xref: /openbmc/linux/mm/zsmalloc.c (revision 56d06fa2)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private: refers to the component page after the first page
30  *		If the page is first_page for huge object, it stores handle.
31  *		Look at size_class->huge.
32  *	page->freelist: points to the first free object in zspage.
33  *		Free objects are linked together using in-place
34  *		metadata.
35  *	page->objects: maximum number of objects we can store in this
36  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
37  *	page->lru: links together first pages of various zspages.
38  *		Basically forming list of zspages in a fullness group.
39  *	page->mapping: class index and fullness group of the zspage
40  *	page->inuse: the number of objects that are used in this zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/preempt.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67 
68 /*
69  * This must be power of 2 and greater than of equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * as single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> is relative to system
90  * page <PFN> it is stored in, so for each sub-page belonging
91  * to a zspage, obj_idx starts with 0.
92  *
93  * This is made more complicated by various memory models and PAE.
94  */
95 
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102  * be PAGE_SHIFT
103  */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Memory for allocating for handle keeps object position by
111  * encoding <page, obj_idx> and the encoded value has a room
112  * in least bit(ie, look at obj_to_location).
113  * We use the bit to synchronize between object access by
114  * user and migration.
115  */
116 #define HANDLE_PIN_BIT	0
117 
118 /*
119  * Head in allocated object should have OBJ_ALLOCATED_TAG
120  * to identify the object was allocated or not.
121  * It's okay to add the status bit in the least bit because
122  * header keeps handle which is 4byte-aligned address so we
123  * have room for two bit at least.
124  */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 
152 /*
153  * We do not maintain any list for completely empty or full pages
154  */
155 enum fullness_group {
156 	ZS_ALMOST_FULL,
157 	ZS_ALMOST_EMPTY,
158 	_ZS_NR_FULLNESS_GROUPS,
159 
160 	ZS_EMPTY,
161 	ZS_FULL
162 };
163 
164 enum zs_stat_type {
165 	OBJ_ALLOCATED,
166 	OBJ_USED,
167 	CLASS_ALMOST_FULL,
168 	CLASS_ALMOST_EMPTY,
169 };
170 
171 #ifdef CONFIG_ZSMALLOC_STAT
172 #define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
173 #else
174 #define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
175 #endif
176 
177 struct zs_size_stat {
178 	unsigned long objs[NR_ZS_STAT_TYPE];
179 };
180 
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184 
185 /*
186  * number of size_classes
187  */
188 static int zs_size_classes;
189 
190 /*
191  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192  *	n <= N / f, where
193  * n = number of allocated objects
194  * N = total number of objects zspage can store
195  * f = fullness_threshold_frac
196  *
197  * Similarly, we assign zspage to:
198  *	ZS_ALMOST_FULL	when n > N / f
199  *	ZS_EMPTY	when n == 0
200  *	ZS_FULL		when n == N
201  *
202  * (see: fix_fullness_group())
203  */
204 static const int fullness_threshold_frac = 4;
205 
206 struct size_class {
207 	spinlock_t lock;
208 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 	/*
210 	 * Size of objects stored in this class. Must be multiple
211 	 * of ZS_ALIGN.
212 	 */
213 	int size;
214 	unsigned int index;
215 
216 	struct zs_size_stat stats;
217 
218 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 	int pages_per_zspage;
220 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 	bool huge;
222 };
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, first_page->freelist gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Position of next free chunk (encodes <PFN, obj_idx>)
234 		 * It's valid for non-allocated object
235 		 */
236 		void *next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 
250 	gfp_t flags;	/* allocation flags used when growing pool */
251 	atomic_long_t pages_allocated;
252 
253 	struct zs_pool_stats stats;
254 
255 	/* Compact classes */
256 	struct shrinker shrinker;
257 	/*
258 	 * To signify that register_shrinker() was successful
259 	 * and unregister_shrinker() will not Oops.
260 	 */
261 	bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 };
266 
267 /*
268  * A zspage's class index and fullness group
269  * are encoded in its (first)page->mapping
270  */
271 #define CLASS_IDX_BITS	28
272 #define FULLNESS_BITS	4
273 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
274 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
275 
276 struct mapping_area {
277 #ifdef CONFIG_PGTABLE_MAPPING
278 	struct vm_struct *vm; /* vm area for mapping object that span pages */
279 #else
280 	char *vm_buf; /* copy buffer for objects that span pages */
281 #endif
282 	char *vm_addr; /* address of kmap_atomic()'ed pages */
283 	enum zs_mapmode vm_mm; /* mapping mode */
284 };
285 
286 static int create_handle_cache(struct zs_pool *pool)
287 {
288 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 					0, 0, NULL);
290 	return pool->handle_cachep ? 0 : 1;
291 }
292 
293 static void destroy_handle_cache(struct zs_pool *pool)
294 {
295 	kmem_cache_destroy(pool->handle_cachep);
296 }
297 
298 static unsigned long alloc_handle(struct zs_pool *pool)
299 {
300 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 		pool->flags & ~__GFP_HIGHMEM);
302 }
303 
304 static void free_handle(struct zs_pool *pool, unsigned long handle)
305 {
306 	kmem_cache_free(pool->handle_cachep, (void *)handle);
307 }
308 
309 static void record_obj(unsigned long handle, unsigned long obj)
310 {
311 	/*
312 	 * lsb of @obj represents handle lock while other bits
313 	 * represent object value the handle is pointing so
314 	 * updating shouldn't do store tearing.
315 	 */
316 	WRITE_ONCE(*(unsigned long *)handle, obj);
317 }
318 
319 /* zpool driver */
320 
321 #ifdef CONFIG_ZPOOL
322 
323 static void *zs_zpool_create(const char *name, gfp_t gfp,
324 			     const struct zpool_ops *zpool_ops,
325 			     struct zpool *zpool)
326 {
327 	return zs_create_pool(name, gfp);
328 }
329 
330 static void zs_zpool_destroy(void *pool)
331 {
332 	zs_destroy_pool(pool);
333 }
334 
335 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 			unsigned long *handle)
337 {
338 	*handle = zs_malloc(pool, size);
339 	return *handle ? 0 : -1;
340 }
341 static void zs_zpool_free(void *pool, unsigned long handle)
342 {
343 	zs_free(pool, handle);
344 }
345 
346 static int zs_zpool_shrink(void *pool, unsigned int pages,
347 			unsigned int *reclaimed)
348 {
349 	return -EINVAL;
350 }
351 
352 static void *zs_zpool_map(void *pool, unsigned long handle,
353 			enum zpool_mapmode mm)
354 {
355 	enum zs_mapmode zs_mm;
356 
357 	switch (mm) {
358 	case ZPOOL_MM_RO:
359 		zs_mm = ZS_MM_RO;
360 		break;
361 	case ZPOOL_MM_WO:
362 		zs_mm = ZS_MM_WO;
363 		break;
364 	case ZPOOL_MM_RW: /* fallthru */
365 	default:
366 		zs_mm = ZS_MM_RW;
367 		break;
368 	}
369 
370 	return zs_map_object(pool, handle, zs_mm);
371 }
372 static void zs_zpool_unmap(void *pool, unsigned long handle)
373 {
374 	zs_unmap_object(pool, handle);
375 }
376 
377 static u64 zs_zpool_total_size(void *pool)
378 {
379 	return zs_get_total_pages(pool) << PAGE_SHIFT;
380 }
381 
382 static struct zpool_driver zs_zpool_driver = {
383 	.type =		"zsmalloc",
384 	.owner =	THIS_MODULE,
385 	.create =	zs_zpool_create,
386 	.destroy =	zs_zpool_destroy,
387 	.malloc =	zs_zpool_malloc,
388 	.free =		zs_zpool_free,
389 	.shrink =	zs_zpool_shrink,
390 	.map =		zs_zpool_map,
391 	.unmap =	zs_zpool_unmap,
392 	.total_size =	zs_zpool_total_size,
393 };
394 
395 MODULE_ALIAS("zpool-zsmalloc");
396 #endif /* CONFIG_ZPOOL */
397 
398 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399 {
400 	return pages_per_zspage * PAGE_SIZE / size;
401 }
402 
403 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405 
406 static int is_first_page(struct page *page)
407 {
408 	return PagePrivate(page);
409 }
410 
411 static int is_last_page(struct page *page)
412 {
413 	return PagePrivate2(page);
414 }
415 
416 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
417 				enum fullness_group *fullness)
418 {
419 	unsigned long m;
420 	BUG_ON(!is_first_page(page));
421 
422 	m = (unsigned long)page->mapping;
423 	*fullness = m & FULLNESS_MASK;
424 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
425 }
426 
427 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
428 				enum fullness_group fullness)
429 {
430 	unsigned long m;
431 	BUG_ON(!is_first_page(page));
432 
433 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
434 			(fullness & FULLNESS_MASK);
435 	page->mapping = (struct address_space *)m;
436 }
437 
438 /*
439  * zsmalloc divides the pool into various size classes where each
440  * class maintains a list of zspages where each zspage is divided
441  * into equal sized chunks. Each allocation falls into one of these
442  * classes depending on its size. This function returns index of the
443  * size class which has chunk size big enough to hold the give size.
444  */
445 static int get_size_class_index(int size)
446 {
447 	int idx = 0;
448 
449 	if (likely(size > ZS_MIN_ALLOC_SIZE))
450 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
451 				ZS_SIZE_CLASS_DELTA);
452 
453 	return min(zs_size_classes - 1, idx);
454 }
455 
456 static inline void zs_stat_inc(struct size_class *class,
457 				enum zs_stat_type type, unsigned long cnt)
458 {
459 	if (type < NR_ZS_STAT_TYPE)
460 		class->stats.objs[type] += cnt;
461 }
462 
463 static inline void zs_stat_dec(struct size_class *class,
464 				enum zs_stat_type type, unsigned long cnt)
465 {
466 	if (type < NR_ZS_STAT_TYPE)
467 		class->stats.objs[type] -= cnt;
468 }
469 
470 static inline unsigned long zs_stat_get(struct size_class *class,
471 				enum zs_stat_type type)
472 {
473 	if (type < NR_ZS_STAT_TYPE)
474 		return class->stats.objs[type];
475 	return 0;
476 }
477 
478 #ifdef CONFIG_ZSMALLOC_STAT
479 
480 static int __init zs_stat_init(void)
481 {
482 	if (!debugfs_initialized())
483 		return -ENODEV;
484 
485 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
486 	if (!zs_stat_root)
487 		return -ENOMEM;
488 
489 	return 0;
490 }
491 
492 static void __exit zs_stat_exit(void)
493 {
494 	debugfs_remove_recursive(zs_stat_root);
495 }
496 
497 static unsigned long zs_can_compact(struct size_class *class);
498 
499 static int zs_stats_size_show(struct seq_file *s, void *v)
500 {
501 	int i;
502 	struct zs_pool *pool = s->private;
503 	struct size_class *class;
504 	int objs_per_zspage;
505 	unsigned long class_almost_full, class_almost_empty;
506 	unsigned long obj_allocated, obj_used, pages_used, freeable;
507 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
508 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
509 	unsigned long total_freeable = 0;
510 
511 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
512 			"class", "size", "almost_full", "almost_empty",
513 			"obj_allocated", "obj_used", "pages_used",
514 			"pages_per_zspage", "freeable");
515 
516 	for (i = 0; i < zs_size_classes; i++) {
517 		class = pool->size_class[i];
518 
519 		if (class->index != i)
520 			continue;
521 
522 		spin_lock(&class->lock);
523 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
524 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
525 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
526 		obj_used = zs_stat_get(class, OBJ_USED);
527 		freeable = zs_can_compact(class);
528 		spin_unlock(&class->lock);
529 
530 		objs_per_zspage = get_maxobj_per_zspage(class->size,
531 				class->pages_per_zspage);
532 		pages_used = obj_allocated / objs_per_zspage *
533 				class->pages_per_zspage;
534 
535 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
536 				" %10lu %10lu %16d %8lu\n",
537 			i, class->size, class_almost_full, class_almost_empty,
538 			obj_allocated, obj_used, pages_used,
539 			class->pages_per_zspage, freeable);
540 
541 		total_class_almost_full += class_almost_full;
542 		total_class_almost_empty += class_almost_empty;
543 		total_objs += obj_allocated;
544 		total_used_objs += obj_used;
545 		total_pages += pages_used;
546 		total_freeable += freeable;
547 	}
548 
549 	seq_puts(s, "\n");
550 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
551 			"Total", "", total_class_almost_full,
552 			total_class_almost_empty, total_objs,
553 			total_used_objs, total_pages, "", total_freeable);
554 
555 	return 0;
556 }
557 
558 static int zs_stats_size_open(struct inode *inode, struct file *file)
559 {
560 	return single_open(file, zs_stats_size_show, inode->i_private);
561 }
562 
563 static const struct file_operations zs_stat_size_ops = {
564 	.open           = zs_stats_size_open,
565 	.read           = seq_read,
566 	.llseek         = seq_lseek,
567 	.release        = single_release,
568 };
569 
570 static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
571 {
572 	struct dentry *entry;
573 
574 	if (!zs_stat_root)
575 		return -ENODEV;
576 
577 	entry = debugfs_create_dir(name, zs_stat_root);
578 	if (!entry) {
579 		pr_warn("debugfs dir <%s> creation failed\n", name);
580 		return -ENOMEM;
581 	}
582 	pool->stat_dentry = entry;
583 
584 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
585 			pool->stat_dentry, pool, &zs_stat_size_ops);
586 	if (!entry) {
587 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
588 				name, "classes");
589 		return -ENOMEM;
590 	}
591 
592 	return 0;
593 }
594 
595 static void zs_pool_stat_destroy(struct zs_pool *pool)
596 {
597 	debugfs_remove_recursive(pool->stat_dentry);
598 }
599 
600 #else /* CONFIG_ZSMALLOC_STAT */
601 static int __init zs_stat_init(void)
602 {
603 	return 0;
604 }
605 
606 static void __exit zs_stat_exit(void)
607 {
608 }
609 
610 static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
611 {
612 	return 0;
613 }
614 
615 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
616 {
617 }
618 #endif
619 
620 
621 /*
622  * For each size class, zspages are divided into different groups
623  * depending on how "full" they are. This was done so that we could
624  * easily find empty or nearly empty zspages when we try to shrink
625  * the pool (not yet implemented). This function returns fullness
626  * status of the given page.
627  */
628 static enum fullness_group get_fullness_group(struct page *page)
629 {
630 	int inuse, max_objects;
631 	enum fullness_group fg;
632 	BUG_ON(!is_first_page(page));
633 
634 	inuse = page->inuse;
635 	max_objects = page->objects;
636 
637 	if (inuse == 0)
638 		fg = ZS_EMPTY;
639 	else if (inuse == max_objects)
640 		fg = ZS_FULL;
641 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
642 		fg = ZS_ALMOST_EMPTY;
643 	else
644 		fg = ZS_ALMOST_FULL;
645 
646 	return fg;
647 }
648 
649 /*
650  * Each size class maintains various freelists and zspages are assigned
651  * to one of these freelists based on the number of live objects they
652  * have. This functions inserts the given zspage into the freelist
653  * identified by <class, fullness_group>.
654  */
655 static void insert_zspage(struct page *page, struct size_class *class,
656 				enum fullness_group fullness)
657 {
658 	struct page **head;
659 
660 	BUG_ON(!is_first_page(page));
661 
662 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
663 		return;
664 
665 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
666 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
667 
668 	head = &class->fullness_list[fullness];
669 	if (!*head) {
670 		*head = page;
671 		return;
672 	}
673 
674 	/*
675 	 * We want to see more ZS_FULL pages and less almost
676 	 * empty/full. Put pages with higher ->inuse first.
677 	 */
678 	list_add_tail(&page->lru, &(*head)->lru);
679 	if (page->inuse >= (*head)->inuse)
680 		*head = page;
681 }
682 
683 /*
684  * This function removes the given zspage from the freelist identified
685  * by <class, fullness_group>.
686  */
687 static void remove_zspage(struct page *page, struct size_class *class,
688 				enum fullness_group fullness)
689 {
690 	struct page **head;
691 
692 	BUG_ON(!is_first_page(page));
693 
694 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
695 		return;
696 
697 	head = &class->fullness_list[fullness];
698 	BUG_ON(!*head);
699 	if (list_empty(&(*head)->lru))
700 		*head = NULL;
701 	else if (*head == page)
702 		*head = (struct page *)list_entry((*head)->lru.next,
703 					struct page, lru);
704 
705 	list_del_init(&page->lru);
706 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
707 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
708 }
709 
710 /*
711  * Each size class maintains zspages in different fullness groups depending
712  * on the number of live objects they contain. When allocating or freeing
713  * objects, the fullness status of the page can change, say, from ALMOST_FULL
714  * to ALMOST_EMPTY when freeing an object. This function checks if such
715  * a status change has occurred for the given page and accordingly moves the
716  * page from the freelist of the old fullness group to that of the new
717  * fullness group.
718  */
719 static enum fullness_group fix_fullness_group(struct size_class *class,
720 						struct page *page)
721 {
722 	int class_idx;
723 	enum fullness_group currfg, newfg;
724 
725 	BUG_ON(!is_first_page(page));
726 
727 	get_zspage_mapping(page, &class_idx, &currfg);
728 	newfg = get_fullness_group(page);
729 	if (newfg == currfg)
730 		goto out;
731 
732 	remove_zspage(page, class, currfg);
733 	insert_zspage(page, class, newfg);
734 	set_zspage_mapping(page, class_idx, newfg);
735 
736 out:
737 	return newfg;
738 }
739 
740 /*
741  * We have to decide on how many pages to link together
742  * to form a zspage for each size class. This is important
743  * to reduce wastage due to unusable space left at end of
744  * each zspage which is given as:
745  *     wastage = Zp % class_size
746  *     usage = Zp - wastage
747  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
748  *
749  * For example, for size class of 3/8 * PAGE_SIZE, we should
750  * link together 3 PAGE_SIZE sized pages to form a zspage
751  * since then we can perfectly fit in 8 such objects.
752  */
753 static int get_pages_per_zspage(int class_size)
754 {
755 	int i, max_usedpc = 0;
756 	/* zspage order which gives maximum used size per KB */
757 	int max_usedpc_order = 1;
758 
759 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
760 		int zspage_size;
761 		int waste, usedpc;
762 
763 		zspage_size = i * PAGE_SIZE;
764 		waste = zspage_size % class_size;
765 		usedpc = (zspage_size - waste) * 100 / zspage_size;
766 
767 		if (usedpc > max_usedpc) {
768 			max_usedpc = usedpc;
769 			max_usedpc_order = i;
770 		}
771 	}
772 
773 	return max_usedpc_order;
774 }
775 
776 /*
777  * A single 'zspage' is composed of many system pages which are
778  * linked together using fields in struct page. This function finds
779  * the first/head page, given any component page of a zspage.
780  */
781 static struct page *get_first_page(struct page *page)
782 {
783 	if (is_first_page(page))
784 		return page;
785 	else
786 		return (struct page *)page_private(page);
787 }
788 
789 static struct page *get_next_page(struct page *page)
790 {
791 	struct page *next;
792 
793 	if (is_last_page(page))
794 		next = NULL;
795 	else if (is_first_page(page))
796 		next = (struct page *)page_private(page);
797 	else
798 		next = list_entry(page->lru.next, struct page, lru);
799 
800 	return next;
801 }
802 
803 /*
804  * Encode <page, obj_idx> as a single handle value.
805  * We use the least bit of handle for tagging.
806  */
807 static void *location_to_obj(struct page *page, unsigned long obj_idx)
808 {
809 	unsigned long obj;
810 
811 	if (!page) {
812 		BUG_ON(obj_idx);
813 		return NULL;
814 	}
815 
816 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
817 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
818 	obj <<= OBJ_TAG_BITS;
819 
820 	return (void *)obj;
821 }
822 
823 /*
824  * Decode <page, obj_idx> pair from the given object handle. We adjust the
825  * decoded obj_idx back to its original value since it was adjusted in
826  * location_to_obj().
827  */
828 static void obj_to_location(unsigned long obj, struct page **page,
829 				unsigned long *obj_idx)
830 {
831 	obj >>= OBJ_TAG_BITS;
832 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
833 	*obj_idx = (obj & OBJ_INDEX_MASK);
834 }
835 
836 static unsigned long handle_to_obj(unsigned long handle)
837 {
838 	return *(unsigned long *)handle;
839 }
840 
841 static unsigned long obj_to_head(struct size_class *class, struct page *page,
842 			void *obj)
843 {
844 	if (class->huge) {
845 		VM_BUG_ON(!is_first_page(page));
846 		return page_private(page);
847 	} else
848 		return *(unsigned long *)obj;
849 }
850 
851 static unsigned long obj_idx_to_offset(struct page *page,
852 				unsigned long obj_idx, int class_size)
853 {
854 	unsigned long off = 0;
855 
856 	if (!is_first_page(page))
857 		off = page->index;
858 
859 	return off + obj_idx * class_size;
860 }
861 
862 static inline int trypin_tag(unsigned long handle)
863 {
864 	unsigned long *ptr = (unsigned long *)handle;
865 
866 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
867 }
868 
869 static void pin_tag(unsigned long handle)
870 {
871 	while (!trypin_tag(handle));
872 }
873 
874 static void unpin_tag(unsigned long handle)
875 {
876 	unsigned long *ptr = (unsigned long *)handle;
877 
878 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
879 }
880 
881 static void reset_page(struct page *page)
882 {
883 	clear_bit(PG_private, &page->flags);
884 	clear_bit(PG_private_2, &page->flags);
885 	set_page_private(page, 0);
886 	page->mapping = NULL;
887 	page->freelist = NULL;
888 	page_mapcount_reset(page);
889 }
890 
891 static void free_zspage(struct page *first_page)
892 {
893 	struct page *nextp, *tmp, *head_extra;
894 
895 	BUG_ON(!is_first_page(first_page));
896 	BUG_ON(first_page->inuse);
897 
898 	head_extra = (struct page *)page_private(first_page);
899 
900 	reset_page(first_page);
901 	__free_page(first_page);
902 
903 	/* zspage with only 1 system page */
904 	if (!head_extra)
905 		return;
906 
907 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
908 		list_del(&nextp->lru);
909 		reset_page(nextp);
910 		__free_page(nextp);
911 	}
912 	reset_page(head_extra);
913 	__free_page(head_extra);
914 }
915 
916 /* Initialize a newly allocated zspage */
917 static void init_zspage(struct page *first_page, struct size_class *class)
918 {
919 	unsigned long off = 0;
920 	struct page *page = first_page;
921 
922 	BUG_ON(!is_first_page(first_page));
923 	while (page) {
924 		struct page *next_page;
925 		struct link_free *link;
926 		unsigned int i = 1;
927 		void *vaddr;
928 
929 		/*
930 		 * page->index stores offset of first object starting
931 		 * in the page. For the first page, this is always 0,
932 		 * so we use first_page->index (aka ->freelist) to store
933 		 * head of corresponding zspage's freelist.
934 		 */
935 		if (page != first_page)
936 			page->index = off;
937 
938 		vaddr = kmap_atomic(page);
939 		link = (struct link_free *)vaddr + off / sizeof(*link);
940 
941 		while ((off += class->size) < PAGE_SIZE) {
942 			link->next = location_to_obj(page, i++);
943 			link += class->size / sizeof(*link);
944 		}
945 
946 		/*
947 		 * We now come to the last (full or partial) object on this
948 		 * page, which must point to the first object on the next
949 		 * page (if present)
950 		 */
951 		next_page = get_next_page(page);
952 		link->next = location_to_obj(next_page, 0);
953 		kunmap_atomic(vaddr);
954 		page = next_page;
955 		off %= PAGE_SIZE;
956 	}
957 }
958 
959 /*
960  * Allocate a zspage for the given size class
961  */
962 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
963 {
964 	int i, error;
965 	struct page *first_page = NULL, *uninitialized_var(prev_page);
966 
967 	/*
968 	 * Allocate individual pages and link them together as:
969 	 * 1. first page->private = first sub-page
970 	 * 2. all sub-pages are linked together using page->lru
971 	 * 3. each sub-page is linked to the first page using page->private
972 	 *
973 	 * For each size class, First/Head pages are linked together using
974 	 * page->lru. Also, we set PG_private to identify the first page
975 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
976 	 * identify the last page.
977 	 */
978 	error = -ENOMEM;
979 	for (i = 0; i < class->pages_per_zspage; i++) {
980 		struct page *page;
981 
982 		page = alloc_page(flags);
983 		if (!page)
984 			goto cleanup;
985 
986 		INIT_LIST_HEAD(&page->lru);
987 		if (i == 0) {	/* first page */
988 			SetPagePrivate(page);
989 			set_page_private(page, 0);
990 			first_page = page;
991 			first_page->inuse = 0;
992 		}
993 		if (i == 1)
994 			set_page_private(first_page, (unsigned long)page);
995 		if (i >= 1)
996 			set_page_private(page, (unsigned long)first_page);
997 		if (i >= 2)
998 			list_add(&page->lru, &prev_page->lru);
999 		if (i == class->pages_per_zspage - 1)	/* last page */
1000 			SetPagePrivate2(page);
1001 		prev_page = page;
1002 	}
1003 
1004 	init_zspage(first_page, class);
1005 
1006 	first_page->freelist = location_to_obj(first_page, 0);
1007 	/* Maximum number of objects we can store in this zspage */
1008 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009 
1010 	error = 0; /* Success */
1011 
1012 cleanup:
1013 	if (unlikely(error) && first_page) {
1014 		free_zspage(first_page);
1015 		first_page = NULL;
1016 	}
1017 
1018 	return first_page;
1019 }
1020 
1021 static struct page *find_get_zspage(struct size_class *class)
1022 {
1023 	int i;
1024 	struct page *page;
1025 
1026 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027 		page = class->fullness_list[i];
1028 		if (page)
1029 			break;
1030 	}
1031 
1032 	return page;
1033 }
1034 
1035 #ifdef CONFIG_PGTABLE_MAPPING
1036 static inline int __zs_cpu_up(struct mapping_area *area)
1037 {
1038 	/*
1039 	 * Make sure we don't leak memory if a cpu UP notification
1040 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041 	 */
1042 	if (area->vm)
1043 		return 0;
1044 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045 	if (!area->vm)
1046 		return -ENOMEM;
1047 	return 0;
1048 }
1049 
1050 static inline void __zs_cpu_down(struct mapping_area *area)
1051 {
1052 	if (area->vm)
1053 		free_vm_area(area->vm);
1054 	area->vm = NULL;
1055 }
1056 
1057 static inline void *__zs_map_object(struct mapping_area *area,
1058 				struct page *pages[2], int off, int size)
1059 {
1060 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061 	area->vm_addr = area->vm->addr;
1062 	return area->vm_addr + off;
1063 }
1064 
1065 static inline void __zs_unmap_object(struct mapping_area *area,
1066 				struct page *pages[2], int off, int size)
1067 {
1068 	unsigned long addr = (unsigned long)area->vm_addr;
1069 
1070 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1071 }
1072 
1073 #else /* CONFIG_PGTABLE_MAPPING */
1074 
1075 static inline int __zs_cpu_up(struct mapping_area *area)
1076 {
1077 	/*
1078 	 * Make sure we don't leak memory if a cpu UP notification
1079 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080 	 */
1081 	if (area->vm_buf)
1082 		return 0;
1083 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084 	if (!area->vm_buf)
1085 		return -ENOMEM;
1086 	return 0;
1087 }
1088 
1089 static inline void __zs_cpu_down(struct mapping_area *area)
1090 {
1091 	kfree(area->vm_buf);
1092 	area->vm_buf = NULL;
1093 }
1094 
1095 static void *__zs_map_object(struct mapping_area *area,
1096 			struct page *pages[2], int off, int size)
1097 {
1098 	int sizes[2];
1099 	void *addr;
1100 	char *buf = area->vm_buf;
1101 
1102 	/* disable page faults to match kmap_atomic() return conditions */
1103 	pagefault_disable();
1104 
1105 	/* no read fastpath */
1106 	if (area->vm_mm == ZS_MM_WO)
1107 		goto out;
1108 
1109 	sizes[0] = PAGE_SIZE - off;
1110 	sizes[1] = size - sizes[0];
1111 
1112 	/* copy object to per-cpu buffer */
1113 	addr = kmap_atomic(pages[0]);
1114 	memcpy(buf, addr + off, sizes[0]);
1115 	kunmap_atomic(addr);
1116 	addr = kmap_atomic(pages[1]);
1117 	memcpy(buf + sizes[0], addr, sizes[1]);
1118 	kunmap_atomic(addr);
1119 out:
1120 	return area->vm_buf;
1121 }
1122 
1123 static void __zs_unmap_object(struct mapping_area *area,
1124 			struct page *pages[2], int off, int size)
1125 {
1126 	int sizes[2];
1127 	void *addr;
1128 	char *buf;
1129 
1130 	/* no write fastpath */
1131 	if (area->vm_mm == ZS_MM_RO)
1132 		goto out;
1133 
1134 	buf = area->vm_buf;
1135 	buf = buf + ZS_HANDLE_SIZE;
1136 	size -= ZS_HANDLE_SIZE;
1137 	off += ZS_HANDLE_SIZE;
1138 
1139 	sizes[0] = PAGE_SIZE - off;
1140 	sizes[1] = size - sizes[0];
1141 
1142 	/* copy per-cpu buffer to object */
1143 	addr = kmap_atomic(pages[0]);
1144 	memcpy(addr + off, buf, sizes[0]);
1145 	kunmap_atomic(addr);
1146 	addr = kmap_atomic(pages[1]);
1147 	memcpy(addr, buf + sizes[0], sizes[1]);
1148 	kunmap_atomic(addr);
1149 
1150 out:
1151 	/* enable page faults to match kunmap_atomic() return conditions */
1152 	pagefault_enable();
1153 }
1154 
1155 #endif /* CONFIG_PGTABLE_MAPPING */
1156 
1157 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158 				void *pcpu)
1159 {
1160 	int ret, cpu = (long)pcpu;
1161 	struct mapping_area *area;
1162 
1163 	switch (action) {
1164 	case CPU_UP_PREPARE:
1165 		area = &per_cpu(zs_map_area, cpu);
1166 		ret = __zs_cpu_up(area);
1167 		if (ret)
1168 			return notifier_from_errno(ret);
1169 		break;
1170 	case CPU_DEAD:
1171 	case CPU_UP_CANCELED:
1172 		area = &per_cpu(zs_map_area, cpu);
1173 		__zs_cpu_down(area);
1174 		break;
1175 	}
1176 
1177 	return NOTIFY_OK;
1178 }
1179 
1180 static struct notifier_block zs_cpu_nb = {
1181 	.notifier_call = zs_cpu_notifier
1182 };
1183 
1184 static int zs_register_cpu_notifier(void)
1185 {
1186 	int cpu, uninitialized_var(ret);
1187 
1188 	cpu_notifier_register_begin();
1189 
1190 	__register_cpu_notifier(&zs_cpu_nb);
1191 	for_each_online_cpu(cpu) {
1192 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193 		if (notifier_to_errno(ret))
1194 			break;
1195 	}
1196 
1197 	cpu_notifier_register_done();
1198 	return notifier_to_errno(ret);
1199 }
1200 
1201 static void zs_unregister_cpu_notifier(void)
1202 {
1203 	int cpu;
1204 
1205 	cpu_notifier_register_begin();
1206 
1207 	for_each_online_cpu(cpu)
1208 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209 	__unregister_cpu_notifier(&zs_cpu_nb);
1210 
1211 	cpu_notifier_register_done();
1212 }
1213 
1214 static void init_zs_size_classes(void)
1215 {
1216 	int nr;
1217 
1218 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220 		nr += 1;
1221 
1222 	zs_size_classes = nr;
1223 }
1224 
1225 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226 {
1227 	if (prev->pages_per_zspage != pages_per_zspage)
1228 		return false;
1229 
1230 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
1237 static bool zspage_full(struct page *page)
1238 {
1239 	BUG_ON(!is_first_page(page));
1240 
1241 	return page->inuse == page->objects;
1242 }
1243 
1244 unsigned long zs_get_total_pages(struct zs_pool *pool)
1245 {
1246 	return atomic_long_read(&pool->pages_allocated);
1247 }
1248 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249 
1250 /**
1251  * zs_map_object - get address of allocated object from handle.
1252  * @pool: pool from which the object was allocated
1253  * @handle: handle returned from zs_malloc
1254  *
1255  * Before using an object allocated from zs_malloc, it must be mapped using
1256  * this function. When done with the object, it must be unmapped using
1257  * zs_unmap_object.
1258  *
1259  * Only one object can be mapped per cpu at a time. There is no protection
1260  * against nested mappings.
1261  *
1262  * This function returns with preemption and page faults disabled.
1263  */
1264 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265 			enum zs_mapmode mm)
1266 {
1267 	struct page *page;
1268 	unsigned long obj, obj_idx, off;
1269 
1270 	unsigned int class_idx;
1271 	enum fullness_group fg;
1272 	struct size_class *class;
1273 	struct mapping_area *area;
1274 	struct page *pages[2];
1275 	void *ret;
1276 
1277 	BUG_ON(!handle);
1278 
1279 	/*
1280 	 * Because we use per-cpu mapping areas shared among the
1281 	 * pools/users, we can't allow mapping in interrupt context
1282 	 * because it can corrupt another users mappings.
1283 	 */
1284 	BUG_ON(in_interrupt());
1285 
1286 	/* From now on, migration cannot move the object */
1287 	pin_tag(handle);
1288 
1289 	obj = handle_to_obj(handle);
1290 	obj_to_location(obj, &page, &obj_idx);
1291 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 	class = pool->size_class[class_idx];
1293 	off = obj_idx_to_offset(page, obj_idx, class->size);
1294 
1295 	area = &get_cpu_var(zs_map_area);
1296 	area->vm_mm = mm;
1297 	if (off + class->size <= PAGE_SIZE) {
1298 		/* this object is contained entirely within a page */
1299 		area->vm_addr = kmap_atomic(page);
1300 		ret = area->vm_addr + off;
1301 		goto out;
1302 	}
1303 
1304 	/* this object spans two pages */
1305 	pages[0] = page;
1306 	pages[1] = get_next_page(page);
1307 	BUG_ON(!pages[1]);
1308 
1309 	ret = __zs_map_object(area, pages, off, class->size);
1310 out:
1311 	if (!class->huge)
1312 		ret += ZS_HANDLE_SIZE;
1313 
1314 	return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(zs_map_object);
1317 
1318 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319 {
1320 	struct page *page;
1321 	unsigned long obj, obj_idx, off;
1322 
1323 	unsigned int class_idx;
1324 	enum fullness_group fg;
1325 	struct size_class *class;
1326 	struct mapping_area *area;
1327 
1328 	BUG_ON(!handle);
1329 
1330 	obj = handle_to_obj(handle);
1331 	obj_to_location(obj, &page, &obj_idx);
1332 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 	class = pool->size_class[class_idx];
1334 	off = obj_idx_to_offset(page, obj_idx, class->size);
1335 
1336 	area = this_cpu_ptr(&zs_map_area);
1337 	if (off + class->size <= PAGE_SIZE)
1338 		kunmap_atomic(area->vm_addr);
1339 	else {
1340 		struct page *pages[2];
1341 
1342 		pages[0] = page;
1343 		pages[1] = get_next_page(page);
1344 		BUG_ON(!pages[1]);
1345 
1346 		__zs_unmap_object(area, pages, off, class->size);
1347 	}
1348 	put_cpu_var(zs_map_area);
1349 	unpin_tag(handle);
1350 }
1351 EXPORT_SYMBOL_GPL(zs_unmap_object);
1352 
1353 static unsigned long obj_malloc(struct page *first_page,
1354 		struct size_class *class, unsigned long handle)
1355 {
1356 	unsigned long obj;
1357 	struct link_free *link;
1358 
1359 	struct page *m_page;
1360 	unsigned long m_objidx, m_offset;
1361 	void *vaddr;
1362 
1363 	handle |= OBJ_ALLOCATED_TAG;
1364 	obj = (unsigned long)first_page->freelist;
1365 	obj_to_location(obj, &m_page, &m_objidx);
1366 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367 
1368 	vaddr = kmap_atomic(m_page);
1369 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 	first_page->freelist = link->next;
1371 	if (!class->huge)
1372 		/* record handle in the header of allocated chunk */
1373 		link->handle = handle;
1374 	else
1375 		/* record handle in first_page->private */
1376 		set_page_private(first_page, handle);
1377 	kunmap_atomic(vaddr);
1378 	first_page->inuse++;
1379 	zs_stat_inc(class, OBJ_USED, 1);
1380 
1381 	return obj;
1382 }
1383 
1384 
1385 /**
1386  * zs_malloc - Allocate block of given size from pool.
1387  * @pool: pool to allocate from
1388  * @size: size of block to allocate
1389  *
1390  * On success, handle to the allocated object is returned,
1391  * otherwise 0.
1392  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393  */
1394 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395 {
1396 	unsigned long handle, obj;
1397 	struct size_class *class;
1398 	struct page *first_page;
1399 
1400 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 		return 0;
1402 
1403 	handle = alloc_handle(pool);
1404 	if (!handle)
1405 		return 0;
1406 
1407 	/* extra space in chunk to keep the handle */
1408 	size += ZS_HANDLE_SIZE;
1409 	class = pool->size_class[get_size_class_index(size)];
1410 
1411 	spin_lock(&class->lock);
1412 	first_page = find_get_zspage(class);
1413 
1414 	if (!first_page) {
1415 		spin_unlock(&class->lock);
1416 		first_page = alloc_zspage(class, pool->flags);
1417 		if (unlikely(!first_page)) {
1418 			free_handle(pool, handle);
1419 			return 0;
1420 		}
1421 
1422 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 		atomic_long_add(class->pages_per_zspage,
1424 					&pool->pages_allocated);
1425 
1426 		spin_lock(&class->lock);
1427 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 				class->size, class->pages_per_zspage));
1429 	}
1430 
1431 	obj = obj_malloc(first_page, class, handle);
1432 	/* Now move the zspage to another fullness group, if required */
1433 	fix_fullness_group(class, first_page);
1434 	record_obj(handle, obj);
1435 	spin_unlock(&class->lock);
1436 
1437 	return handle;
1438 }
1439 EXPORT_SYMBOL_GPL(zs_malloc);
1440 
1441 static void obj_free(struct zs_pool *pool, struct size_class *class,
1442 			unsigned long obj)
1443 {
1444 	struct link_free *link;
1445 	struct page *first_page, *f_page;
1446 	unsigned long f_objidx, f_offset;
1447 	void *vaddr;
1448 
1449 	BUG_ON(!obj);
1450 
1451 	obj &= ~OBJ_ALLOCATED_TAG;
1452 	obj_to_location(obj, &f_page, &f_objidx);
1453 	first_page = get_first_page(f_page);
1454 
1455 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456 
1457 	vaddr = kmap_atomic(f_page);
1458 
1459 	/* Insert this object in containing zspage's freelist */
1460 	link = (struct link_free *)(vaddr + f_offset);
1461 	link->next = first_page->freelist;
1462 	if (class->huge)
1463 		set_page_private(first_page, 0);
1464 	kunmap_atomic(vaddr);
1465 	first_page->freelist = (void *)obj;
1466 	first_page->inuse--;
1467 	zs_stat_dec(class, OBJ_USED, 1);
1468 }
1469 
1470 void zs_free(struct zs_pool *pool, unsigned long handle)
1471 {
1472 	struct page *first_page, *f_page;
1473 	unsigned long obj, f_objidx;
1474 	int class_idx;
1475 	struct size_class *class;
1476 	enum fullness_group fullness;
1477 
1478 	if (unlikely(!handle))
1479 		return;
1480 
1481 	pin_tag(handle);
1482 	obj = handle_to_obj(handle);
1483 	obj_to_location(obj, &f_page, &f_objidx);
1484 	first_page = get_first_page(f_page);
1485 
1486 	get_zspage_mapping(first_page, &class_idx, &fullness);
1487 	class = pool->size_class[class_idx];
1488 
1489 	spin_lock(&class->lock);
1490 	obj_free(pool, class, obj);
1491 	fullness = fix_fullness_group(class, first_page);
1492 	if (fullness == ZS_EMPTY) {
1493 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494 				class->size, class->pages_per_zspage));
1495 		atomic_long_sub(class->pages_per_zspage,
1496 				&pool->pages_allocated);
1497 		free_zspage(first_page);
1498 	}
1499 	spin_unlock(&class->lock);
1500 	unpin_tag(handle);
1501 
1502 	free_handle(pool, handle);
1503 }
1504 EXPORT_SYMBOL_GPL(zs_free);
1505 
1506 static void zs_object_copy(unsigned long dst, unsigned long src,
1507 				struct size_class *class)
1508 {
1509 	struct page *s_page, *d_page;
1510 	unsigned long s_objidx, d_objidx;
1511 	unsigned long s_off, d_off;
1512 	void *s_addr, *d_addr;
1513 	int s_size, d_size, size;
1514 	int written = 0;
1515 
1516 	s_size = d_size = class->size;
1517 
1518 	obj_to_location(src, &s_page, &s_objidx);
1519 	obj_to_location(dst, &d_page, &d_objidx);
1520 
1521 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523 
1524 	if (s_off + class->size > PAGE_SIZE)
1525 		s_size = PAGE_SIZE - s_off;
1526 
1527 	if (d_off + class->size > PAGE_SIZE)
1528 		d_size = PAGE_SIZE - d_off;
1529 
1530 	s_addr = kmap_atomic(s_page);
1531 	d_addr = kmap_atomic(d_page);
1532 
1533 	while (1) {
1534 		size = min(s_size, d_size);
1535 		memcpy(d_addr + d_off, s_addr + s_off, size);
1536 		written += size;
1537 
1538 		if (written == class->size)
1539 			break;
1540 
1541 		s_off += size;
1542 		s_size -= size;
1543 		d_off += size;
1544 		d_size -= size;
1545 
1546 		if (s_off >= PAGE_SIZE) {
1547 			kunmap_atomic(d_addr);
1548 			kunmap_atomic(s_addr);
1549 			s_page = get_next_page(s_page);
1550 			BUG_ON(!s_page);
1551 			s_addr = kmap_atomic(s_page);
1552 			d_addr = kmap_atomic(d_page);
1553 			s_size = class->size - written;
1554 			s_off = 0;
1555 		}
1556 
1557 		if (d_off >= PAGE_SIZE) {
1558 			kunmap_atomic(d_addr);
1559 			d_page = get_next_page(d_page);
1560 			BUG_ON(!d_page);
1561 			d_addr = kmap_atomic(d_page);
1562 			d_size = class->size - written;
1563 			d_off = 0;
1564 		}
1565 	}
1566 
1567 	kunmap_atomic(d_addr);
1568 	kunmap_atomic(s_addr);
1569 }
1570 
1571 /*
1572  * Find alloced object in zspage from index object and
1573  * return handle.
1574  */
1575 static unsigned long find_alloced_obj(struct page *page, int index,
1576 					struct size_class *class)
1577 {
1578 	unsigned long head;
1579 	int offset = 0;
1580 	unsigned long handle = 0;
1581 	void *addr = kmap_atomic(page);
1582 
1583 	if (!is_first_page(page))
1584 		offset = page->index;
1585 	offset += class->size * index;
1586 
1587 	while (offset < PAGE_SIZE) {
1588 		head = obj_to_head(class, page, addr + offset);
1589 		if (head & OBJ_ALLOCATED_TAG) {
1590 			handle = head & ~OBJ_ALLOCATED_TAG;
1591 			if (trypin_tag(handle))
1592 				break;
1593 			handle = 0;
1594 		}
1595 
1596 		offset += class->size;
1597 		index++;
1598 	}
1599 
1600 	kunmap_atomic(addr);
1601 	return handle;
1602 }
1603 
1604 struct zs_compact_control {
1605 	/* Source page for migration which could be a subpage of zspage. */
1606 	struct page *s_page;
1607 	/* Destination page for migration which should be a first page
1608 	 * of zspage. */
1609 	struct page *d_page;
1610 	 /* Starting object index within @s_page which used for live object
1611 	  * in the subpage. */
1612 	int index;
1613 };
1614 
1615 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616 				struct zs_compact_control *cc)
1617 {
1618 	unsigned long used_obj, free_obj;
1619 	unsigned long handle;
1620 	struct page *s_page = cc->s_page;
1621 	struct page *d_page = cc->d_page;
1622 	unsigned long index = cc->index;
1623 	int ret = 0;
1624 
1625 	while (1) {
1626 		handle = find_alloced_obj(s_page, index, class);
1627 		if (!handle) {
1628 			s_page = get_next_page(s_page);
1629 			if (!s_page)
1630 				break;
1631 			index = 0;
1632 			continue;
1633 		}
1634 
1635 		/* Stop if there is no more space */
1636 		if (zspage_full(d_page)) {
1637 			unpin_tag(handle);
1638 			ret = -ENOMEM;
1639 			break;
1640 		}
1641 
1642 		used_obj = handle_to_obj(handle);
1643 		free_obj = obj_malloc(d_page, class, handle);
1644 		zs_object_copy(free_obj, used_obj, class);
1645 		index++;
1646 		/*
1647 		 * record_obj updates handle's value to free_obj and it will
1648 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1650 		 * let's keep the lock bit.
1651 		 */
1652 		free_obj |= BIT(HANDLE_PIN_BIT);
1653 		record_obj(handle, free_obj);
1654 		unpin_tag(handle);
1655 		obj_free(pool, class, used_obj);
1656 	}
1657 
1658 	/* Remember last position in this iteration */
1659 	cc->s_page = s_page;
1660 	cc->index = index;
1661 
1662 	return ret;
1663 }
1664 
1665 static struct page *isolate_target_page(struct size_class *class)
1666 {
1667 	int i;
1668 	struct page *page;
1669 
1670 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671 		page = class->fullness_list[i];
1672 		if (page) {
1673 			remove_zspage(page, class, i);
1674 			break;
1675 		}
1676 	}
1677 
1678 	return page;
1679 }
1680 
1681 /*
1682  * putback_zspage - add @first_page into right class's fullness list
1683  * @pool: target pool
1684  * @class: destination class
1685  * @first_page: target page
1686  *
1687  * Return @fist_page's fullness_group
1688  */
1689 static enum fullness_group putback_zspage(struct zs_pool *pool,
1690 			struct size_class *class,
1691 			struct page *first_page)
1692 {
1693 	enum fullness_group fullness;
1694 
1695 	BUG_ON(!is_first_page(first_page));
1696 
1697 	fullness = get_fullness_group(first_page);
1698 	insert_zspage(first_page, class, fullness);
1699 	set_zspage_mapping(first_page, class->index, fullness);
1700 
1701 	if (fullness == ZS_EMPTY) {
1702 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703 			class->size, class->pages_per_zspage));
1704 		atomic_long_sub(class->pages_per_zspage,
1705 				&pool->pages_allocated);
1706 
1707 		free_zspage(first_page);
1708 	}
1709 
1710 	return fullness;
1711 }
1712 
1713 static struct page *isolate_source_page(struct size_class *class)
1714 {
1715 	int i;
1716 	struct page *page = NULL;
1717 
1718 	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719 		page = class->fullness_list[i];
1720 		if (!page)
1721 			continue;
1722 
1723 		remove_zspage(page, class, i);
1724 		break;
1725 	}
1726 
1727 	return page;
1728 }
1729 
1730 /*
1731  *
1732  * Based on the number of unused allocated objects calculate
1733  * and return the number of pages that we can free.
1734  */
1735 static unsigned long zs_can_compact(struct size_class *class)
1736 {
1737 	unsigned long obj_wasted;
1738 
1739 	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1740 		zs_stat_get(class, OBJ_USED);
1741 
1742 	obj_wasted /= get_maxobj_per_zspage(class->size,
1743 			class->pages_per_zspage);
1744 
1745 	return obj_wasted * class->pages_per_zspage;
1746 }
1747 
1748 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1749 {
1750 	struct zs_compact_control cc;
1751 	struct page *src_page;
1752 	struct page *dst_page = NULL;
1753 
1754 	spin_lock(&class->lock);
1755 	while ((src_page = isolate_source_page(class))) {
1756 
1757 		BUG_ON(!is_first_page(src_page));
1758 
1759 		if (!zs_can_compact(class))
1760 			break;
1761 
1762 		cc.index = 0;
1763 		cc.s_page = src_page;
1764 
1765 		while ((dst_page = isolate_target_page(class))) {
1766 			cc.d_page = dst_page;
1767 			/*
1768 			 * If there is no more space in dst_page, resched
1769 			 * and see if anyone had allocated another zspage.
1770 			 */
1771 			if (!migrate_zspage(pool, class, &cc))
1772 				break;
1773 
1774 			putback_zspage(pool, class, dst_page);
1775 		}
1776 
1777 		/* Stop if we couldn't find slot */
1778 		if (dst_page == NULL)
1779 			break;
1780 
1781 		putback_zspage(pool, class, dst_page);
1782 		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1783 			pool->stats.pages_compacted += class->pages_per_zspage;
1784 		spin_unlock(&class->lock);
1785 		cond_resched();
1786 		spin_lock(&class->lock);
1787 	}
1788 
1789 	if (src_page)
1790 		putback_zspage(pool, class, src_page);
1791 
1792 	spin_unlock(&class->lock);
1793 }
1794 
1795 unsigned long zs_compact(struct zs_pool *pool)
1796 {
1797 	int i;
1798 	struct size_class *class;
1799 
1800 	for (i = zs_size_classes - 1; i >= 0; i--) {
1801 		class = pool->size_class[i];
1802 		if (!class)
1803 			continue;
1804 		if (class->index != i)
1805 			continue;
1806 		__zs_compact(pool, class);
1807 	}
1808 
1809 	return pool->stats.pages_compacted;
1810 }
1811 EXPORT_SYMBOL_GPL(zs_compact);
1812 
1813 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1814 {
1815 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1816 }
1817 EXPORT_SYMBOL_GPL(zs_pool_stats);
1818 
1819 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1820 		struct shrink_control *sc)
1821 {
1822 	unsigned long pages_freed;
1823 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1824 			shrinker);
1825 
1826 	pages_freed = pool->stats.pages_compacted;
1827 	/*
1828 	 * Compact classes and calculate compaction delta.
1829 	 * Can run concurrently with a manually triggered
1830 	 * (by user) compaction.
1831 	 */
1832 	pages_freed = zs_compact(pool) - pages_freed;
1833 
1834 	return pages_freed ? pages_freed : SHRINK_STOP;
1835 }
1836 
1837 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1838 		struct shrink_control *sc)
1839 {
1840 	int i;
1841 	struct size_class *class;
1842 	unsigned long pages_to_free = 0;
1843 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1844 			shrinker);
1845 
1846 	for (i = zs_size_classes - 1; i >= 0; i--) {
1847 		class = pool->size_class[i];
1848 		if (!class)
1849 			continue;
1850 		if (class->index != i)
1851 			continue;
1852 
1853 		pages_to_free += zs_can_compact(class);
1854 	}
1855 
1856 	return pages_to_free;
1857 }
1858 
1859 static void zs_unregister_shrinker(struct zs_pool *pool)
1860 {
1861 	if (pool->shrinker_enabled) {
1862 		unregister_shrinker(&pool->shrinker);
1863 		pool->shrinker_enabled = false;
1864 	}
1865 }
1866 
1867 static int zs_register_shrinker(struct zs_pool *pool)
1868 {
1869 	pool->shrinker.scan_objects = zs_shrinker_scan;
1870 	pool->shrinker.count_objects = zs_shrinker_count;
1871 	pool->shrinker.batch = 0;
1872 	pool->shrinker.seeks = DEFAULT_SEEKS;
1873 
1874 	return register_shrinker(&pool->shrinker);
1875 }
1876 
1877 /**
1878  * zs_create_pool - Creates an allocation pool to work from.
1879  * @flags: allocation flags used to allocate pool metadata
1880  *
1881  * This function must be called before anything when using
1882  * the zsmalloc allocator.
1883  *
1884  * On success, a pointer to the newly created pool is returned,
1885  * otherwise NULL.
1886  */
1887 struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1888 {
1889 	int i;
1890 	struct zs_pool *pool;
1891 	struct size_class *prev_class = NULL;
1892 
1893 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1894 	if (!pool)
1895 		return NULL;
1896 
1897 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1898 			GFP_KERNEL);
1899 	if (!pool->size_class) {
1900 		kfree(pool);
1901 		return NULL;
1902 	}
1903 
1904 	pool->name = kstrdup(name, GFP_KERNEL);
1905 	if (!pool->name)
1906 		goto err;
1907 
1908 	if (create_handle_cache(pool))
1909 		goto err;
1910 
1911 	/*
1912 	 * Iterate reversly, because, size of size_class that we want to use
1913 	 * for merging should be larger or equal to current size.
1914 	 */
1915 	for (i = zs_size_classes - 1; i >= 0; i--) {
1916 		int size;
1917 		int pages_per_zspage;
1918 		struct size_class *class;
1919 
1920 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1921 		if (size > ZS_MAX_ALLOC_SIZE)
1922 			size = ZS_MAX_ALLOC_SIZE;
1923 		pages_per_zspage = get_pages_per_zspage(size);
1924 
1925 		/*
1926 		 * size_class is used for normal zsmalloc operation such
1927 		 * as alloc/free for that size. Although it is natural that we
1928 		 * have one size_class for each size, there is a chance that we
1929 		 * can get more memory utilization if we use one size_class for
1930 		 * many different sizes whose size_class have same
1931 		 * characteristics. So, we makes size_class point to
1932 		 * previous size_class if possible.
1933 		 */
1934 		if (prev_class) {
1935 			if (can_merge(prev_class, size, pages_per_zspage)) {
1936 				pool->size_class[i] = prev_class;
1937 				continue;
1938 			}
1939 		}
1940 
1941 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1942 		if (!class)
1943 			goto err;
1944 
1945 		class->size = size;
1946 		class->index = i;
1947 		class->pages_per_zspage = pages_per_zspage;
1948 		if (pages_per_zspage == 1 &&
1949 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1950 			class->huge = true;
1951 		spin_lock_init(&class->lock);
1952 		pool->size_class[i] = class;
1953 
1954 		prev_class = class;
1955 	}
1956 
1957 	pool->flags = flags;
1958 
1959 	if (zs_pool_stat_create(name, pool))
1960 		goto err;
1961 
1962 	/*
1963 	 * Not critical, we still can use the pool
1964 	 * and user can trigger compaction manually.
1965 	 */
1966 	if (zs_register_shrinker(pool) == 0)
1967 		pool->shrinker_enabled = true;
1968 	return pool;
1969 
1970 err:
1971 	zs_destroy_pool(pool);
1972 	return NULL;
1973 }
1974 EXPORT_SYMBOL_GPL(zs_create_pool);
1975 
1976 void zs_destroy_pool(struct zs_pool *pool)
1977 {
1978 	int i;
1979 
1980 	zs_unregister_shrinker(pool);
1981 	zs_pool_stat_destroy(pool);
1982 
1983 	for (i = 0; i < zs_size_classes; i++) {
1984 		int fg;
1985 		struct size_class *class = pool->size_class[i];
1986 
1987 		if (!class)
1988 			continue;
1989 
1990 		if (class->index != i)
1991 			continue;
1992 
1993 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1994 			if (class->fullness_list[fg]) {
1995 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1996 					class->size, fg);
1997 			}
1998 		}
1999 		kfree(class);
2000 	}
2001 
2002 	destroy_handle_cache(pool);
2003 	kfree(pool->size_class);
2004 	kfree(pool->name);
2005 	kfree(pool);
2006 }
2007 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2008 
2009 static int __init zs_init(void)
2010 {
2011 	int ret = zs_register_cpu_notifier();
2012 
2013 	if (ret)
2014 		goto notifier_fail;
2015 
2016 	init_zs_size_classes();
2017 
2018 #ifdef CONFIG_ZPOOL
2019 	zpool_register_driver(&zs_zpool_driver);
2020 #endif
2021 
2022 	ret = zs_stat_init();
2023 	if (ret) {
2024 		pr_err("zs stat initialization failed\n");
2025 		goto stat_fail;
2026 	}
2027 	return 0;
2028 
2029 stat_fail:
2030 #ifdef CONFIG_ZPOOL
2031 	zpool_unregister_driver(&zs_zpool_driver);
2032 #endif
2033 notifier_fail:
2034 	zs_unregister_cpu_notifier();
2035 
2036 	return ret;
2037 }
2038 
2039 static void __exit zs_exit(void)
2040 {
2041 #ifdef CONFIG_ZPOOL
2042 	zpool_unregister_driver(&zs_zpool_driver);
2043 #endif
2044 	zs_unregister_cpu_notifier();
2045 
2046 	zs_stat_exit();
2047 }
2048 
2049 module_init(zs_init);
2050 module_exit(zs_exit);
2051 
2052 MODULE_LICENSE("Dual BSD/GPL");
2053 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2054