1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <linux/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/pseudo_fs.h> 56 #include <linux/migrate.h> 57 #include <linux/wait.h> 58 #include <linux/pagemap.h> 59 #include <linux/fs.h> 60 61 #define ZSPAGE_MAGIC 0x58 62 63 /* 64 * This must be power of 2 and greater than of equal to sizeof(link_free). 65 * These two conditions ensure that any 'struct link_free' itself doesn't 66 * span more than 1 page which avoids complex case of mapping 2 pages simply 67 * to restore link_free pointer values. 68 */ 69 #define ZS_ALIGN 8 70 71 /* 72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 74 */ 75 #define ZS_MAX_ZSPAGE_ORDER 2 76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 77 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 79 80 /* 81 * Object location (<PFN>, <obj_idx>) is encoded as 82 * as single (unsigned long) handle value. 83 * 84 * Note that object index <obj_idx> starts from 0. 85 * 86 * This is made more complicated by various memory models and PAE. 87 */ 88 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 90 #ifdef MAX_PHYSMEM_BITS 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 92 #else 93 /* 94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 95 * be PAGE_SHIFT 96 */ 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 98 #endif 99 #endif 100 101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 102 103 /* 104 * Memory for allocating for handle keeps object position by 105 * encoding <page, obj_idx> and the encoded value has a room 106 * in least bit(ie, look at obj_to_location). 107 * We use the bit to synchronize between object access by 108 * user and migration. 109 */ 110 #define HANDLE_PIN_BIT 0 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define FULLNESS_BITS 2 125 #define CLASS_BITS 8 126 #define ISOLATED_BITS 3 127 #define MAGIC_VAL_BITS 8 128 129 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 131 #define ZS_MIN_ALLOC_SIZE \ 132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 133 /* each chunk includes extra space to keep handle */ 134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 135 136 /* 137 * On systems with 4K page size, this gives 255 size classes! There is a 138 * trader-off here: 139 * - Large number of size classes is potentially wasteful as free page are 140 * spread across these classes 141 * - Small number of size classes causes large internal fragmentation 142 * - Probably its better to use specific size classes (empirically 143 * determined). NOTE: all those class sizes must be set as multiple of 144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 145 * 146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 147 * (reason above) 148 */ 149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 151 ZS_SIZE_CLASS_DELTA) + 1) 152 153 enum fullness_group { 154 ZS_EMPTY, 155 ZS_ALMOST_EMPTY, 156 ZS_ALMOST_FULL, 157 ZS_FULL, 158 NR_ZS_FULLNESS, 159 }; 160 161 enum zs_stat_type { 162 CLASS_EMPTY, 163 CLASS_ALMOST_EMPTY, 164 CLASS_ALMOST_FULL, 165 CLASS_FULL, 166 OBJ_ALLOCATED, 167 OBJ_USED, 168 NR_ZS_STAT_TYPE, 169 }; 170 171 struct zs_size_stat { 172 unsigned long objs[NR_ZS_STAT_TYPE]; 173 }; 174 175 #ifdef CONFIG_ZSMALLOC_STAT 176 static struct dentry *zs_stat_root; 177 #endif 178 179 #ifdef CONFIG_COMPACTION 180 static struct vfsmount *zsmalloc_mnt; 181 #endif 182 183 /* 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 185 * n <= N / f, where 186 * n = number of allocated objects 187 * N = total number of objects zspage can store 188 * f = fullness_threshold_frac 189 * 190 * Similarly, we assign zspage to: 191 * ZS_ALMOST_FULL when n > N / f 192 * ZS_EMPTY when n == 0 193 * ZS_FULL when n == N 194 * 195 * (see: fix_fullness_group()) 196 */ 197 static const int fullness_threshold_frac = 4; 198 static size_t huge_class_size; 199 200 struct size_class { 201 spinlock_t lock; 202 struct list_head fullness_list[NR_ZS_FULLNESS]; 203 /* 204 * Size of objects stored in this class. Must be multiple 205 * of ZS_ALIGN. 206 */ 207 int size; 208 int objs_per_zspage; 209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 210 int pages_per_zspage; 211 212 unsigned int index; 213 struct zs_size_stat stats; 214 }; 215 216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 217 static void SetPageHugeObject(struct page *page) 218 { 219 SetPageOwnerPriv1(page); 220 } 221 222 static void ClearPageHugeObject(struct page *page) 223 { 224 ClearPageOwnerPriv1(page); 225 } 226 227 static int PageHugeObject(struct page *page) 228 { 229 return PageOwnerPriv1(page); 230 } 231 232 /* 233 * Placed within free objects to form a singly linked list. 234 * For every zspage, zspage->freeobj gives head of this list. 235 * 236 * This must be power of 2 and less than or equal to ZS_ALIGN 237 */ 238 struct link_free { 239 union { 240 /* 241 * Free object index; 242 * It's valid for non-allocated object 243 */ 244 unsigned long next; 245 /* 246 * Handle of allocated object. 247 */ 248 unsigned long handle; 249 }; 250 }; 251 252 struct zs_pool { 253 const char *name; 254 255 struct size_class *size_class[ZS_SIZE_CLASSES]; 256 struct kmem_cache *handle_cachep; 257 struct kmem_cache *zspage_cachep; 258 259 atomic_long_t pages_allocated; 260 261 struct zs_pool_stats stats; 262 263 /* Compact classes */ 264 struct shrinker shrinker; 265 266 #ifdef CONFIG_ZSMALLOC_STAT 267 struct dentry *stat_dentry; 268 #endif 269 #ifdef CONFIG_COMPACTION 270 struct inode *inode; 271 struct work_struct free_work; 272 /* A wait queue for when migration races with async_free_zspage() */ 273 struct wait_queue_head migration_wait; 274 atomic_long_t isolated_pages; 275 bool destroying; 276 #endif 277 }; 278 279 struct zspage { 280 struct { 281 unsigned int fullness:FULLNESS_BITS; 282 unsigned int class:CLASS_BITS + 1; 283 unsigned int isolated:ISOLATED_BITS; 284 unsigned int magic:MAGIC_VAL_BITS; 285 }; 286 unsigned int inuse; 287 unsigned int freeobj; 288 struct page *first_page; 289 struct list_head list; /* fullness list */ 290 #ifdef CONFIG_COMPACTION 291 rwlock_t lock; 292 #endif 293 }; 294 295 struct mapping_area { 296 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING 297 struct vm_struct *vm; /* vm area for mapping object that span pages */ 298 #else 299 char *vm_buf; /* copy buffer for objects that span pages */ 300 #endif 301 char *vm_addr; /* address of kmap_atomic()'ed pages */ 302 enum zs_mapmode vm_mm; /* mapping mode */ 303 }; 304 305 #ifdef CONFIG_COMPACTION 306 static int zs_register_migration(struct zs_pool *pool); 307 static void zs_unregister_migration(struct zs_pool *pool); 308 static void migrate_lock_init(struct zspage *zspage); 309 static void migrate_read_lock(struct zspage *zspage); 310 static void migrate_read_unlock(struct zspage *zspage); 311 static void kick_deferred_free(struct zs_pool *pool); 312 static void init_deferred_free(struct zs_pool *pool); 313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 314 #else 315 static int zsmalloc_mount(void) { return 0; } 316 static void zsmalloc_unmount(void) {} 317 static int zs_register_migration(struct zs_pool *pool) { return 0; } 318 static void zs_unregister_migration(struct zs_pool *pool) {} 319 static void migrate_lock_init(struct zspage *zspage) {} 320 static void migrate_read_lock(struct zspage *zspage) {} 321 static void migrate_read_unlock(struct zspage *zspage) {} 322 static void kick_deferred_free(struct zs_pool *pool) {} 323 static void init_deferred_free(struct zs_pool *pool) {} 324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 325 #endif 326 327 static int create_cache(struct zs_pool *pool) 328 { 329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 330 0, 0, NULL); 331 if (!pool->handle_cachep) 332 return 1; 333 334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 335 0, 0, NULL); 336 if (!pool->zspage_cachep) { 337 kmem_cache_destroy(pool->handle_cachep); 338 pool->handle_cachep = NULL; 339 return 1; 340 } 341 342 return 0; 343 } 344 345 static void destroy_cache(struct zs_pool *pool) 346 { 347 kmem_cache_destroy(pool->handle_cachep); 348 kmem_cache_destroy(pool->zspage_cachep); 349 } 350 351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 352 { 353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 355 } 356 357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 358 { 359 kmem_cache_free(pool->handle_cachep, (void *)handle); 360 } 361 362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 363 { 364 return kmem_cache_alloc(pool->zspage_cachep, 365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 366 } 367 368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 369 { 370 kmem_cache_free(pool->zspage_cachep, zspage); 371 } 372 373 static void record_obj(unsigned long handle, unsigned long obj) 374 { 375 /* 376 * lsb of @obj represents handle lock while other bits 377 * represent object value the handle is pointing so 378 * updating shouldn't do store tearing. 379 */ 380 WRITE_ONCE(*(unsigned long *)handle, obj); 381 } 382 383 /* zpool driver */ 384 385 #ifdef CONFIG_ZPOOL 386 387 static void *zs_zpool_create(const char *name, gfp_t gfp, 388 const struct zpool_ops *zpool_ops, 389 struct zpool *zpool) 390 { 391 /* 392 * Ignore global gfp flags: zs_malloc() may be invoked from 393 * different contexts and its caller must provide a valid 394 * gfp mask. 395 */ 396 return zs_create_pool(name); 397 } 398 399 static void zs_zpool_destroy(void *pool) 400 { 401 zs_destroy_pool(pool); 402 } 403 404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 405 unsigned long *handle) 406 { 407 *handle = zs_malloc(pool, size, gfp); 408 return *handle ? 0 : -1; 409 } 410 static void zs_zpool_free(void *pool, unsigned long handle) 411 { 412 zs_free(pool, handle); 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc_support_movable = true, 451 .malloc = zs_zpool_malloc, 452 .free = zs_zpool_free, 453 .map = zs_zpool_map, 454 .unmap = zs_zpool_unmap, 455 .total_size = zs_zpool_total_size, 456 }; 457 458 MODULE_ALIAS("zpool-zsmalloc"); 459 #endif /* CONFIG_ZPOOL */ 460 461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 463 464 static bool is_zspage_isolated(struct zspage *zspage) 465 { 466 return zspage->isolated; 467 } 468 469 static __maybe_unused int is_first_page(struct page *page) 470 { 471 return PagePrivate(page); 472 } 473 474 /* Protected by class->lock */ 475 static inline int get_zspage_inuse(struct zspage *zspage) 476 { 477 return zspage->inuse; 478 } 479 480 481 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 482 { 483 zspage->inuse += val; 484 } 485 486 static inline struct page *get_first_page(struct zspage *zspage) 487 { 488 struct page *first_page = zspage->first_page; 489 490 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 491 return first_page; 492 } 493 494 static inline int get_first_obj_offset(struct page *page) 495 { 496 return page->units; 497 } 498 499 static inline void set_first_obj_offset(struct page *page, int offset) 500 { 501 page->units = offset; 502 } 503 504 static inline unsigned int get_freeobj(struct zspage *zspage) 505 { 506 return zspage->freeobj; 507 } 508 509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 510 { 511 zspage->freeobj = obj; 512 } 513 514 static void get_zspage_mapping(struct zspage *zspage, 515 unsigned int *class_idx, 516 enum fullness_group *fullness) 517 { 518 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 519 520 *fullness = zspage->fullness; 521 *class_idx = zspage->class; 522 } 523 524 static void set_zspage_mapping(struct zspage *zspage, 525 unsigned int class_idx, 526 enum fullness_group fullness) 527 { 528 zspage->class = class_idx; 529 zspage->fullness = fullness; 530 } 531 532 /* 533 * zsmalloc divides the pool into various size classes where each 534 * class maintains a list of zspages where each zspage is divided 535 * into equal sized chunks. Each allocation falls into one of these 536 * classes depending on its size. This function returns index of the 537 * size class which has chunk size big enough to hold the give size. 538 */ 539 static int get_size_class_index(int size) 540 { 541 int idx = 0; 542 543 if (likely(size > ZS_MIN_ALLOC_SIZE)) 544 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 545 ZS_SIZE_CLASS_DELTA); 546 547 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 548 } 549 550 /* type can be of enum type zs_stat_type or fullness_group */ 551 static inline void zs_stat_inc(struct size_class *class, 552 int type, unsigned long cnt) 553 { 554 class->stats.objs[type] += cnt; 555 } 556 557 /* type can be of enum type zs_stat_type or fullness_group */ 558 static inline void zs_stat_dec(struct size_class *class, 559 int type, unsigned long cnt) 560 { 561 class->stats.objs[type] -= cnt; 562 } 563 564 /* type can be of enum type zs_stat_type or fullness_group */ 565 static inline unsigned long zs_stat_get(struct size_class *class, 566 int type) 567 { 568 return class->stats.objs[type]; 569 } 570 571 #ifdef CONFIG_ZSMALLOC_STAT 572 573 static void __init zs_stat_init(void) 574 { 575 if (!debugfs_initialized()) { 576 pr_warn("debugfs not available, stat dir not created\n"); 577 return; 578 } 579 580 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 581 } 582 583 static void __exit zs_stat_exit(void) 584 { 585 debugfs_remove_recursive(zs_stat_root); 586 } 587 588 static unsigned long zs_can_compact(struct size_class *class); 589 590 static int zs_stats_size_show(struct seq_file *s, void *v) 591 { 592 int i; 593 struct zs_pool *pool = s->private; 594 struct size_class *class; 595 int objs_per_zspage; 596 unsigned long class_almost_full, class_almost_empty; 597 unsigned long obj_allocated, obj_used, pages_used, freeable; 598 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 599 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 600 unsigned long total_freeable = 0; 601 602 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 603 "class", "size", "almost_full", "almost_empty", 604 "obj_allocated", "obj_used", "pages_used", 605 "pages_per_zspage", "freeable"); 606 607 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 608 class = pool->size_class[i]; 609 610 if (class->index != i) 611 continue; 612 613 spin_lock(&class->lock); 614 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 615 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 616 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 617 obj_used = zs_stat_get(class, OBJ_USED); 618 freeable = zs_can_compact(class); 619 spin_unlock(&class->lock); 620 621 objs_per_zspage = class->objs_per_zspage; 622 pages_used = obj_allocated / objs_per_zspage * 623 class->pages_per_zspage; 624 625 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 626 " %10lu %10lu %16d %8lu\n", 627 i, class->size, class_almost_full, class_almost_empty, 628 obj_allocated, obj_used, pages_used, 629 class->pages_per_zspage, freeable); 630 631 total_class_almost_full += class_almost_full; 632 total_class_almost_empty += class_almost_empty; 633 total_objs += obj_allocated; 634 total_used_objs += obj_used; 635 total_pages += pages_used; 636 total_freeable += freeable; 637 } 638 639 seq_puts(s, "\n"); 640 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 641 "Total", "", total_class_almost_full, 642 total_class_almost_empty, total_objs, 643 total_used_objs, total_pages, "", total_freeable); 644 645 return 0; 646 } 647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 648 649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 650 { 651 if (!zs_stat_root) { 652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 653 return; 654 } 655 656 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 657 658 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 659 &zs_stats_size_fops); 660 } 661 662 static void zs_pool_stat_destroy(struct zs_pool *pool) 663 { 664 debugfs_remove_recursive(pool->stat_dentry); 665 } 666 667 #else /* CONFIG_ZSMALLOC_STAT */ 668 static void __init zs_stat_init(void) 669 { 670 } 671 672 static void __exit zs_stat_exit(void) 673 { 674 } 675 676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 677 { 678 } 679 680 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 681 { 682 } 683 #endif 684 685 686 /* 687 * For each size class, zspages are divided into different groups 688 * depending on how "full" they are. This was done so that we could 689 * easily find empty or nearly empty zspages when we try to shrink 690 * the pool (not yet implemented). This function returns fullness 691 * status of the given page. 692 */ 693 static enum fullness_group get_fullness_group(struct size_class *class, 694 struct zspage *zspage) 695 { 696 int inuse, objs_per_zspage; 697 enum fullness_group fg; 698 699 inuse = get_zspage_inuse(zspage); 700 objs_per_zspage = class->objs_per_zspage; 701 702 if (inuse == 0) 703 fg = ZS_EMPTY; 704 else if (inuse == objs_per_zspage) 705 fg = ZS_FULL; 706 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 707 fg = ZS_ALMOST_EMPTY; 708 else 709 fg = ZS_ALMOST_FULL; 710 711 return fg; 712 } 713 714 /* 715 * Each size class maintains various freelists and zspages are assigned 716 * to one of these freelists based on the number of live objects they 717 * have. This functions inserts the given zspage into the freelist 718 * identified by <class, fullness_group>. 719 */ 720 static void insert_zspage(struct size_class *class, 721 struct zspage *zspage, 722 enum fullness_group fullness) 723 { 724 struct zspage *head; 725 726 zs_stat_inc(class, fullness, 1); 727 head = list_first_entry_or_null(&class->fullness_list[fullness], 728 struct zspage, list); 729 /* 730 * We want to see more ZS_FULL pages and less almost empty/full. 731 * Put pages with higher ->inuse first. 732 */ 733 if (head) { 734 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 735 list_add(&zspage->list, &head->list); 736 return; 737 } 738 } 739 list_add(&zspage->list, &class->fullness_list[fullness]); 740 } 741 742 /* 743 * This function removes the given zspage from the freelist identified 744 * by <class, fullness_group>. 745 */ 746 static void remove_zspage(struct size_class *class, 747 struct zspage *zspage, 748 enum fullness_group fullness) 749 { 750 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 751 VM_BUG_ON(is_zspage_isolated(zspage)); 752 753 list_del_init(&zspage->list); 754 zs_stat_dec(class, fullness, 1); 755 } 756 757 /* 758 * Each size class maintains zspages in different fullness groups depending 759 * on the number of live objects they contain. When allocating or freeing 760 * objects, the fullness status of the page can change, say, from ALMOST_FULL 761 * to ALMOST_EMPTY when freeing an object. This function checks if such 762 * a status change has occurred for the given page and accordingly moves the 763 * page from the freelist of the old fullness group to that of the new 764 * fullness group. 765 */ 766 static enum fullness_group fix_fullness_group(struct size_class *class, 767 struct zspage *zspage) 768 { 769 int class_idx; 770 enum fullness_group currfg, newfg; 771 772 get_zspage_mapping(zspage, &class_idx, &currfg); 773 newfg = get_fullness_group(class, zspage); 774 if (newfg == currfg) 775 goto out; 776 777 if (!is_zspage_isolated(zspage)) { 778 remove_zspage(class, zspage, currfg); 779 insert_zspage(class, zspage, newfg); 780 } 781 782 set_zspage_mapping(zspage, class_idx, newfg); 783 784 out: 785 return newfg; 786 } 787 788 /* 789 * We have to decide on how many pages to link together 790 * to form a zspage for each size class. This is important 791 * to reduce wastage due to unusable space left at end of 792 * each zspage which is given as: 793 * wastage = Zp % class_size 794 * usage = Zp - wastage 795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 796 * 797 * For example, for size class of 3/8 * PAGE_SIZE, we should 798 * link together 3 PAGE_SIZE sized pages to form a zspage 799 * since then we can perfectly fit in 8 such objects. 800 */ 801 static int get_pages_per_zspage(int class_size) 802 { 803 int i, max_usedpc = 0; 804 /* zspage order which gives maximum used size per KB */ 805 int max_usedpc_order = 1; 806 807 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 808 int zspage_size; 809 int waste, usedpc; 810 811 zspage_size = i * PAGE_SIZE; 812 waste = zspage_size % class_size; 813 usedpc = (zspage_size - waste) * 100 / zspage_size; 814 815 if (usedpc > max_usedpc) { 816 max_usedpc = usedpc; 817 max_usedpc_order = i; 818 } 819 } 820 821 return max_usedpc_order; 822 } 823 824 static struct zspage *get_zspage(struct page *page) 825 { 826 struct zspage *zspage = (struct zspage *)page->private; 827 828 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 829 return zspage; 830 } 831 832 static struct page *get_next_page(struct page *page) 833 { 834 if (unlikely(PageHugeObject(page))) 835 return NULL; 836 837 return page->freelist; 838 } 839 840 /** 841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 842 * @obj: the encoded object value 843 * @page: page object resides in zspage 844 * @obj_idx: object index 845 */ 846 static void obj_to_location(unsigned long obj, struct page **page, 847 unsigned int *obj_idx) 848 { 849 obj >>= OBJ_TAG_BITS; 850 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 851 *obj_idx = (obj & OBJ_INDEX_MASK); 852 } 853 854 /** 855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 856 * @page: page object resides in zspage 857 * @obj_idx: object index 858 */ 859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 860 { 861 unsigned long obj; 862 863 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 864 obj |= obj_idx & OBJ_INDEX_MASK; 865 obj <<= OBJ_TAG_BITS; 866 867 return obj; 868 } 869 870 static unsigned long handle_to_obj(unsigned long handle) 871 { 872 return *(unsigned long *)handle; 873 } 874 875 static unsigned long obj_to_head(struct page *page, void *obj) 876 { 877 if (unlikely(PageHugeObject(page))) { 878 VM_BUG_ON_PAGE(!is_first_page(page), page); 879 return page->index; 880 } else 881 return *(unsigned long *)obj; 882 } 883 884 static inline int testpin_tag(unsigned long handle) 885 { 886 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 887 } 888 889 static inline int trypin_tag(unsigned long handle) 890 { 891 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 892 } 893 894 static void pin_tag(unsigned long handle) __acquires(bitlock) 895 { 896 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 897 } 898 899 static void unpin_tag(unsigned long handle) __releases(bitlock) 900 { 901 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 902 } 903 904 static void reset_page(struct page *page) 905 { 906 __ClearPageMovable(page); 907 ClearPagePrivate(page); 908 set_page_private(page, 0); 909 page_mapcount_reset(page); 910 ClearPageHugeObject(page); 911 page->freelist = NULL; 912 } 913 914 static int trylock_zspage(struct zspage *zspage) 915 { 916 struct page *cursor, *fail; 917 918 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 919 get_next_page(cursor)) { 920 if (!trylock_page(cursor)) { 921 fail = cursor; 922 goto unlock; 923 } 924 } 925 926 return 1; 927 unlock: 928 for (cursor = get_first_page(zspage); cursor != fail; cursor = 929 get_next_page(cursor)) 930 unlock_page(cursor); 931 932 return 0; 933 } 934 935 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 936 struct zspage *zspage) 937 { 938 struct page *page, *next; 939 enum fullness_group fg; 940 unsigned int class_idx; 941 942 get_zspage_mapping(zspage, &class_idx, &fg); 943 944 assert_spin_locked(&class->lock); 945 946 VM_BUG_ON(get_zspage_inuse(zspage)); 947 VM_BUG_ON(fg != ZS_EMPTY); 948 949 next = page = get_first_page(zspage); 950 do { 951 VM_BUG_ON_PAGE(!PageLocked(page), page); 952 next = get_next_page(page); 953 reset_page(page); 954 unlock_page(page); 955 dec_zone_page_state(page, NR_ZSPAGES); 956 put_page(page); 957 page = next; 958 } while (page != NULL); 959 960 cache_free_zspage(pool, zspage); 961 962 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 963 atomic_long_sub(class->pages_per_zspage, 964 &pool->pages_allocated); 965 } 966 967 static void free_zspage(struct zs_pool *pool, struct size_class *class, 968 struct zspage *zspage) 969 { 970 VM_BUG_ON(get_zspage_inuse(zspage)); 971 VM_BUG_ON(list_empty(&zspage->list)); 972 973 if (!trylock_zspage(zspage)) { 974 kick_deferred_free(pool); 975 return; 976 } 977 978 remove_zspage(class, zspage, ZS_EMPTY); 979 __free_zspage(pool, class, zspage); 980 } 981 982 /* Initialize a newly allocated zspage */ 983 static void init_zspage(struct size_class *class, struct zspage *zspage) 984 { 985 unsigned int freeobj = 1; 986 unsigned long off = 0; 987 struct page *page = get_first_page(zspage); 988 989 while (page) { 990 struct page *next_page; 991 struct link_free *link; 992 void *vaddr; 993 994 set_first_obj_offset(page, off); 995 996 vaddr = kmap_atomic(page); 997 link = (struct link_free *)vaddr + off / sizeof(*link); 998 999 while ((off += class->size) < PAGE_SIZE) { 1000 link->next = freeobj++ << OBJ_TAG_BITS; 1001 link += class->size / sizeof(*link); 1002 } 1003 1004 /* 1005 * We now come to the last (full or partial) object on this 1006 * page, which must point to the first object on the next 1007 * page (if present) 1008 */ 1009 next_page = get_next_page(page); 1010 if (next_page) { 1011 link->next = freeobj++ << OBJ_TAG_BITS; 1012 } else { 1013 /* 1014 * Reset OBJ_TAG_BITS bit to last link to tell 1015 * whether it's allocated object or not. 1016 */ 1017 link->next = -1UL << OBJ_TAG_BITS; 1018 } 1019 kunmap_atomic(vaddr); 1020 page = next_page; 1021 off %= PAGE_SIZE; 1022 } 1023 1024 set_freeobj(zspage, 0); 1025 } 1026 1027 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1028 struct page *pages[]) 1029 { 1030 int i; 1031 struct page *page; 1032 struct page *prev_page = NULL; 1033 int nr_pages = class->pages_per_zspage; 1034 1035 /* 1036 * Allocate individual pages and link them together as: 1037 * 1. all pages are linked together using page->freelist 1038 * 2. each sub-page point to zspage using page->private 1039 * 1040 * we set PG_private to identify the first page (i.e. no other sub-page 1041 * has this flag set). 1042 */ 1043 for (i = 0; i < nr_pages; i++) { 1044 page = pages[i]; 1045 set_page_private(page, (unsigned long)zspage); 1046 page->freelist = NULL; 1047 if (i == 0) { 1048 zspage->first_page = page; 1049 SetPagePrivate(page); 1050 if (unlikely(class->objs_per_zspage == 1 && 1051 class->pages_per_zspage == 1)) 1052 SetPageHugeObject(page); 1053 } else { 1054 prev_page->freelist = page; 1055 } 1056 prev_page = page; 1057 } 1058 } 1059 1060 /* 1061 * Allocate a zspage for the given size class 1062 */ 1063 static struct zspage *alloc_zspage(struct zs_pool *pool, 1064 struct size_class *class, 1065 gfp_t gfp) 1066 { 1067 int i; 1068 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1069 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1070 1071 if (!zspage) 1072 return NULL; 1073 1074 memset(zspage, 0, sizeof(struct zspage)); 1075 zspage->magic = ZSPAGE_MAGIC; 1076 migrate_lock_init(zspage); 1077 1078 for (i = 0; i < class->pages_per_zspage; i++) { 1079 struct page *page; 1080 1081 page = alloc_page(gfp); 1082 if (!page) { 1083 while (--i >= 0) { 1084 dec_zone_page_state(pages[i], NR_ZSPAGES); 1085 __free_page(pages[i]); 1086 } 1087 cache_free_zspage(pool, zspage); 1088 return NULL; 1089 } 1090 1091 inc_zone_page_state(page, NR_ZSPAGES); 1092 pages[i] = page; 1093 } 1094 1095 create_page_chain(class, zspage, pages); 1096 init_zspage(class, zspage); 1097 1098 return zspage; 1099 } 1100 1101 static struct zspage *find_get_zspage(struct size_class *class) 1102 { 1103 int i; 1104 struct zspage *zspage; 1105 1106 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1107 zspage = list_first_entry_or_null(&class->fullness_list[i], 1108 struct zspage, list); 1109 if (zspage) 1110 break; 1111 } 1112 1113 return zspage; 1114 } 1115 1116 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING 1117 static inline int __zs_cpu_up(struct mapping_area *area) 1118 { 1119 /* 1120 * Make sure we don't leak memory if a cpu UP notification 1121 * and zs_init() race and both call zs_cpu_up() on the same cpu 1122 */ 1123 if (area->vm) 1124 return 0; 1125 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1126 if (!area->vm) 1127 return -ENOMEM; 1128 return 0; 1129 } 1130 1131 static inline void __zs_cpu_down(struct mapping_area *area) 1132 { 1133 if (area->vm) 1134 free_vm_area(area->vm); 1135 area->vm = NULL; 1136 } 1137 1138 static inline void *__zs_map_object(struct mapping_area *area, 1139 struct page *pages[2], int off, int size) 1140 { 1141 unsigned long addr = (unsigned long)area->vm->addr; 1142 1143 BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0); 1144 area->vm_addr = area->vm->addr; 1145 return area->vm_addr + off; 1146 } 1147 1148 static inline void __zs_unmap_object(struct mapping_area *area, 1149 struct page *pages[2], int off, int size) 1150 { 1151 unsigned long addr = (unsigned long)area->vm_addr; 1152 1153 unmap_kernel_range(addr, PAGE_SIZE * 2); 1154 } 1155 1156 #else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */ 1157 1158 static inline int __zs_cpu_up(struct mapping_area *area) 1159 { 1160 /* 1161 * Make sure we don't leak memory if a cpu UP notification 1162 * and zs_init() race and both call zs_cpu_up() on the same cpu 1163 */ 1164 if (area->vm_buf) 1165 return 0; 1166 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1167 if (!area->vm_buf) 1168 return -ENOMEM; 1169 return 0; 1170 } 1171 1172 static inline void __zs_cpu_down(struct mapping_area *area) 1173 { 1174 kfree(area->vm_buf); 1175 area->vm_buf = NULL; 1176 } 1177 1178 static void *__zs_map_object(struct mapping_area *area, 1179 struct page *pages[2], int off, int size) 1180 { 1181 int sizes[2]; 1182 void *addr; 1183 char *buf = area->vm_buf; 1184 1185 /* disable page faults to match kmap_atomic() return conditions */ 1186 pagefault_disable(); 1187 1188 /* no read fastpath */ 1189 if (area->vm_mm == ZS_MM_WO) 1190 goto out; 1191 1192 sizes[0] = PAGE_SIZE - off; 1193 sizes[1] = size - sizes[0]; 1194 1195 /* copy object to per-cpu buffer */ 1196 addr = kmap_atomic(pages[0]); 1197 memcpy(buf, addr + off, sizes[0]); 1198 kunmap_atomic(addr); 1199 addr = kmap_atomic(pages[1]); 1200 memcpy(buf + sizes[0], addr, sizes[1]); 1201 kunmap_atomic(addr); 1202 out: 1203 return area->vm_buf; 1204 } 1205 1206 static void __zs_unmap_object(struct mapping_area *area, 1207 struct page *pages[2], int off, int size) 1208 { 1209 int sizes[2]; 1210 void *addr; 1211 char *buf; 1212 1213 /* no write fastpath */ 1214 if (area->vm_mm == ZS_MM_RO) 1215 goto out; 1216 1217 buf = area->vm_buf; 1218 buf = buf + ZS_HANDLE_SIZE; 1219 size -= ZS_HANDLE_SIZE; 1220 off += ZS_HANDLE_SIZE; 1221 1222 sizes[0] = PAGE_SIZE - off; 1223 sizes[1] = size - sizes[0]; 1224 1225 /* copy per-cpu buffer to object */ 1226 addr = kmap_atomic(pages[0]); 1227 memcpy(addr + off, buf, sizes[0]); 1228 kunmap_atomic(addr); 1229 addr = kmap_atomic(pages[1]); 1230 memcpy(addr, buf + sizes[0], sizes[1]); 1231 kunmap_atomic(addr); 1232 1233 out: 1234 /* enable page faults to match kunmap_atomic() return conditions */ 1235 pagefault_enable(); 1236 } 1237 1238 #endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */ 1239 1240 static int zs_cpu_prepare(unsigned int cpu) 1241 { 1242 struct mapping_area *area; 1243 1244 area = &per_cpu(zs_map_area, cpu); 1245 return __zs_cpu_up(area); 1246 } 1247 1248 static int zs_cpu_dead(unsigned int cpu) 1249 { 1250 struct mapping_area *area; 1251 1252 area = &per_cpu(zs_map_area, cpu); 1253 __zs_cpu_down(area); 1254 return 0; 1255 } 1256 1257 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1258 int objs_per_zspage) 1259 { 1260 if (prev->pages_per_zspage == pages_per_zspage && 1261 prev->objs_per_zspage == objs_per_zspage) 1262 return true; 1263 1264 return false; 1265 } 1266 1267 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1268 { 1269 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1270 } 1271 1272 unsigned long zs_get_total_pages(struct zs_pool *pool) 1273 { 1274 return atomic_long_read(&pool->pages_allocated); 1275 } 1276 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1277 1278 /** 1279 * zs_map_object - get address of allocated object from handle. 1280 * @pool: pool from which the object was allocated 1281 * @handle: handle returned from zs_malloc 1282 * @mm: maping mode to use 1283 * 1284 * Before using an object allocated from zs_malloc, it must be mapped using 1285 * this function. When done with the object, it must be unmapped using 1286 * zs_unmap_object. 1287 * 1288 * Only one object can be mapped per cpu at a time. There is no protection 1289 * against nested mappings. 1290 * 1291 * This function returns with preemption and page faults disabled. 1292 */ 1293 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1294 enum zs_mapmode mm) 1295 { 1296 struct zspage *zspage; 1297 struct page *page; 1298 unsigned long obj, off; 1299 unsigned int obj_idx; 1300 1301 unsigned int class_idx; 1302 enum fullness_group fg; 1303 struct size_class *class; 1304 struct mapping_area *area; 1305 struct page *pages[2]; 1306 void *ret; 1307 1308 /* 1309 * Because we use per-cpu mapping areas shared among the 1310 * pools/users, we can't allow mapping in interrupt context 1311 * because it can corrupt another users mappings. 1312 */ 1313 BUG_ON(in_interrupt()); 1314 1315 /* From now on, migration cannot move the object */ 1316 pin_tag(handle); 1317 1318 obj = handle_to_obj(handle); 1319 obj_to_location(obj, &page, &obj_idx); 1320 zspage = get_zspage(page); 1321 1322 /* migration cannot move any subpage in this zspage */ 1323 migrate_read_lock(zspage); 1324 1325 get_zspage_mapping(zspage, &class_idx, &fg); 1326 class = pool->size_class[class_idx]; 1327 off = (class->size * obj_idx) & ~PAGE_MASK; 1328 1329 area = &get_cpu_var(zs_map_area); 1330 area->vm_mm = mm; 1331 if (off + class->size <= PAGE_SIZE) { 1332 /* this object is contained entirely within a page */ 1333 area->vm_addr = kmap_atomic(page); 1334 ret = area->vm_addr + off; 1335 goto out; 1336 } 1337 1338 /* this object spans two pages */ 1339 pages[0] = page; 1340 pages[1] = get_next_page(page); 1341 BUG_ON(!pages[1]); 1342 1343 ret = __zs_map_object(area, pages, off, class->size); 1344 out: 1345 if (likely(!PageHugeObject(page))) 1346 ret += ZS_HANDLE_SIZE; 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL_GPL(zs_map_object); 1351 1352 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1353 { 1354 struct zspage *zspage; 1355 struct page *page; 1356 unsigned long obj, off; 1357 unsigned int obj_idx; 1358 1359 unsigned int class_idx; 1360 enum fullness_group fg; 1361 struct size_class *class; 1362 struct mapping_area *area; 1363 1364 obj = handle_to_obj(handle); 1365 obj_to_location(obj, &page, &obj_idx); 1366 zspage = get_zspage(page); 1367 get_zspage_mapping(zspage, &class_idx, &fg); 1368 class = pool->size_class[class_idx]; 1369 off = (class->size * obj_idx) & ~PAGE_MASK; 1370 1371 area = this_cpu_ptr(&zs_map_area); 1372 if (off + class->size <= PAGE_SIZE) 1373 kunmap_atomic(area->vm_addr); 1374 else { 1375 struct page *pages[2]; 1376 1377 pages[0] = page; 1378 pages[1] = get_next_page(page); 1379 BUG_ON(!pages[1]); 1380 1381 __zs_unmap_object(area, pages, off, class->size); 1382 } 1383 put_cpu_var(zs_map_area); 1384 1385 migrate_read_unlock(zspage); 1386 unpin_tag(handle); 1387 } 1388 EXPORT_SYMBOL_GPL(zs_unmap_object); 1389 1390 /** 1391 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1392 * zsmalloc &size_class. 1393 * @pool: zsmalloc pool to use 1394 * 1395 * The function returns the size of the first huge class - any object of equal 1396 * or bigger size will be stored in zspage consisting of a single physical 1397 * page. 1398 * 1399 * Context: Any context. 1400 * 1401 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1402 */ 1403 size_t zs_huge_class_size(struct zs_pool *pool) 1404 { 1405 return huge_class_size; 1406 } 1407 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1408 1409 static unsigned long obj_malloc(struct size_class *class, 1410 struct zspage *zspage, unsigned long handle) 1411 { 1412 int i, nr_page, offset; 1413 unsigned long obj; 1414 struct link_free *link; 1415 1416 struct page *m_page; 1417 unsigned long m_offset; 1418 void *vaddr; 1419 1420 handle |= OBJ_ALLOCATED_TAG; 1421 obj = get_freeobj(zspage); 1422 1423 offset = obj * class->size; 1424 nr_page = offset >> PAGE_SHIFT; 1425 m_offset = offset & ~PAGE_MASK; 1426 m_page = get_first_page(zspage); 1427 1428 for (i = 0; i < nr_page; i++) 1429 m_page = get_next_page(m_page); 1430 1431 vaddr = kmap_atomic(m_page); 1432 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1433 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1434 if (likely(!PageHugeObject(m_page))) 1435 /* record handle in the header of allocated chunk */ 1436 link->handle = handle; 1437 else 1438 /* record handle to page->index */ 1439 zspage->first_page->index = handle; 1440 1441 kunmap_atomic(vaddr); 1442 mod_zspage_inuse(zspage, 1); 1443 zs_stat_inc(class, OBJ_USED, 1); 1444 1445 obj = location_to_obj(m_page, obj); 1446 1447 return obj; 1448 } 1449 1450 1451 /** 1452 * zs_malloc - Allocate block of given size from pool. 1453 * @pool: pool to allocate from 1454 * @size: size of block to allocate 1455 * @gfp: gfp flags when allocating object 1456 * 1457 * On success, handle to the allocated object is returned, 1458 * otherwise 0. 1459 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1460 */ 1461 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1462 { 1463 unsigned long handle, obj; 1464 struct size_class *class; 1465 enum fullness_group newfg; 1466 struct zspage *zspage; 1467 1468 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1469 return 0; 1470 1471 handle = cache_alloc_handle(pool, gfp); 1472 if (!handle) 1473 return 0; 1474 1475 /* extra space in chunk to keep the handle */ 1476 size += ZS_HANDLE_SIZE; 1477 class = pool->size_class[get_size_class_index(size)]; 1478 1479 spin_lock(&class->lock); 1480 zspage = find_get_zspage(class); 1481 if (likely(zspage)) { 1482 obj = obj_malloc(class, zspage, handle); 1483 /* Now move the zspage to another fullness group, if required */ 1484 fix_fullness_group(class, zspage); 1485 record_obj(handle, obj); 1486 spin_unlock(&class->lock); 1487 1488 return handle; 1489 } 1490 1491 spin_unlock(&class->lock); 1492 1493 zspage = alloc_zspage(pool, class, gfp); 1494 if (!zspage) { 1495 cache_free_handle(pool, handle); 1496 return 0; 1497 } 1498 1499 spin_lock(&class->lock); 1500 obj = obj_malloc(class, zspage, handle); 1501 newfg = get_fullness_group(class, zspage); 1502 insert_zspage(class, zspage, newfg); 1503 set_zspage_mapping(zspage, class->index, newfg); 1504 record_obj(handle, obj); 1505 atomic_long_add(class->pages_per_zspage, 1506 &pool->pages_allocated); 1507 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1508 1509 /* We completely set up zspage so mark them as movable */ 1510 SetZsPageMovable(pool, zspage); 1511 spin_unlock(&class->lock); 1512 1513 return handle; 1514 } 1515 EXPORT_SYMBOL_GPL(zs_malloc); 1516 1517 static void obj_free(struct size_class *class, unsigned long obj) 1518 { 1519 struct link_free *link; 1520 struct zspage *zspage; 1521 struct page *f_page; 1522 unsigned long f_offset; 1523 unsigned int f_objidx; 1524 void *vaddr; 1525 1526 obj &= ~OBJ_ALLOCATED_TAG; 1527 obj_to_location(obj, &f_page, &f_objidx); 1528 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1529 zspage = get_zspage(f_page); 1530 1531 vaddr = kmap_atomic(f_page); 1532 1533 /* Insert this object in containing zspage's freelist */ 1534 link = (struct link_free *)(vaddr + f_offset); 1535 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1536 kunmap_atomic(vaddr); 1537 set_freeobj(zspage, f_objidx); 1538 mod_zspage_inuse(zspage, -1); 1539 zs_stat_dec(class, OBJ_USED, 1); 1540 } 1541 1542 void zs_free(struct zs_pool *pool, unsigned long handle) 1543 { 1544 struct zspage *zspage; 1545 struct page *f_page; 1546 unsigned long obj; 1547 unsigned int f_objidx; 1548 int class_idx; 1549 struct size_class *class; 1550 enum fullness_group fullness; 1551 bool isolated; 1552 1553 if (unlikely(!handle)) 1554 return; 1555 1556 pin_tag(handle); 1557 obj = handle_to_obj(handle); 1558 obj_to_location(obj, &f_page, &f_objidx); 1559 zspage = get_zspage(f_page); 1560 1561 migrate_read_lock(zspage); 1562 1563 get_zspage_mapping(zspage, &class_idx, &fullness); 1564 class = pool->size_class[class_idx]; 1565 1566 spin_lock(&class->lock); 1567 obj_free(class, obj); 1568 fullness = fix_fullness_group(class, zspage); 1569 if (fullness != ZS_EMPTY) { 1570 migrate_read_unlock(zspage); 1571 goto out; 1572 } 1573 1574 isolated = is_zspage_isolated(zspage); 1575 migrate_read_unlock(zspage); 1576 /* If zspage is isolated, zs_page_putback will free the zspage */ 1577 if (likely(!isolated)) 1578 free_zspage(pool, class, zspage); 1579 out: 1580 1581 spin_unlock(&class->lock); 1582 unpin_tag(handle); 1583 cache_free_handle(pool, handle); 1584 } 1585 EXPORT_SYMBOL_GPL(zs_free); 1586 1587 static void zs_object_copy(struct size_class *class, unsigned long dst, 1588 unsigned long src) 1589 { 1590 struct page *s_page, *d_page; 1591 unsigned int s_objidx, d_objidx; 1592 unsigned long s_off, d_off; 1593 void *s_addr, *d_addr; 1594 int s_size, d_size, size; 1595 int written = 0; 1596 1597 s_size = d_size = class->size; 1598 1599 obj_to_location(src, &s_page, &s_objidx); 1600 obj_to_location(dst, &d_page, &d_objidx); 1601 1602 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1603 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1604 1605 if (s_off + class->size > PAGE_SIZE) 1606 s_size = PAGE_SIZE - s_off; 1607 1608 if (d_off + class->size > PAGE_SIZE) 1609 d_size = PAGE_SIZE - d_off; 1610 1611 s_addr = kmap_atomic(s_page); 1612 d_addr = kmap_atomic(d_page); 1613 1614 while (1) { 1615 size = min(s_size, d_size); 1616 memcpy(d_addr + d_off, s_addr + s_off, size); 1617 written += size; 1618 1619 if (written == class->size) 1620 break; 1621 1622 s_off += size; 1623 s_size -= size; 1624 d_off += size; 1625 d_size -= size; 1626 1627 if (s_off >= PAGE_SIZE) { 1628 kunmap_atomic(d_addr); 1629 kunmap_atomic(s_addr); 1630 s_page = get_next_page(s_page); 1631 s_addr = kmap_atomic(s_page); 1632 d_addr = kmap_atomic(d_page); 1633 s_size = class->size - written; 1634 s_off = 0; 1635 } 1636 1637 if (d_off >= PAGE_SIZE) { 1638 kunmap_atomic(d_addr); 1639 d_page = get_next_page(d_page); 1640 d_addr = kmap_atomic(d_page); 1641 d_size = class->size - written; 1642 d_off = 0; 1643 } 1644 } 1645 1646 kunmap_atomic(d_addr); 1647 kunmap_atomic(s_addr); 1648 } 1649 1650 /* 1651 * Find alloced object in zspage from index object and 1652 * return handle. 1653 */ 1654 static unsigned long find_alloced_obj(struct size_class *class, 1655 struct page *page, int *obj_idx) 1656 { 1657 unsigned long head; 1658 int offset = 0; 1659 int index = *obj_idx; 1660 unsigned long handle = 0; 1661 void *addr = kmap_atomic(page); 1662 1663 offset = get_first_obj_offset(page); 1664 offset += class->size * index; 1665 1666 while (offset < PAGE_SIZE) { 1667 head = obj_to_head(page, addr + offset); 1668 if (head & OBJ_ALLOCATED_TAG) { 1669 handle = head & ~OBJ_ALLOCATED_TAG; 1670 if (trypin_tag(handle)) 1671 break; 1672 handle = 0; 1673 } 1674 1675 offset += class->size; 1676 index++; 1677 } 1678 1679 kunmap_atomic(addr); 1680 1681 *obj_idx = index; 1682 1683 return handle; 1684 } 1685 1686 struct zs_compact_control { 1687 /* Source spage for migration which could be a subpage of zspage */ 1688 struct page *s_page; 1689 /* Destination page for migration which should be a first page 1690 * of zspage. */ 1691 struct page *d_page; 1692 /* Starting object index within @s_page which used for live object 1693 * in the subpage. */ 1694 int obj_idx; 1695 }; 1696 1697 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1698 struct zs_compact_control *cc) 1699 { 1700 unsigned long used_obj, free_obj; 1701 unsigned long handle; 1702 struct page *s_page = cc->s_page; 1703 struct page *d_page = cc->d_page; 1704 int obj_idx = cc->obj_idx; 1705 int ret = 0; 1706 1707 while (1) { 1708 handle = find_alloced_obj(class, s_page, &obj_idx); 1709 if (!handle) { 1710 s_page = get_next_page(s_page); 1711 if (!s_page) 1712 break; 1713 obj_idx = 0; 1714 continue; 1715 } 1716 1717 /* Stop if there is no more space */ 1718 if (zspage_full(class, get_zspage(d_page))) { 1719 unpin_tag(handle); 1720 ret = -ENOMEM; 1721 break; 1722 } 1723 1724 used_obj = handle_to_obj(handle); 1725 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1726 zs_object_copy(class, free_obj, used_obj); 1727 obj_idx++; 1728 /* 1729 * record_obj updates handle's value to free_obj and it will 1730 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1731 * breaks synchronization using pin_tag(e,g, zs_free) so 1732 * let's keep the lock bit. 1733 */ 1734 free_obj |= BIT(HANDLE_PIN_BIT); 1735 record_obj(handle, free_obj); 1736 unpin_tag(handle); 1737 obj_free(class, used_obj); 1738 } 1739 1740 /* Remember last position in this iteration */ 1741 cc->s_page = s_page; 1742 cc->obj_idx = obj_idx; 1743 1744 return ret; 1745 } 1746 1747 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1748 { 1749 int i; 1750 struct zspage *zspage; 1751 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1752 1753 if (!source) { 1754 fg[0] = ZS_ALMOST_FULL; 1755 fg[1] = ZS_ALMOST_EMPTY; 1756 } 1757 1758 for (i = 0; i < 2; i++) { 1759 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1760 struct zspage, list); 1761 if (zspage) { 1762 VM_BUG_ON(is_zspage_isolated(zspage)); 1763 remove_zspage(class, zspage, fg[i]); 1764 return zspage; 1765 } 1766 } 1767 1768 return zspage; 1769 } 1770 1771 /* 1772 * putback_zspage - add @zspage into right class's fullness list 1773 * @class: destination class 1774 * @zspage: target page 1775 * 1776 * Return @zspage's fullness_group 1777 */ 1778 static enum fullness_group putback_zspage(struct size_class *class, 1779 struct zspage *zspage) 1780 { 1781 enum fullness_group fullness; 1782 1783 VM_BUG_ON(is_zspage_isolated(zspage)); 1784 1785 fullness = get_fullness_group(class, zspage); 1786 insert_zspage(class, zspage, fullness); 1787 set_zspage_mapping(zspage, class->index, fullness); 1788 1789 return fullness; 1790 } 1791 1792 #ifdef CONFIG_COMPACTION 1793 /* 1794 * To prevent zspage destroy during migration, zspage freeing should 1795 * hold locks of all pages in the zspage. 1796 */ 1797 static void lock_zspage(struct zspage *zspage) 1798 { 1799 struct page *page = get_first_page(zspage); 1800 1801 do { 1802 lock_page(page); 1803 } while ((page = get_next_page(page)) != NULL); 1804 } 1805 1806 static int zs_init_fs_context(struct fs_context *fc) 1807 { 1808 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1809 } 1810 1811 static struct file_system_type zsmalloc_fs = { 1812 .name = "zsmalloc", 1813 .init_fs_context = zs_init_fs_context, 1814 .kill_sb = kill_anon_super, 1815 }; 1816 1817 static int zsmalloc_mount(void) 1818 { 1819 int ret = 0; 1820 1821 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1822 if (IS_ERR(zsmalloc_mnt)) 1823 ret = PTR_ERR(zsmalloc_mnt); 1824 1825 return ret; 1826 } 1827 1828 static void zsmalloc_unmount(void) 1829 { 1830 kern_unmount(zsmalloc_mnt); 1831 } 1832 1833 static void migrate_lock_init(struct zspage *zspage) 1834 { 1835 rwlock_init(&zspage->lock); 1836 } 1837 1838 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1839 { 1840 read_lock(&zspage->lock); 1841 } 1842 1843 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1844 { 1845 read_unlock(&zspage->lock); 1846 } 1847 1848 static void migrate_write_lock(struct zspage *zspage) 1849 { 1850 write_lock(&zspage->lock); 1851 } 1852 1853 static void migrate_write_unlock(struct zspage *zspage) 1854 { 1855 write_unlock(&zspage->lock); 1856 } 1857 1858 /* Number of isolated subpage for *page migration* in this zspage */ 1859 static void inc_zspage_isolation(struct zspage *zspage) 1860 { 1861 zspage->isolated++; 1862 } 1863 1864 static void dec_zspage_isolation(struct zspage *zspage) 1865 { 1866 zspage->isolated--; 1867 } 1868 1869 static void putback_zspage_deferred(struct zs_pool *pool, 1870 struct size_class *class, 1871 struct zspage *zspage) 1872 { 1873 enum fullness_group fg; 1874 1875 fg = putback_zspage(class, zspage); 1876 if (fg == ZS_EMPTY) 1877 schedule_work(&pool->free_work); 1878 1879 } 1880 1881 static inline void zs_pool_dec_isolated(struct zs_pool *pool) 1882 { 1883 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); 1884 atomic_long_dec(&pool->isolated_pages); 1885 /* 1886 * There's no possibility of racing, since wait_for_isolated_drain() 1887 * checks the isolated count under &class->lock after enqueuing 1888 * on migration_wait. 1889 */ 1890 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) 1891 wake_up_all(&pool->migration_wait); 1892 } 1893 1894 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1895 struct page *newpage, struct page *oldpage) 1896 { 1897 struct page *page; 1898 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1899 int idx = 0; 1900 1901 page = get_first_page(zspage); 1902 do { 1903 if (page == oldpage) 1904 pages[idx] = newpage; 1905 else 1906 pages[idx] = page; 1907 idx++; 1908 } while ((page = get_next_page(page)) != NULL); 1909 1910 create_page_chain(class, zspage, pages); 1911 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1912 if (unlikely(PageHugeObject(oldpage))) 1913 newpage->index = oldpage->index; 1914 __SetPageMovable(newpage, page_mapping(oldpage)); 1915 } 1916 1917 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1918 { 1919 struct zs_pool *pool; 1920 struct size_class *class; 1921 int class_idx; 1922 enum fullness_group fullness; 1923 struct zspage *zspage; 1924 struct address_space *mapping; 1925 1926 /* 1927 * Page is locked so zspage couldn't be destroyed. For detail, look at 1928 * lock_zspage in free_zspage. 1929 */ 1930 VM_BUG_ON_PAGE(!PageMovable(page), page); 1931 VM_BUG_ON_PAGE(PageIsolated(page), page); 1932 1933 zspage = get_zspage(page); 1934 1935 /* 1936 * Without class lock, fullness could be stale while class_idx is okay 1937 * because class_idx is constant unless page is freed so we should get 1938 * fullness again under class lock. 1939 */ 1940 get_zspage_mapping(zspage, &class_idx, &fullness); 1941 mapping = page_mapping(page); 1942 pool = mapping->private_data; 1943 class = pool->size_class[class_idx]; 1944 1945 spin_lock(&class->lock); 1946 if (get_zspage_inuse(zspage) == 0) { 1947 spin_unlock(&class->lock); 1948 return false; 1949 } 1950 1951 /* zspage is isolated for object migration */ 1952 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1953 spin_unlock(&class->lock); 1954 return false; 1955 } 1956 1957 /* 1958 * If this is first time isolation for the zspage, isolate zspage from 1959 * size_class to prevent further object allocation from the zspage. 1960 */ 1961 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1962 get_zspage_mapping(zspage, &class_idx, &fullness); 1963 atomic_long_inc(&pool->isolated_pages); 1964 remove_zspage(class, zspage, fullness); 1965 } 1966 1967 inc_zspage_isolation(zspage); 1968 spin_unlock(&class->lock); 1969 1970 return true; 1971 } 1972 1973 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1974 struct page *page, enum migrate_mode mode) 1975 { 1976 struct zs_pool *pool; 1977 struct size_class *class; 1978 int class_idx; 1979 enum fullness_group fullness; 1980 struct zspage *zspage; 1981 struct page *dummy; 1982 void *s_addr, *d_addr, *addr; 1983 int offset, pos; 1984 unsigned long handle, head; 1985 unsigned long old_obj, new_obj; 1986 unsigned int obj_idx; 1987 int ret = -EAGAIN; 1988 1989 /* 1990 * We cannot support the _NO_COPY case here, because copy needs to 1991 * happen under the zs lock, which does not work with 1992 * MIGRATE_SYNC_NO_COPY workflow. 1993 */ 1994 if (mode == MIGRATE_SYNC_NO_COPY) 1995 return -EINVAL; 1996 1997 VM_BUG_ON_PAGE(!PageMovable(page), page); 1998 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1999 2000 zspage = get_zspage(page); 2001 2002 /* Concurrent compactor cannot migrate any subpage in zspage */ 2003 migrate_write_lock(zspage); 2004 get_zspage_mapping(zspage, &class_idx, &fullness); 2005 pool = mapping->private_data; 2006 class = pool->size_class[class_idx]; 2007 offset = get_first_obj_offset(page); 2008 2009 spin_lock(&class->lock); 2010 if (!get_zspage_inuse(zspage)) { 2011 /* 2012 * Set "offset" to end of the page so that every loops 2013 * skips unnecessary object scanning. 2014 */ 2015 offset = PAGE_SIZE; 2016 } 2017 2018 pos = offset; 2019 s_addr = kmap_atomic(page); 2020 while (pos < PAGE_SIZE) { 2021 head = obj_to_head(page, s_addr + pos); 2022 if (head & OBJ_ALLOCATED_TAG) { 2023 handle = head & ~OBJ_ALLOCATED_TAG; 2024 if (!trypin_tag(handle)) 2025 goto unpin_objects; 2026 } 2027 pos += class->size; 2028 } 2029 2030 /* 2031 * Here, any user cannot access all objects in the zspage so let's move. 2032 */ 2033 d_addr = kmap_atomic(newpage); 2034 memcpy(d_addr, s_addr, PAGE_SIZE); 2035 kunmap_atomic(d_addr); 2036 2037 for (addr = s_addr + offset; addr < s_addr + pos; 2038 addr += class->size) { 2039 head = obj_to_head(page, addr); 2040 if (head & OBJ_ALLOCATED_TAG) { 2041 handle = head & ~OBJ_ALLOCATED_TAG; 2042 if (!testpin_tag(handle)) 2043 BUG(); 2044 2045 old_obj = handle_to_obj(handle); 2046 obj_to_location(old_obj, &dummy, &obj_idx); 2047 new_obj = (unsigned long)location_to_obj(newpage, 2048 obj_idx); 2049 new_obj |= BIT(HANDLE_PIN_BIT); 2050 record_obj(handle, new_obj); 2051 } 2052 } 2053 2054 replace_sub_page(class, zspage, newpage, page); 2055 get_page(newpage); 2056 2057 dec_zspage_isolation(zspage); 2058 2059 /* 2060 * Page migration is done so let's putback isolated zspage to 2061 * the list if @page is final isolated subpage in the zspage. 2062 */ 2063 if (!is_zspage_isolated(zspage)) { 2064 /* 2065 * We cannot race with zs_destroy_pool() here because we wait 2066 * for isolation to hit zero before we start destroying. 2067 * Also, we ensure that everyone can see pool->destroying before 2068 * we start waiting. 2069 */ 2070 putback_zspage_deferred(pool, class, zspage); 2071 zs_pool_dec_isolated(pool); 2072 } 2073 2074 if (page_zone(newpage) != page_zone(page)) { 2075 dec_zone_page_state(page, NR_ZSPAGES); 2076 inc_zone_page_state(newpage, NR_ZSPAGES); 2077 } 2078 2079 reset_page(page); 2080 put_page(page); 2081 page = newpage; 2082 2083 ret = MIGRATEPAGE_SUCCESS; 2084 unpin_objects: 2085 for (addr = s_addr + offset; addr < s_addr + pos; 2086 addr += class->size) { 2087 head = obj_to_head(page, addr); 2088 if (head & OBJ_ALLOCATED_TAG) { 2089 handle = head & ~OBJ_ALLOCATED_TAG; 2090 if (!testpin_tag(handle)) 2091 BUG(); 2092 unpin_tag(handle); 2093 } 2094 } 2095 kunmap_atomic(s_addr); 2096 spin_unlock(&class->lock); 2097 migrate_write_unlock(zspage); 2098 2099 return ret; 2100 } 2101 2102 static void zs_page_putback(struct page *page) 2103 { 2104 struct zs_pool *pool; 2105 struct size_class *class; 2106 int class_idx; 2107 enum fullness_group fg; 2108 struct address_space *mapping; 2109 struct zspage *zspage; 2110 2111 VM_BUG_ON_PAGE(!PageMovable(page), page); 2112 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2113 2114 zspage = get_zspage(page); 2115 get_zspage_mapping(zspage, &class_idx, &fg); 2116 mapping = page_mapping(page); 2117 pool = mapping->private_data; 2118 class = pool->size_class[class_idx]; 2119 2120 spin_lock(&class->lock); 2121 dec_zspage_isolation(zspage); 2122 if (!is_zspage_isolated(zspage)) { 2123 /* 2124 * Due to page_lock, we cannot free zspage immediately 2125 * so let's defer. 2126 */ 2127 putback_zspage_deferred(pool, class, zspage); 2128 zs_pool_dec_isolated(pool); 2129 } 2130 spin_unlock(&class->lock); 2131 } 2132 2133 static const struct address_space_operations zsmalloc_aops = { 2134 .isolate_page = zs_page_isolate, 2135 .migratepage = zs_page_migrate, 2136 .putback_page = zs_page_putback, 2137 }; 2138 2139 static int zs_register_migration(struct zs_pool *pool) 2140 { 2141 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2142 if (IS_ERR(pool->inode)) { 2143 pool->inode = NULL; 2144 return 1; 2145 } 2146 2147 pool->inode->i_mapping->private_data = pool; 2148 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2149 return 0; 2150 } 2151 2152 static bool pool_isolated_are_drained(struct zs_pool *pool) 2153 { 2154 return atomic_long_read(&pool->isolated_pages) == 0; 2155 } 2156 2157 /* Function for resolving migration */ 2158 static void wait_for_isolated_drain(struct zs_pool *pool) 2159 { 2160 2161 /* 2162 * We're in the process of destroying the pool, so there are no 2163 * active allocations. zs_page_isolate() fails for completely free 2164 * zspages, so we need only wait for the zs_pool's isolated 2165 * count to hit zero. 2166 */ 2167 wait_event(pool->migration_wait, 2168 pool_isolated_are_drained(pool)); 2169 } 2170 2171 static void zs_unregister_migration(struct zs_pool *pool) 2172 { 2173 pool->destroying = true; 2174 /* 2175 * We need a memory barrier here to ensure global visibility of 2176 * pool->destroying. Thus pool->isolated pages will either be 0 in which 2177 * case we don't care, or it will be > 0 and pool->destroying will 2178 * ensure that we wake up once isolation hits 0. 2179 */ 2180 smp_mb(); 2181 wait_for_isolated_drain(pool); /* This can block */ 2182 flush_work(&pool->free_work); 2183 iput(pool->inode); 2184 } 2185 2186 /* 2187 * Caller should hold page_lock of all pages in the zspage 2188 * In here, we cannot use zspage meta data. 2189 */ 2190 static void async_free_zspage(struct work_struct *work) 2191 { 2192 int i; 2193 struct size_class *class; 2194 unsigned int class_idx; 2195 enum fullness_group fullness; 2196 struct zspage *zspage, *tmp; 2197 LIST_HEAD(free_pages); 2198 struct zs_pool *pool = container_of(work, struct zs_pool, 2199 free_work); 2200 2201 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2202 class = pool->size_class[i]; 2203 if (class->index != i) 2204 continue; 2205 2206 spin_lock(&class->lock); 2207 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2208 spin_unlock(&class->lock); 2209 } 2210 2211 2212 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2213 list_del(&zspage->list); 2214 lock_zspage(zspage); 2215 2216 get_zspage_mapping(zspage, &class_idx, &fullness); 2217 VM_BUG_ON(fullness != ZS_EMPTY); 2218 class = pool->size_class[class_idx]; 2219 spin_lock(&class->lock); 2220 __free_zspage(pool, pool->size_class[class_idx], zspage); 2221 spin_unlock(&class->lock); 2222 } 2223 }; 2224 2225 static void kick_deferred_free(struct zs_pool *pool) 2226 { 2227 schedule_work(&pool->free_work); 2228 } 2229 2230 static void init_deferred_free(struct zs_pool *pool) 2231 { 2232 INIT_WORK(&pool->free_work, async_free_zspage); 2233 } 2234 2235 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2236 { 2237 struct page *page = get_first_page(zspage); 2238 2239 do { 2240 WARN_ON(!trylock_page(page)); 2241 __SetPageMovable(page, pool->inode->i_mapping); 2242 unlock_page(page); 2243 } while ((page = get_next_page(page)) != NULL); 2244 } 2245 #endif 2246 2247 /* 2248 * 2249 * Based on the number of unused allocated objects calculate 2250 * and return the number of pages that we can free. 2251 */ 2252 static unsigned long zs_can_compact(struct size_class *class) 2253 { 2254 unsigned long obj_wasted; 2255 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2256 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2257 2258 if (obj_allocated <= obj_used) 2259 return 0; 2260 2261 obj_wasted = obj_allocated - obj_used; 2262 obj_wasted /= class->objs_per_zspage; 2263 2264 return obj_wasted * class->pages_per_zspage; 2265 } 2266 2267 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2268 { 2269 struct zs_compact_control cc; 2270 struct zspage *src_zspage; 2271 struct zspage *dst_zspage = NULL; 2272 2273 spin_lock(&class->lock); 2274 while ((src_zspage = isolate_zspage(class, true))) { 2275 2276 if (!zs_can_compact(class)) 2277 break; 2278 2279 cc.obj_idx = 0; 2280 cc.s_page = get_first_page(src_zspage); 2281 2282 while ((dst_zspage = isolate_zspage(class, false))) { 2283 cc.d_page = get_first_page(dst_zspage); 2284 /* 2285 * If there is no more space in dst_page, resched 2286 * and see if anyone had allocated another zspage. 2287 */ 2288 if (!migrate_zspage(pool, class, &cc)) 2289 break; 2290 2291 putback_zspage(class, dst_zspage); 2292 } 2293 2294 /* Stop if we couldn't find slot */ 2295 if (dst_zspage == NULL) 2296 break; 2297 2298 putback_zspage(class, dst_zspage); 2299 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2300 free_zspage(pool, class, src_zspage); 2301 pool->stats.pages_compacted += class->pages_per_zspage; 2302 } 2303 spin_unlock(&class->lock); 2304 cond_resched(); 2305 spin_lock(&class->lock); 2306 } 2307 2308 if (src_zspage) 2309 putback_zspage(class, src_zspage); 2310 2311 spin_unlock(&class->lock); 2312 } 2313 2314 unsigned long zs_compact(struct zs_pool *pool) 2315 { 2316 int i; 2317 struct size_class *class; 2318 2319 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2320 class = pool->size_class[i]; 2321 if (!class) 2322 continue; 2323 if (class->index != i) 2324 continue; 2325 __zs_compact(pool, class); 2326 } 2327 2328 return pool->stats.pages_compacted; 2329 } 2330 EXPORT_SYMBOL_GPL(zs_compact); 2331 2332 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2333 { 2334 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2335 } 2336 EXPORT_SYMBOL_GPL(zs_pool_stats); 2337 2338 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2339 struct shrink_control *sc) 2340 { 2341 unsigned long pages_freed; 2342 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2343 shrinker); 2344 2345 pages_freed = pool->stats.pages_compacted; 2346 /* 2347 * Compact classes and calculate compaction delta. 2348 * Can run concurrently with a manually triggered 2349 * (by user) compaction. 2350 */ 2351 pages_freed = zs_compact(pool) - pages_freed; 2352 2353 return pages_freed ? pages_freed : SHRINK_STOP; 2354 } 2355 2356 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2357 struct shrink_control *sc) 2358 { 2359 int i; 2360 struct size_class *class; 2361 unsigned long pages_to_free = 0; 2362 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2363 shrinker); 2364 2365 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2366 class = pool->size_class[i]; 2367 if (!class) 2368 continue; 2369 if (class->index != i) 2370 continue; 2371 2372 pages_to_free += zs_can_compact(class); 2373 } 2374 2375 return pages_to_free; 2376 } 2377 2378 static void zs_unregister_shrinker(struct zs_pool *pool) 2379 { 2380 unregister_shrinker(&pool->shrinker); 2381 } 2382 2383 static int zs_register_shrinker(struct zs_pool *pool) 2384 { 2385 pool->shrinker.scan_objects = zs_shrinker_scan; 2386 pool->shrinker.count_objects = zs_shrinker_count; 2387 pool->shrinker.batch = 0; 2388 pool->shrinker.seeks = DEFAULT_SEEKS; 2389 2390 return register_shrinker(&pool->shrinker); 2391 } 2392 2393 /** 2394 * zs_create_pool - Creates an allocation pool to work from. 2395 * @name: pool name to be created 2396 * 2397 * This function must be called before anything when using 2398 * the zsmalloc allocator. 2399 * 2400 * On success, a pointer to the newly created pool is returned, 2401 * otherwise NULL. 2402 */ 2403 struct zs_pool *zs_create_pool(const char *name) 2404 { 2405 int i; 2406 struct zs_pool *pool; 2407 struct size_class *prev_class = NULL; 2408 2409 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2410 if (!pool) 2411 return NULL; 2412 2413 init_deferred_free(pool); 2414 2415 pool->name = kstrdup(name, GFP_KERNEL); 2416 if (!pool->name) 2417 goto err; 2418 2419 #ifdef CONFIG_COMPACTION 2420 init_waitqueue_head(&pool->migration_wait); 2421 #endif 2422 2423 if (create_cache(pool)) 2424 goto err; 2425 2426 /* 2427 * Iterate reversely, because, size of size_class that we want to use 2428 * for merging should be larger or equal to current size. 2429 */ 2430 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2431 int size; 2432 int pages_per_zspage; 2433 int objs_per_zspage; 2434 struct size_class *class; 2435 int fullness = 0; 2436 2437 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2438 if (size > ZS_MAX_ALLOC_SIZE) 2439 size = ZS_MAX_ALLOC_SIZE; 2440 pages_per_zspage = get_pages_per_zspage(size); 2441 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2442 2443 /* 2444 * We iterate from biggest down to smallest classes, 2445 * so huge_class_size holds the size of the first huge 2446 * class. Any object bigger than or equal to that will 2447 * endup in the huge class. 2448 */ 2449 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2450 !huge_class_size) { 2451 huge_class_size = size; 2452 /* 2453 * The object uses ZS_HANDLE_SIZE bytes to store the 2454 * handle. We need to subtract it, because zs_malloc() 2455 * unconditionally adds handle size before it performs 2456 * size class search - so object may be smaller than 2457 * huge class size, yet it still can end up in the huge 2458 * class because it grows by ZS_HANDLE_SIZE extra bytes 2459 * right before class lookup. 2460 */ 2461 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2462 } 2463 2464 /* 2465 * size_class is used for normal zsmalloc operation such 2466 * as alloc/free for that size. Although it is natural that we 2467 * have one size_class for each size, there is a chance that we 2468 * can get more memory utilization if we use one size_class for 2469 * many different sizes whose size_class have same 2470 * characteristics. So, we makes size_class point to 2471 * previous size_class if possible. 2472 */ 2473 if (prev_class) { 2474 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2475 pool->size_class[i] = prev_class; 2476 continue; 2477 } 2478 } 2479 2480 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2481 if (!class) 2482 goto err; 2483 2484 class->size = size; 2485 class->index = i; 2486 class->pages_per_zspage = pages_per_zspage; 2487 class->objs_per_zspage = objs_per_zspage; 2488 spin_lock_init(&class->lock); 2489 pool->size_class[i] = class; 2490 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2491 fullness++) 2492 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2493 2494 prev_class = class; 2495 } 2496 2497 /* debug only, don't abort if it fails */ 2498 zs_pool_stat_create(pool, name); 2499 2500 if (zs_register_migration(pool)) 2501 goto err; 2502 2503 /* 2504 * Not critical since shrinker is only used to trigger internal 2505 * defragmentation of the pool which is pretty optional thing. If 2506 * registration fails we still can use the pool normally and user can 2507 * trigger compaction manually. Thus, ignore return code. 2508 */ 2509 zs_register_shrinker(pool); 2510 2511 return pool; 2512 2513 err: 2514 zs_destroy_pool(pool); 2515 return NULL; 2516 } 2517 EXPORT_SYMBOL_GPL(zs_create_pool); 2518 2519 void zs_destroy_pool(struct zs_pool *pool) 2520 { 2521 int i; 2522 2523 zs_unregister_shrinker(pool); 2524 zs_unregister_migration(pool); 2525 zs_pool_stat_destroy(pool); 2526 2527 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2528 int fg; 2529 struct size_class *class = pool->size_class[i]; 2530 2531 if (!class) 2532 continue; 2533 2534 if (class->index != i) 2535 continue; 2536 2537 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2538 if (!list_empty(&class->fullness_list[fg])) { 2539 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2540 class->size, fg); 2541 } 2542 } 2543 kfree(class); 2544 } 2545 2546 destroy_cache(pool); 2547 kfree(pool->name); 2548 kfree(pool); 2549 } 2550 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2551 2552 static int __init zs_init(void) 2553 { 2554 int ret; 2555 2556 ret = zsmalloc_mount(); 2557 if (ret) 2558 goto out; 2559 2560 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2561 zs_cpu_prepare, zs_cpu_dead); 2562 if (ret) 2563 goto hp_setup_fail; 2564 2565 #ifdef CONFIG_ZPOOL 2566 zpool_register_driver(&zs_zpool_driver); 2567 #endif 2568 2569 zs_stat_init(); 2570 2571 return 0; 2572 2573 hp_setup_fail: 2574 zsmalloc_unmount(); 2575 out: 2576 return ret; 2577 } 2578 2579 static void __exit zs_exit(void) 2580 { 2581 #ifdef CONFIG_ZPOOL 2582 zpool_unregister_driver(&zs_zpool_driver); 2583 #endif 2584 zsmalloc_unmount(); 2585 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2586 2587 zs_stat_exit(); 2588 } 2589 2590 module_init(zs_init); 2591 module_exit(zs_exit); 2592 2593 MODULE_LICENSE("Dual BSD/GPL"); 2594 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2595