1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/types.h> 50 #include <linux/debugfs.h> 51 #include <linux/zsmalloc.h> 52 #include <linux/zpool.h> 53 #include <linux/mount.h> 54 #include <linux/migrate.h> 55 #include <linux/pagemap.h> 56 57 #define ZSPAGE_MAGIC 0x58 58 59 /* 60 * This must be power of 2 and greater than of equal to sizeof(link_free). 61 * These two conditions ensure that any 'struct link_free' itself doesn't 62 * span more than 1 page which avoids complex case of mapping 2 pages simply 63 * to restore link_free pointer values. 64 */ 65 #define ZS_ALIGN 8 66 67 /* 68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 70 */ 71 #define ZS_MAX_ZSPAGE_ORDER 2 72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 73 74 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 75 76 /* 77 * Object location (<PFN>, <obj_idx>) is encoded as 78 * as single (unsigned long) handle value. 79 * 80 * Note that object index <obj_idx> starts from 0. 81 * 82 * This is made more complicated by various memory models and PAE. 83 */ 84 85 #ifndef MAX_PHYSMEM_BITS 86 #ifdef CONFIG_HIGHMEM64G 87 #define MAX_PHYSMEM_BITS 36 88 #else /* !CONFIG_HIGHMEM64G */ 89 /* 90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 91 * be PAGE_SHIFT 92 */ 93 #define MAX_PHYSMEM_BITS BITS_PER_LONG 94 #endif 95 #endif 96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 97 98 /* 99 * Memory for allocating for handle keeps object position by 100 * encoding <page, obj_idx> and the encoded value has a room 101 * in least bit(ie, look at obj_to_location). 102 * We use the bit to synchronize between object access by 103 * user and migration. 104 */ 105 #define HANDLE_PIN_BIT 0 106 107 /* 108 * Head in allocated object should have OBJ_ALLOCATED_TAG 109 * to identify the object was allocated or not. 110 * It's okay to add the status bit in the least bit because 111 * header keeps handle which is 4byte-aligned address so we 112 * have room for two bit at least. 113 */ 114 #define OBJ_ALLOCATED_TAG 1 115 #define OBJ_TAG_BITS 1 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 121 #define ZS_MIN_ALLOC_SIZE \ 122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 123 /* each chunk includes extra space to keep handle */ 124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 125 126 /* 127 * On systems with 4K page size, this gives 255 size classes! There is a 128 * trader-off here: 129 * - Large number of size classes is potentially wasteful as free page are 130 * spread across these classes 131 * - Small number of size classes causes large internal fragmentation 132 * - Probably its better to use specific size classes (empirically 133 * determined). NOTE: all those class sizes must be set as multiple of 134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 135 * 136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 137 * (reason above) 138 */ 139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 140 141 enum fullness_group { 142 ZS_EMPTY, 143 ZS_ALMOST_EMPTY, 144 ZS_ALMOST_FULL, 145 ZS_FULL, 146 NR_ZS_FULLNESS, 147 }; 148 149 enum zs_stat_type { 150 CLASS_EMPTY, 151 CLASS_ALMOST_EMPTY, 152 CLASS_ALMOST_FULL, 153 CLASS_FULL, 154 OBJ_ALLOCATED, 155 OBJ_USED, 156 NR_ZS_STAT_TYPE, 157 }; 158 159 struct zs_size_stat { 160 unsigned long objs[NR_ZS_STAT_TYPE]; 161 }; 162 163 #ifdef CONFIG_ZSMALLOC_STAT 164 static struct dentry *zs_stat_root; 165 #endif 166 167 #ifdef CONFIG_COMPACTION 168 static struct vfsmount *zsmalloc_mnt; 169 #endif 170 171 /* 172 * number of size_classes 173 */ 174 static int zs_size_classes; 175 176 /* 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 178 * n <= N / f, where 179 * n = number of allocated objects 180 * N = total number of objects zspage can store 181 * f = fullness_threshold_frac 182 * 183 * Similarly, we assign zspage to: 184 * ZS_ALMOST_FULL when n > N / f 185 * ZS_EMPTY when n == 0 186 * ZS_FULL when n == N 187 * 188 * (see: fix_fullness_group()) 189 */ 190 static const int fullness_threshold_frac = 4; 191 192 struct size_class { 193 spinlock_t lock; 194 struct list_head fullness_list[NR_ZS_FULLNESS]; 195 /* 196 * Size of objects stored in this class. Must be multiple 197 * of ZS_ALIGN. 198 */ 199 int size; 200 int objs_per_zspage; 201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 202 int pages_per_zspage; 203 204 unsigned int index; 205 struct zs_size_stat stats; 206 }; 207 208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 209 static void SetPageHugeObject(struct page *page) 210 { 211 SetPageOwnerPriv1(page); 212 } 213 214 static void ClearPageHugeObject(struct page *page) 215 { 216 ClearPageOwnerPriv1(page); 217 } 218 219 static int PageHugeObject(struct page *page) 220 { 221 return PageOwnerPriv1(page); 222 } 223 224 /* 225 * Placed within free objects to form a singly linked list. 226 * For every zspage, zspage->freeobj gives head of this list. 227 * 228 * This must be power of 2 and less than or equal to ZS_ALIGN 229 */ 230 struct link_free { 231 union { 232 /* 233 * Free object index; 234 * It's valid for non-allocated object 235 */ 236 unsigned long next; 237 /* 238 * Handle of allocated object. 239 */ 240 unsigned long handle; 241 }; 242 }; 243 244 struct zs_pool { 245 const char *name; 246 247 struct size_class **size_class; 248 struct kmem_cache *handle_cachep; 249 struct kmem_cache *zspage_cachep; 250 251 atomic_long_t pages_allocated; 252 253 struct zs_pool_stats stats; 254 255 /* Compact classes */ 256 struct shrinker shrinker; 257 /* 258 * To signify that register_shrinker() was successful 259 * and unregister_shrinker() will not Oops. 260 */ 261 bool shrinker_enabled; 262 #ifdef CONFIG_ZSMALLOC_STAT 263 struct dentry *stat_dentry; 264 #endif 265 #ifdef CONFIG_COMPACTION 266 struct inode *inode; 267 struct work_struct free_work; 268 #endif 269 }; 270 271 #define FULLNESS_BITS 2 272 #define CLASS_BITS 8 273 #define ISOLATED_BITS 3 274 #define MAGIC_VAL_BITS 8 275 276 struct zspage { 277 struct { 278 unsigned int fullness:FULLNESS_BITS; 279 unsigned int class:CLASS_BITS; 280 unsigned int isolated:ISOLATED_BITS; 281 unsigned int magic:MAGIC_VAL_BITS; 282 }; 283 unsigned int inuse; 284 unsigned int freeobj; 285 struct page *first_page; 286 struct list_head list; /* fullness list */ 287 #ifdef CONFIG_COMPACTION 288 rwlock_t lock; 289 #endif 290 }; 291 292 struct mapping_area { 293 #ifdef CONFIG_PGTABLE_MAPPING 294 struct vm_struct *vm; /* vm area for mapping object that span pages */ 295 #else 296 char *vm_buf; /* copy buffer for objects that span pages */ 297 #endif 298 char *vm_addr; /* address of kmap_atomic()'ed pages */ 299 enum zs_mapmode vm_mm; /* mapping mode */ 300 }; 301 302 #ifdef CONFIG_COMPACTION 303 static int zs_register_migration(struct zs_pool *pool); 304 static void zs_unregister_migration(struct zs_pool *pool); 305 static void migrate_lock_init(struct zspage *zspage); 306 static void migrate_read_lock(struct zspage *zspage); 307 static void migrate_read_unlock(struct zspage *zspage); 308 static void kick_deferred_free(struct zs_pool *pool); 309 static void init_deferred_free(struct zs_pool *pool); 310 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 311 #else 312 static int zsmalloc_mount(void) { return 0; } 313 static void zsmalloc_unmount(void) {} 314 static int zs_register_migration(struct zs_pool *pool) { return 0; } 315 static void zs_unregister_migration(struct zs_pool *pool) {} 316 static void migrate_lock_init(struct zspage *zspage) {} 317 static void migrate_read_lock(struct zspage *zspage) {} 318 static void migrate_read_unlock(struct zspage *zspage) {} 319 static void kick_deferred_free(struct zs_pool *pool) {} 320 static void init_deferred_free(struct zs_pool *pool) {} 321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 322 #endif 323 324 static int create_cache(struct zs_pool *pool) 325 { 326 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 327 0, 0, NULL); 328 if (!pool->handle_cachep) 329 return 1; 330 331 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 332 0, 0, NULL); 333 if (!pool->zspage_cachep) { 334 kmem_cache_destroy(pool->handle_cachep); 335 pool->handle_cachep = NULL; 336 return 1; 337 } 338 339 return 0; 340 } 341 342 static void destroy_cache(struct zs_pool *pool) 343 { 344 kmem_cache_destroy(pool->handle_cachep); 345 kmem_cache_destroy(pool->zspage_cachep); 346 } 347 348 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 349 { 350 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 351 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 352 } 353 354 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 355 { 356 kmem_cache_free(pool->handle_cachep, (void *)handle); 357 } 358 359 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 360 { 361 return kmem_cache_alloc(pool->zspage_cachep, 362 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 363 } 364 365 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 366 { 367 kmem_cache_free(pool->zspage_cachep, zspage); 368 } 369 370 static void record_obj(unsigned long handle, unsigned long obj) 371 { 372 /* 373 * lsb of @obj represents handle lock while other bits 374 * represent object value the handle is pointing so 375 * updating shouldn't do store tearing. 376 */ 377 WRITE_ONCE(*(unsigned long *)handle, obj); 378 } 379 380 /* zpool driver */ 381 382 #ifdef CONFIG_ZPOOL 383 384 static void *zs_zpool_create(const char *name, gfp_t gfp, 385 const struct zpool_ops *zpool_ops, 386 struct zpool *zpool) 387 { 388 /* 389 * Ignore global gfp flags: zs_malloc() may be invoked from 390 * different contexts and its caller must provide a valid 391 * gfp mask. 392 */ 393 return zs_create_pool(name); 394 } 395 396 static void zs_zpool_destroy(void *pool) 397 { 398 zs_destroy_pool(pool); 399 } 400 401 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 402 unsigned long *handle) 403 { 404 *handle = zs_malloc(pool, size, gfp); 405 return *handle ? 0 : -1; 406 } 407 static void zs_zpool_free(void *pool, unsigned long handle) 408 { 409 zs_free(pool, handle); 410 } 411 412 static int zs_zpool_shrink(void *pool, unsigned int pages, 413 unsigned int *reclaimed) 414 { 415 return -EINVAL; 416 } 417 418 static void *zs_zpool_map(void *pool, unsigned long handle, 419 enum zpool_mapmode mm) 420 { 421 enum zs_mapmode zs_mm; 422 423 switch (mm) { 424 case ZPOOL_MM_RO: 425 zs_mm = ZS_MM_RO; 426 break; 427 case ZPOOL_MM_WO: 428 zs_mm = ZS_MM_WO; 429 break; 430 case ZPOOL_MM_RW: /* fallthru */ 431 default: 432 zs_mm = ZS_MM_RW; 433 break; 434 } 435 436 return zs_map_object(pool, handle, zs_mm); 437 } 438 static void zs_zpool_unmap(void *pool, unsigned long handle) 439 { 440 zs_unmap_object(pool, handle); 441 } 442 443 static u64 zs_zpool_total_size(void *pool) 444 { 445 return zs_get_total_pages(pool) << PAGE_SHIFT; 446 } 447 448 static struct zpool_driver zs_zpool_driver = { 449 .type = "zsmalloc", 450 .owner = THIS_MODULE, 451 .create = zs_zpool_create, 452 .destroy = zs_zpool_destroy, 453 .malloc = zs_zpool_malloc, 454 .free = zs_zpool_free, 455 .shrink = zs_zpool_shrink, 456 .map = zs_zpool_map, 457 .unmap = zs_zpool_unmap, 458 .total_size = zs_zpool_total_size, 459 }; 460 461 MODULE_ALIAS("zpool-zsmalloc"); 462 #endif /* CONFIG_ZPOOL */ 463 464 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 465 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 466 467 static bool is_zspage_isolated(struct zspage *zspage) 468 { 469 return zspage->isolated; 470 } 471 472 static int is_first_page(struct page *page) 473 { 474 return PagePrivate(page); 475 } 476 477 /* Protected by class->lock */ 478 static inline int get_zspage_inuse(struct zspage *zspage) 479 { 480 return zspage->inuse; 481 } 482 483 static inline void set_zspage_inuse(struct zspage *zspage, int val) 484 { 485 zspage->inuse = val; 486 } 487 488 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 489 { 490 zspage->inuse += val; 491 } 492 493 static inline struct page *get_first_page(struct zspage *zspage) 494 { 495 struct page *first_page = zspage->first_page; 496 497 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 498 return first_page; 499 } 500 501 static inline int get_first_obj_offset(struct page *page) 502 { 503 return page->units; 504 } 505 506 static inline void set_first_obj_offset(struct page *page, int offset) 507 { 508 page->units = offset; 509 } 510 511 static inline unsigned int get_freeobj(struct zspage *zspage) 512 { 513 return zspage->freeobj; 514 } 515 516 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 517 { 518 zspage->freeobj = obj; 519 } 520 521 static void get_zspage_mapping(struct zspage *zspage, 522 unsigned int *class_idx, 523 enum fullness_group *fullness) 524 { 525 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 526 527 *fullness = zspage->fullness; 528 *class_idx = zspage->class; 529 } 530 531 static void set_zspage_mapping(struct zspage *zspage, 532 unsigned int class_idx, 533 enum fullness_group fullness) 534 { 535 zspage->class = class_idx; 536 zspage->fullness = fullness; 537 } 538 539 /* 540 * zsmalloc divides the pool into various size classes where each 541 * class maintains a list of zspages where each zspage is divided 542 * into equal sized chunks. Each allocation falls into one of these 543 * classes depending on its size. This function returns index of the 544 * size class which has chunk size big enough to hold the give size. 545 */ 546 static int get_size_class_index(int size) 547 { 548 int idx = 0; 549 550 if (likely(size > ZS_MIN_ALLOC_SIZE)) 551 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 552 ZS_SIZE_CLASS_DELTA); 553 554 return min(zs_size_classes - 1, idx); 555 } 556 557 static inline void zs_stat_inc(struct size_class *class, 558 enum zs_stat_type type, unsigned long cnt) 559 { 560 class->stats.objs[type] += cnt; 561 } 562 563 static inline void zs_stat_dec(struct size_class *class, 564 enum zs_stat_type type, unsigned long cnt) 565 { 566 class->stats.objs[type] -= cnt; 567 } 568 569 static inline unsigned long zs_stat_get(struct size_class *class, 570 enum zs_stat_type type) 571 { 572 return class->stats.objs[type]; 573 } 574 575 #ifdef CONFIG_ZSMALLOC_STAT 576 577 static void __init zs_stat_init(void) 578 { 579 if (!debugfs_initialized()) { 580 pr_warn("debugfs not available, stat dir not created\n"); 581 return; 582 } 583 584 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 585 if (!zs_stat_root) 586 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 587 } 588 589 static void __exit zs_stat_exit(void) 590 { 591 debugfs_remove_recursive(zs_stat_root); 592 } 593 594 static unsigned long zs_can_compact(struct size_class *class); 595 596 static int zs_stats_size_show(struct seq_file *s, void *v) 597 { 598 int i; 599 struct zs_pool *pool = s->private; 600 struct size_class *class; 601 int objs_per_zspage; 602 unsigned long class_almost_full, class_almost_empty; 603 unsigned long obj_allocated, obj_used, pages_used, freeable; 604 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 605 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 606 unsigned long total_freeable = 0; 607 608 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 609 "class", "size", "almost_full", "almost_empty", 610 "obj_allocated", "obj_used", "pages_used", 611 "pages_per_zspage", "freeable"); 612 613 for (i = 0; i < zs_size_classes; i++) { 614 class = pool->size_class[i]; 615 616 if (class->index != i) 617 continue; 618 619 spin_lock(&class->lock); 620 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 621 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 622 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 623 obj_used = zs_stat_get(class, OBJ_USED); 624 freeable = zs_can_compact(class); 625 spin_unlock(&class->lock); 626 627 objs_per_zspage = class->objs_per_zspage; 628 pages_used = obj_allocated / objs_per_zspage * 629 class->pages_per_zspage; 630 631 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 632 " %10lu %10lu %16d %8lu\n", 633 i, class->size, class_almost_full, class_almost_empty, 634 obj_allocated, obj_used, pages_used, 635 class->pages_per_zspage, freeable); 636 637 total_class_almost_full += class_almost_full; 638 total_class_almost_empty += class_almost_empty; 639 total_objs += obj_allocated; 640 total_used_objs += obj_used; 641 total_pages += pages_used; 642 total_freeable += freeable; 643 } 644 645 seq_puts(s, "\n"); 646 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 647 "Total", "", total_class_almost_full, 648 total_class_almost_empty, total_objs, 649 total_used_objs, total_pages, "", total_freeable); 650 651 return 0; 652 } 653 654 static int zs_stats_size_open(struct inode *inode, struct file *file) 655 { 656 return single_open(file, zs_stats_size_show, inode->i_private); 657 } 658 659 static const struct file_operations zs_stat_size_ops = { 660 .open = zs_stats_size_open, 661 .read = seq_read, 662 .llseek = seq_lseek, 663 .release = single_release, 664 }; 665 666 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 667 { 668 struct dentry *entry; 669 670 if (!zs_stat_root) { 671 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 672 return; 673 } 674 675 entry = debugfs_create_dir(name, zs_stat_root); 676 if (!entry) { 677 pr_warn("debugfs dir <%s> creation failed\n", name); 678 return; 679 } 680 pool->stat_dentry = entry; 681 682 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 683 pool->stat_dentry, pool, &zs_stat_size_ops); 684 if (!entry) { 685 pr_warn("%s: debugfs file entry <%s> creation failed\n", 686 name, "classes"); 687 debugfs_remove_recursive(pool->stat_dentry); 688 pool->stat_dentry = NULL; 689 } 690 } 691 692 static void zs_pool_stat_destroy(struct zs_pool *pool) 693 { 694 debugfs_remove_recursive(pool->stat_dentry); 695 } 696 697 #else /* CONFIG_ZSMALLOC_STAT */ 698 static void __init zs_stat_init(void) 699 { 700 } 701 702 static void __exit zs_stat_exit(void) 703 { 704 } 705 706 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 707 { 708 } 709 710 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 711 { 712 } 713 #endif 714 715 716 /* 717 * For each size class, zspages are divided into different groups 718 * depending on how "full" they are. This was done so that we could 719 * easily find empty or nearly empty zspages when we try to shrink 720 * the pool (not yet implemented). This function returns fullness 721 * status of the given page. 722 */ 723 static enum fullness_group get_fullness_group(struct size_class *class, 724 struct zspage *zspage) 725 { 726 int inuse, objs_per_zspage; 727 enum fullness_group fg; 728 729 inuse = get_zspage_inuse(zspage); 730 objs_per_zspage = class->objs_per_zspage; 731 732 if (inuse == 0) 733 fg = ZS_EMPTY; 734 else if (inuse == objs_per_zspage) 735 fg = ZS_FULL; 736 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 737 fg = ZS_ALMOST_EMPTY; 738 else 739 fg = ZS_ALMOST_FULL; 740 741 return fg; 742 } 743 744 /* 745 * Each size class maintains various freelists and zspages are assigned 746 * to one of these freelists based on the number of live objects they 747 * have. This functions inserts the given zspage into the freelist 748 * identified by <class, fullness_group>. 749 */ 750 static void insert_zspage(struct size_class *class, 751 struct zspage *zspage, 752 enum fullness_group fullness) 753 { 754 struct zspage *head; 755 756 zs_stat_inc(class, fullness, 1); 757 head = list_first_entry_or_null(&class->fullness_list[fullness], 758 struct zspage, list); 759 /* 760 * We want to see more ZS_FULL pages and less almost empty/full. 761 * Put pages with higher ->inuse first. 762 */ 763 if (head) { 764 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 765 list_add(&zspage->list, &head->list); 766 return; 767 } 768 } 769 list_add(&zspage->list, &class->fullness_list[fullness]); 770 } 771 772 /* 773 * This function removes the given zspage from the freelist identified 774 * by <class, fullness_group>. 775 */ 776 static void remove_zspage(struct size_class *class, 777 struct zspage *zspage, 778 enum fullness_group fullness) 779 { 780 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 781 VM_BUG_ON(is_zspage_isolated(zspage)); 782 783 list_del_init(&zspage->list); 784 zs_stat_dec(class, fullness, 1); 785 } 786 787 /* 788 * Each size class maintains zspages in different fullness groups depending 789 * on the number of live objects they contain. When allocating or freeing 790 * objects, the fullness status of the page can change, say, from ALMOST_FULL 791 * to ALMOST_EMPTY when freeing an object. This function checks if such 792 * a status change has occurred for the given page and accordingly moves the 793 * page from the freelist of the old fullness group to that of the new 794 * fullness group. 795 */ 796 static enum fullness_group fix_fullness_group(struct size_class *class, 797 struct zspage *zspage) 798 { 799 int class_idx; 800 enum fullness_group currfg, newfg; 801 802 get_zspage_mapping(zspage, &class_idx, &currfg); 803 newfg = get_fullness_group(class, zspage); 804 if (newfg == currfg) 805 goto out; 806 807 if (!is_zspage_isolated(zspage)) { 808 remove_zspage(class, zspage, currfg); 809 insert_zspage(class, zspage, newfg); 810 } 811 812 set_zspage_mapping(zspage, class_idx, newfg); 813 814 out: 815 return newfg; 816 } 817 818 /* 819 * We have to decide on how many pages to link together 820 * to form a zspage for each size class. This is important 821 * to reduce wastage due to unusable space left at end of 822 * each zspage which is given as: 823 * wastage = Zp % class_size 824 * usage = Zp - wastage 825 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 826 * 827 * For example, for size class of 3/8 * PAGE_SIZE, we should 828 * link together 3 PAGE_SIZE sized pages to form a zspage 829 * since then we can perfectly fit in 8 such objects. 830 */ 831 static int get_pages_per_zspage(int class_size) 832 { 833 int i, max_usedpc = 0; 834 /* zspage order which gives maximum used size per KB */ 835 int max_usedpc_order = 1; 836 837 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 838 int zspage_size; 839 int waste, usedpc; 840 841 zspage_size = i * PAGE_SIZE; 842 waste = zspage_size % class_size; 843 usedpc = (zspage_size - waste) * 100 / zspage_size; 844 845 if (usedpc > max_usedpc) { 846 max_usedpc = usedpc; 847 max_usedpc_order = i; 848 } 849 } 850 851 return max_usedpc_order; 852 } 853 854 static struct zspage *get_zspage(struct page *page) 855 { 856 struct zspage *zspage = (struct zspage *)page->private; 857 858 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 859 return zspage; 860 } 861 862 static struct page *get_next_page(struct page *page) 863 { 864 if (unlikely(PageHugeObject(page))) 865 return NULL; 866 867 return page->freelist; 868 } 869 870 /** 871 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 872 * @page: page object resides in zspage 873 * @obj_idx: object index 874 */ 875 static void obj_to_location(unsigned long obj, struct page **page, 876 unsigned int *obj_idx) 877 { 878 obj >>= OBJ_TAG_BITS; 879 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 880 *obj_idx = (obj & OBJ_INDEX_MASK); 881 } 882 883 /** 884 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 885 * @page: page object resides in zspage 886 * @obj_idx: object index 887 */ 888 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 889 { 890 unsigned long obj; 891 892 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 893 obj |= obj_idx & OBJ_INDEX_MASK; 894 obj <<= OBJ_TAG_BITS; 895 896 return obj; 897 } 898 899 static unsigned long handle_to_obj(unsigned long handle) 900 { 901 return *(unsigned long *)handle; 902 } 903 904 static unsigned long obj_to_head(struct page *page, void *obj) 905 { 906 if (unlikely(PageHugeObject(page))) { 907 VM_BUG_ON_PAGE(!is_first_page(page), page); 908 return page->index; 909 } else 910 return *(unsigned long *)obj; 911 } 912 913 static inline int testpin_tag(unsigned long handle) 914 { 915 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 916 } 917 918 static inline int trypin_tag(unsigned long handle) 919 { 920 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 921 } 922 923 static void pin_tag(unsigned long handle) 924 { 925 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 926 } 927 928 static void unpin_tag(unsigned long handle) 929 { 930 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 931 } 932 933 static void reset_page(struct page *page) 934 { 935 __ClearPageMovable(page); 936 ClearPagePrivate(page); 937 set_page_private(page, 0); 938 page_mapcount_reset(page); 939 ClearPageHugeObject(page); 940 page->freelist = NULL; 941 } 942 943 /* 944 * To prevent zspage destroy during migration, zspage freeing should 945 * hold locks of all pages in the zspage. 946 */ 947 void lock_zspage(struct zspage *zspage) 948 { 949 struct page *page = get_first_page(zspage); 950 951 do { 952 lock_page(page); 953 } while ((page = get_next_page(page)) != NULL); 954 } 955 956 int trylock_zspage(struct zspage *zspage) 957 { 958 struct page *cursor, *fail; 959 960 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 961 get_next_page(cursor)) { 962 if (!trylock_page(cursor)) { 963 fail = cursor; 964 goto unlock; 965 } 966 } 967 968 return 1; 969 unlock: 970 for (cursor = get_first_page(zspage); cursor != fail; cursor = 971 get_next_page(cursor)) 972 unlock_page(cursor); 973 974 return 0; 975 } 976 977 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 978 struct zspage *zspage) 979 { 980 struct page *page, *next; 981 enum fullness_group fg; 982 unsigned int class_idx; 983 984 get_zspage_mapping(zspage, &class_idx, &fg); 985 986 assert_spin_locked(&class->lock); 987 988 VM_BUG_ON(get_zspage_inuse(zspage)); 989 VM_BUG_ON(fg != ZS_EMPTY); 990 991 next = page = get_first_page(zspage); 992 do { 993 VM_BUG_ON_PAGE(!PageLocked(page), page); 994 next = get_next_page(page); 995 reset_page(page); 996 unlock_page(page); 997 dec_zone_page_state(page, NR_ZSPAGES); 998 put_page(page); 999 page = next; 1000 } while (page != NULL); 1001 1002 cache_free_zspage(pool, zspage); 1003 1004 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1005 atomic_long_sub(class->pages_per_zspage, 1006 &pool->pages_allocated); 1007 } 1008 1009 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1010 struct zspage *zspage) 1011 { 1012 VM_BUG_ON(get_zspage_inuse(zspage)); 1013 VM_BUG_ON(list_empty(&zspage->list)); 1014 1015 if (!trylock_zspage(zspage)) { 1016 kick_deferred_free(pool); 1017 return; 1018 } 1019 1020 remove_zspage(class, zspage, ZS_EMPTY); 1021 __free_zspage(pool, class, zspage); 1022 } 1023 1024 /* Initialize a newly allocated zspage */ 1025 static void init_zspage(struct size_class *class, struct zspage *zspage) 1026 { 1027 unsigned int freeobj = 1; 1028 unsigned long off = 0; 1029 struct page *page = get_first_page(zspage); 1030 1031 while (page) { 1032 struct page *next_page; 1033 struct link_free *link; 1034 void *vaddr; 1035 1036 set_first_obj_offset(page, off); 1037 1038 vaddr = kmap_atomic(page); 1039 link = (struct link_free *)vaddr + off / sizeof(*link); 1040 1041 while ((off += class->size) < PAGE_SIZE) { 1042 link->next = freeobj++ << OBJ_TAG_BITS; 1043 link += class->size / sizeof(*link); 1044 } 1045 1046 /* 1047 * We now come to the last (full or partial) object on this 1048 * page, which must point to the first object on the next 1049 * page (if present) 1050 */ 1051 next_page = get_next_page(page); 1052 if (next_page) { 1053 link->next = freeobj++ << OBJ_TAG_BITS; 1054 } else { 1055 /* 1056 * Reset OBJ_TAG_BITS bit to last link to tell 1057 * whether it's allocated object or not. 1058 */ 1059 link->next = -1 << OBJ_TAG_BITS; 1060 } 1061 kunmap_atomic(vaddr); 1062 page = next_page; 1063 off %= PAGE_SIZE; 1064 } 1065 1066 set_freeobj(zspage, 0); 1067 } 1068 1069 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1070 struct page *pages[]) 1071 { 1072 int i; 1073 struct page *page; 1074 struct page *prev_page = NULL; 1075 int nr_pages = class->pages_per_zspage; 1076 1077 /* 1078 * Allocate individual pages and link them together as: 1079 * 1. all pages are linked together using page->freelist 1080 * 2. each sub-page point to zspage using page->private 1081 * 1082 * we set PG_private to identify the first page (i.e. no other sub-page 1083 * has this flag set). 1084 */ 1085 for (i = 0; i < nr_pages; i++) { 1086 page = pages[i]; 1087 set_page_private(page, (unsigned long)zspage); 1088 page->freelist = NULL; 1089 if (i == 0) { 1090 zspage->first_page = page; 1091 SetPagePrivate(page); 1092 if (unlikely(class->objs_per_zspage == 1 && 1093 class->pages_per_zspage == 1)) 1094 SetPageHugeObject(page); 1095 } else { 1096 prev_page->freelist = page; 1097 } 1098 prev_page = page; 1099 } 1100 } 1101 1102 /* 1103 * Allocate a zspage for the given size class 1104 */ 1105 static struct zspage *alloc_zspage(struct zs_pool *pool, 1106 struct size_class *class, 1107 gfp_t gfp) 1108 { 1109 int i; 1110 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1111 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1112 1113 if (!zspage) 1114 return NULL; 1115 1116 memset(zspage, 0, sizeof(struct zspage)); 1117 zspage->magic = ZSPAGE_MAGIC; 1118 migrate_lock_init(zspage); 1119 1120 for (i = 0; i < class->pages_per_zspage; i++) { 1121 struct page *page; 1122 1123 page = alloc_page(gfp); 1124 if (!page) { 1125 while (--i >= 0) { 1126 dec_zone_page_state(pages[i], NR_ZSPAGES); 1127 __free_page(pages[i]); 1128 } 1129 cache_free_zspage(pool, zspage); 1130 return NULL; 1131 } 1132 1133 inc_zone_page_state(page, NR_ZSPAGES); 1134 pages[i] = page; 1135 } 1136 1137 create_page_chain(class, zspage, pages); 1138 init_zspage(class, zspage); 1139 1140 return zspage; 1141 } 1142 1143 static struct zspage *find_get_zspage(struct size_class *class) 1144 { 1145 int i; 1146 struct zspage *zspage; 1147 1148 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1149 zspage = list_first_entry_or_null(&class->fullness_list[i], 1150 struct zspage, list); 1151 if (zspage) 1152 break; 1153 } 1154 1155 return zspage; 1156 } 1157 1158 #ifdef CONFIG_PGTABLE_MAPPING 1159 static inline int __zs_cpu_up(struct mapping_area *area) 1160 { 1161 /* 1162 * Make sure we don't leak memory if a cpu UP notification 1163 * and zs_init() race and both call zs_cpu_up() on the same cpu 1164 */ 1165 if (area->vm) 1166 return 0; 1167 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1168 if (!area->vm) 1169 return -ENOMEM; 1170 return 0; 1171 } 1172 1173 static inline void __zs_cpu_down(struct mapping_area *area) 1174 { 1175 if (area->vm) 1176 free_vm_area(area->vm); 1177 area->vm = NULL; 1178 } 1179 1180 static inline void *__zs_map_object(struct mapping_area *area, 1181 struct page *pages[2], int off, int size) 1182 { 1183 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1184 area->vm_addr = area->vm->addr; 1185 return area->vm_addr + off; 1186 } 1187 1188 static inline void __zs_unmap_object(struct mapping_area *area, 1189 struct page *pages[2], int off, int size) 1190 { 1191 unsigned long addr = (unsigned long)area->vm_addr; 1192 1193 unmap_kernel_range(addr, PAGE_SIZE * 2); 1194 } 1195 1196 #else /* CONFIG_PGTABLE_MAPPING */ 1197 1198 static inline int __zs_cpu_up(struct mapping_area *area) 1199 { 1200 /* 1201 * Make sure we don't leak memory if a cpu UP notification 1202 * and zs_init() race and both call zs_cpu_up() on the same cpu 1203 */ 1204 if (area->vm_buf) 1205 return 0; 1206 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1207 if (!area->vm_buf) 1208 return -ENOMEM; 1209 return 0; 1210 } 1211 1212 static inline void __zs_cpu_down(struct mapping_area *area) 1213 { 1214 kfree(area->vm_buf); 1215 area->vm_buf = NULL; 1216 } 1217 1218 static void *__zs_map_object(struct mapping_area *area, 1219 struct page *pages[2], int off, int size) 1220 { 1221 int sizes[2]; 1222 void *addr; 1223 char *buf = area->vm_buf; 1224 1225 /* disable page faults to match kmap_atomic() return conditions */ 1226 pagefault_disable(); 1227 1228 /* no read fastpath */ 1229 if (area->vm_mm == ZS_MM_WO) 1230 goto out; 1231 1232 sizes[0] = PAGE_SIZE - off; 1233 sizes[1] = size - sizes[0]; 1234 1235 /* copy object to per-cpu buffer */ 1236 addr = kmap_atomic(pages[0]); 1237 memcpy(buf, addr + off, sizes[0]); 1238 kunmap_atomic(addr); 1239 addr = kmap_atomic(pages[1]); 1240 memcpy(buf + sizes[0], addr, sizes[1]); 1241 kunmap_atomic(addr); 1242 out: 1243 return area->vm_buf; 1244 } 1245 1246 static void __zs_unmap_object(struct mapping_area *area, 1247 struct page *pages[2], int off, int size) 1248 { 1249 int sizes[2]; 1250 void *addr; 1251 char *buf; 1252 1253 /* no write fastpath */ 1254 if (area->vm_mm == ZS_MM_RO) 1255 goto out; 1256 1257 buf = area->vm_buf; 1258 buf = buf + ZS_HANDLE_SIZE; 1259 size -= ZS_HANDLE_SIZE; 1260 off += ZS_HANDLE_SIZE; 1261 1262 sizes[0] = PAGE_SIZE - off; 1263 sizes[1] = size - sizes[0]; 1264 1265 /* copy per-cpu buffer to object */ 1266 addr = kmap_atomic(pages[0]); 1267 memcpy(addr + off, buf, sizes[0]); 1268 kunmap_atomic(addr); 1269 addr = kmap_atomic(pages[1]); 1270 memcpy(addr, buf + sizes[0], sizes[1]); 1271 kunmap_atomic(addr); 1272 1273 out: 1274 /* enable page faults to match kunmap_atomic() return conditions */ 1275 pagefault_enable(); 1276 } 1277 1278 #endif /* CONFIG_PGTABLE_MAPPING */ 1279 1280 static int zs_cpu_prepare(unsigned int cpu) 1281 { 1282 struct mapping_area *area; 1283 1284 area = &per_cpu(zs_map_area, cpu); 1285 return __zs_cpu_up(area); 1286 } 1287 1288 static int zs_cpu_dead(unsigned int cpu) 1289 { 1290 struct mapping_area *area; 1291 1292 area = &per_cpu(zs_map_area, cpu); 1293 __zs_cpu_down(area); 1294 return 0; 1295 } 1296 1297 static void __init init_zs_size_classes(void) 1298 { 1299 int nr; 1300 1301 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 1302 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 1303 nr += 1; 1304 1305 zs_size_classes = nr; 1306 } 1307 1308 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1309 int objs_per_zspage) 1310 { 1311 if (prev->pages_per_zspage == pages_per_zspage && 1312 prev->objs_per_zspage == objs_per_zspage) 1313 return true; 1314 1315 return false; 1316 } 1317 1318 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1319 { 1320 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1321 } 1322 1323 unsigned long zs_get_total_pages(struct zs_pool *pool) 1324 { 1325 return atomic_long_read(&pool->pages_allocated); 1326 } 1327 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1328 1329 /** 1330 * zs_map_object - get address of allocated object from handle. 1331 * @pool: pool from which the object was allocated 1332 * @handle: handle returned from zs_malloc 1333 * 1334 * Before using an object allocated from zs_malloc, it must be mapped using 1335 * this function. When done with the object, it must be unmapped using 1336 * zs_unmap_object. 1337 * 1338 * Only one object can be mapped per cpu at a time. There is no protection 1339 * against nested mappings. 1340 * 1341 * This function returns with preemption and page faults disabled. 1342 */ 1343 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1344 enum zs_mapmode mm) 1345 { 1346 struct zspage *zspage; 1347 struct page *page; 1348 unsigned long obj, off; 1349 unsigned int obj_idx; 1350 1351 unsigned int class_idx; 1352 enum fullness_group fg; 1353 struct size_class *class; 1354 struct mapping_area *area; 1355 struct page *pages[2]; 1356 void *ret; 1357 1358 /* 1359 * Because we use per-cpu mapping areas shared among the 1360 * pools/users, we can't allow mapping in interrupt context 1361 * because it can corrupt another users mappings. 1362 */ 1363 WARN_ON_ONCE(in_interrupt()); 1364 1365 /* From now on, migration cannot move the object */ 1366 pin_tag(handle); 1367 1368 obj = handle_to_obj(handle); 1369 obj_to_location(obj, &page, &obj_idx); 1370 zspage = get_zspage(page); 1371 1372 /* migration cannot move any subpage in this zspage */ 1373 migrate_read_lock(zspage); 1374 1375 get_zspage_mapping(zspage, &class_idx, &fg); 1376 class = pool->size_class[class_idx]; 1377 off = (class->size * obj_idx) & ~PAGE_MASK; 1378 1379 area = &get_cpu_var(zs_map_area); 1380 area->vm_mm = mm; 1381 if (off + class->size <= PAGE_SIZE) { 1382 /* this object is contained entirely within a page */ 1383 area->vm_addr = kmap_atomic(page); 1384 ret = area->vm_addr + off; 1385 goto out; 1386 } 1387 1388 /* this object spans two pages */ 1389 pages[0] = page; 1390 pages[1] = get_next_page(page); 1391 BUG_ON(!pages[1]); 1392 1393 ret = __zs_map_object(area, pages, off, class->size); 1394 out: 1395 if (likely(!PageHugeObject(page))) 1396 ret += ZS_HANDLE_SIZE; 1397 1398 return ret; 1399 } 1400 EXPORT_SYMBOL_GPL(zs_map_object); 1401 1402 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1403 { 1404 struct zspage *zspage; 1405 struct page *page; 1406 unsigned long obj, off; 1407 unsigned int obj_idx; 1408 1409 unsigned int class_idx; 1410 enum fullness_group fg; 1411 struct size_class *class; 1412 struct mapping_area *area; 1413 1414 obj = handle_to_obj(handle); 1415 obj_to_location(obj, &page, &obj_idx); 1416 zspage = get_zspage(page); 1417 get_zspage_mapping(zspage, &class_idx, &fg); 1418 class = pool->size_class[class_idx]; 1419 off = (class->size * obj_idx) & ~PAGE_MASK; 1420 1421 area = this_cpu_ptr(&zs_map_area); 1422 if (off + class->size <= PAGE_SIZE) 1423 kunmap_atomic(area->vm_addr); 1424 else { 1425 struct page *pages[2]; 1426 1427 pages[0] = page; 1428 pages[1] = get_next_page(page); 1429 BUG_ON(!pages[1]); 1430 1431 __zs_unmap_object(area, pages, off, class->size); 1432 } 1433 put_cpu_var(zs_map_area); 1434 1435 migrate_read_unlock(zspage); 1436 unpin_tag(handle); 1437 } 1438 EXPORT_SYMBOL_GPL(zs_unmap_object); 1439 1440 static unsigned long obj_malloc(struct size_class *class, 1441 struct zspage *zspage, unsigned long handle) 1442 { 1443 int i, nr_page, offset; 1444 unsigned long obj; 1445 struct link_free *link; 1446 1447 struct page *m_page; 1448 unsigned long m_offset; 1449 void *vaddr; 1450 1451 handle |= OBJ_ALLOCATED_TAG; 1452 obj = get_freeobj(zspage); 1453 1454 offset = obj * class->size; 1455 nr_page = offset >> PAGE_SHIFT; 1456 m_offset = offset & ~PAGE_MASK; 1457 m_page = get_first_page(zspage); 1458 1459 for (i = 0; i < nr_page; i++) 1460 m_page = get_next_page(m_page); 1461 1462 vaddr = kmap_atomic(m_page); 1463 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1464 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1465 if (likely(!PageHugeObject(m_page))) 1466 /* record handle in the header of allocated chunk */ 1467 link->handle = handle; 1468 else 1469 /* record handle to page->index */ 1470 zspage->first_page->index = handle; 1471 1472 kunmap_atomic(vaddr); 1473 mod_zspage_inuse(zspage, 1); 1474 zs_stat_inc(class, OBJ_USED, 1); 1475 1476 obj = location_to_obj(m_page, obj); 1477 1478 return obj; 1479 } 1480 1481 1482 /** 1483 * zs_malloc - Allocate block of given size from pool. 1484 * @pool: pool to allocate from 1485 * @size: size of block to allocate 1486 * @gfp: gfp flags when allocating object 1487 * 1488 * On success, handle to the allocated object is returned, 1489 * otherwise 0. 1490 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1491 */ 1492 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1493 { 1494 unsigned long handle, obj; 1495 struct size_class *class; 1496 enum fullness_group newfg; 1497 struct zspage *zspage; 1498 1499 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1500 return 0; 1501 1502 handle = cache_alloc_handle(pool, gfp); 1503 if (!handle) 1504 return 0; 1505 1506 /* extra space in chunk to keep the handle */ 1507 size += ZS_HANDLE_SIZE; 1508 class = pool->size_class[get_size_class_index(size)]; 1509 1510 spin_lock(&class->lock); 1511 zspage = find_get_zspage(class); 1512 if (likely(zspage)) { 1513 obj = obj_malloc(class, zspage, handle); 1514 /* Now move the zspage to another fullness group, if required */ 1515 fix_fullness_group(class, zspage); 1516 record_obj(handle, obj); 1517 spin_unlock(&class->lock); 1518 1519 return handle; 1520 } 1521 1522 spin_unlock(&class->lock); 1523 1524 zspage = alloc_zspage(pool, class, gfp); 1525 if (!zspage) { 1526 cache_free_handle(pool, handle); 1527 return 0; 1528 } 1529 1530 spin_lock(&class->lock); 1531 obj = obj_malloc(class, zspage, handle); 1532 newfg = get_fullness_group(class, zspage); 1533 insert_zspage(class, zspage, newfg); 1534 set_zspage_mapping(zspage, class->index, newfg); 1535 record_obj(handle, obj); 1536 atomic_long_add(class->pages_per_zspage, 1537 &pool->pages_allocated); 1538 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1539 1540 /* We completely set up zspage so mark them as movable */ 1541 SetZsPageMovable(pool, zspage); 1542 spin_unlock(&class->lock); 1543 1544 return handle; 1545 } 1546 EXPORT_SYMBOL_GPL(zs_malloc); 1547 1548 static void obj_free(struct size_class *class, unsigned long obj) 1549 { 1550 struct link_free *link; 1551 struct zspage *zspage; 1552 struct page *f_page; 1553 unsigned long f_offset; 1554 unsigned int f_objidx; 1555 void *vaddr; 1556 1557 obj &= ~OBJ_ALLOCATED_TAG; 1558 obj_to_location(obj, &f_page, &f_objidx); 1559 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1560 zspage = get_zspage(f_page); 1561 1562 vaddr = kmap_atomic(f_page); 1563 1564 /* Insert this object in containing zspage's freelist */ 1565 link = (struct link_free *)(vaddr + f_offset); 1566 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1567 kunmap_atomic(vaddr); 1568 set_freeobj(zspage, f_objidx); 1569 mod_zspage_inuse(zspage, -1); 1570 zs_stat_dec(class, OBJ_USED, 1); 1571 } 1572 1573 void zs_free(struct zs_pool *pool, unsigned long handle) 1574 { 1575 struct zspage *zspage; 1576 struct page *f_page; 1577 unsigned long obj; 1578 unsigned int f_objidx; 1579 int class_idx; 1580 struct size_class *class; 1581 enum fullness_group fullness; 1582 bool isolated; 1583 1584 if (unlikely(!handle)) 1585 return; 1586 1587 pin_tag(handle); 1588 obj = handle_to_obj(handle); 1589 obj_to_location(obj, &f_page, &f_objidx); 1590 zspage = get_zspage(f_page); 1591 1592 migrate_read_lock(zspage); 1593 1594 get_zspage_mapping(zspage, &class_idx, &fullness); 1595 class = pool->size_class[class_idx]; 1596 1597 spin_lock(&class->lock); 1598 obj_free(class, obj); 1599 fullness = fix_fullness_group(class, zspage); 1600 if (fullness != ZS_EMPTY) { 1601 migrate_read_unlock(zspage); 1602 goto out; 1603 } 1604 1605 isolated = is_zspage_isolated(zspage); 1606 migrate_read_unlock(zspage); 1607 /* If zspage is isolated, zs_page_putback will free the zspage */ 1608 if (likely(!isolated)) 1609 free_zspage(pool, class, zspage); 1610 out: 1611 1612 spin_unlock(&class->lock); 1613 unpin_tag(handle); 1614 cache_free_handle(pool, handle); 1615 } 1616 EXPORT_SYMBOL_GPL(zs_free); 1617 1618 static void zs_object_copy(struct size_class *class, unsigned long dst, 1619 unsigned long src) 1620 { 1621 struct page *s_page, *d_page; 1622 unsigned int s_objidx, d_objidx; 1623 unsigned long s_off, d_off; 1624 void *s_addr, *d_addr; 1625 int s_size, d_size, size; 1626 int written = 0; 1627 1628 s_size = d_size = class->size; 1629 1630 obj_to_location(src, &s_page, &s_objidx); 1631 obj_to_location(dst, &d_page, &d_objidx); 1632 1633 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1634 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1635 1636 if (s_off + class->size > PAGE_SIZE) 1637 s_size = PAGE_SIZE - s_off; 1638 1639 if (d_off + class->size > PAGE_SIZE) 1640 d_size = PAGE_SIZE - d_off; 1641 1642 s_addr = kmap_atomic(s_page); 1643 d_addr = kmap_atomic(d_page); 1644 1645 while (1) { 1646 size = min(s_size, d_size); 1647 memcpy(d_addr + d_off, s_addr + s_off, size); 1648 written += size; 1649 1650 if (written == class->size) 1651 break; 1652 1653 s_off += size; 1654 s_size -= size; 1655 d_off += size; 1656 d_size -= size; 1657 1658 if (s_off >= PAGE_SIZE) { 1659 kunmap_atomic(d_addr); 1660 kunmap_atomic(s_addr); 1661 s_page = get_next_page(s_page); 1662 s_addr = kmap_atomic(s_page); 1663 d_addr = kmap_atomic(d_page); 1664 s_size = class->size - written; 1665 s_off = 0; 1666 } 1667 1668 if (d_off >= PAGE_SIZE) { 1669 kunmap_atomic(d_addr); 1670 d_page = get_next_page(d_page); 1671 d_addr = kmap_atomic(d_page); 1672 d_size = class->size - written; 1673 d_off = 0; 1674 } 1675 } 1676 1677 kunmap_atomic(d_addr); 1678 kunmap_atomic(s_addr); 1679 } 1680 1681 /* 1682 * Find alloced object in zspage from index object and 1683 * return handle. 1684 */ 1685 static unsigned long find_alloced_obj(struct size_class *class, 1686 struct page *page, int *obj_idx) 1687 { 1688 unsigned long head; 1689 int offset = 0; 1690 int index = *obj_idx; 1691 unsigned long handle = 0; 1692 void *addr = kmap_atomic(page); 1693 1694 offset = get_first_obj_offset(page); 1695 offset += class->size * index; 1696 1697 while (offset < PAGE_SIZE) { 1698 head = obj_to_head(page, addr + offset); 1699 if (head & OBJ_ALLOCATED_TAG) { 1700 handle = head & ~OBJ_ALLOCATED_TAG; 1701 if (trypin_tag(handle)) 1702 break; 1703 handle = 0; 1704 } 1705 1706 offset += class->size; 1707 index++; 1708 } 1709 1710 kunmap_atomic(addr); 1711 1712 *obj_idx = index; 1713 1714 return handle; 1715 } 1716 1717 struct zs_compact_control { 1718 /* Source spage for migration which could be a subpage of zspage */ 1719 struct page *s_page; 1720 /* Destination page for migration which should be a first page 1721 * of zspage. */ 1722 struct page *d_page; 1723 /* Starting object index within @s_page which used for live object 1724 * in the subpage. */ 1725 int obj_idx; 1726 }; 1727 1728 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1729 struct zs_compact_control *cc) 1730 { 1731 unsigned long used_obj, free_obj; 1732 unsigned long handle; 1733 struct page *s_page = cc->s_page; 1734 struct page *d_page = cc->d_page; 1735 int obj_idx = cc->obj_idx; 1736 int ret = 0; 1737 1738 while (1) { 1739 handle = find_alloced_obj(class, s_page, &obj_idx); 1740 if (!handle) { 1741 s_page = get_next_page(s_page); 1742 if (!s_page) 1743 break; 1744 obj_idx = 0; 1745 continue; 1746 } 1747 1748 /* Stop if there is no more space */ 1749 if (zspage_full(class, get_zspage(d_page))) { 1750 unpin_tag(handle); 1751 ret = -ENOMEM; 1752 break; 1753 } 1754 1755 used_obj = handle_to_obj(handle); 1756 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1757 zs_object_copy(class, free_obj, used_obj); 1758 obj_idx++; 1759 /* 1760 * record_obj updates handle's value to free_obj and it will 1761 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1762 * breaks synchronization using pin_tag(e,g, zs_free) so 1763 * let's keep the lock bit. 1764 */ 1765 free_obj |= BIT(HANDLE_PIN_BIT); 1766 record_obj(handle, free_obj); 1767 unpin_tag(handle); 1768 obj_free(class, used_obj); 1769 } 1770 1771 /* Remember last position in this iteration */ 1772 cc->s_page = s_page; 1773 cc->obj_idx = obj_idx; 1774 1775 return ret; 1776 } 1777 1778 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1779 { 1780 int i; 1781 struct zspage *zspage; 1782 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1783 1784 if (!source) { 1785 fg[0] = ZS_ALMOST_FULL; 1786 fg[1] = ZS_ALMOST_EMPTY; 1787 } 1788 1789 for (i = 0; i < 2; i++) { 1790 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1791 struct zspage, list); 1792 if (zspage) { 1793 VM_BUG_ON(is_zspage_isolated(zspage)); 1794 remove_zspage(class, zspage, fg[i]); 1795 return zspage; 1796 } 1797 } 1798 1799 return zspage; 1800 } 1801 1802 /* 1803 * putback_zspage - add @zspage into right class's fullness list 1804 * @class: destination class 1805 * @zspage: target page 1806 * 1807 * Return @zspage's fullness_group 1808 */ 1809 static enum fullness_group putback_zspage(struct size_class *class, 1810 struct zspage *zspage) 1811 { 1812 enum fullness_group fullness; 1813 1814 VM_BUG_ON(is_zspage_isolated(zspage)); 1815 1816 fullness = get_fullness_group(class, zspage); 1817 insert_zspage(class, zspage, fullness); 1818 set_zspage_mapping(zspage, class->index, fullness); 1819 1820 return fullness; 1821 } 1822 1823 #ifdef CONFIG_COMPACTION 1824 static struct dentry *zs_mount(struct file_system_type *fs_type, 1825 int flags, const char *dev_name, void *data) 1826 { 1827 static const struct dentry_operations ops = { 1828 .d_dname = simple_dname, 1829 }; 1830 1831 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1832 } 1833 1834 static struct file_system_type zsmalloc_fs = { 1835 .name = "zsmalloc", 1836 .mount = zs_mount, 1837 .kill_sb = kill_anon_super, 1838 }; 1839 1840 static int zsmalloc_mount(void) 1841 { 1842 int ret = 0; 1843 1844 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1845 if (IS_ERR(zsmalloc_mnt)) 1846 ret = PTR_ERR(zsmalloc_mnt); 1847 1848 return ret; 1849 } 1850 1851 static void zsmalloc_unmount(void) 1852 { 1853 kern_unmount(zsmalloc_mnt); 1854 } 1855 1856 static void migrate_lock_init(struct zspage *zspage) 1857 { 1858 rwlock_init(&zspage->lock); 1859 } 1860 1861 static void migrate_read_lock(struct zspage *zspage) 1862 { 1863 read_lock(&zspage->lock); 1864 } 1865 1866 static void migrate_read_unlock(struct zspage *zspage) 1867 { 1868 read_unlock(&zspage->lock); 1869 } 1870 1871 static void migrate_write_lock(struct zspage *zspage) 1872 { 1873 write_lock(&zspage->lock); 1874 } 1875 1876 static void migrate_write_unlock(struct zspage *zspage) 1877 { 1878 write_unlock(&zspage->lock); 1879 } 1880 1881 /* Number of isolated subpage for *page migration* in this zspage */ 1882 static void inc_zspage_isolation(struct zspage *zspage) 1883 { 1884 zspage->isolated++; 1885 } 1886 1887 static void dec_zspage_isolation(struct zspage *zspage) 1888 { 1889 zspage->isolated--; 1890 } 1891 1892 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1893 struct page *newpage, struct page *oldpage) 1894 { 1895 struct page *page; 1896 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1897 int idx = 0; 1898 1899 page = get_first_page(zspage); 1900 do { 1901 if (page == oldpage) 1902 pages[idx] = newpage; 1903 else 1904 pages[idx] = page; 1905 idx++; 1906 } while ((page = get_next_page(page)) != NULL); 1907 1908 create_page_chain(class, zspage, pages); 1909 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1910 if (unlikely(PageHugeObject(oldpage))) 1911 newpage->index = oldpage->index; 1912 __SetPageMovable(newpage, page_mapping(oldpage)); 1913 } 1914 1915 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1916 { 1917 struct zs_pool *pool; 1918 struct size_class *class; 1919 int class_idx; 1920 enum fullness_group fullness; 1921 struct zspage *zspage; 1922 struct address_space *mapping; 1923 1924 /* 1925 * Page is locked so zspage couldn't be destroyed. For detail, look at 1926 * lock_zspage in free_zspage. 1927 */ 1928 VM_BUG_ON_PAGE(!PageMovable(page), page); 1929 VM_BUG_ON_PAGE(PageIsolated(page), page); 1930 1931 zspage = get_zspage(page); 1932 1933 /* 1934 * Without class lock, fullness could be stale while class_idx is okay 1935 * because class_idx is constant unless page is freed so we should get 1936 * fullness again under class lock. 1937 */ 1938 get_zspage_mapping(zspage, &class_idx, &fullness); 1939 mapping = page_mapping(page); 1940 pool = mapping->private_data; 1941 class = pool->size_class[class_idx]; 1942 1943 spin_lock(&class->lock); 1944 if (get_zspage_inuse(zspage) == 0) { 1945 spin_unlock(&class->lock); 1946 return false; 1947 } 1948 1949 /* zspage is isolated for object migration */ 1950 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1951 spin_unlock(&class->lock); 1952 return false; 1953 } 1954 1955 /* 1956 * If this is first time isolation for the zspage, isolate zspage from 1957 * size_class to prevent further object allocation from the zspage. 1958 */ 1959 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1960 get_zspage_mapping(zspage, &class_idx, &fullness); 1961 remove_zspage(class, zspage, fullness); 1962 } 1963 1964 inc_zspage_isolation(zspage); 1965 spin_unlock(&class->lock); 1966 1967 return true; 1968 } 1969 1970 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1971 struct page *page, enum migrate_mode mode) 1972 { 1973 struct zs_pool *pool; 1974 struct size_class *class; 1975 int class_idx; 1976 enum fullness_group fullness; 1977 struct zspage *zspage; 1978 struct page *dummy; 1979 void *s_addr, *d_addr, *addr; 1980 int offset, pos; 1981 unsigned long handle, head; 1982 unsigned long old_obj, new_obj; 1983 unsigned int obj_idx; 1984 int ret = -EAGAIN; 1985 1986 VM_BUG_ON_PAGE(!PageMovable(page), page); 1987 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1988 1989 zspage = get_zspage(page); 1990 1991 /* Concurrent compactor cannot migrate any subpage in zspage */ 1992 migrate_write_lock(zspage); 1993 get_zspage_mapping(zspage, &class_idx, &fullness); 1994 pool = mapping->private_data; 1995 class = pool->size_class[class_idx]; 1996 offset = get_first_obj_offset(page); 1997 1998 spin_lock(&class->lock); 1999 if (!get_zspage_inuse(zspage)) { 2000 ret = -EBUSY; 2001 goto unlock_class; 2002 } 2003 2004 pos = offset; 2005 s_addr = kmap_atomic(page); 2006 while (pos < PAGE_SIZE) { 2007 head = obj_to_head(page, s_addr + pos); 2008 if (head & OBJ_ALLOCATED_TAG) { 2009 handle = head & ~OBJ_ALLOCATED_TAG; 2010 if (!trypin_tag(handle)) 2011 goto unpin_objects; 2012 } 2013 pos += class->size; 2014 } 2015 2016 /* 2017 * Here, any user cannot access all objects in the zspage so let's move. 2018 */ 2019 d_addr = kmap_atomic(newpage); 2020 memcpy(d_addr, s_addr, PAGE_SIZE); 2021 kunmap_atomic(d_addr); 2022 2023 for (addr = s_addr + offset; addr < s_addr + pos; 2024 addr += class->size) { 2025 head = obj_to_head(page, addr); 2026 if (head & OBJ_ALLOCATED_TAG) { 2027 handle = head & ~OBJ_ALLOCATED_TAG; 2028 if (!testpin_tag(handle)) 2029 BUG(); 2030 2031 old_obj = handle_to_obj(handle); 2032 obj_to_location(old_obj, &dummy, &obj_idx); 2033 new_obj = (unsigned long)location_to_obj(newpage, 2034 obj_idx); 2035 new_obj |= BIT(HANDLE_PIN_BIT); 2036 record_obj(handle, new_obj); 2037 } 2038 } 2039 2040 replace_sub_page(class, zspage, newpage, page); 2041 get_page(newpage); 2042 2043 dec_zspage_isolation(zspage); 2044 2045 /* 2046 * Page migration is done so let's putback isolated zspage to 2047 * the list if @page is final isolated subpage in the zspage. 2048 */ 2049 if (!is_zspage_isolated(zspage)) 2050 putback_zspage(class, zspage); 2051 2052 reset_page(page); 2053 put_page(page); 2054 page = newpage; 2055 2056 ret = MIGRATEPAGE_SUCCESS; 2057 unpin_objects: 2058 for (addr = s_addr + offset; addr < s_addr + pos; 2059 addr += class->size) { 2060 head = obj_to_head(page, addr); 2061 if (head & OBJ_ALLOCATED_TAG) { 2062 handle = head & ~OBJ_ALLOCATED_TAG; 2063 if (!testpin_tag(handle)) 2064 BUG(); 2065 unpin_tag(handle); 2066 } 2067 } 2068 kunmap_atomic(s_addr); 2069 unlock_class: 2070 spin_unlock(&class->lock); 2071 migrate_write_unlock(zspage); 2072 2073 return ret; 2074 } 2075 2076 void zs_page_putback(struct page *page) 2077 { 2078 struct zs_pool *pool; 2079 struct size_class *class; 2080 int class_idx; 2081 enum fullness_group fg; 2082 struct address_space *mapping; 2083 struct zspage *zspage; 2084 2085 VM_BUG_ON_PAGE(!PageMovable(page), page); 2086 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2087 2088 zspage = get_zspage(page); 2089 get_zspage_mapping(zspage, &class_idx, &fg); 2090 mapping = page_mapping(page); 2091 pool = mapping->private_data; 2092 class = pool->size_class[class_idx]; 2093 2094 spin_lock(&class->lock); 2095 dec_zspage_isolation(zspage); 2096 if (!is_zspage_isolated(zspage)) { 2097 fg = putback_zspage(class, zspage); 2098 /* 2099 * Due to page_lock, we cannot free zspage immediately 2100 * so let's defer. 2101 */ 2102 if (fg == ZS_EMPTY) 2103 schedule_work(&pool->free_work); 2104 } 2105 spin_unlock(&class->lock); 2106 } 2107 2108 const struct address_space_operations zsmalloc_aops = { 2109 .isolate_page = zs_page_isolate, 2110 .migratepage = zs_page_migrate, 2111 .putback_page = zs_page_putback, 2112 }; 2113 2114 static int zs_register_migration(struct zs_pool *pool) 2115 { 2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2117 if (IS_ERR(pool->inode)) { 2118 pool->inode = NULL; 2119 return 1; 2120 } 2121 2122 pool->inode->i_mapping->private_data = pool; 2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2124 return 0; 2125 } 2126 2127 static void zs_unregister_migration(struct zs_pool *pool) 2128 { 2129 flush_work(&pool->free_work); 2130 iput(pool->inode); 2131 } 2132 2133 /* 2134 * Caller should hold page_lock of all pages in the zspage 2135 * In here, we cannot use zspage meta data. 2136 */ 2137 static void async_free_zspage(struct work_struct *work) 2138 { 2139 int i; 2140 struct size_class *class; 2141 unsigned int class_idx; 2142 enum fullness_group fullness; 2143 struct zspage *zspage, *tmp; 2144 LIST_HEAD(free_pages); 2145 struct zs_pool *pool = container_of(work, struct zs_pool, 2146 free_work); 2147 2148 for (i = 0; i < zs_size_classes; i++) { 2149 class = pool->size_class[i]; 2150 if (class->index != i) 2151 continue; 2152 2153 spin_lock(&class->lock); 2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2155 spin_unlock(&class->lock); 2156 } 2157 2158 2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2160 list_del(&zspage->list); 2161 lock_zspage(zspage); 2162 2163 get_zspage_mapping(zspage, &class_idx, &fullness); 2164 VM_BUG_ON(fullness != ZS_EMPTY); 2165 class = pool->size_class[class_idx]; 2166 spin_lock(&class->lock); 2167 __free_zspage(pool, pool->size_class[class_idx], zspage); 2168 spin_unlock(&class->lock); 2169 } 2170 }; 2171 2172 static void kick_deferred_free(struct zs_pool *pool) 2173 { 2174 schedule_work(&pool->free_work); 2175 } 2176 2177 static void init_deferred_free(struct zs_pool *pool) 2178 { 2179 INIT_WORK(&pool->free_work, async_free_zspage); 2180 } 2181 2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2183 { 2184 struct page *page = get_first_page(zspage); 2185 2186 do { 2187 WARN_ON(!trylock_page(page)); 2188 __SetPageMovable(page, pool->inode->i_mapping); 2189 unlock_page(page); 2190 } while ((page = get_next_page(page)) != NULL); 2191 } 2192 #endif 2193 2194 /* 2195 * 2196 * Based on the number of unused allocated objects calculate 2197 * and return the number of pages that we can free. 2198 */ 2199 static unsigned long zs_can_compact(struct size_class *class) 2200 { 2201 unsigned long obj_wasted; 2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2204 2205 if (obj_allocated <= obj_used) 2206 return 0; 2207 2208 obj_wasted = obj_allocated - obj_used; 2209 obj_wasted /= class->objs_per_zspage; 2210 2211 return obj_wasted * class->pages_per_zspage; 2212 } 2213 2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2215 { 2216 struct zs_compact_control cc; 2217 struct zspage *src_zspage; 2218 struct zspage *dst_zspage = NULL; 2219 2220 spin_lock(&class->lock); 2221 while ((src_zspage = isolate_zspage(class, true))) { 2222 2223 if (!zs_can_compact(class)) 2224 break; 2225 2226 cc.obj_idx = 0; 2227 cc.s_page = get_first_page(src_zspage); 2228 2229 while ((dst_zspage = isolate_zspage(class, false))) { 2230 cc.d_page = get_first_page(dst_zspage); 2231 /* 2232 * If there is no more space in dst_page, resched 2233 * and see if anyone had allocated another zspage. 2234 */ 2235 if (!migrate_zspage(pool, class, &cc)) 2236 break; 2237 2238 putback_zspage(class, dst_zspage); 2239 } 2240 2241 /* Stop if we couldn't find slot */ 2242 if (dst_zspage == NULL) 2243 break; 2244 2245 putback_zspage(class, dst_zspage); 2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2247 free_zspage(pool, class, src_zspage); 2248 pool->stats.pages_compacted += class->pages_per_zspage; 2249 } 2250 spin_unlock(&class->lock); 2251 cond_resched(); 2252 spin_lock(&class->lock); 2253 } 2254 2255 if (src_zspage) 2256 putback_zspage(class, src_zspage); 2257 2258 spin_unlock(&class->lock); 2259 } 2260 2261 unsigned long zs_compact(struct zs_pool *pool) 2262 { 2263 int i; 2264 struct size_class *class; 2265 2266 for (i = zs_size_classes - 1; i >= 0; i--) { 2267 class = pool->size_class[i]; 2268 if (!class) 2269 continue; 2270 if (class->index != i) 2271 continue; 2272 __zs_compact(pool, class); 2273 } 2274 2275 return pool->stats.pages_compacted; 2276 } 2277 EXPORT_SYMBOL_GPL(zs_compact); 2278 2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2280 { 2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2282 } 2283 EXPORT_SYMBOL_GPL(zs_pool_stats); 2284 2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2286 struct shrink_control *sc) 2287 { 2288 unsigned long pages_freed; 2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2290 shrinker); 2291 2292 pages_freed = pool->stats.pages_compacted; 2293 /* 2294 * Compact classes and calculate compaction delta. 2295 * Can run concurrently with a manually triggered 2296 * (by user) compaction. 2297 */ 2298 pages_freed = zs_compact(pool) - pages_freed; 2299 2300 return pages_freed ? pages_freed : SHRINK_STOP; 2301 } 2302 2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2304 struct shrink_control *sc) 2305 { 2306 int i; 2307 struct size_class *class; 2308 unsigned long pages_to_free = 0; 2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2310 shrinker); 2311 2312 for (i = zs_size_classes - 1; i >= 0; i--) { 2313 class = pool->size_class[i]; 2314 if (!class) 2315 continue; 2316 if (class->index != i) 2317 continue; 2318 2319 pages_to_free += zs_can_compact(class); 2320 } 2321 2322 return pages_to_free; 2323 } 2324 2325 static void zs_unregister_shrinker(struct zs_pool *pool) 2326 { 2327 if (pool->shrinker_enabled) { 2328 unregister_shrinker(&pool->shrinker); 2329 pool->shrinker_enabled = false; 2330 } 2331 } 2332 2333 static int zs_register_shrinker(struct zs_pool *pool) 2334 { 2335 pool->shrinker.scan_objects = zs_shrinker_scan; 2336 pool->shrinker.count_objects = zs_shrinker_count; 2337 pool->shrinker.batch = 0; 2338 pool->shrinker.seeks = DEFAULT_SEEKS; 2339 2340 return register_shrinker(&pool->shrinker); 2341 } 2342 2343 /** 2344 * zs_create_pool - Creates an allocation pool to work from. 2345 * @name: pool name to be created 2346 * 2347 * This function must be called before anything when using 2348 * the zsmalloc allocator. 2349 * 2350 * On success, a pointer to the newly created pool is returned, 2351 * otherwise NULL. 2352 */ 2353 struct zs_pool *zs_create_pool(const char *name) 2354 { 2355 int i; 2356 struct zs_pool *pool; 2357 struct size_class *prev_class = NULL; 2358 2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2360 if (!pool) 2361 return NULL; 2362 2363 init_deferred_free(pool); 2364 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 2365 GFP_KERNEL); 2366 if (!pool->size_class) { 2367 kfree(pool); 2368 return NULL; 2369 } 2370 2371 pool->name = kstrdup(name, GFP_KERNEL); 2372 if (!pool->name) 2373 goto err; 2374 2375 if (create_cache(pool)) 2376 goto err; 2377 2378 /* 2379 * Iterate reversely, because, size of size_class that we want to use 2380 * for merging should be larger or equal to current size. 2381 */ 2382 for (i = zs_size_classes - 1; i >= 0; i--) { 2383 int size; 2384 int pages_per_zspage; 2385 int objs_per_zspage; 2386 struct size_class *class; 2387 int fullness = 0; 2388 2389 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2390 if (size > ZS_MAX_ALLOC_SIZE) 2391 size = ZS_MAX_ALLOC_SIZE; 2392 pages_per_zspage = get_pages_per_zspage(size); 2393 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2394 2395 /* 2396 * size_class is used for normal zsmalloc operation such 2397 * as alloc/free for that size. Although it is natural that we 2398 * have one size_class for each size, there is a chance that we 2399 * can get more memory utilization if we use one size_class for 2400 * many different sizes whose size_class have same 2401 * characteristics. So, we makes size_class point to 2402 * previous size_class if possible. 2403 */ 2404 if (prev_class) { 2405 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2406 pool->size_class[i] = prev_class; 2407 continue; 2408 } 2409 } 2410 2411 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2412 if (!class) 2413 goto err; 2414 2415 class->size = size; 2416 class->index = i; 2417 class->pages_per_zspage = pages_per_zspage; 2418 class->objs_per_zspage = objs_per_zspage; 2419 spin_lock_init(&class->lock); 2420 pool->size_class[i] = class; 2421 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2422 fullness++) 2423 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2424 2425 prev_class = class; 2426 } 2427 2428 /* debug only, don't abort if it fails */ 2429 zs_pool_stat_create(pool, name); 2430 2431 if (zs_register_migration(pool)) 2432 goto err; 2433 2434 /* 2435 * Not critical, we still can use the pool 2436 * and user can trigger compaction manually. 2437 */ 2438 if (zs_register_shrinker(pool) == 0) 2439 pool->shrinker_enabled = true; 2440 return pool; 2441 2442 err: 2443 zs_destroy_pool(pool); 2444 return NULL; 2445 } 2446 EXPORT_SYMBOL_GPL(zs_create_pool); 2447 2448 void zs_destroy_pool(struct zs_pool *pool) 2449 { 2450 int i; 2451 2452 zs_unregister_shrinker(pool); 2453 zs_unregister_migration(pool); 2454 zs_pool_stat_destroy(pool); 2455 2456 for (i = 0; i < zs_size_classes; i++) { 2457 int fg; 2458 struct size_class *class = pool->size_class[i]; 2459 2460 if (!class) 2461 continue; 2462 2463 if (class->index != i) 2464 continue; 2465 2466 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2467 if (!list_empty(&class->fullness_list[fg])) { 2468 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2469 class->size, fg); 2470 } 2471 } 2472 kfree(class); 2473 } 2474 2475 destroy_cache(pool); 2476 kfree(pool->size_class); 2477 kfree(pool->name); 2478 kfree(pool); 2479 } 2480 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2481 2482 static int __init zs_init(void) 2483 { 2484 int ret; 2485 2486 ret = zsmalloc_mount(); 2487 if (ret) 2488 goto out; 2489 2490 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2491 zs_cpu_prepare, zs_cpu_dead); 2492 if (ret) 2493 goto hp_setup_fail; 2494 2495 init_zs_size_classes(); 2496 2497 #ifdef CONFIG_ZPOOL 2498 zpool_register_driver(&zs_zpool_driver); 2499 #endif 2500 2501 zs_stat_init(); 2502 2503 return 0; 2504 2505 hp_setup_fail: 2506 zsmalloc_unmount(); 2507 out: 2508 return ret; 2509 } 2510 2511 static void __exit zs_exit(void) 2512 { 2513 #ifdef CONFIG_ZPOOL 2514 zpool_unregister_driver(&zs_zpool_driver); 2515 #endif 2516 zsmalloc_unmount(); 2517 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2518 2519 zs_stat_exit(); 2520 } 2521 2522 module_init(zs_init); 2523 module_exit(zs_exit); 2524 2525 MODULE_LICENSE("Dual BSD/GPL"); 2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2527