = mapping->private_data; 1930 class = pool->size_class[class_idx]; 1931 1932 spin_lock(&class->lock); 1933 if (get_zspage_inuse(zspage) == 0) { 1934 spin_unlock(&class->lock); 1935 return false; 1936 } 1937 1938 /* zspage is isolated for object migration */ 1939 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1940 spin_unlock(&class->lock); 1941 return false; 1942 } 1943 1944 /* 1945 * If this is first time isolation for the zspage, isolate zspage from 1946 * size_class to prevent further object allocation from the zspage. 1947 */ 1948 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1949 get_zspage_mapping(zspage, &class_idx, &fullness); 1950 remove_zspage(class, zspage, fullness); 1951 } 1952 1953 inc_zspage_isolation(zspage); 1954 spin_unlock(&class->lock); 1955 1956 return true; 1957 } 1958 1959 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1960 struct page *page, enum migrate_mode mode) 1961 { 1962 struct zs_pool *pool; 1963 struct size_class *class; 1964 int class_idx; 1965 enum fullness_group fullness; 1966 struct zspage *zspage; 1967 struct page *dummy; 1968 void *s_addr, *d_addr, *addr; 1969 int offset, pos; 1970 unsigned long handle, head; 1971 unsigned long old_obj, new_obj; 1972 unsigned int obj_idx; 1973 int ret = -EAGAIN; 1974 1975 /* 1976 * We cannot support the _NO_COPY case here, because copy needs to 1977 * happen under the zs lock, which does not work with 1978 * MIGRATE_SYNC_NO_COPY workflow. 1979 */ 1980 if (mode == MIGRATE_SYNC_NO_COPY) 1981 return -EINVAL; 1982 1983 VM_BUG_ON_PAGE(!PageMovable(page), page); 1984 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1985 1986 zspage = get_zspage(page); 1987 1988 /* Concurrent compactor cannot migrate any subpage in zspage */ 1989 migrate_write_lock(zspage); 1990 get_zspage_mapping(zspage, &class_idx, &fullness); 1991 pool = mapping->private_data; 1992 class = pool->size_class[class_idx]; 1993 offset = get_first_obj_offset(page); 1994 1995 spin_lock(&class->lock); 1996 if (!get_zspage_inuse(zspage)) { 1997 /* 1998 * Set "offset" to end of the page so that every loops 1999 * skips unnecessary object scanning. 2000 */ 2001 offset = PAGE_SIZE; 2002 } 2003 2004 pos = offset; 2005 s_addr = kmap_atomic(page); 2006 while (pos < PAGE_SIZE) { 2007 head = obj_to_head(page, s_addr + pos); 2008 if (head & OBJ_ALLOCATED_TAG) { 2009 handle = head & ~OBJ_ALLOCATED_TAG; 2010 if (!trypin_tag(handle)) 2011 goto unpin_objects; 2012 } 2013 pos += class->size; 2014 } 2015 2016 /* 2017 * Here, any user cannot access all objects in the zspage so let's move. 2018 */ 2019 d_addr = kmap_atomic(newpage); 2020 memcpy(d_addr, s_addr, PAGE_SIZE); 2021 kunmap_atomic(d_addr); 2022 2023 for (addr = s_addr + offset; addr < s_addr + pos; 2024 addr += class->size) { 2025 head = obj_to_head(page, addr); 2026 if (head & OBJ_ALLOCATED_TAG) { 2027 handle = head & ~OBJ_ALLOCATED_TAG; 2028 if (!testpin_tag(handle)) 2029 BUG(); 2030 2031 old_obj = handle_to_obj(handle); 2032 obj_to_location(old_obj, &dummy, &obj_idx); 2033 new_obj = (unsigned long)location_to_obj(newpage, 2034 obj_idx); 2035 new_obj |= BIT(HANDLE_PIN_BIT); 2036 record_obj(handle, new_obj); 2037 } 2038 } 2039 2040 replace_sub_page(class, zspage, newpage, page); 2041 get_page(newpage); 2042 2043 dec_zspage_isolation(zspage); 2044 2045 /* 2046 * Page migration is done so let's putback isolated zspage to 2047 * the list if @page is final isolated subpage in the zspage. 2048 */ 2049 if (!is_zspage_isolated(zspage)) 2050 putback_zspage(class, zspage); 2051 2052 reset_page(page); 2053 put_page(page); 2054 page = newpage; 2055 2056 ret = MIGRATEPAGE_SUCCESS; 2057 unpin_objects: 2058 for (addr = s_addr + offset; addr < s_addr + pos; 2059 addr += class->size) { 2060 head = obj_to_head(page, addr); 2061 if (head & OBJ_ALLOCATED_TAG) { 2062 handle = head & ~OBJ_ALLOCATED_TAG; 2063 if (!testpin_tag(handle)) 2064 BUG(); 2065 unpin_tag(handle); 2066 } 2067 } 2068 kunmap_atomic(s_addr); 2069 spin_unlock(&class->lock); 2070 migrate_write_unlock(zspage); 2071 2072 return ret; 2073 } 2074 2075 void zs_page_putback(struct page *page) 2076 { 2077 struct zs_pool *pool; 2078 struct size_class *class; 2079 int class_idx; 2080 enum fullness_group fg; 2081 struct address_space *mapping; 2082 struct zspage *zspage; 2083 2084 VM_BUG_ON_PAGE(!PageMovable(page), page); 2085 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2086 2087 zspage = get_zspage(page); 2088 get_zspage_mapping(zspage, &class_idx, &fg); 2089 mapping = page_mapping(page); 2090 pool = mapping->private_data; 2091 class = pool->size_class[class_idx]; 2092 2093 spin_lock(&class->lock); 2094 dec_zspage_isolation(zspage); 2095 if (!is_zspage_isolated(zspage)) { 2096 fg = putback_zspage(class, zspage); 2097 /* 2098 * Due to page_lock, we cannot free zspage immediately 2099 * so let's defer. 2100 */ 2101 if (fg == ZS_EMPTY) 2102 schedule_work(&pool->free_work); 2103 } 2104 spin_unlock(&class->lock); 2105 } 2106 2107 const struct address_space_operations zsmalloc_aops = { 2108 .isolate_page = zs_page_isolate, 2109 .migratepage = zs_page_migrate, 2110 .putback_page = zs_page_putback, 2111 }; 2112 2113 static int zs_register_migration(struct zs_pool *pool) 2114 { 2115 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2116 if (IS_ERR(pool->inode)) { 2117 pool->inode = NULL; 2118 return 1; 2119 } 2120 2121 pool->inode->i_mapping->private_data = pool; 2122 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2123 return 0; 2124 } 2125 2126 static void zs_unregister_migration(struct zs_pool *pool) 2127 { 2128 flush_work(&pool->free_work); 2129 iput(pool->inode); 2130 } 2131 2132 /* 2133 * Caller should hold page_lock of all pages in the zspage 2134 * In here, we cannot use zspage meta data. 2135 */ 2136 static void async_free_zspage(struct work_struct *work) 2137 { 2138 int i; 2139 struct size_class *class; 2140 unsigned int class_idx; 2141 enum fullness_group fullness; 2142 struct zspage *zspage, *tmp; 2143 LIST_HEAD(free_pages); 2144 struct zs_pool *pool = container_of(work, struct zs_pool, 2145 free_work); 2146 2147 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2148 class = pool->size_class[i]; 2149 if (class->index != i) 2150 continue; 2151 2152 spin_lock(&class->lock); 2153 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2154 spin_unlock(&class->lock); 2155 } 2156 2157 2158 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2159 list_del(&zspage->list); 2160 lock_zspage(zspage); 2161 2162 get_zspage_mapping(zspage, &class_idx, &fullness); 2163 VM_BUG_ON(fullness != ZS_EMPTY); 2164 class = pool->size_class[class_idx]; 2165 spin_lock(&class->lock); 2166 __free_zspage(pool, pool->size_class[class_idx], zspage); 2167 spin_unlock(&class->lock); 2168 } 2169 }; 2170 2171 static void kick_deferred_free(struct zs_pool *pool) 2172 { 2173 schedule_work(&pool->free_work); 2174 } 2175 2176 static void init_deferred_free(struct zs_pool *pool) 2177 { 2178 INIT_WORK(&pool->free_work, async_free_zspage); 2179 } 2180 2181 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2182 { 2183 struct page *page = get_first_page(zspage); 2184 2185 do { 2186 WARN_ON(!trylock_page(page)); 2187 __SetPageMovable(page, pool->inode->i_mapping); 2188 unlock_page(page); 2189 } while ((page = get_next_page(page)) != NULL); 2190 } 2191 #endif 2192 2193 /* 2194 * 2195 * Based on the number of unused allocated objects calculate 2196 * and return the number of pages that we can free. 2197 */ 2198 static unsigned long zs_can_compact(struct size_class *class) 2199 { 2200 unsigned long obj_wasted; 2201 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2202 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2203 2204 if (obj_allocated <= obj_used) 2205 return 0; 2206 2207 obj_wasted = obj_allocated - obj_used; 2208 obj_wasted /= class->objs_per_zspage; 2209 2210 return obj_wasted * class->pages_per_zspage; 2211 } 2212 2213 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2214 { 2215 struct zs_compact_control cc; 2216 struct zspage *src_zspage; 2217 struct zspage *dst_zspage = NULL; 2218 2219 spin_lock(&class->lock); 2220 while ((src_zspage = isolate_zspage(class, true))) { 2221 2222 if (!zs_can_compact(class)) 2223 break; 2224 2225 cc.obj_idx = 0; 2226 cc.s_page = get_first_page(src_zspage); 2227 2228 while ((dst_zspage = isolate_zspage(class, false))) { 2229 cc.d_page = get_first_page(dst_zspage); 2230 /* 2231 * If there is no more space in dst_page, resched 2232 * and see if anyone had allocated another zspage. 2233 */ 2234 if (!migrate_zspage(pool, class, &cc)) 2235 break; 2236 2237 putback_zspage(class, dst_zspage); 2238 } 2239 2240 /* Stop if we couldn't find slot */ 2241 if (dst_zspage == NULL) 2242 break; 2243 2244 putback_zspage(class, dst_zspage); 2245 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2246 free_zspage(pool, class, src_zspage); 2247 pool->stats.pages_compacted += class->pages_per_zspage; 2248 } 2249 spin_unlock(&class->lock); 2250 cond_resched(); 2251 spin_lock(&class->lock); 2252 } 2253 2254 if (src_zspage) 2255 putback_zspage(class, src_zspage); 2256 2257 spin_unlock(&class->lock); 2258 } 2259 2260 unsigned long zs_compact(struct zs_pool *pool) 2261 { 2262 int i; 2263 struct size_class *class; 2264 2265 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2266 class = pool->size_class[i]; 2267 if (!class) 2268 continue; 2269 if (class->index != i) 2270 continue; 2271 __zs_compact(pool, class); 2272 } 2273 2274 return pool->stats.pages_compacted; 2275 } 2276 EXPORT_SYMBOL_GPL(zs_compact); 2277 2278 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2279 { 2280 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2281 } 2282 EXPORT_SYMBOL_GPL(zs_pool_stats); 2283 2284 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2285 struct shrink_control *sc) 2286 { 2287 unsigned long pages_freed; 2288 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2289 shrinker); 2290 2291 pages_freed = pool->stats.pages_compacted; 2292 /* 2293 * Compact classes and calculate compaction delta. 2294 * Can run concurrently with a manually triggered 2295 * (by user) compaction. 2296 */ 2297 pages_freed = zs_compact(pool) - pages_freed; 2298 2299 return pages_freed ? pages_freed : SHRINK_STOP; 2300 } 2301 2302 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2303 struct shrink_control *sc) 2304 { 2305 int i; 2306 struct size_class *class; 2307 unsigned long pages_to_free = 0; 2308 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2309 shrinker); 2310 2311 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2312 class = pool->size_class[i]; 2313 if (!class) 2314 continue; 2315 if (class->index != i) 2316 continue; 2317 2318 pages_to_free += zs_can_compact(class); 2319 } 2320 2321 return pages_to_free; 2322 } 2323 2324 static void zs_unregister_shrinker(struct zs_pool *pool) 2325 { 2326 if (pool->shrinker_enabled) { 2327 unregister_shrinker(&pool->shrinker); 2328 pool->shrinker_enabled = false; 2329 } 2330 } 2331 2332 static int zs_register_shrinker(struct zs_pool *pool) 2333 { 2334 pool->shrinker.scan_objects = zs_shrinker_scan; 2335 pool->shrinker.count_objects = zs_shrinker_count; 2336 pool->shrinker.batch = 0; 2337 pool->shrinker.seeks = DEFAULT_SEEKS; 2338 2339 return register_shrinker(&pool->shrinker); 2340 } 2341 2342 /** 2343 * zs_create_pool - Creates an allocation pool to work from. 2344 * @name: pool name to be created 2345 * 2346 * This function must be called before anything when using 2347 * the zsmalloc allocator. 2348 * 2349 * On success, a pointer to the newly created pool is returned, 2350 * otherwise NULL. 2351 */ 2352 struct zs_pool *zs_create_pool(const char *name) 2353 { 2354 int i; 2355 struct zs_pool *pool; 2356 struct size_class *prev_class = NULL; 2357 2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2359 if (!pool) 2360 return NULL; 2361 2362 init_deferred_free(pool); 2363 2364 pool->name = kstrdup(name, GFP_KERNEL); 2365 if (!pool->name) 2366 goto err; 2367 2368 if (create_cache(pool)) 2369 goto err; 2370 2371 /* 2372 * Iterate reversely, because, size of size_class that we want to use 2373 * for merging should be larger or equal to current size. 2374 */ 2375 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2376 int size; 2377 int pages_per_zspage; 2378 int objs_per_zspage; 2379 struct size_class *class; 2380 int fullness = 0; 2381 2382 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2383 if (size > ZS_MAX_ALLOC_SIZE) 2384 size = ZS_MAX_ALLOC_SIZE; 2385 pages_per_zspage = get_pages_per_zspage(size); 2386 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2387 2388 /* 2389 * size_class is used for normal zsmalloc operation such 2390 * as alloc/free for that size. Although it is natural that we 2391 * have one size_class for each size, there is a chance that we 2392 * can get more memory utilization if we use one size_class for 2393 * many different sizes whose size_class have same 2394 * characteristics. So, we makes size_class point to 2395 * previous size_class if possible. 2396 */ 2397 if (prev_class) { 2398 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2399 pool->size_class[i] = prev_class; 2400 continue; 2401 } 2402 } 2403 2404 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2405 if (!class) 2406 goto err; 2407 2408 class->size = size; 2409 class->index = i; 2410 class->pages_per_zspage = pages_per_zspage; 2411 class->objs_per_zspage = objs_per_zspage; 2412 spin_lock_init(&class->lock); 2413 pool->size_class[i] = class; 2414 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2415 fullness++) 2416 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2417 2418 prev_class = class; 2419 } 2420 2421 /* debug only, don't abort if it fails */ 2422 zs_pool_stat_create(pool, name); 2423 2424 if (zs_register_migration(pool)) 2425 goto err; 2426 2427 /* 2428 * Not critical, we still can use the pool 2429 * and user can trigger compaction manually. 2430 */ 2431 if (zs_register_shrinker(pool) == 0) 2432 pool->shrinker_enabled = true; 2433 return pool; 2434 2435 err: 2436 zs_destroy_pool(pool); 2437 return NULL; 2438 } 2439 EXPORT_SYMBOL_GPL(zs_create_pool); 2440 2441 void zs_destroy_pool(struct zs_pool *pool) 2442 { 2443 int i; 2444 2445 zs_unregister_shrinker(pool); 2446 zs_unregister_migration(pool); 2447 zs_pool_stat_destroy(pool); 2448 2449 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2450 int fg; 2451 struct size_class *class = pool->size_class[i]; 2452 2453 if (!class) 2454 continue; 2455 2456 if (class->index != i) 2457 continue; 2458 2459 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2460 if (!list_empty(&class->fullness_list[fg])) { 2461 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2462 class->size, fg); 2463 } 2464 } 2465 kfree(class); 2466 } 2467 2468 destroy_cache(pool); 2469 kfree(pool->name); 2470 kfree(pool); 2471 } 2472 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2473 2474 static int __init zs_init(void) 2475 { 2476 int ret; 2477 2478 ret = zsmalloc_mount(); 2479 if (ret) 2480 goto out; 2481 2482 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2483 zs_cpu_prepare, zs_cpu_dead); 2484 if (ret) 2485 goto hp_setup_fail; 2486 2487 #ifdef CONFIG_ZPOOL 2488 zpool_register_driver(&zs_zpool_driver); 2489 #endif 2490 2491 zs_stat_init(); 2492 2493 return 0; 2494 2495 hp_setup_fail: 2496 zsmalloc_unmount(); 2497 out: 2498 return ret; 2499 } 2500 2501 static void __exit zs_exit(void) 2502 { 2503 #ifdef CONFIG_ZPOOL 2504 zpool_unregister_driver(&zs_zpool_driver); 2505 #endif 2506 zsmalloc_unmount(); 2507 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2508 2509 zs_stat_exit(); 2510 } 2511 2512 module_init(zs_init); 2513 module_exit(zs_exit); 2514 2515 MODULE_LICENSE("Dual BSD/GPL"); 2516 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2517