xref: /openbmc/linux/mm/zsmalloc.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 
57 #define ZSPAGE_MAGIC	0x58
58 
59 /*
60  * This must be power of 2 and greater than of equal to sizeof(link_free).
61  * These two conditions ensure that any 'struct link_free' itself doesn't
62  * span more than 1 page which avoids complex case of mapping 2 pages simply
63  * to restore link_free pointer values.
64  */
65 #define ZS_ALIGN		8
66 
67 /*
68  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70  */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73 
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75 
76 /*
77  * Object location (<PFN>, <obj_idx>) is encoded as
78  * as single (unsigned long) handle value.
79  *
80  * Note that object index <obj_idx> starts from 0.
81  *
82  * This is made more complicated by various memory models and PAE.
83  */
84 
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91  * be PAGE_SHIFT
92  */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
97 
98 /*
99  * Memory for allocating for handle keeps object position by
100  * encoding <page, obj_idx> and the encoded value has a room
101  * in least bit(ie, look at obj_to_location).
102  * We use the bit to synchronize between object access by
103  * user and migration.
104  */
105 #define HANDLE_PIN_BIT	0
106 
107 /*
108  * Head in allocated object should have OBJ_ALLOCATED_TAG
109  * to identify the object was allocated or not.
110  * It's okay to add the status bit in the least bit because
111  * header keeps handle which is 4byte-aligned address so we
112  * have room for two bit at least.
113  */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118 
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
125 
126 /*
127  * On systems with 4K page size, this gives 255 size classes! There is a
128  * trader-off here:
129  *  - Large number of size classes is potentially wasteful as free page are
130  *    spread across these classes
131  *  - Small number of size classes causes large internal fragmentation
132  *  - Probably its better to use specific size classes (empirically
133  *    determined). NOTE: all those class sizes must be set as multiple of
134  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
135  *
136  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137  *  (reason above)
138  */
139 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
140 
141 enum fullness_group {
142 	ZS_EMPTY,
143 	ZS_ALMOST_EMPTY,
144 	ZS_ALMOST_FULL,
145 	ZS_FULL,
146 	NR_ZS_FULLNESS,
147 };
148 
149 enum zs_stat_type {
150 	CLASS_EMPTY,
151 	CLASS_ALMOST_EMPTY,
152 	CLASS_ALMOST_FULL,
153 	CLASS_FULL,
154 	OBJ_ALLOCATED,
155 	OBJ_USED,
156 	NR_ZS_STAT_TYPE,
157 };
158 
159 struct zs_size_stat {
160 	unsigned long objs[NR_ZS_STAT_TYPE];
161 };
162 
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
166 
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
170 
171 /*
172  * number of size_classes
173  */
174 static int zs_size_classes;
175 
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *	n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *	ZS_ALMOST_FULL	when n > N / f
185  *	ZS_EMPTY	when n == 0
186  *	ZS_FULL		when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 
192 struct size_class {
193 	spinlock_t lock;
194 	struct list_head fullness_list[NR_ZS_FULLNESS];
195 	/*
196 	 * Size of objects stored in this class. Must be multiple
197 	 * of ZS_ALIGN.
198 	 */
199 	int size;
200 	int objs_per_zspage;
201 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 	int pages_per_zspage;
203 
204 	unsigned int index;
205 	struct zs_size_stat stats;
206 };
207 
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
210 {
211 	SetPageOwnerPriv1(page);
212 }
213 
214 static void ClearPageHugeObject(struct page *page)
215 {
216 	ClearPageOwnerPriv1(page);
217 }
218 
219 static int PageHugeObject(struct page *page)
220 {
221 	return PageOwnerPriv1(page);
222 }
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Free object index;
234 		 * It's valid for non-allocated object
235 		 */
236 		unsigned long next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 	struct kmem_cache *zspage_cachep;
250 
251 	atomic_long_t pages_allocated;
252 
253 	struct zs_pool_stats stats;
254 
255 	/* Compact classes */
256 	struct shrinker shrinker;
257 	/*
258 	 * To signify that register_shrinker() was successful
259 	 * and unregister_shrinker() will not Oops.
260 	 */
261 	bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 	struct inode *inode;
267 	struct work_struct free_work;
268 #endif
269 };
270 
271 #define FULLNESS_BITS	2
272 #define CLASS_BITS	8
273 #define ISOLATED_BITS	3
274 #define MAGIC_VAL_BITS	8
275 
276 struct zspage {
277 	struct {
278 		unsigned int fullness:FULLNESS_BITS;
279 		unsigned int class:CLASS_BITS;
280 		unsigned int isolated:ISOLATED_BITS;
281 		unsigned int magic:MAGIC_VAL_BITS;
282 	};
283 	unsigned int inuse;
284 	unsigned int freeobj;
285 	struct page *first_page;
286 	struct list_head list; /* fullness list */
287 #ifdef CONFIG_COMPACTION
288 	rwlock_t lock;
289 #endif
290 };
291 
292 struct mapping_area {
293 #ifdef CONFIG_PGTABLE_MAPPING
294 	struct vm_struct *vm; /* vm area for mapping object that span pages */
295 #else
296 	char *vm_buf; /* copy buffer for objects that span pages */
297 #endif
298 	char *vm_addr; /* address of kmap_atomic()'ed pages */
299 	enum zs_mapmode vm_mm; /* mapping mode */
300 };
301 
302 #ifdef CONFIG_COMPACTION
303 static int zs_register_migration(struct zs_pool *pool);
304 static void zs_unregister_migration(struct zs_pool *pool);
305 static void migrate_lock_init(struct zspage *zspage);
306 static void migrate_read_lock(struct zspage *zspage);
307 static void migrate_read_unlock(struct zspage *zspage);
308 static void kick_deferred_free(struct zs_pool *pool);
309 static void init_deferred_free(struct zs_pool *pool);
310 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
311 #else
312 static int zsmalloc_mount(void) { return 0; }
313 static void zsmalloc_unmount(void) {}
314 static int zs_register_migration(struct zs_pool *pool) { return 0; }
315 static void zs_unregister_migration(struct zs_pool *pool) {}
316 static void migrate_lock_init(struct zspage *zspage) {}
317 static void migrate_read_lock(struct zspage *zspage) {}
318 static void migrate_read_unlock(struct zspage *zspage) {}
319 static void kick_deferred_free(struct zs_pool *pool) {}
320 static void init_deferred_free(struct zs_pool *pool) {}
321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
322 #endif
323 
324 static int create_cache(struct zs_pool *pool)
325 {
326 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
327 					0, 0, NULL);
328 	if (!pool->handle_cachep)
329 		return 1;
330 
331 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
332 					0, 0, NULL);
333 	if (!pool->zspage_cachep) {
334 		kmem_cache_destroy(pool->handle_cachep);
335 		pool->handle_cachep = NULL;
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 static void destroy_cache(struct zs_pool *pool)
343 {
344 	kmem_cache_destroy(pool->handle_cachep);
345 	kmem_cache_destroy(pool->zspage_cachep);
346 }
347 
348 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
349 {
350 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
351 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
352 }
353 
354 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
355 {
356 	kmem_cache_free(pool->handle_cachep, (void *)handle);
357 }
358 
359 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
360 {
361 	return kmem_cache_alloc(pool->zspage_cachep,
362 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
363 }
364 
365 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
366 {
367 	kmem_cache_free(pool->zspage_cachep, zspage);
368 }
369 
370 static void record_obj(unsigned long handle, unsigned long obj)
371 {
372 	/*
373 	 * lsb of @obj represents handle lock while other bits
374 	 * represent object value the handle is pointing so
375 	 * updating shouldn't do store tearing.
376 	 */
377 	WRITE_ONCE(*(unsigned long *)handle, obj);
378 }
379 
380 /* zpool driver */
381 
382 #ifdef CONFIG_ZPOOL
383 
384 static void *zs_zpool_create(const char *name, gfp_t gfp,
385 			     const struct zpool_ops *zpool_ops,
386 			     struct zpool *zpool)
387 {
388 	/*
389 	 * Ignore global gfp flags: zs_malloc() may be invoked from
390 	 * different contexts and its caller must provide a valid
391 	 * gfp mask.
392 	 */
393 	return zs_create_pool(name);
394 }
395 
396 static void zs_zpool_destroy(void *pool)
397 {
398 	zs_destroy_pool(pool);
399 }
400 
401 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
402 			unsigned long *handle)
403 {
404 	*handle = zs_malloc(pool, size, gfp);
405 	return *handle ? 0 : -1;
406 }
407 static void zs_zpool_free(void *pool, unsigned long handle)
408 {
409 	zs_free(pool, handle);
410 }
411 
412 static int zs_zpool_shrink(void *pool, unsigned int pages,
413 			unsigned int *reclaimed)
414 {
415 	return -EINVAL;
416 }
417 
418 static void *zs_zpool_map(void *pool, unsigned long handle,
419 			enum zpool_mapmode mm)
420 {
421 	enum zs_mapmode zs_mm;
422 
423 	switch (mm) {
424 	case ZPOOL_MM_RO:
425 		zs_mm = ZS_MM_RO;
426 		break;
427 	case ZPOOL_MM_WO:
428 		zs_mm = ZS_MM_WO;
429 		break;
430 	case ZPOOL_MM_RW: /* fallthru */
431 	default:
432 		zs_mm = ZS_MM_RW;
433 		break;
434 	}
435 
436 	return zs_map_object(pool, handle, zs_mm);
437 }
438 static void zs_zpool_unmap(void *pool, unsigned long handle)
439 {
440 	zs_unmap_object(pool, handle);
441 }
442 
443 static u64 zs_zpool_total_size(void *pool)
444 {
445 	return zs_get_total_pages(pool) << PAGE_SHIFT;
446 }
447 
448 static struct zpool_driver zs_zpool_driver = {
449 	.type =		"zsmalloc",
450 	.owner =	THIS_MODULE,
451 	.create =	zs_zpool_create,
452 	.destroy =	zs_zpool_destroy,
453 	.malloc =	zs_zpool_malloc,
454 	.free =		zs_zpool_free,
455 	.shrink =	zs_zpool_shrink,
456 	.map =		zs_zpool_map,
457 	.unmap =	zs_zpool_unmap,
458 	.total_size =	zs_zpool_total_size,
459 };
460 
461 MODULE_ALIAS("zpool-zsmalloc");
462 #endif /* CONFIG_ZPOOL */
463 
464 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
465 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
466 
467 static bool is_zspage_isolated(struct zspage *zspage)
468 {
469 	return zspage->isolated;
470 }
471 
472 static int is_first_page(struct page *page)
473 {
474 	return PagePrivate(page);
475 }
476 
477 /* Protected by class->lock */
478 static inline int get_zspage_inuse(struct zspage *zspage)
479 {
480 	return zspage->inuse;
481 }
482 
483 static inline void set_zspage_inuse(struct zspage *zspage, int val)
484 {
485 	zspage->inuse = val;
486 }
487 
488 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
489 {
490 	zspage->inuse += val;
491 }
492 
493 static inline struct page *get_first_page(struct zspage *zspage)
494 {
495 	struct page *first_page = zspage->first_page;
496 
497 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
498 	return first_page;
499 }
500 
501 static inline int get_first_obj_offset(struct page *page)
502 {
503 	return page->units;
504 }
505 
506 static inline void set_first_obj_offset(struct page *page, int offset)
507 {
508 	page->units = offset;
509 }
510 
511 static inline unsigned int get_freeobj(struct zspage *zspage)
512 {
513 	return zspage->freeobj;
514 }
515 
516 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
517 {
518 	zspage->freeobj = obj;
519 }
520 
521 static void get_zspage_mapping(struct zspage *zspage,
522 				unsigned int *class_idx,
523 				enum fullness_group *fullness)
524 {
525 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
526 
527 	*fullness = zspage->fullness;
528 	*class_idx = zspage->class;
529 }
530 
531 static void set_zspage_mapping(struct zspage *zspage,
532 				unsigned int class_idx,
533 				enum fullness_group fullness)
534 {
535 	zspage->class = class_idx;
536 	zspage->fullness = fullness;
537 }
538 
539 /*
540  * zsmalloc divides the pool into various size classes where each
541  * class maintains a list of zspages where each zspage is divided
542  * into equal sized chunks. Each allocation falls into one of these
543  * classes depending on its size. This function returns index of the
544  * size class which has chunk size big enough to hold the give size.
545  */
546 static int get_size_class_index(int size)
547 {
548 	int idx = 0;
549 
550 	if (likely(size > ZS_MIN_ALLOC_SIZE))
551 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
552 				ZS_SIZE_CLASS_DELTA);
553 
554 	return min(zs_size_classes - 1, idx);
555 }
556 
557 static inline void zs_stat_inc(struct size_class *class,
558 				enum zs_stat_type type, unsigned long cnt)
559 {
560 	class->stats.objs[type] += cnt;
561 }
562 
563 static inline void zs_stat_dec(struct size_class *class,
564 				enum zs_stat_type type, unsigned long cnt)
565 {
566 	class->stats.objs[type] -= cnt;
567 }
568 
569 static inline unsigned long zs_stat_get(struct size_class *class,
570 				enum zs_stat_type type)
571 {
572 	return class->stats.objs[type];
573 }
574 
575 #ifdef CONFIG_ZSMALLOC_STAT
576 
577 static void __init zs_stat_init(void)
578 {
579 	if (!debugfs_initialized()) {
580 		pr_warn("debugfs not available, stat dir not created\n");
581 		return;
582 	}
583 
584 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
585 	if (!zs_stat_root)
586 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
587 }
588 
589 static void __exit zs_stat_exit(void)
590 {
591 	debugfs_remove_recursive(zs_stat_root);
592 }
593 
594 static unsigned long zs_can_compact(struct size_class *class);
595 
596 static int zs_stats_size_show(struct seq_file *s, void *v)
597 {
598 	int i;
599 	struct zs_pool *pool = s->private;
600 	struct size_class *class;
601 	int objs_per_zspage;
602 	unsigned long class_almost_full, class_almost_empty;
603 	unsigned long obj_allocated, obj_used, pages_used, freeable;
604 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
605 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
606 	unsigned long total_freeable = 0;
607 
608 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
609 			"class", "size", "almost_full", "almost_empty",
610 			"obj_allocated", "obj_used", "pages_used",
611 			"pages_per_zspage", "freeable");
612 
613 	for (i = 0; i < zs_size_classes; i++) {
614 		class = pool->size_class[i];
615 
616 		if (class->index != i)
617 			continue;
618 
619 		spin_lock(&class->lock);
620 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
621 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
622 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
623 		obj_used = zs_stat_get(class, OBJ_USED);
624 		freeable = zs_can_compact(class);
625 		spin_unlock(&class->lock);
626 
627 		objs_per_zspage = class->objs_per_zspage;
628 		pages_used = obj_allocated / objs_per_zspage *
629 				class->pages_per_zspage;
630 
631 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
632 				" %10lu %10lu %16d %8lu\n",
633 			i, class->size, class_almost_full, class_almost_empty,
634 			obj_allocated, obj_used, pages_used,
635 			class->pages_per_zspage, freeable);
636 
637 		total_class_almost_full += class_almost_full;
638 		total_class_almost_empty += class_almost_empty;
639 		total_objs += obj_allocated;
640 		total_used_objs += obj_used;
641 		total_pages += pages_used;
642 		total_freeable += freeable;
643 	}
644 
645 	seq_puts(s, "\n");
646 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
647 			"Total", "", total_class_almost_full,
648 			total_class_almost_empty, total_objs,
649 			total_used_objs, total_pages, "", total_freeable);
650 
651 	return 0;
652 }
653 
654 static int zs_stats_size_open(struct inode *inode, struct file *file)
655 {
656 	return single_open(file, zs_stats_size_show, inode->i_private);
657 }
658 
659 static const struct file_operations zs_stat_size_ops = {
660 	.open           = zs_stats_size_open,
661 	.read           = seq_read,
662 	.llseek         = seq_lseek,
663 	.release        = single_release,
664 };
665 
666 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
667 {
668 	struct dentry *entry;
669 
670 	if (!zs_stat_root) {
671 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
672 		return;
673 	}
674 
675 	entry = debugfs_create_dir(name, zs_stat_root);
676 	if (!entry) {
677 		pr_warn("debugfs dir <%s> creation failed\n", name);
678 		return;
679 	}
680 	pool->stat_dentry = entry;
681 
682 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
683 			pool->stat_dentry, pool, &zs_stat_size_ops);
684 	if (!entry) {
685 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
686 				name, "classes");
687 		debugfs_remove_recursive(pool->stat_dentry);
688 		pool->stat_dentry = NULL;
689 	}
690 }
691 
692 static void zs_pool_stat_destroy(struct zs_pool *pool)
693 {
694 	debugfs_remove_recursive(pool->stat_dentry);
695 }
696 
697 #else /* CONFIG_ZSMALLOC_STAT */
698 static void __init zs_stat_init(void)
699 {
700 }
701 
702 static void __exit zs_stat_exit(void)
703 {
704 }
705 
706 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
707 {
708 }
709 
710 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
711 {
712 }
713 #endif
714 
715 
716 /*
717  * For each size class, zspages are divided into different groups
718  * depending on how "full" they are. This was done so that we could
719  * easily find empty or nearly empty zspages when we try to shrink
720  * the pool (not yet implemented). This function returns fullness
721  * status of the given page.
722  */
723 static enum fullness_group get_fullness_group(struct size_class *class,
724 						struct zspage *zspage)
725 {
726 	int inuse, objs_per_zspage;
727 	enum fullness_group fg;
728 
729 	inuse = get_zspage_inuse(zspage);
730 	objs_per_zspage = class->objs_per_zspage;
731 
732 	if (inuse == 0)
733 		fg = ZS_EMPTY;
734 	else if (inuse == objs_per_zspage)
735 		fg = ZS_FULL;
736 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
737 		fg = ZS_ALMOST_EMPTY;
738 	else
739 		fg = ZS_ALMOST_FULL;
740 
741 	return fg;
742 }
743 
744 /*
745  * Each size class maintains various freelists and zspages are assigned
746  * to one of these freelists based on the number of live objects they
747  * have. This functions inserts the given zspage into the freelist
748  * identified by <class, fullness_group>.
749  */
750 static void insert_zspage(struct size_class *class,
751 				struct zspage *zspage,
752 				enum fullness_group fullness)
753 {
754 	struct zspage *head;
755 
756 	zs_stat_inc(class, fullness, 1);
757 	head = list_first_entry_or_null(&class->fullness_list[fullness],
758 					struct zspage, list);
759 	/*
760 	 * We want to see more ZS_FULL pages and less almost empty/full.
761 	 * Put pages with higher ->inuse first.
762 	 */
763 	if (head) {
764 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
765 			list_add(&zspage->list, &head->list);
766 			return;
767 		}
768 	}
769 	list_add(&zspage->list, &class->fullness_list[fullness]);
770 }
771 
772 /*
773  * This function removes the given zspage from the freelist identified
774  * by <class, fullness_group>.
775  */
776 static void remove_zspage(struct size_class *class,
777 				struct zspage *zspage,
778 				enum fullness_group fullness)
779 {
780 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
781 	VM_BUG_ON(is_zspage_isolated(zspage));
782 
783 	list_del_init(&zspage->list);
784 	zs_stat_dec(class, fullness, 1);
785 }
786 
787 /*
788  * Each size class maintains zspages in different fullness groups depending
789  * on the number of live objects they contain. When allocating or freeing
790  * objects, the fullness status of the page can change, say, from ALMOST_FULL
791  * to ALMOST_EMPTY when freeing an object. This function checks if such
792  * a status change has occurred for the given page and accordingly moves the
793  * page from the freelist of the old fullness group to that of the new
794  * fullness group.
795  */
796 static enum fullness_group fix_fullness_group(struct size_class *class,
797 						struct zspage *zspage)
798 {
799 	int class_idx;
800 	enum fullness_group currfg, newfg;
801 
802 	get_zspage_mapping(zspage, &class_idx, &currfg);
803 	newfg = get_fullness_group(class, zspage);
804 	if (newfg == currfg)
805 		goto out;
806 
807 	if (!is_zspage_isolated(zspage)) {
808 		remove_zspage(class, zspage, currfg);
809 		insert_zspage(class, zspage, newfg);
810 	}
811 
812 	set_zspage_mapping(zspage, class_idx, newfg);
813 
814 out:
815 	return newfg;
816 }
817 
818 /*
819  * We have to decide on how many pages to link together
820  * to form a zspage for each size class. This is important
821  * to reduce wastage due to unusable space left at end of
822  * each zspage which is given as:
823  *     wastage = Zp % class_size
824  *     usage = Zp - wastage
825  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
826  *
827  * For example, for size class of 3/8 * PAGE_SIZE, we should
828  * link together 3 PAGE_SIZE sized pages to form a zspage
829  * since then we can perfectly fit in 8 such objects.
830  */
831 static int get_pages_per_zspage(int class_size)
832 {
833 	int i, max_usedpc = 0;
834 	/* zspage order which gives maximum used size per KB */
835 	int max_usedpc_order = 1;
836 
837 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
838 		int zspage_size;
839 		int waste, usedpc;
840 
841 		zspage_size = i * PAGE_SIZE;
842 		waste = zspage_size % class_size;
843 		usedpc = (zspage_size - waste) * 100 / zspage_size;
844 
845 		if (usedpc > max_usedpc) {
846 			max_usedpc = usedpc;
847 			max_usedpc_order = i;
848 		}
849 	}
850 
851 	return max_usedpc_order;
852 }
853 
854 static struct zspage *get_zspage(struct page *page)
855 {
856 	struct zspage *zspage = (struct zspage *)page->private;
857 
858 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
859 	return zspage;
860 }
861 
862 static struct page *get_next_page(struct page *page)
863 {
864 	if (unlikely(PageHugeObject(page)))
865 		return NULL;
866 
867 	return page->freelist;
868 }
869 
870 /**
871  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
872  * @page: page object resides in zspage
873  * @obj_idx: object index
874  */
875 static void obj_to_location(unsigned long obj, struct page **page,
876 				unsigned int *obj_idx)
877 {
878 	obj >>= OBJ_TAG_BITS;
879 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
880 	*obj_idx = (obj & OBJ_INDEX_MASK);
881 }
882 
883 /**
884  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
885  * @page: page object resides in zspage
886  * @obj_idx: object index
887  */
888 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
889 {
890 	unsigned long obj;
891 
892 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
893 	obj |= obj_idx & OBJ_INDEX_MASK;
894 	obj <<= OBJ_TAG_BITS;
895 
896 	return obj;
897 }
898 
899 static unsigned long handle_to_obj(unsigned long handle)
900 {
901 	return *(unsigned long *)handle;
902 }
903 
904 static unsigned long obj_to_head(struct page *page, void *obj)
905 {
906 	if (unlikely(PageHugeObject(page))) {
907 		VM_BUG_ON_PAGE(!is_first_page(page), page);
908 		return page->index;
909 	} else
910 		return *(unsigned long *)obj;
911 }
912 
913 static inline int testpin_tag(unsigned long handle)
914 {
915 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
916 }
917 
918 static inline int trypin_tag(unsigned long handle)
919 {
920 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
921 }
922 
923 static void pin_tag(unsigned long handle)
924 {
925 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
926 }
927 
928 static void unpin_tag(unsigned long handle)
929 {
930 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
931 }
932 
933 static void reset_page(struct page *page)
934 {
935 	__ClearPageMovable(page);
936 	ClearPagePrivate(page);
937 	set_page_private(page, 0);
938 	page_mapcount_reset(page);
939 	ClearPageHugeObject(page);
940 	page->freelist = NULL;
941 }
942 
943 /*
944  * To prevent zspage destroy during migration, zspage freeing should
945  * hold locks of all pages in the zspage.
946  */
947 void lock_zspage(struct zspage *zspage)
948 {
949 	struct page *page = get_first_page(zspage);
950 
951 	do {
952 		lock_page(page);
953 	} while ((page = get_next_page(page)) != NULL);
954 }
955 
956 int trylock_zspage(struct zspage *zspage)
957 {
958 	struct page *cursor, *fail;
959 
960 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
961 					get_next_page(cursor)) {
962 		if (!trylock_page(cursor)) {
963 			fail = cursor;
964 			goto unlock;
965 		}
966 	}
967 
968 	return 1;
969 unlock:
970 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
971 					get_next_page(cursor))
972 		unlock_page(cursor);
973 
974 	return 0;
975 }
976 
977 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
978 				struct zspage *zspage)
979 {
980 	struct page *page, *next;
981 	enum fullness_group fg;
982 	unsigned int class_idx;
983 
984 	get_zspage_mapping(zspage, &class_idx, &fg);
985 
986 	assert_spin_locked(&class->lock);
987 
988 	VM_BUG_ON(get_zspage_inuse(zspage));
989 	VM_BUG_ON(fg != ZS_EMPTY);
990 
991 	next = page = get_first_page(zspage);
992 	do {
993 		VM_BUG_ON_PAGE(!PageLocked(page), page);
994 		next = get_next_page(page);
995 		reset_page(page);
996 		unlock_page(page);
997 		dec_zone_page_state(page, NR_ZSPAGES);
998 		put_page(page);
999 		page = next;
1000 	} while (page != NULL);
1001 
1002 	cache_free_zspage(pool, zspage);
1003 
1004 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1005 	atomic_long_sub(class->pages_per_zspage,
1006 					&pool->pages_allocated);
1007 }
1008 
1009 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1010 				struct zspage *zspage)
1011 {
1012 	VM_BUG_ON(get_zspage_inuse(zspage));
1013 	VM_BUG_ON(list_empty(&zspage->list));
1014 
1015 	if (!trylock_zspage(zspage)) {
1016 		kick_deferred_free(pool);
1017 		return;
1018 	}
1019 
1020 	remove_zspage(class, zspage, ZS_EMPTY);
1021 	__free_zspage(pool, class, zspage);
1022 }
1023 
1024 /* Initialize a newly allocated zspage */
1025 static void init_zspage(struct size_class *class, struct zspage *zspage)
1026 {
1027 	unsigned int freeobj = 1;
1028 	unsigned long off = 0;
1029 	struct page *page = get_first_page(zspage);
1030 
1031 	while (page) {
1032 		struct page *next_page;
1033 		struct link_free *link;
1034 		void *vaddr;
1035 
1036 		set_first_obj_offset(page, off);
1037 
1038 		vaddr = kmap_atomic(page);
1039 		link = (struct link_free *)vaddr + off / sizeof(*link);
1040 
1041 		while ((off += class->size) < PAGE_SIZE) {
1042 			link->next = freeobj++ << OBJ_TAG_BITS;
1043 			link += class->size / sizeof(*link);
1044 		}
1045 
1046 		/*
1047 		 * We now come to the last (full or partial) object on this
1048 		 * page, which must point to the first object on the next
1049 		 * page (if present)
1050 		 */
1051 		next_page = get_next_page(page);
1052 		if (next_page) {
1053 			link->next = freeobj++ << OBJ_TAG_BITS;
1054 		} else {
1055 			/*
1056 			 * Reset OBJ_TAG_BITS bit to last link to tell
1057 			 * whether it's allocated object or not.
1058 			 */
1059 			link->next = -1 << OBJ_TAG_BITS;
1060 		}
1061 		kunmap_atomic(vaddr);
1062 		page = next_page;
1063 		off %= PAGE_SIZE;
1064 	}
1065 
1066 	set_freeobj(zspage, 0);
1067 }
1068 
1069 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1070 				struct page *pages[])
1071 {
1072 	int i;
1073 	struct page *page;
1074 	struct page *prev_page = NULL;
1075 	int nr_pages = class->pages_per_zspage;
1076 
1077 	/*
1078 	 * Allocate individual pages and link them together as:
1079 	 * 1. all pages are linked together using page->freelist
1080 	 * 2. each sub-page point to zspage using page->private
1081 	 *
1082 	 * we set PG_private to identify the first page (i.e. no other sub-page
1083 	 * has this flag set).
1084 	 */
1085 	for (i = 0; i < nr_pages; i++) {
1086 		page = pages[i];
1087 		set_page_private(page, (unsigned long)zspage);
1088 		page->freelist = NULL;
1089 		if (i == 0) {
1090 			zspage->first_page = page;
1091 			SetPagePrivate(page);
1092 			if (unlikely(class->objs_per_zspage == 1 &&
1093 					class->pages_per_zspage == 1))
1094 				SetPageHugeObject(page);
1095 		} else {
1096 			prev_page->freelist = page;
1097 		}
1098 		prev_page = page;
1099 	}
1100 }
1101 
1102 /*
1103  * Allocate a zspage for the given size class
1104  */
1105 static struct zspage *alloc_zspage(struct zs_pool *pool,
1106 					struct size_class *class,
1107 					gfp_t gfp)
1108 {
1109 	int i;
1110 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1111 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1112 
1113 	if (!zspage)
1114 		return NULL;
1115 
1116 	memset(zspage, 0, sizeof(struct zspage));
1117 	zspage->magic = ZSPAGE_MAGIC;
1118 	migrate_lock_init(zspage);
1119 
1120 	for (i = 0; i < class->pages_per_zspage; i++) {
1121 		struct page *page;
1122 
1123 		page = alloc_page(gfp);
1124 		if (!page) {
1125 			while (--i >= 0) {
1126 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1127 				__free_page(pages[i]);
1128 			}
1129 			cache_free_zspage(pool, zspage);
1130 			return NULL;
1131 		}
1132 
1133 		inc_zone_page_state(page, NR_ZSPAGES);
1134 		pages[i] = page;
1135 	}
1136 
1137 	create_page_chain(class, zspage, pages);
1138 	init_zspage(class, zspage);
1139 
1140 	return zspage;
1141 }
1142 
1143 static struct zspage *find_get_zspage(struct size_class *class)
1144 {
1145 	int i;
1146 	struct zspage *zspage;
1147 
1148 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1149 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1150 				struct zspage, list);
1151 		if (zspage)
1152 			break;
1153 	}
1154 
1155 	return zspage;
1156 }
1157 
1158 #ifdef CONFIG_PGTABLE_MAPPING
1159 static inline int __zs_cpu_up(struct mapping_area *area)
1160 {
1161 	/*
1162 	 * Make sure we don't leak memory if a cpu UP notification
1163 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1164 	 */
1165 	if (area->vm)
1166 		return 0;
1167 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1168 	if (!area->vm)
1169 		return -ENOMEM;
1170 	return 0;
1171 }
1172 
1173 static inline void __zs_cpu_down(struct mapping_area *area)
1174 {
1175 	if (area->vm)
1176 		free_vm_area(area->vm);
1177 	area->vm = NULL;
1178 }
1179 
1180 static inline void *__zs_map_object(struct mapping_area *area,
1181 				struct page *pages[2], int off, int size)
1182 {
1183 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1184 	area->vm_addr = area->vm->addr;
1185 	return area->vm_addr + off;
1186 }
1187 
1188 static inline void __zs_unmap_object(struct mapping_area *area,
1189 				struct page *pages[2], int off, int size)
1190 {
1191 	unsigned long addr = (unsigned long)area->vm_addr;
1192 
1193 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1194 }
1195 
1196 #else /* CONFIG_PGTABLE_MAPPING */
1197 
1198 static inline int __zs_cpu_up(struct mapping_area *area)
1199 {
1200 	/*
1201 	 * Make sure we don't leak memory if a cpu UP notification
1202 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1203 	 */
1204 	if (area->vm_buf)
1205 		return 0;
1206 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1207 	if (!area->vm_buf)
1208 		return -ENOMEM;
1209 	return 0;
1210 }
1211 
1212 static inline void __zs_cpu_down(struct mapping_area *area)
1213 {
1214 	kfree(area->vm_buf);
1215 	area->vm_buf = NULL;
1216 }
1217 
1218 static void *__zs_map_object(struct mapping_area *area,
1219 			struct page *pages[2], int off, int size)
1220 {
1221 	int sizes[2];
1222 	void *addr;
1223 	char *buf = area->vm_buf;
1224 
1225 	/* disable page faults to match kmap_atomic() return conditions */
1226 	pagefault_disable();
1227 
1228 	/* no read fastpath */
1229 	if (area->vm_mm == ZS_MM_WO)
1230 		goto out;
1231 
1232 	sizes[0] = PAGE_SIZE - off;
1233 	sizes[1] = size - sizes[0];
1234 
1235 	/* copy object to per-cpu buffer */
1236 	addr = kmap_atomic(pages[0]);
1237 	memcpy(buf, addr + off, sizes[0]);
1238 	kunmap_atomic(addr);
1239 	addr = kmap_atomic(pages[1]);
1240 	memcpy(buf + sizes[0], addr, sizes[1]);
1241 	kunmap_atomic(addr);
1242 out:
1243 	return area->vm_buf;
1244 }
1245 
1246 static void __zs_unmap_object(struct mapping_area *area,
1247 			struct page *pages[2], int off, int size)
1248 {
1249 	int sizes[2];
1250 	void *addr;
1251 	char *buf;
1252 
1253 	/* no write fastpath */
1254 	if (area->vm_mm == ZS_MM_RO)
1255 		goto out;
1256 
1257 	buf = area->vm_buf;
1258 	buf = buf + ZS_HANDLE_SIZE;
1259 	size -= ZS_HANDLE_SIZE;
1260 	off += ZS_HANDLE_SIZE;
1261 
1262 	sizes[0] = PAGE_SIZE - off;
1263 	sizes[1] = size - sizes[0];
1264 
1265 	/* copy per-cpu buffer to object */
1266 	addr = kmap_atomic(pages[0]);
1267 	memcpy(addr + off, buf, sizes[0]);
1268 	kunmap_atomic(addr);
1269 	addr = kmap_atomic(pages[1]);
1270 	memcpy(addr, buf + sizes[0], sizes[1]);
1271 	kunmap_atomic(addr);
1272 
1273 out:
1274 	/* enable page faults to match kunmap_atomic() return conditions */
1275 	pagefault_enable();
1276 }
1277 
1278 #endif /* CONFIG_PGTABLE_MAPPING */
1279 
1280 static int zs_cpu_prepare(unsigned int cpu)
1281 {
1282 	struct mapping_area *area;
1283 
1284 	area = &per_cpu(zs_map_area, cpu);
1285 	return __zs_cpu_up(area);
1286 }
1287 
1288 static int zs_cpu_dead(unsigned int cpu)
1289 {
1290 	struct mapping_area *area;
1291 
1292 	area = &per_cpu(zs_map_area, cpu);
1293 	__zs_cpu_down(area);
1294 	return 0;
1295 }
1296 
1297 static void __init init_zs_size_classes(void)
1298 {
1299 	int nr;
1300 
1301 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1302 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1303 		nr += 1;
1304 
1305 	zs_size_classes = nr;
1306 }
1307 
1308 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1309 					int objs_per_zspage)
1310 {
1311 	if (prev->pages_per_zspage == pages_per_zspage &&
1312 		prev->objs_per_zspage == objs_per_zspage)
1313 		return true;
1314 
1315 	return false;
1316 }
1317 
1318 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1319 {
1320 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1321 }
1322 
1323 unsigned long zs_get_total_pages(struct zs_pool *pool)
1324 {
1325 	return atomic_long_read(&pool->pages_allocated);
1326 }
1327 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1328 
1329 /**
1330  * zs_map_object - get address of allocated object from handle.
1331  * @pool: pool from which the object was allocated
1332  * @handle: handle returned from zs_malloc
1333  *
1334  * Before using an object allocated from zs_malloc, it must be mapped using
1335  * this function. When done with the object, it must be unmapped using
1336  * zs_unmap_object.
1337  *
1338  * Only one object can be mapped per cpu at a time. There is no protection
1339  * against nested mappings.
1340  *
1341  * This function returns with preemption and page faults disabled.
1342  */
1343 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1344 			enum zs_mapmode mm)
1345 {
1346 	struct zspage *zspage;
1347 	struct page *page;
1348 	unsigned long obj, off;
1349 	unsigned int obj_idx;
1350 
1351 	unsigned int class_idx;
1352 	enum fullness_group fg;
1353 	struct size_class *class;
1354 	struct mapping_area *area;
1355 	struct page *pages[2];
1356 	void *ret;
1357 
1358 	/*
1359 	 * Because we use per-cpu mapping areas shared among the
1360 	 * pools/users, we can't allow mapping in interrupt context
1361 	 * because it can corrupt another users mappings.
1362 	 */
1363 	WARN_ON_ONCE(in_interrupt());
1364 
1365 	/* From now on, migration cannot move the object */
1366 	pin_tag(handle);
1367 
1368 	obj = handle_to_obj(handle);
1369 	obj_to_location(obj, &page, &obj_idx);
1370 	zspage = get_zspage(page);
1371 
1372 	/* migration cannot move any subpage in this zspage */
1373 	migrate_read_lock(zspage);
1374 
1375 	get_zspage_mapping(zspage, &class_idx, &fg);
1376 	class = pool->size_class[class_idx];
1377 	off = (class->size * obj_idx) & ~PAGE_MASK;
1378 
1379 	area = &get_cpu_var(zs_map_area);
1380 	area->vm_mm = mm;
1381 	if (off + class->size <= PAGE_SIZE) {
1382 		/* this object is contained entirely within a page */
1383 		area->vm_addr = kmap_atomic(page);
1384 		ret = area->vm_addr + off;
1385 		goto out;
1386 	}
1387 
1388 	/* this object spans two pages */
1389 	pages[0] = page;
1390 	pages[1] = get_next_page(page);
1391 	BUG_ON(!pages[1]);
1392 
1393 	ret = __zs_map_object(area, pages, off, class->size);
1394 out:
1395 	if (likely(!PageHugeObject(page)))
1396 		ret += ZS_HANDLE_SIZE;
1397 
1398 	return ret;
1399 }
1400 EXPORT_SYMBOL_GPL(zs_map_object);
1401 
1402 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1403 {
1404 	struct zspage *zspage;
1405 	struct page *page;
1406 	unsigned long obj, off;
1407 	unsigned int obj_idx;
1408 
1409 	unsigned int class_idx;
1410 	enum fullness_group fg;
1411 	struct size_class *class;
1412 	struct mapping_area *area;
1413 
1414 	obj = handle_to_obj(handle);
1415 	obj_to_location(obj, &page, &obj_idx);
1416 	zspage = get_zspage(page);
1417 	get_zspage_mapping(zspage, &class_idx, &fg);
1418 	class = pool->size_class[class_idx];
1419 	off = (class->size * obj_idx) & ~PAGE_MASK;
1420 
1421 	area = this_cpu_ptr(&zs_map_area);
1422 	if (off + class->size <= PAGE_SIZE)
1423 		kunmap_atomic(area->vm_addr);
1424 	else {
1425 		struct page *pages[2];
1426 
1427 		pages[0] = page;
1428 		pages[1] = get_next_page(page);
1429 		BUG_ON(!pages[1]);
1430 
1431 		__zs_unmap_object(area, pages, off, class->size);
1432 	}
1433 	put_cpu_var(zs_map_area);
1434 
1435 	migrate_read_unlock(zspage);
1436 	unpin_tag(handle);
1437 }
1438 EXPORT_SYMBOL_GPL(zs_unmap_object);
1439 
1440 static unsigned long obj_malloc(struct size_class *class,
1441 				struct zspage *zspage, unsigned long handle)
1442 {
1443 	int i, nr_page, offset;
1444 	unsigned long obj;
1445 	struct link_free *link;
1446 
1447 	struct page *m_page;
1448 	unsigned long m_offset;
1449 	void *vaddr;
1450 
1451 	handle |= OBJ_ALLOCATED_TAG;
1452 	obj = get_freeobj(zspage);
1453 
1454 	offset = obj * class->size;
1455 	nr_page = offset >> PAGE_SHIFT;
1456 	m_offset = offset & ~PAGE_MASK;
1457 	m_page = get_first_page(zspage);
1458 
1459 	for (i = 0; i < nr_page; i++)
1460 		m_page = get_next_page(m_page);
1461 
1462 	vaddr = kmap_atomic(m_page);
1463 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1464 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1465 	if (likely(!PageHugeObject(m_page)))
1466 		/* record handle in the header of allocated chunk */
1467 		link->handle = handle;
1468 	else
1469 		/* record handle to page->index */
1470 		zspage->first_page->index = handle;
1471 
1472 	kunmap_atomic(vaddr);
1473 	mod_zspage_inuse(zspage, 1);
1474 	zs_stat_inc(class, OBJ_USED, 1);
1475 
1476 	obj = location_to_obj(m_page, obj);
1477 
1478 	return obj;
1479 }
1480 
1481 
1482 /**
1483  * zs_malloc - Allocate block of given size from pool.
1484  * @pool: pool to allocate from
1485  * @size: size of block to allocate
1486  * @gfp: gfp flags when allocating object
1487  *
1488  * On success, handle to the allocated object is returned,
1489  * otherwise 0.
1490  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1491  */
1492 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1493 {
1494 	unsigned long handle, obj;
1495 	struct size_class *class;
1496 	enum fullness_group newfg;
1497 	struct zspage *zspage;
1498 
1499 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1500 		return 0;
1501 
1502 	handle = cache_alloc_handle(pool, gfp);
1503 	if (!handle)
1504 		return 0;
1505 
1506 	/* extra space in chunk to keep the handle */
1507 	size += ZS_HANDLE_SIZE;
1508 	class = pool->size_class[get_size_class_index(size)];
1509 
1510 	spin_lock(&class->lock);
1511 	zspage = find_get_zspage(class);
1512 	if (likely(zspage)) {
1513 		obj = obj_malloc(class, zspage, handle);
1514 		/* Now move the zspage to another fullness group, if required */
1515 		fix_fullness_group(class, zspage);
1516 		record_obj(handle, obj);
1517 		spin_unlock(&class->lock);
1518 
1519 		return handle;
1520 	}
1521 
1522 	spin_unlock(&class->lock);
1523 
1524 	zspage = alloc_zspage(pool, class, gfp);
1525 	if (!zspage) {
1526 		cache_free_handle(pool, handle);
1527 		return 0;
1528 	}
1529 
1530 	spin_lock(&class->lock);
1531 	obj = obj_malloc(class, zspage, handle);
1532 	newfg = get_fullness_group(class, zspage);
1533 	insert_zspage(class, zspage, newfg);
1534 	set_zspage_mapping(zspage, class->index, newfg);
1535 	record_obj(handle, obj);
1536 	atomic_long_add(class->pages_per_zspage,
1537 				&pool->pages_allocated);
1538 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1539 
1540 	/* We completely set up zspage so mark them as movable */
1541 	SetZsPageMovable(pool, zspage);
1542 	spin_unlock(&class->lock);
1543 
1544 	return handle;
1545 }
1546 EXPORT_SYMBOL_GPL(zs_malloc);
1547 
1548 static void obj_free(struct size_class *class, unsigned long obj)
1549 {
1550 	struct link_free *link;
1551 	struct zspage *zspage;
1552 	struct page *f_page;
1553 	unsigned long f_offset;
1554 	unsigned int f_objidx;
1555 	void *vaddr;
1556 
1557 	obj &= ~OBJ_ALLOCATED_TAG;
1558 	obj_to_location(obj, &f_page, &f_objidx);
1559 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1560 	zspage = get_zspage(f_page);
1561 
1562 	vaddr = kmap_atomic(f_page);
1563 
1564 	/* Insert this object in containing zspage's freelist */
1565 	link = (struct link_free *)(vaddr + f_offset);
1566 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1567 	kunmap_atomic(vaddr);
1568 	set_freeobj(zspage, f_objidx);
1569 	mod_zspage_inuse(zspage, -1);
1570 	zs_stat_dec(class, OBJ_USED, 1);
1571 }
1572 
1573 void zs_free(struct zs_pool *pool, unsigned long handle)
1574 {
1575 	struct zspage *zspage;
1576 	struct page *f_page;
1577 	unsigned long obj;
1578 	unsigned int f_objidx;
1579 	int class_idx;
1580 	struct size_class *class;
1581 	enum fullness_group fullness;
1582 	bool isolated;
1583 
1584 	if (unlikely(!handle))
1585 		return;
1586 
1587 	pin_tag(handle);
1588 	obj = handle_to_obj(handle);
1589 	obj_to_location(obj, &f_page, &f_objidx);
1590 	zspage = get_zspage(f_page);
1591 
1592 	migrate_read_lock(zspage);
1593 
1594 	get_zspage_mapping(zspage, &class_idx, &fullness);
1595 	class = pool->size_class[class_idx];
1596 
1597 	spin_lock(&class->lock);
1598 	obj_free(class, obj);
1599 	fullness = fix_fullness_group(class, zspage);
1600 	if (fullness != ZS_EMPTY) {
1601 		migrate_read_unlock(zspage);
1602 		goto out;
1603 	}
1604 
1605 	isolated = is_zspage_isolated(zspage);
1606 	migrate_read_unlock(zspage);
1607 	/* If zspage is isolated, zs_page_putback will free the zspage */
1608 	if (likely(!isolated))
1609 		free_zspage(pool, class, zspage);
1610 out:
1611 
1612 	spin_unlock(&class->lock);
1613 	unpin_tag(handle);
1614 	cache_free_handle(pool, handle);
1615 }
1616 EXPORT_SYMBOL_GPL(zs_free);
1617 
1618 static void zs_object_copy(struct size_class *class, unsigned long dst,
1619 				unsigned long src)
1620 {
1621 	struct page *s_page, *d_page;
1622 	unsigned int s_objidx, d_objidx;
1623 	unsigned long s_off, d_off;
1624 	void *s_addr, *d_addr;
1625 	int s_size, d_size, size;
1626 	int written = 0;
1627 
1628 	s_size = d_size = class->size;
1629 
1630 	obj_to_location(src, &s_page, &s_objidx);
1631 	obj_to_location(dst, &d_page, &d_objidx);
1632 
1633 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1634 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1635 
1636 	if (s_off + class->size > PAGE_SIZE)
1637 		s_size = PAGE_SIZE - s_off;
1638 
1639 	if (d_off + class->size > PAGE_SIZE)
1640 		d_size = PAGE_SIZE - d_off;
1641 
1642 	s_addr = kmap_atomic(s_page);
1643 	d_addr = kmap_atomic(d_page);
1644 
1645 	while (1) {
1646 		size = min(s_size, d_size);
1647 		memcpy(d_addr + d_off, s_addr + s_off, size);
1648 		written += size;
1649 
1650 		if (written == class->size)
1651 			break;
1652 
1653 		s_off += size;
1654 		s_size -= size;
1655 		d_off += size;
1656 		d_size -= size;
1657 
1658 		if (s_off >= PAGE_SIZE) {
1659 			kunmap_atomic(d_addr);
1660 			kunmap_atomic(s_addr);
1661 			s_page = get_next_page(s_page);
1662 			s_addr = kmap_atomic(s_page);
1663 			d_addr = kmap_atomic(d_page);
1664 			s_size = class->size - written;
1665 			s_off = 0;
1666 		}
1667 
1668 		if (d_off >= PAGE_SIZE) {
1669 			kunmap_atomic(d_addr);
1670 			d_page = get_next_page(d_page);
1671 			d_addr = kmap_atomic(d_page);
1672 			d_size = class->size - written;
1673 			d_off = 0;
1674 		}
1675 	}
1676 
1677 	kunmap_atomic(d_addr);
1678 	kunmap_atomic(s_addr);
1679 }
1680 
1681 /*
1682  * Find alloced object in zspage from index object and
1683  * return handle.
1684  */
1685 static unsigned long find_alloced_obj(struct size_class *class,
1686 					struct page *page, int *obj_idx)
1687 {
1688 	unsigned long head;
1689 	int offset = 0;
1690 	int index = *obj_idx;
1691 	unsigned long handle = 0;
1692 	void *addr = kmap_atomic(page);
1693 
1694 	offset = get_first_obj_offset(page);
1695 	offset += class->size * index;
1696 
1697 	while (offset < PAGE_SIZE) {
1698 		head = obj_to_head(page, addr + offset);
1699 		if (head & OBJ_ALLOCATED_TAG) {
1700 			handle = head & ~OBJ_ALLOCATED_TAG;
1701 			if (trypin_tag(handle))
1702 				break;
1703 			handle = 0;
1704 		}
1705 
1706 		offset += class->size;
1707 		index++;
1708 	}
1709 
1710 	kunmap_atomic(addr);
1711 
1712 	*obj_idx = index;
1713 
1714 	return handle;
1715 }
1716 
1717 struct zs_compact_control {
1718 	/* Source spage for migration which could be a subpage of zspage */
1719 	struct page *s_page;
1720 	/* Destination page for migration which should be a first page
1721 	 * of zspage. */
1722 	struct page *d_page;
1723 	 /* Starting object index within @s_page which used for live object
1724 	  * in the subpage. */
1725 	int obj_idx;
1726 };
1727 
1728 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1729 				struct zs_compact_control *cc)
1730 {
1731 	unsigned long used_obj, free_obj;
1732 	unsigned long handle;
1733 	struct page *s_page = cc->s_page;
1734 	struct page *d_page = cc->d_page;
1735 	int obj_idx = cc->obj_idx;
1736 	int ret = 0;
1737 
1738 	while (1) {
1739 		handle = find_alloced_obj(class, s_page, &obj_idx);
1740 		if (!handle) {
1741 			s_page = get_next_page(s_page);
1742 			if (!s_page)
1743 				break;
1744 			obj_idx = 0;
1745 			continue;
1746 		}
1747 
1748 		/* Stop if there is no more space */
1749 		if (zspage_full(class, get_zspage(d_page))) {
1750 			unpin_tag(handle);
1751 			ret = -ENOMEM;
1752 			break;
1753 		}
1754 
1755 		used_obj = handle_to_obj(handle);
1756 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1757 		zs_object_copy(class, free_obj, used_obj);
1758 		obj_idx++;
1759 		/*
1760 		 * record_obj updates handle's value to free_obj and it will
1761 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1762 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1763 		 * let's keep the lock bit.
1764 		 */
1765 		free_obj |= BIT(HANDLE_PIN_BIT);
1766 		record_obj(handle, free_obj);
1767 		unpin_tag(handle);
1768 		obj_free(class, used_obj);
1769 	}
1770 
1771 	/* Remember last position in this iteration */
1772 	cc->s_page = s_page;
1773 	cc->obj_idx = obj_idx;
1774 
1775 	return ret;
1776 }
1777 
1778 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1779 {
1780 	int i;
1781 	struct zspage *zspage;
1782 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1783 
1784 	if (!source) {
1785 		fg[0] = ZS_ALMOST_FULL;
1786 		fg[1] = ZS_ALMOST_EMPTY;
1787 	}
1788 
1789 	for (i = 0; i < 2; i++) {
1790 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1791 							struct zspage, list);
1792 		if (zspage) {
1793 			VM_BUG_ON(is_zspage_isolated(zspage));
1794 			remove_zspage(class, zspage, fg[i]);
1795 			return zspage;
1796 		}
1797 	}
1798 
1799 	return zspage;
1800 }
1801 
1802 /*
1803  * putback_zspage - add @zspage into right class's fullness list
1804  * @class: destination class
1805  * @zspage: target page
1806  *
1807  * Return @zspage's fullness_group
1808  */
1809 static enum fullness_group putback_zspage(struct size_class *class,
1810 			struct zspage *zspage)
1811 {
1812 	enum fullness_group fullness;
1813 
1814 	VM_BUG_ON(is_zspage_isolated(zspage));
1815 
1816 	fullness = get_fullness_group(class, zspage);
1817 	insert_zspage(class, zspage, fullness);
1818 	set_zspage_mapping(zspage, class->index, fullness);
1819 
1820 	return fullness;
1821 }
1822 
1823 #ifdef CONFIG_COMPACTION
1824 static struct dentry *zs_mount(struct file_system_type *fs_type,
1825 				int flags, const char *dev_name, void *data)
1826 {
1827 	static const struct dentry_operations ops = {
1828 		.d_dname = simple_dname,
1829 	};
1830 
1831 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1832 }
1833 
1834 static struct file_system_type zsmalloc_fs = {
1835 	.name		= "zsmalloc",
1836 	.mount		= zs_mount,
1837 	.kill_sb	= kill_anon_super,
1838 };
1839 
1840 static int zsmalloc_mount(void)
1841 {
1842 	int ret = 0;
1843 
1844 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1845 	if (IS_ERR(zsmalloc_mnt))
1846 		ret = PTR_ERR(zsmalloc_mnt);
1847 
1848 	return ret;
1849 }
1850 
1851 static void zsmalloc_unmount(void)
1852 {
1853 	kern_unmount(zsmalloc_mnt);
1854 }
1855 
1856 static void migrate_lock_init(struct zspage *zspage)
1857 {
1858 	rwlock_init(&zspage->lock);
1859 }
1860 
1861 static void migrate_read_lock(struct zspage *zspage)
1862 {
1863 	read_lock(&zspage->lock);
1864 }
1865 
1866 static void migrate_read_unlock(struct zspage *zspage)
1867 {
1868 	read_unlock(&zspage->lock);
1869 }
1870 
1871 static void migrate_write_lock(struct zspage *zspage)
1872 {
1873 	write_lock(&zspage->lock);
1874 }
1875 
1876 static void migrate_write_unlock(struct zspage *zspage)
1877 {
1878 	write_unlock(&zspage->lock);
1879 }
1880 
1881 /* Number of isolated subpage for *page migration* in this zspage */
1882 static void inc_zspage_isolation(struct zspage *zspage)
1883 {
1884 	zspage->isolated++;
1885 }
1886 
1887 static void dec_zspage_isolation(struct zspage *zspage)
1888 {
1889 	zspage->isolated--;
1890 }
1891 
1892 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1893 				struct page *newpage, struct page *oldpage)
1894 {
1895 	struct page *page;
1896 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1897 	int idx = 0;
1898 
1899 	page = get_first_page(zspage);
1900 	do {
1901 		if (page == oldpage)
1902 			pages[idx] = newpage;
1903 		else
1904 			pages[idx] = page;
1905 		idx++;
1906 	} while ((page = get_next_page(page)) != NULL);
1907 
1908 	create_page_chain(class, zspage, pages);
1909 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1910 	if (unlikely(PageHugeObject(oldpage)))
1911 		newpage->index = oldpage->index;
1912 	__SetPageMovable(newpage, page_mapping(oldpage));
1913 }
1914 
1915 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1916 {
1917 	struct zs_pool *pool;
1918 	struct size_class *class;
1919 	int class_idx;
1920 	enum fullness_group fullness;
1921 	struct zspage *zspage;
1922 	struct address_space *mapping;
1923 
1924 	/*
1925 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926 	 * lock_zspage in free_zspage.
1927 	 */
1928 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1929 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1930 
1931 	zspage = get_zspage(page);
1932 
1933 	/*
1934 	 * Without class lock, fullness could be stale while class_idx is okay
1935 	 * because class_idx is constant unless page is freed so we should get
1936 	 * fullness again under class lock.
1937 	 */
1938 	get_zspage_mapping(zspage, &class_idx, &fullness);
1939 	mapping = page_mapping(page);
1940 	pool = mapping->private_data;
1941 	class = pool->size_class[class_idx];
1942 
1943 	spin_lock(&class->lock);
1944 	if (get_zspage_inuse(zspage) == 0) {
1945 		spin_unlock(&class->lock);
1946 		return false;
1947 	}
1948 
1949 	/* zspage is isolated for object migration */
1950 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1951 		spin_unlock(&class->lock);
1952 		return false;
1953 	}
1954 
1955 	/*
1956 	 * If this is first time isolation for the zspage, isolate zspage from
1957 	 * size_class to prevent further object allocation from the zspage.
1958 	 */
1959 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1960 		get_zspage_mapping(zspage, &class_idx, &fullness);
1961 		remove_zspage(class, zspage, fullness);
1962 	}
1963 
1964 	inc_zspage_isolation(zspage);
1965 	spin_unlock(&class->lock);
1966 
1967 	return true;
1968 }
1969 
1970 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1971 		struct page *page, enum migrate_mode mode)
1972 {
1973 	struct zs_pool *pool;
1974 	struct size_class *class;
1975 	int class_idx;
1976 	enum fullness_group fullness;
1977 	struct zspage *zspage;
1978 	struct page *dummy;
1979 	void *s_addr, *d_addr, *addr;
1980 	int offset, pos;
1981 	unsigned long handle, head;
1982 	unsigned long old_obj, new_obj;
1983 	unsigned int obj_idx;
1984 	int ret = -EAGAIN;
1985 
1986 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988 
1989 	zspage = get_zspage(page);
1990 
1991 	/* Concurrent compactor cannot migrate any subpage in zspage */
1992 	migrate_write_lock(zspage);
1993 	get_zspage_mapping(zspage, &class_idx, &fullness);
1994 	pool = mapping->private_data;
1995 	class = pool->size_class[class_idx];
1996 	offset = get_first_obj_offset(page);
1997 
1998 	spin_lock(&class->lock);
1999 	if (!get_zspage_inuse(zspage)) {
2000 		ret = -EBUSY;
2001 		goto unlock_class;
2002 	}
2003 
2004 	pos = offset;
2005 	s_addr = kmap_atomic(page);
2006 	while (pos < PAGE_SIZE) {
2007 		head = obj_to_head(page, s_addr + pos);
2008 		if (head & OBJ_ALLOCATED_TAG) {
2009 			handle = head & ~OBJ_ALLOCATED_TAG;
2010 			if (!trypin_tag(handle))
2011 				goto unpin_objects;
2012 		}
2013 		pos += class->size;
2014 	}
2015 
2016 	/*
2017 	 * Here, any user cannot access all objects in the zspage so let's move.
2018 	 */
2019 	d_addr = kmap_atomic(newpage);
2020 	memcpy(d_addr, s_addr, PAGE_SIZE);
2021 	kunmap_atomic(d_addr);
2022 
2023 	for (addr = s_addr + offset; addr < s_addr + pos;
2024 					addr += class->size) {
2025 		head = obj_to_head(page, addr);
2026 		if (head & OBJ_ALLOCATED_TAG) {
2027 			handle = head & ~OBJ_ALLOCATED_TAG;
2028 			if (!testpin_tag(handle))
2029 				BUG();
2030 
2031 			old_obj = handle_to_obj(handle);
2032 			obj_to_location(old_obj, &dummy, &obj_idx);
2033 			new_obj = (unsigned long)location_to_obj(newpage,
2034 								obj_idx);
2035 			new_obj |= BIT(HANDLE_PIN_BIT);
2036 			record_obj(handle, new_obj);
2037 		}
2038 	}
2039 
2040 	replace_sub_page(class, zspage, newpage, page);
2041 	get_page(newpage);
2042 
2043 	dec_zspage_isolation(zspage);
2044 
2045 	/*
2046 	 * Page migration is done so let's putback isolated zspage to
2047 	 * the list if @page is final isolated subpage in the zspage.
2048 	 */
2049 	if (!is_zspage_isolated(zspage))
2050 		putback_zspage(class, zspage);
2051 
2052 	reset_page(page);
2053 	put_page(page);
2054 	page = newpage;
2055 
2056 	ret = MIGRATEPAGE_SUCCESS;
2057 unpin_objects:
2058 	for (addr = s_addr + offset; addr < s_addr + pos;
2059 						addr += class->size) {
2060 		head = obj_to_head(page, addr);
2061 		if (head & OBJ_ALLOCATED_TAG) {
2062 			handle = head & ~OBJ_ALLOCATED_TAG;
2063 			if (!testpin_tag(handle))
2064 				BUG();
2065 			unpin_tag(handle);
2066 		}
2067 	}
2068 	kunmap_atomic(s_addr);
2069 unlock_class:
2070 	spin_unlock(&class->lock);
2071 	migrate_write_unlock(zspage);
2072 
2073 	return ret;
2074 }
2075 
2076 void zs_page_putback(struct page *page)
2077 {
2078 	struct zs_pool *pool;
2079 	struct size_class *class;
2080 	int class_idx;
2081 	enum fullness_group fg;
2082 	struct address_space *mapping;
2083 	struct zspage *zspage;
2084 
2085 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087 
2088 	zspage = get_zspage(page);
2089 	get_zspage_mapping(zspage, &class_idx, &fg);
2090 	mapping = page_mapping(page);
2091 	pool = mapping->private_data;
2092 	class = pool->size_class[class_idx];
2093 
2094 	spin_lock(&class->lock);
2095 	dec_zspage_isolation(zspage);
2096 	if (!is_zspage_isolated(zspage)) {
2097 		fg = putback_zspage(class, zspage);
2098 		/*
2099 		 * Due to page_lock, we cannot free zspage immediately
2100 		 * so let's defer.
2101 		 */
2102 		if (fg == ZS_EMPTY)
2103 			schedule_work(&pool->free_work);
2104 	}
2105 	spin_unlock(&class->lock);
2106 }
2107 
2108 const struct address_space_operations zsmalloc_aops = {
2109 	.isolate_page = zs_page_isolate,
2110 	.migratepage = zs_page_migrate,
2111 	.putback_page = zs_page_putback,
2112 };
2113 
2114 static int zs_register_migration(struct zs_pool *pool)
2115 {
2116 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 	if (IS_ERR(pool->inode)) {
2118 		pool->inode = NULL;
2119 		return 1;
2120 	}
2121 
2122 	pool->inode->i_mapping->private_data = pool;
2123 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 	return 0;
2125 }
2126 
2127 static void zs_unregister_migration(struct zs_pool *pool)
2128 {
2129 	flush_work(&pool->free_work);
2130 	iput(pool->inode);
2131 }
2132 
2133 /*
2134  * Caller should hold page_lock of all pages in the zspage
2135  * In here, we cannot use zspage meta data.
2136  */
2137 static void async_free_zspage(struct work_struct *work)
2138 {
2139 	int i;
2140 	struct size_class *class;
2141 	unsigned int class_idx;
2142 	enum fullness_group fullness;
2143 	struct zspage *zspage, *tmp;
2144 	LIST_HEAD(free_pages);
2145 	struct zs_pool *pool = container_of(work, struct zs_pool,
2146 					free_work);
2147 
2148 	for (i = 0; i < zs_size_classes; i++) {
2149 		class = pool->size_class[i];
2150 		if (class->index != i)
2151 			continue;
2152 
2153 		spin_lock(&class->lock);
2154 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 		spin_unlock(&class->lock);
2156 	}
2157 
2158 
2159 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 		list_del(&zspage->list);
2161 		lock_zspage(zspage);
2162 
2163 		get_zspage_mapping(zspage, &class_idx, &fullness);
2164 		VM_BUG_ON(fullness != ZS_EMPTY);
2165 		class = pool->size_class[class_idx];
2166 		spin_lock(&class->lock);
2167 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2168 		spin_unlock(&class->lock);
2169 	}
2170 };
2171 
2172 static void kick_deferred_free(struct zs_pool *pool)
2173 {
2174 	schedule_work(&pool->free_work);
2175 }
2176 
2177 static void init_deferred_free(struct zs_pool *pool)
2178 {
2179 	INIT_WORK(&pool->free_work, async_free_zspage);
2180 }
2181 
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183 {
2184 	struct page *page = get_first_page(zspage);
2185 
2186 	do {
2187 		WARN_ON(!trylock_page(page));
2188 		__SetPageMovable(page, pool->inode->i_mapping);
2189 		unlock_page(page);
2190 	} while ((page = get_next_page(page)) != NULL);
2191 }
2192 #endif
2193 
2194 /*
2195  *
2196  * Based on the number of unused allocated objects calculate
2197  * and return the number of pages that we can free.
2198  */
2199 static unsigned long zs_can_compact(struct size_class *class)
2200 {
2201 	unsigned long obj_wasted;
2202 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2204 
2205 	if (obj_allocated <= obj_used)
2206 		return 0;
2207 
2208 	obj_wasted = obj_allocated - obj_used;
2209 	obj_wasted /= class->objs_per_zspage;
2210 
2211 	return obj_wasted * class->pages_per_zspage;
2212 }
2213 
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2215 {
2216 	struct zs_compact_control cc;
2217 	struct zspage *src_zspage;
2218 	struct zspage *dst_zspage = NULL;
2219 
2220 	spin_lock(&class->lock);
2221 	while ((src_zspage = isolate_zspage(class, true))) {
2222 
2223 		if (!zs_can_compact(class))
2224 			break;
2225 
2226 		cc.obj_idx = 0;
2227 		cc.s_page = get_first_page(src_zspage);
2228 
2229 		while ((dst_zspage = isolate_zspage(class, false))) {
2230 			cc.d_page = get_first_page(dst_zspage);
2231 			/*
2232 			 * If there is no more space in dst_page, resched
2233 			 * and see if anyone had allocated another zspage.
2234 			 */
2235 			if (!migrate_zspage(pool, class, &cc))
2236 				break;
2237 
2238 			putback_zspage(class, dst_zspage);
2239 		}
2240 
2241 		/* Stop if we couldn't find slot */
2242 		if (dst_zspage == NULL)
2243 			break;
2244 
2245 		putback_zspage(class, dst_zspage);
2246 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 			free_zspage(pool, class, src_zspage);
2248 			pool->stats.pages_compacted += class->pages_per_zspage;
2249 		}
2250 		spin_unlock(&class->lock);
2251 		cond_resched();
2252 		spin_lock(&class->lock);
2253 	}
2254 
2255 	if (src_zspage)
2256 		putback_zspage(class, src_zspage);
2257 
2258 	spin_unlock(&class->lock);
2259 }
2260 
2261 unsigned long zs_compact(struct zs_pool *pool)
2262 {
2263 	int i;
2264 	struct size_class *class;
2265 
2266 	for (i = zs_size_classes - 1; i >= 0; i--) {
2267 		class = pool->size_class[i];
2268 		if (!class)
2269 			continue;
2270 		if (class->index != i)
2271 			continue;
2272 		__zs_compact(pool, class);
2273 	}
2274 
2275 	return pool->stats.pages_compacted;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278 
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284 
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 		struct shrink_control *sc)
2287 {
2288 	unsigned long pages_freed;
2289 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 			shrinker);
2291 
2292 	pages_freed = pool->stats.pages_compacted;
2293 	/*
2294 	 * Compact classes and calculate compaction delta.
2295 	 * Can run concurrently with a manually triggered
2296 	 * (by user) compaction.
2297 	 */
2298 	pages_freed = zs_compact(pool) - pages_freed;
2299 
2300 	return pages_freed ? pages_freed : SHRINK_STOP;
2301 }
2302 
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 		struct shrink_control *sc)
2305 {
2306 	int i;
2307 	struct size_class *class;
2308 	unsigned long pages_to_free = 0;
2309 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 			shrinker);
2311 
2312 	for (i = zs_size_classes - 1; i >= 0; i--) {
2313 		class = pool->size_class[i];
2314 		if (!class)
2315 			continue;
2316 		if (class->index != i)
2317 			continue;
2318 
2319 		pages_to_free += zs_can_compact(class);
2320 	}
2321 
2322 	return pages_to_free;
2323 }
2324 
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327 	if (pool->shrinker_enabled) {
2328 		unregister_shrinker(&pool->shrinker);
2329 		pool->shrinker_enabled = false;
2330 	}
2331 }
2332 
2333 static int zs_register_shrinker(struct zs_pool *pool)
2334 {
2335 	pool->shrinker.scan_objects = zs_shrinker_scan;
2336 	pool->shrinker.count_objects = zs_shrinker_count;
2337 	pool->shrinker.batch = 0;
2338 	pool->shrinker.seeks = DEFAULT_SEEKS;
2339 
2340 	return register_shrinker(&pool->shrinker);
2341 }
2342 
2343 /**
2344  * zs_create_pool - Creates an allocation pool to work from.
2345  * @name: pool name to be created
2346  *
2347  * This function must be called before anything when using
2348  * the zsmalloc allocator.
2349  *
2350  * On success, a pointer to the newly created pool is returned,
2351  * otherwise NULL.
2352  */
2353 struct zs_pool *zs_create_pool(const char *name)
2354 {
2355 	int i;
2356 	struct zs_pool *pool;
2357 	struct size_class *prev_class = NULL;
2358 
2359 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 	if (!pool)
2361 		return NULL;
2362 
2363 	init_deferred_free(pool);
2364 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2365 			GFP_KERNEL);
2366 	if (!pool->size_class) {
2367 		kfree(pool);
2368 		return NULL;
2369 	}
2370 
2371 	pool->name = kstrdup(name, GFP_KERNEL);
2372 	if (!pool->name)
2373 		goto err;
2374 
2375 	if (create_cache(pool))
2376 		goto err;
2377 
2378 	/*
2379 	 * Iterate reversely, because, size of size_class that we want to use
2380 	 * for merging should be larger or equal to current size.
2381 	 */
2382 	for (i = zs_size_classes - 1; i >= 0; i--) {
2383 		int size;
2384 		int pages_per_zspage;
2385 		int objs_per_zspage;
2386 		struct size_class *class;
2387 		int fullness = 0;
2388 
2389 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2390 		if (size > ZS_MAX_ALLOC_SIZE)
2391 			size = ZS_MAX_ALLOC_SIZE;
2392 		pages_per_zspage = get_pages_per_zspage(size);
2393 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2394 
2395 		/*
2396 		 * size_class is used for normal zsmalloc operation such
2397 		 * as alloc/free for that size. Although it is natural that we
2398 		 * have one size_class for each size, there is a chance that we
2399 		 * can get more memory utilization if we use one size_class for
2400 		 * many different sizes whose size_class have same
2401 		 * characteristics. So, we makes size_class point to
2402 		 * previous size_class if possible.
2403 		 */
2404 		if (prev_class) {
2405 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2406 				pool->size_class[i] = prev_class;
2407 				continue;
2408 			}
2409 		}
2410 
2411 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2412 		if (!class)
2413 			goto err;
2414 
2415 		class->size = size;
2416 		class->index = i;
2417 		class->pages_per_zspage = pages_per_zspage;
2418 		class->objs_per_zspage = objs_per_zspage;
2419 		spin_lock_init(&class->lock);
2420 		pool->size_class[i] = class;
2421 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2422 							fullness++)
2423 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2424 
2425 		prev_class = class;
2426 	}
2427 
2428 	/* debug only, don't abort if it fails */
2429 	zs_pool_stat_create(pool, name);
2430 
2431 	if (zs_register_migration(pool))
2432 		goto err;
2433 
2434 	/*
2435 	 * Not critical, we still can use the pool
2436 	 * and user can trigger compaction manually.
2437 	 */
2438 	if (zs_register_shrinker(pool) == 0)
2439 		pool->shrinker_enabled = true;
2440 	return pool;
2441 
2442 err:
2443 	zs_destroy_pool(pool);
2444 	return NULL;
2445 }
2446 EXPORT_SYMBOL_GPL(zs_create_pool);
2447 
2448 void zs_destroy_pool(struct zs_pool *pool)
2449 {
2450 	int i;
2451 
2452 	zs_unregister_shrinker(pool);
2453 	zs_unregister_migration(pool);
2454 	zs_pool_stat_destroy(pool);
2455 
2456 	for (i = 0; i < zs_size_classes; i++) {
2457 		int fg;
2458 		struct size_class *class = pool->size_class[i];
2459 
2460 		if (!class)
2461 			continue;
2462 
2463 		if (class->index != i)
2464 			continue;
2465 
2466 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2467 			if (!list_empty(&class->fullness_list[fg])) {
2468 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2469 					class->size, fg);
2470 			}
2471 		}
2472 		kfree(class);
2473 	}
2474 
2475 	destroy_cache(pool);
2476 	kfree(pool->size_class);
2477 	kfree(pool->name);
2478 	kfree(pool);
2479 }
2480 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2481 
2482 static int __init zs_init(void)
2483 {
2484 	int ret;
2485 
2486 	ret = zsmalloc_mount();
2487 	if (ret)
2488 		goto out;
2489 
2490 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2491 				zs_cpu_prepare, zs_cpu_dead);
2492 	if (ret)
2493 		goto hp_setup_fail;
2494 
2495 	init_zs_size_classes();
2496 
2497 #ifdef CONFIG_ZPOOL
2498 	zpool_register_driver(&zs_zpool_driver);
2499 #endif
2500 
2501 	zs_stat_init();
2502 
2503 	return 0;
2504 
2505 hp_setup_fail:
2506 	zsmalloc_unmount();
2507 out:
2508 	return ret;
2509 }
2510 
2511 static void __exit zs_exit(void)
2512 {
2513 #ifdef CONFIG_ZPOOL
2514 	zpool_unregister_driver(&zs_zpool_driver);
2515 #endif
2516 	zsmalloc_unmount();
2517 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2518 
2519 	zs_stat_exit();
2520 }
2521 
2522 module_init(zs_init);
2523 module_exit(zs_exit);
2524 
2525 MODULE_LICENSE("Dual BSD/GPL");
2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2527