1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * This allocator is designed for use with zram. Thus, the allocator is 16 * supposed to work well under low memory conditions. In particular, it 17 * never attempts higher order page allocation which is very likely to 18 * fail under memory pressure. On the other hand, if we just use single 19 * (0-order) pages, it would suffer from very high fragmentation -- 20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page. 21 * This was one of the major issues with its predecessor (xvmalloc). 22 * 23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages 24 * and links them together using various 'struct page' fields. These linked 25 * pages act as a single higher-order page i.e. an object can span 0-order 26 * page boundaries. The code refers to these linked pages as a single entity 27 * called zspage. 28 * 29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE 30 * since this satisfies the requirements of all its current users (in the 31 * worst case, page is incompressible and is thus stored "as-is" i.e. in 32 * uncompressed form). For allocation requests larger than this size, failure 33 * is returned (see zs_malloc). 34 * 35 * Additionally, zs_malloc() does not return a dereferenceable pointer. 36 * Instead, it returns an opaque handle (unsigned long) which encodes actual 37 * location of the allocated object. The reason for this indirection is that 38 * zsmalloc does not keep zspages permanently mapped since that would cause 39 * issues on 32-bit systems where the VA region for kernel space mappings 40 * is very small. So, before using the allocating memory, the object has to 41 * be mapped using zs_map_object() to get a usable pointer and subsequently 42 * unmapped using zs_unmap_object(). 43 * 44 * Following is how we use various fields and flags of underlying 45 * struct page(s) to form a zspage. 46 * 47 * Usage of struct page fields: 48 * page->first_page: points to the first component (0-order) page 49 * page->index (union with page->freelist): offset of the first object 50 * starting in this page. For the first page, this is 51 * always 0, so we use this field (aka freelist) to point 52 * to the first free object in zspage. 53 * page->lru: links together all component pages (except the first page) 54 * of a zspage 55 * 56 * For _first_ page only: 57 * 58 * page->private (union with page->first_page): refers to the 59 * component page after the first page 60 * page->freelist: points to the first free object in zspage. 61 * Free objects are linked together using in-place 62 * metadata. 63 * page->objects: maximum number of objects we can store in this 64 * zspage (class->zspage_order * PAGE_SIZE / class->size) 65 * page->lru: links together first pages of various zspages. 66 * Basically forming list of zspages in a fullness group. 67 * page->mapping: class index and fullness group of the zspage 68 * 69 * Usage of struct page flags: 70 * PG_private: identifies the first component page 71 * PG_private2: identifies the last component page 72 * 73 */ 74 75 #ifdef CONFIG_ZSMALLOC_DEBUG 76 #define DEBUG 77 #endif 78 79 #include <linux/module.h> 80 #include <linux/kernel.h> 81 #include <linux/bitops.h> 82 #include <linux/errno.h> 83 #include <linux/highmem.h> 84 #include <linux/string.h> 85 #include <linux/slab.h> 86 #include <asm/tlbflush.h> 87 #include <asm/pgtable.h> 88 #include <linux/cpumask.h> 89 #include <linux/cpu.h> 90 #include <linux/vmalloc.h> 91 #include <linux/hardirq.h> 92 #include <linux/spinlock.h> 93 #include <linux/types.h> 94 #include <linux/zsmalloc.h> 95 #include <linux/zpool.h> 96 97 /* 98 * This must be power of 2 and greater than of equal to sizeof(link_free). 99 * These two conditions ensure that any 'struct link_free' itself doesn't 100 * span more than 1 page which avoids complex case of mapping 2 pages simply 101 * to restore link_free pointer values. 102 */ 103 #define ZS_ALIGN 8 104 105 /* 106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 108 */ 109 #define ZS_MAX_ZSPAGE_ORDER 2 110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 111 112 /* 113 * Object location (<PFN>, <obj_idx>) is encoded as 114 * as single (unsigned long) handle value. 115 * 116 * Note that object index <obj_idx> is relative to system 117 * page <PFN> it is stored in, so for each sub-page belonging 118 * to a zspage, obj_idx starts with 0. 119 * 120 * This is made more complicated by various memory models and PAE. 121 */ 122 123 #ifndef MAX_PHYSMEM_BITS 124 #ifdef CONFIG_HIGHMEM64G 125 #define MAX_PHYSMEM_BITS 36 126 #else /* !CONFIG_HIGHMEM64G */ 127 /* 128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 129 * be PAGE_SHIFT 130 */ 131 #define MAX_PHYSMEM_BITS BITS_PER_LONG 132 #endif 133 #endif 134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 137 138 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 143 144 /* 145 * On systems with 4K page size, this gives 255 size classes! There is a 146 * trader-off here: 147 * - Large number of size classes is potentially wasteful as free page are 148 * spread across these classes 149 * - Small number of size classes causes large internal fragmentation 150 * - Probably its better to use specific size classes (empirically 151 * determined). NOTE: all those class sizes must be set as multiple of 152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 153 * 154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 155 * (reason above) 156 */ 157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) 158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ 159 ZS_SIZE_CLASS_DELTA + 1) 160 161 /* 162 * We do not maintain any list for completely empty or full pages 163 */ 164 enum fullness_group { 165 ZS_ALMOST_FULL, 166 ZS_ALMOST_EMPTY, 167 _ZS_NR_FULLNESS_GROUPS, 168 169 ZS_EMPTY, 170 ZS_FULL 171 }; 172 173 /* 174 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 175 * n <= N / f, where 176 * n = number of allocated objects 177 * N = total number of objects zspage can store 178 * f = fullness_threshold_frac 179 * 180 * Similarly, we assign zspage to: 181 * ZS_ALMOST_FULL when n > N / f 182 * ZS_EMPTY when n == 0 183 * ZS_FULL when n == N 184 * 185 * (see: fix_fullness_group()) 186 */ 187 static const int fullness_threshold_frac = 4; 188 189 struct size_class { 190 /* 191 * Size of objects stored in this class. Must be multiple 192 * of ZS_ALIGN. 193 */ 194 int size; 195 unsigned int index; 196 197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 198 int pages_per_zspage; 199 200 spinlock_t lock; 201 202 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; 203 }; 204 205 /* 206 * Placed within free objects to form a singly linked list. 207 * For every zspage, first_page->freelist gives head of this list. 208 * 209 * This must be power of 2 and less than or equal to ZS_ALIGN 210 */ 211 struct link_free { 212 /* Handle of next free chunk (encodes <PFN, obj_idx>) */ 213 void *next; 214 }; 215 216 struct zs_pool { 217 struct size_class size_class[ZS_SIZE_CLASSES]; 218 219 gfp_t flags; /* allocation flags used when growing pool */ 220 atomic_long_t pages_allocated; 221 }; 222 223 /* 224 * A zspage's class index and fullness group 225 * are encoded in its (first)page->mapping 226 */ 227 #define CLASS_IDX_BITS 28 228 #define FULLNESS_BITS 4 229 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) 230 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) 231 232 struct mapping_area { 233 #ifdef CONFIG_PGTABLE_MAPPING 234 struct vm_struct *vm; /* vm area for mapping object that span pages */ 235 #else 236 char *vm_buf; /* copy buffer for objects that span pages */ 237 #endif 238 char *vm_addr; /* address of kmap_atomic()'ed pages */ 239 enum zs_mapmode vm_mm; /* mapping mode */ 240 }; 241 242 /* zpool driver */ 243 244 #ifdef CONFIG_ZPOOL 245 246 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops) 247 { 248 return zs_create_pool(gfp); 249 } 250 251 static void zs_zpool_destroy(void *pool) 252 { 253 zs_destroy_pool(pool); 254 } 255 256 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 257 unsigned long *handle) 258 { 259 *handle = zs_malloc(pool, size); 260 return *handle ? 0 : -1; 261 } 262 static void zs_zpool_free(void *pool, unsigned long handle) 263 { 264 zs_free(pool, handle); 265 } 266 267 static int zs_zpool_shrink(void *pool, unsigned int pages, 268 unsigned int *reclaimed) 269 { 270 return -EINVAL; 271 } 272 273 static void *zs_zpool_map(void *pool, unsigned long handle, 274 enum zpool_mapmode mm) 275 { 276 enum zs_mapmode zs_mm; 277 278 switch (mm) { 279 case ZPOOL_MM_RO: 280 zs_mm = ZS_MM_RO; 281 break; 282 case ZPOOL_MM_WO: 283 zs_mm = ZS_MM_WO; 284 break; 285 case ZPOOL_MM_RW: /* fallthru */ 286 default: 287 zs_mm = ZS_MM_RW; 288 break; 289 } 290 291 return zs_map_object(pool, handle, zs_mm); 292 } 293 static void zs_zpool_unmap(void *pool, unsigned long handle) 294 { 295 zs_unmap_object(pool, handle); 296 } 297 298 static u64 zs_zpool_total_size(void *pool) 299 { 300 return zs_get_total_pages(pool) << PAGE_SHIFT; 301 } 302 303 static struct zpool_driver zs_zpool_driver = { 304 .type = "zsmalloc", 305 .owner = THIS_MODULE, 306 .create = zs_zpool_create, 307 .destroy = zs_zpool_destroy, 308 .malloc = zs_zpool_malloc, 309 .free = zs_zpool_free, 310 .shrink = zs_zpool_shrink, 311 .map = zs_zpool_map, 312 .unmap = zs_zpool_unmap, 313 .total_size = zs_zpool_total_size, 314 }; 315 316 MODULE_ALIAS("zpool-zsmalloc"); 317 #endif /* CONFIG_ZPOOL */ 318 319 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 320 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 321 322 static int is_first_page(struct page *page) 323 { 324 return PagePrivate(page); 325 } 326 327 static int is_last_page(struct page *page) 328 { 329 return PagePrivate2(page); 330 } 331 332 static void get_zspage_mapping(struct page *page, unsigned int *class_idx, 333 enum fullness_group *fullness) 334 { 335 unsigned long m; 336 BUG_ON(!is_first_page(page)); 337 338 m = (unsigned long)page->mapping; 339 *fullness = m & FULLNESS_MASK; 340 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; 341 } 342 343 static void set_zspage_mapping(struct page *page, unsigned int class_idx, 344 enum fullness_group fullness) 345 { 346 unsigned long m; 347 BUG_ON(!is_first_page(page)); 348 349 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | 350 (fullness & FULLNESS_MASK); 351 page->mapping = (struct address_space *)m; 352 } 353 354 /* 355 * zsmalloc divides the pool into various size classes where each 356 * class maintains a list of zspages where each zspage is divided 357 * into equal sized chunks. Each allocation falls into one of these 358 * classes depending on its size. This function returns index of the 359 * size class which has chunk size big enough to hold the give size. 360 */ 361 static int get_size_class_index(int size) 362 { 363 int idx = 0; 364 365 if (likely(size > ZS_MIN_ALLOC_SIZE)) 366 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 367 ZS_SIZE_CLASS_DELTA); 368 369 return idx; 370 } 371 372 /* 373 * For each size class, zspages are divided into different groups 374 * depending on how "full" they are. This was done so that we could 375 * easily find empty or nearly empty zspages when we try to shrink 376 * the pool (not yet implemented). This function returns fullness 377 * status of the given page. 378 */ 379 static enum fullness_group get_fullness_group(struct page *page) 380 { 381 int inuse, max_objects; 382 enum fullness_group fg; 383 BUG_ON(!is_first_page(page)); 384 385 inuse = page->inuse; 386 max_objects = page->objects; 387 388 if (inuse == 0) 389 fg = ZS_EMPTY; 390 else if (inuse == max_objects) 391 fg = ZS_FULL; 392 else if (inuse <= max_objects / fullness_threshold_frac) 393 fg = ZS_ALMOST_EMPTY; 394 else 395 fg = ZS_ALMOST_FULL; 396 397 return fg; 398 } 399 400 /* 401 * Each size class maintains various freelists and zspages are assigned 402 * to one of these freelists based on the number of live objects they 403 * have. This functions inserts the given zspage into the freelist 404 * identified by <class, fullness_group>. 405 */ 406 static void insert_zspage(struct page *page, struct size_class *class, 407 enum fullness_group fullness) 408 { 409 struct page **head; 410 411 BUG_ON(!is_first_page(page)); 412 413 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 414 return; 415 416 head = &class->fullness_list[fullness]; 417 if (*head) 418 list_add_tail(&page->lru, &(*head)->lru); 419 420 *head = page; 421 } 422 423 /* 424 * This function removes the given zspage from the freelist identified 425 * by <class, fullness_group>. 426 */ 427 static void remove_zspage(struct page *page, struct size_class *class, 428 enum fullness_group fullness) 429 { 430 struct page **head; 431 432 BUG_ON(!is_first_page(page)); 433 434 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 435 return; 436 437 head = &class->fullness_list[fullness]; 438 BUG_ON(!*head); 439 if (list_empty(&(*head)->lru)) 440 *head = NULL; 441 else if (*head == page) 442 *head = (struct page *)list_entry((*head)->lru.next, 443 struct page, lru); 444 445 list_del_init(&page->lru); 446 } 447 448 /* 449 * Each size class maintains zspages in different fullness groups depending 450 * on the number of live objects they contain. When allocating or freeing 451 * objects, the fullness status of the page can change, say, from ALMOST_FULL 452 * to ALMOST_EMPTY when freeing an object. This function checks if such 453 * a status change has occurred for the given page and accordingly moves the 454 * page from the freelist of the old fullness group to that of the new 455 * fullness group. 456 */ 457 static enum fullness_group fix_fullness_group(struct zs_pool *pool, 458 struct page *page) 459 { 460 int class_idx; 461 struct size_class *class; 462 enum fullness_group currfg, newfg; 463 464 BUG_ON(!is_first_page(page)); 465 466 get_zspage_mapping(page, &class_idx, &currfg); 467 newfg = get_fullness_group(page); 468 if (newfg == currfg) 469 goto out; 470 471 class = &pool->size_class[class_idx]; 472 remove_zspage(page, class, currfg); 473 insert_zspage(page, class, newfg); 474 set_zspage_mapping(page, class_idx, newfg); 475 476 out: 477 return newfg; 478 } 479 480 /* 481 * We have to decide on how many pages to link together 482 * to form a zspage for each size class. This is important 483 * to reduce wastage due to unusable space left at end of 484 * each zspage which is given as: 485 * wastage = Zp - Zp % size_class 486 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 487 * 488 * For example, for size class of 3/8 * PAGE_SIZE, we should 489 * link together 3 PAGE_SIZE sized pages to form a zspage 490 * since then we can perfectly fit in 8 such objects. 491 */ 492 static int get_pages_per_zspage(int class_size) 493 { 494 int i, max_usedpc = 0; 495 /* zspage order which gives maximum used size per KB */ 496 int max_usedpc_order = 1; 497 498 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 499 int zspage_size; 500 int waste, usedpc; 501 502 zspage_size = i * PAGE_SIZE; 503 waste = zspage_size % class_size; 504 usedpc = (zspage_size - waste) * 100 / zspage_size; 505 506 if (usedpc > max_usedpc) { 507 max_usedpc = usedpc; 508 max_usedpc_order = i; 509 } 510 } 511 512 return max_usedpc_order; 513 } 514 515 /* 516 * A single 'zspage' is composed of many system pages which are 517 * linked together using fields in struct page. This function finds 518 * the first/head page, given any component page of a zspage. 519 */ 520 static struct page *get_first_page(struct page *page) 521 { 522 if (is_first_page(page)) 523 return page; 524 else 525 return page->first_page; 526 } 527 528 static struct page *get_next_page(struct page *page) 529 { 530 struct page *next; 531 532 if (is_last_page(page)) 533 next = NULL; 534 else if (is_first_page(page)) 535 next = (struct page *)page_private(page); 536 else 537 next = list_entry(page->lru.next, struct page, lru); 538 539 return next; 540 } 541 542 /* 543 * Encode <page, obj_idx> as a single handle value. 544 * On hardware platforms with physical memory starting at 0x0 the pfn 545 * could be 0 so we ensure that the handle will never be 0 by adjusting the 546 * encoded obj_idx value before encoding. 547 */ 548 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) 549 { 550 unsigned long handle; 551 552 if (!page) { 553 BUG_ON(obj_idx); 554 return NULL; 555 } 556 557 handle = page_to_pfn(page) << OBJ_INDEX_BITS; 558 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); 559 560 return (void *)handle; 561 } 562 563 /* 564 * Decode <page, obj_idx> pair from the given object handle. We adjust the 565 * decoded obj_idx back to its original value since it was adjusted in 566 * obj_location_to_handle(). 567 */ 568 static void obj_handle_to_location(unsigned long handle, struct page **page, 569 unsigned long *obj_idx) 570 { 571 *page = pfn_to_page(handle >> OBJ_INDEX_BITS); 572 *obj_idx = (handle & OBJ_INDEX_MASK) - 1; 573 } 574 575 static unsigned long obj_idx_to_offset(struct page *page, 576 unsigned long obj_idx, int class_size) 577 { 578 unsigned long off = 0; 579 580 if (!is_first_page(page)) 581 off = page->index; 582 583 return off + obj_idx * class_size; 584 } 585 586 static void reset_page(struct page *page) 587 { 588 clear_bit(PG_private, &page->flags); 589 clear_bit(PG_private_2, &page->flags); 590 set_page_private(page, 0); 591 page->mapping = NULL; 592 page->freelist = NULL; 593 page_mapcount_reset(page); 594 } 595 596 static void free_zspage(struct page *first_page) 597 { 598 struct page *nextp, *tmp, *head_extra; 599 600 BUG_ON(!is_first_page(first_page)); 601 BUG_ON(first_page->inuse); 602 603 head_extra = (struct page *)page_private(first_page); 604 605 reset_page(first_page); 606 __free_page(first_page); 607 608 /* zspage with only 1 system page */ 609 if (!head_extra) 610 return; 611 612 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { 613 list_del(&nextp->lru); 614 reset_page(nextp); 615 __free_page(nextp); 616 } 617 reset_page(head_extra); 618 __free_page(head_extra); 619 } 620 621 /* Initialize a newly allocated zspage */ 622 static void init_zspage(struct page *first_page, struct size_class *class) 623 { 624 unsigned long off = 0; 625 struct page *page = first_page; 626 627 BUG_ON(!is_first_page(first_page)); 628 while (page) { 629 struct page *next_page; 630 struct link_free *link; 631 unsigned int i = 1; 632 633 /* 634 * page->index stores offset of first object starting 635 * in the page. For the first page, this is always 0, 636 * so we use first_page->index (aka ->freelist) to store 637 * head of corresponding zspage's freelist. 638 */ 639 if (page != first_page) 640 page->index = off; 641 642 link = (struct link_free *)kmap_atomic(page) + 643 off / sizeof(*link); 644 645 while ((off += class->size) < PAGE_SIZE) { 646 link->next = obj_location_to_handle(page, i++); 647 link += class->size / sizeof(*link); 648 } 649 650 /* 651 * We now come to the last (full or partial) object on this 652 * page, which must point to the first object on the next 653 * page (if present) 654 */ 655 next_page = get_next_page(page); 656 link->next = obj_location_to_handle(next_page, 0); 657 kunmap_atomic(link); 658 page = next_page; 659 off %= PAGE_SIZE; 660 } 661 } 662 663 /* 664 * Allocate a zspage for the given size class 665 */ 666 static struct page *alloc_zspage(struct size_class *class, gfp_t flags) 667 { 668 int i, error; 669 struct page *first_page = NULL, *uninitialized_var(prev_page); 670 671 /* 672 * Allocate individual pages and link them together as: 673 * 1. first page->private = first sub-page 674 * 2. all sub-pages are linked together using page->lru 675 * 3. each sub-page is linked to the first page using page->first_page 676 * 677 * For each size class, First/Head pages are linked together using 678 * page->lru. Also, we set PG_private to identify the first page 679 * (i.e. no other sub-page has this flag set) and PG_private_2 to 680 * identify the last page. 681 */ 682 error = -ENOMEM; 683 for (i = 0; i < class->pages_per_zspage; i++) { 684 struct page *page; 685 686 page = alloc_page(flags); 687 if (!page) 688 goto cleanup; 689 690 INIT_LIST_HEAD(&page->lru); 691 if (i == 0) { /* first page */ 692 SetPagePrivate(page); 693 set_page_private(page, 0); 694 first_page = page; 695 first_page->inuse = 0; 696 } 697 if (i == 1) 698 set_page_private(first_page, (unsigned long)page); 699 if (i >= 1) 700 page->first_page = first_page; 701 if (i >= 2) 702 list_add(&page->lru, &prev_page->lru); 703 if (i == class->pages_per_zspage - 1) /* last page */ 704 SetPagePrivate2(page); 705 prev_page = page; 706 } 707 708 init_zspage(first_page, class); 709 710 first_page->freelist = obj_location_to_handle(first_page, 0); 711 /* Maximum number of objects we can store in this zspage */ 712 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; 713 714 error = 0; /* Success */ 715 716 cleanup: 717 if (unlikely(error) && first_page) { 718 free_zspage(first_page); 719 first_page = NULL; 720 } 721 722 return first_page; 723 } 724 725 static struct page *find_get_zspage(struct size_class *class) 726 { 727 int i; 728 struct page *page; 729 730 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 731 page = class->fullness_list[i]; 732 if (page) 733 break; 734 } 735 736 return page; 737 } 738 739 #ifdef CONFIG_PGTABLE_MAPPING 740 static inline int __zs_cpu_up(struct mapping_area *area) 741 { 742 /* 743 * Make sure we don't leak memory if a cpu UP notification 744 * and zs_init() race and both call zs_cpu_up() on the same cpu 745 */ 746 if (area->vm) 747 return 0; 748 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 749 if (!area->vm) 750 return -ENOMEM; 751 return 0; 752 } 753 754 static inline void __zs_cpu_down(struct mapping_area *area) 755 { 756 if (area->vm) 757 free_vm_area(area->vm); 758 area->vm = NULL; 759 } 760 761 static inline void *__zs_map_object(struct mapping_area *area, 762 struct page *pages[2], int off, int size) 763 { 764 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 765 area->vm_addr = area->vm->addr; 766 return area->vm_addr + off; 767 } 768 769 static inline void __zs_unmap_object(struct mapping_area *area, 770 struct page *pages[2], int off, int size) 771 { 772 unsigned long addr = (unsigned long)area->vm_addr; 773 774 unmap_kernel_range(addr, PAGE_SIZE * 2); 775 } 776 777 #else /* CONFIG_PGTABLE_MAPPING */ 778 779 static inline int __zs_cpu_up(struct mapping_area *area) 780 { 781 /* 782 * Make sure we don't leak memory if a cpu UP notification 783 * and zs_init() race and both call zs_cpu_up() on the same cpu 784 */ 785 if (area->vm_buf) 786 return 0; 787 area->vm_buf = (char *)__get_free_page(GFP_KERNEL); 788 if (!area->vm_buf) 789 return -ENOMEM; 790 return 0; 791 } 792 793 static inline void __zs_cpu_down(struct mapping_area *area) 794 { 795 if (area->vm_buf) 796 free_page((unsigned long)area->vm_buf); 797 area->vm_buf = NULL; 798 } 799 800 static void *__zs_map_object(struct mapping_area *area, 801 struct page *pages[2], int off, int size) 802 { 803 int sizes[2]; 804 void *addr; 805 char *buf = area->vm_buf; 806 807 /* disable page faults to match kmap_atomic() return conditions */ 808 pagefault_disable(); 809 810 /* no read fastpath */ 811 if (area->vm_mm == ZS_MM_WO) 812 goto out; 813 814 sizes[0] = PAGE_SIZE - off; 815 sizes[1] = size - sizes[0]; 816 817 /* copy object to per-cpu buffer */ 818 addr = kmap_atomic(pages[0]); 819 memcpy(buf, addr + off, sizes[0]); 820 kunmap_atomic(addr); 821 addr = kmap_atomic(pages[1]); 822 memcpy(buf + sizes[0], addr, sizes[1]); 823 kunmap_atomic(addr); 824 out: 825 return area->vm_buf; 826 } 827 828 static void __zs_unmap_object(struct mapping_area *area, 829 struct page *pages[2], int off, int size) 830 { 831 int sizes[2]; 832 void *addr; 833 char *buf = area->vm_buf; 834 835 /* no write fastpath */ 836 if (area->vm_mm == ZS_MM_RO) 837 goto out; 838 839 sizes[0] = PAGE_SIZE - off; 840 sizes[1] = size - sizes[0]; 841 842 /* copy per-cpu buffer to object */ 843 addr = kmap_atomic(pages[0]); 844 memcpy(addr + off, buf, sizes[0]); 845 kunmap_atomic(addr); 846 addr = kmap_atomic(pages[1]); 847 memcpy(addr, buf + sizes[0], sizes[1]); 848 kunmap_atomic(addr); 849 850 out: 851 /* enable page faults to match kunmap_atomic() return conditions */ 852 pagefault_enable(); 853 } 854 855 #endif /* CONFIG_PGTABLE_MAPPING */ 856 857 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 858 void *pcpu) 859 { 860 int ret, cpu = (long)pcpu; 861 struct mapping_area *area; 862 863 switch (action) { 864 case CPU_UP_PREPARE: 865 area = &per_cpu(zs_map_area, cpu); 866 ret = __zs_cpu_up(area); 867 if (ret) 868 return notifier_from_errno(ret); 869 break; 870 case CPU_DEAD: 871 case CPU_UP_CANCELED: 872 area = &per_cpu(zs_map_area, cpu); 873 __zs_cpu_down(area); 874 break; 875 } 876 877 return NOTIFY_OK; 878 } 879 880 static struct notifier_block zs_cpu_nb = { 881 .notifier_call = zs_cpu_notifier 882 }; 883 884 static void zs_exit(void) 885 { 886 int cpu; 887 888 #ifdef CONFIG_ZPOOL 889 zpool_unregister_driver(&zs_zpool_driver); 890 #endif 891 892 cpu_notifier_register_begin(); 893 894 for_each_online_cpu(cpu) 895 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 896 __unregister_cpu_notifier(&zs_cpu_nb); 897 898 cpu_notifier_register_done(); 899 } 900 901 static int zs_init(void) 902 { 903 int cpu, ret; 904 905 cpu_notifier_register_begin(); 906 907 __register_cpu_notifier(&zs_cpu_nb); 908 for_each_online_cpu(cpu) { 909 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 910 if (notifier_to_errno(ret)) { 911 cpu_notifier_register_done(); 912 goto fail; 913 } 914 } 915 916 cpu_notifier_register_done(); 917 918 #ifdef CONFIG_ZPOOL 919 zpool_register_driver(&zs_zpool_driver); 920 #endif 921 922 return 0; 923 fail: 924 zs_exit(); 925 return notifier_to_errno(ret); 926 } 927 928 /** 929 * zs_create_pool - Creates an allocation pool to work from. 930 * @flags: allocation flags used to allocate pool metadata 931 * 932 * This function must be called before anything when using 933 * the zsmalloc allocator. 934 * 935 * On success, a pointer to the newly created pool is returned, 936 * otherwise NULL. 937 */ 938 struct zs_pool *zs_create_pool(gfp_t flags) 939 { 940 int i, ovhd_size; 941 struct zs_pool *pool; 942 943 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); 944 pool = kzalloc(ovhd_size, GFP_KERNEL); 945 if (!pool) 946 return NULL; 947 948 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 949 int size; 950 struct size_class *class; 951 952 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 953 if (size > ZS_MAX_ALLOC_SIZE) 954 size = ZS_MAX_ALLOC_SIZE; 955 956 class = &pool->size_class[i]; 957 class->size = size; 958 class->index = i; 959 spin_lock_init(&class->lock); 960 class->pages_per_zspage = get_pages_per_zspage(size); 961 962 } 963 964 pool->flags = flags; 965 966 return pool; 967 } 968 EXPORT_SYMBOL_GPL(zs_create_pool); 969 970 void zs_destroy_pool(struct zs_pool *pool) 971 { 972 int i; 973 974 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 975 int fg; 976 struct size_class *class = &pool->size_class[i]; 977 978 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { 979 if (class->fullness_list[fg]) { 980 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 981 class->size, fg); 982 } 983 } 984 } 985 kfree(pool); 986 } 987 EXPORT_SYMBOL_GPL(zs_destroy_pool); 988 989 /** 990 * zs_malloc - Allocate block of given size from pool. 991 * @pool: pool to allocate from 992 * @size: size of block to allocate 993 * 994 * On success, handle to the allocated object is returned, 995 * otherwise 0. 996 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 997 */ 998 unsigned long zs_malloc(struct zs_pool *pool, size_t size) 999 { 1000 unsigned long obj; 1001 struct link_free *link; 1002 int class_idx; 1003 struct size_class *class; 1004 1005 struct page *first_page, *m_page; 1006 unsigned long m_objidx, m_offset; 1007 1008 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1009 return 0; 1010 1011 class_idx = get_size_class_index(size); 1012 class = &pool->size_class[class_idx]; 1013 BUG_ON(class_idx != class->index); 1014 1015 spin_lock(&class->lock); 1016 first_page = find_get_zspage(class); 1017 1018 if (!first_page) { 1019 spin_unlock(&class->lock); 1020 first_page = alloc_zspage(class, pool->flags); 1021 if (unlikely(!first_page)) 1022 return 0; 1023 1024 set_zspage_mapping(first_page, class->index, ZS_EMPTY); 1025 atomic_long_add(class->pages_per_zspage, 1026 &pool->pages_allocated); 1027 spin_lock(&class->lock); 1028 } 1029 1030 obj = (unsigned long)first_page->freelist; 1031 obj_handle_to_location(obj, &m_page, &m_objidx); 1032 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); 1033 1034 link = (struct link_free *)kmap_atomic(m_page) + 1035 m_offset / sizeof(*link); 1036 first_page->freelist = link->next; 1037 memset(link, POISON_INUSE, sizeof(*link)); 1038 kunmap_atomic(link); 1039 1040 first_page->inuse++; 1041 /* Now move the zspage to another fullness group, if required */ 1042 fix_fullness_group(pool, first_page); 1043 spin_unlock(&class->lock); 1044 1045 return obj; 1046 } 1047 EXPORT_SYMBOL_GPL(zs_malloc); 1048 1049 void zs_free(struct zs_pool *pool, unsigned long obj) 1050 { 1051 struct link_free *link; 1052 struct page *first_page, *f_page; 1053 unsigned long f_objidx, f_offset; 1054 1055 int class_idx; 1056 struct size_class *class; 1057 enum fullness_group fullness; 1058 1059 if (unlikely(!obj)) 1060 return; 1061 1062 obj_handle_to_location(obj, &f_page, &f_objidx); 1063 first_page = get_first_page(f_page); 1064 1065 get_zspage_mapping(first_page, &class_idx, &fullness); 1066 class = &pool->size_class[class_idx]; 1067 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); 1068 1069 spin_lock(&class->lock); 1070 1071 /* Insert this object in containing zspage's freelist */ 1072 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) 1073 + f_offset); 1074 link->next = first_page->freelist; 1075 kunmap_atomic(link); 1076 first_page->freelist = (void *)obj; 1077 1078 first_page->inuse--; 1079 fullness = fix_fullness_group(pool, first_page); 1080 spin_unlock(&class->lock); 1081 1082 if (fullness == ZS_EMPTY) { 1083 atomic_long_sub(class->pages_per_zspage, 1084 &pool->pages_allocated); 1085 free_zspage(first_page); 1086 } 1087 } 1088 EXPORT_SYMBOL_GPL(zs_free); 1089 1090 /** 1091 * zs_map_object - get address of allocated object from handle. 1092 * @pool: pool from which the object was allocated 1093 * @handle: handle returned from zs_malloc 1094 * 1095 * Before using an object allocated from zs_malloc, it must be mapped using 1096 * this function. When done with the object, it must be unmapped using 1097 * zs_unmap_object. 1098 * 1099 * Only one object can be mapped per cpu at a time. There is no protection 1100 * against nested mappings. 1101 * 1102 * This function returns with preemption and page faults disabled. 1103 */ 1104 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1105 enum zs_mapmode mm) 1106 { 1107 struct page *page; 1108 unsigned long obj_idx, off; 1109 1110 unsigned int class_idx; 1111 enum fullness_group fg; 1112 struct size_class *class; 1113 struct mapping_area *area; 1114 struct page *pages[2]; 1115 1116 BUG_ON(!handle); 1117 1118 /* 1119 * Because we use per-cpu mapping areas shared among the 1120 * pools/users, we can't allow mapping in interrupt context 1121 * because it can corrupt another users mappings. 1122 */ 1123 BUG_ON(in_interrupt()); 1124 1125 obj_handle_to_location(handle, &page, &obj_idx); 1126 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1127 class = &pool->size_class[class_idx]; 1128 off = obj_idx_to_offset(page, obj_idx, class->size); 1129 1130 area = &get_cpu_var(zs_map_area); 1131 area->vm_mm = mm; 1132 if (off + class->size <= PAGE_SIZE) { 1133 /* this object is contained entirely within a page */ 1134 area->vm_addr = kmap_atomic(page); 1135 return area->vm_addr + off; 1136 } 1137 1138 /* this object spans two pages */ 1139 pages[0] = page; 1140 pages[1] = get_next_page(page); 1141 BUG_ON(!pages[1]); 1142 1143 return __zs_map_object(area, pages, off, class->size); 1144 } 1145 EXPORT_SYMBOL_GPL(zs_map_object); 1146 1147 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1148 { 1149 struct page *page; 1150 unsigned long obj_idx, off; 1151 1152 unsigned int class_idx; 1153 enum fullness_group fg; 1154 struct size_class *class; 1155 struct mapping_area *area; 1156 1157 BUG_ON(!handle); 1158 1159 obj_handle_to_location(handle, &page, &obj_idx); 1160 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1161 class = &pool->size_class[class_idx]; 1162 off = obj_idx_to_offset(page, obj_idx, class->size); 1163 1164 area = this_cpu_ptr(&zs_map_area); 1165 if (off + class->size <= PAGE_SIZE) 1166 kunmap_atomic(area->vm_addr); 1167 else { 1168 struct page *pages[2]; 1169 1170 pages[0] = page; 1171 pages[1] = get_next_page(page); 1172 BUG_ON(!pages[1]); 1173 1174 __zs_unmap_object(area, pages, off, class->size); 1175 } 1176 put_cpu_var(zs_map_area); 1177 } 1178 EXPORT_SYMBOL_GPL(zs_unmap_object); 1179 1180 unsigned long zs_get_total_pages(struct zs_pool *pool) 1181 { 1182 return atomic_long_read(&pool->pages_allocated); 1183 } 1184 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1185 1186 module_init(zs_init); 1187 module_exit(zs_exit); 1188 1189 MODULE_LICENSE("Dual BSD/GPL"); 1190 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1191