1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/types.h> 50 #include <linux/debugfs.h> 51 #include <linux/zsmalloc.h> 52 #include <linux/zpool.h> 53 #include <linux/mount.h> 54 #include <linux/migrate.h> 55 #include <linux/pagemap.h> 56 57 #define ZSPAGE_MAGIC 0x58 58 59 /* 60 * This must be power of 2 and greater than of equal to sizeof(link_free). 61 * These two conditions ensure that any 'struct link_free' itself doesn't 62 * span more than 1 page which avoids complex case of mapping 2 pages simply 63 * to restore link_free pointer values. 64 */ 65 #define ZS_ALIGN 8 66 67 /* 68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 70 */ 71 #define ZS_MAX_ZSPAGE_ORDER 2 72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 73 74 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 75 76 /* 77 * Object location (<PFN>, <obj_idx>) is encoded as 78 * as single (unsigned long) handle value. 79 * 80 * Note that object index <obj_idx> starts from 0. 81 * 82 * This is made more complicated by various memory models and PAE. 83 */ 84 85 #ifndef MAX_PHYSMEM_BITS 86 #ifdef CONFIG_HIGHMEM64G 87 #define MAX_PHYSMEM_BITS 36 88 #else /* !CONFIG_HIGHMEM64G */ 89 /* 90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 91 * be PAGE_SHIFT 92 */ 93 #define MAX_PHYSMEM_BITS BITS_PER_LONG 94 #endif 95 #endif 96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 97 98 /* 99 * Memory for allocating for handle keeps object position by 100 * encoding <page, obj_idx> and the encoded value has a room 101 * in least bit(ie, look at obj_to_location). 102 * We use the bit to synchronize between object access by 103 * user and migration. 104 */ 105 #define HANDLE_PIN_BIT 0 106 107 /* 108 * Head in allocated object should have OBJ_ALLOCATED_TAG 109 * to identify the object was allocated or not. 110 * It's okay to add the status bit in the least bit because 111 * header keeps handle which is 4byte-aligned address so we 112 * have room for two bit at least. 113 */ 114 #define OBJ_ALLOCATED_TAG 1 115 #define OBJ_TAG_BITS 1 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define FULLNESS_BITS 2 120 #define CLASS_BITS 8 121 #define ISOLATED_BITS 3 122 #define MAGIC_VAL_BITS 8 123 124 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 126 #define ZS_MIN_ALLOC_SIZE \ 127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 128 /* each chunk includes extra space to keep handle */ 129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 130 131 /* 132 * On systems with 4K page size, this gives 255 size classes! There is a 133 * trader-off here: 134 * - Large number of size classes is potentially wasteful as free page are 135 * spread across these classes 136 * - Small number of size classes causes large internal fragmentation 137 * - Probably its better to use specific size classes (empirically 138 * determined). NOTE: all those class sizes must be set as multiple of 139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 140 * 141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 142 * (reason above) 143 */ 144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 146 ZS_SIZE_CLASS_DELTA) + 1) 147 148 enum fullness_group { 149 ZS_EMPTY, 150 ZS_ALMOST_EMPTY, 151 ZS_ALMOST_FULL, 152 ZS_FULL, 153 NR_ZS_FULLNESS, 154 }; 155 156 enum zs_stat_type { 157 CLASS_EMPTY, 158 CLASS_ALMOST_EMPTY, 159 CLASS_ALMOST_FULL, 160 CLASS_FULL, 161 OBJ_ALLOCATED, 162 OBJ_USED, 163 NR_ZS_STAT_TYPE, 164 }; 165 166 struct zs_size_stat { 167 unsigned long objs[NR_ZS_STAT_TYPE]; 168 }; 169 170 #ifdef CONFIG_ZSMALLOC_STAT 171 static struct dentry *zs_stat_root; 172 #endif 173 174 #ifdef CONFIG_COMPACTION 175 static struct vfsmount *zsmalloc_mnt; 176 #endif 177 178 /* 179 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 180 * n <= N / f, where 181 * n = number of allocated objects 182 * N = total number of objects zspage can store 183 * f = fullness_threshold_frac 184 * 185 * Similarly, we assign zspage to: 186 * ZS_ALMOST_FULL when n > N / f 187 * ZS_EMPTY when n == 0 188 * ZS_FULL when n == N 189 * 190 * (see: fix_fullness_group()) 191 */ 192 static const int fullness_threshold_frac = 4; 193 194 struct size_class { 195 spinlock_t lock; 196 struct list_head fullness_list[NR_ZS_FULLNESS]; 197 /* 198 * Size of objects stored in this class. Must be multiple 199 * of ZS_ALIGN. 200 */ 201 int size; 202 int objs_per_zspage; 203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 204 int pages_per_zspage; 205 206 unsigned int index; 207 struct zs_size_stat stats; 208 }; 209 210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 211 static void SetPageHugeObject(struct page *page) 212 { 213 SetPageOwnerPriv1(page); 214 } 215 216 static void ClearPageHugeObject(struct page *page) 217 { 218 ClearPageOwnerPriv1(page); 219 } 220 221 static int PageHugeObject(struct page *page) 222 { 223 return PageOwnerPriv1(page); 224 } 225 226 /* 227 * Placed within free objects to form a singly linked list. 228 * For every zspage, zspage->freeobj gives head of this list. 229 * 230 * This must be power of 2 and less than or equal to ZS_ALIGN 231 */ 232 struct link_free { 233 union { 234 /* 235 * Free object index; 236 * It's valid for non-allocated object 237 */ 238 unsigned long next; 239 /* 240 * Handle of allocated object. 241 */ 242 unsigned long handle; 243 }; 244 }; 245 246 struct zs_pool { 247 const char *name; 248 249 struct size_class *size_class[ZS_SIZE_CLASSES]; 250 struct kmem_cache *handle_cachep; 251 struct kmem_cache *zspage_cachep; 252 253 atomic_long_t pages_allocated; 254 255 struct zs_pool_stats stats; 256 257 /* Compact classes */ 258 struct shrinker shrinker; 259 /* 260 * To signify that register_shrinker() was successful 261 * and unregister_shrinker() will not Oops. 262 */ 263 bool shrinker_enabled; 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static int zs_zpool_shrink(void *pool, unsigned int pages, 410 unsigned int *reclaimed) 411 { 412 return -EINVAL; 413 } 414 415 static void *zs_zpool_map(void *pool, unsigned long handle, 416 enum zpool_mapmode mm) 417 { 418 enum zs_mapmode zs_mm; 419 420 switch (mm) { 421 case ZPOOL_MM_RO: 422 zs_mm = ZS_MM_RO; 423 break; 424 case ZPOOL_MM_WO: 425 zs_mm = ZS_MM_WO; 426 break; 427 case ZPOOL_MM_RW: /* fallthru */ 428 default: 429 zs_mm = ZS_MM_RW; 430 break; 431 } 432 433 return zs_map_object(pool, handle, zs_mm); 434 } 435 static void zs_zpool_unmap(void *pool, unsigned long handle) 436 { 437 zs_unmap_object(pool, handle); 438 } 439 440 static u64 zs_zpool_total_size(void *pool) 441 { 442 return zs_get_total_pages(pool) << PAGE_SHIFT; 443 } 444 445 static struct zpool_driver zs_zpool_driver = { 446 .type = "zsmalloc", 447 .owner = THIS_MODULE, 448 .create = zs_zpool_create, 449 .destroy = zs_zpool_destroy, 450 .malloc = zs_zpool_malloc, 451 .free = zs_zpool_free, 452 .shrink = zs_zpool_shrink, 453 .map = zs_zpool_map, 454 .unmap = zs_zpool_unmap, 455 .total_size = zs_zpool_total_size, 456 }; 457 458 MODULE_ALIAS("zpool-zsmalloc"); 459 #endif /* CONFIG_ZPOOL */ 460 461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 463 464 static bool is_zspage_isolated(struct zspage *zspage) 465 { 466 return zspage->isolated; 467 } 468 469 static __maybe_unused int is_first_page(struct page *page) 470 { 471 return PagePrivate(page); 472 } 473 474 /* Protected by class->lock */ 475 static inline int get_zspage_inuse(struct zspage *zspage) 476 { 477 return zspage->inuse; 478 } 479 480 static inline void set_zspage_inuse(struct zspage *zspage, int val) 481 { 482 zspage->inuse = val; 483 } 484 485 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 486 { 487 zspage->inuse += val; 488 } 489 490 static inline struct page *get_first_page(struct zspage *zspage) 491 { 492 struct page *first_page = zspage->first_page; 493 494 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 495 return first_page; 496 } 497 498 static inline int get_first_obj_offset(struct page *page) 499 { 500 return page->units; 501 } 502 503 static inline void set_first_obj_offset(struct page *page, int offset) 504 { 505 page->units = offset; 506 } 507 508 static inline unsigned int get_freeobj(struct zspage *zspage) 509 { 510 return zspage->freeobj; 511 } 512 513 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 514 { 515 zspage->freeobj = obj; 516 } 517 518 static void get_zspage_mapping(struct zspage *zspage, 519 unsigned int *class_idx, 520 enum fullness_group *fullness) 521 { 522 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 523 524 *fullness = zspage->fullness; 525 *class_idx = zspage->class; 526 } 527 528 static void set_zspage_mapping(struct zspage *zspage, 529 unsigned int class_idx, 530 enum fullness_group fullness) 531 { 532 zspage->class = class_idx; 533 zspage->fullness = fullness; 534 } 535 536 /* 537 * zsmalloc divides the pool into various size classes where each 538 * class maintains a list of zspages where each zspage is divided 539 * into equal sized chunks. Each allocation falls into one of these 540 * classes depending on its size. This function returns index of the 541 * size class which has chunk size big enough to hold the give size. 542 */ 543 static int get_size_class_index(int size) 544 { 545 int idx = 0; 546 547 if (likely(size > ZS_MIN_ALLOC_SIZE)) 548 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 549 ZS_SIZE_CLASS_DELTA); 550 551 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 552 } 553 554 static inline void zs_stat_inc(struct size_class *class, 555 enum zs_stat_type type, unsigned long cnt) 556 { 557 class->stats.objs[type] += cnt; 558 } 559 560 static inline void zs_stat_dec(struct size_class *class, 561 enum zs_stat_type type, unsigned long cnt) 562 { 563 class->stats.objs[type] -= cnt; 564 } 565 566 static inline unsigned long zs_stat_get(struct size_class *class, 567 enum zs_stat_type type) 568 { 569 return class->stats.objs[type]; 570 } 571 572 #ifdef CONFIG_ZSMALLOC_STAT 573 574 static void __init zs_stat_init(void) 575 { 576 if (!debugfs_initialized()) { 577 pr_warn("debugfs not available, stat dir not created\n"); 578 return; 579 } 580 581 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 582 if (!zs_stat_root) 583 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 584 } 585 586 static void __exit zs_stat_exit(void) 587 { 588 debugfs_remove_recursive(zs_stat_root); 589 } 590 591 static unsigned long zs_can_compact(struct size_class *class); 592 593 static int zs_stats_size_show(struct seq_file *s, void *v) 594 { 595 int i; 596 struct zs_pool *pool = s->private; 597 struct size_class *class; 598 int objs_per_zspage; 599 unsigned long class_almost_full, class_almost_empty; 600 unsigned long obj_allocated, obj_used, pages_used, freeable; 601 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 602 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 603 unsigned long total_freeable = 0; 604 605 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 606 "class", "size", "almost_full", "almost_empty", 607 "obj_allocated", "obj_used", "pages_used", 608 "pages_per_zspage", "freeable"); 609 610 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 611 class = pool->size_class[i]; 612 613 if (class->index != i) 614 continue; 615 616 spin_lock(&class->lock); 617 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 618 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 619 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 620 obj_used = zs_stat_get(class, OBJ_USED); 621 freeable = zs_can_compact(class); 622 spin_unlock(&class->lock); 623 624 objs_per_zspage = class->objs_per_zspage; 625 pages_used = obj_allocated / objs_per_zspage * 626 class->pages_per_zspage; 627 628 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 629 " %10lu %10lu %16d %8lu\n", 630 i, class->size, class_almost_full, class_almost_empty, 631 obj_allocated, obj_used, pages_used, 632 class->pages_per_zspage, freeable); 633 634 total_class_almost_full += class_almost_full; 635 total_class_almost_empty += class_almost_empty; 636 total_objs += obj_allocated; 637 total_used_objs += obj_used; 638 total_pages += pages_used; 639 total_freeable += freeable; 640 } 641 642 seq_puts(s, "\n"); 643 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 644 "Total", "", total_class_almost_full, 645 total_class_almost_empty, total_objs, 646 total_used_objs, total_pages, "", total_freeable); 647 648 return 0; 649 } 650 651 static int zs_stats_size_open(struct inode *inode, struct file *file) 652 { 653 return single_open(file, zs_stats_size_show, inode->i_private); 654 } 655 656 static const struct file_operations zs_stat_size_ops = { 657 .open = zs_stats_size_open, 658 .read = seq_read, 659 .llseek = seq_lseek, 660 .release = single_release, 661 }; 662 663 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 664 { 665 struct dentry *entry; 666 667 if (!zs_stat_root) { 668 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 669 return; 670 } 671 672 entry = debugfs_create_dir(name, zs_stat_root); 673 if (!entry) { 674 pr_warn("debugfs dir <%s> creation failed\n", name); 675 return; 676 } 677 pool->stat_dentry = entry; 678 679 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 680 pool->stat_dentry, pool, &zs_stat_size_ops); 681 if (!entry) { 682 pr_warn("%s: debugfs file entry <%s> creation failed\n", 683 name, "classes"); 684 debugfs_remove_recursive(pool->stat_dentry); 685 pool->stat_dentry = NULL; 686 } 687 } 688 689 static void zs_pool_stat_destroy(struct zs_pool *pool) 690 { 691 debugfs_remove_recursive(pool->stat_dentry); 692 } 693 694 #else /* CONFIG_ZSMALLOC_STAT */ 695 static void __init zs_stat_init(void) 696 { 697 } 698 699 static void __exit zs_stat_exit(void) 700 { 701 } 702 703 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 704 { 705 } 706 707 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 708 { 709 } 710 #endif 711 712 713 /* 714 * For each size class, zspages are divided into different groups 715 * depending on how "full" they are. This was done so that we could 716 * easily find empty or nearly empty zspages when we try to shrink 717 * the pool (not yet implemented). This function returns fullness 718 * status of the given page. 719 */ 720 static enum fullness_group get_fullness_group(struct size_class *class, 721 struct zspage *zspage) 722 { 723 int inuse, objs_per_zspage; 724 enum fullness_group fg; 725 726 inuse = get_zspage_inuse(zspage); 727 objs_per_zspage = class->objs_per_zspage; 728 729 if (inuse == 0) 730 fg = ZS_EMPTY; 731 else if (inuse == objs_per_zspage) 732 fg = ZS_FULL; 733 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 734 fg = ZS_ALMOST_EMPTY; 735 else 736 fg = ZS_ALMOST_FULL; 737 738 return fg; 739 } 740 741 /* 742 * Each size class maintains various freelists and zspages are assigned 743 * to one of these freelists based on the number of live objects they 744 * have. This functions inserts the given zspage into the freelist 745 * identified by <class, fullness_group>. 746 */ 747 static void insert_zspage(struct size_class *class, 748 struct zspage *zspage, 749 enum fullness_group fullness) 750 { 751 struct zspage *head; 752 753 zs_stat_inc(class, fullness, 1); 754 head = list_first_entry_or_null(&class->fullness_list[fullness], 755 struct zspage, list); 756 /* 757 * We want to see more ZS_FULL pages and less almost empty/full. 758 * Put pages with higher ->inuse first. 759 */ 760 if (head) { 761 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 762 list_add(&zspage->list, &head->list); 763 return; 764 } 765 } 766 list_add(&zspage->list, &class->fullness_list[fullness]); 767 } 768 769 /* 770 * This function removes the given zspage from the freelist identified 771 * by <class, fullness_group>. 772 */ 773 static void remove_zspage(struct size_class *class, 774 struct zspage *zspage, 775 enum fullness_group fullness) 776 { 777 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 778 VM_BUG_ON(is_zspage_isolated(zspage)); 779 780 list_del_init(&zspage->list); 781 zs_stat_dec(class, fullness, 1); 782 } 783 784 /* 785 * Each size class maintains zspages in different fullness groups depending 786 * on the number of live objects they contain. When allocating or freeing 787 * objects, the fullness status of the page can change, say, from ALMOST_FULL 788 * to ALMOST_EMPTY when freeing an object. This function checks if such 789 * a status change has occurred for the given page and accordingly moves the 790 * page from the freelist of the old fullness group to that of the new 791 * fullness group. 792 */ 793 static enum fullness_group fix_fullness_group(struct size_class *class, 794 struct zspage *zspage) 795 { 796 int class_idx; 797 enum fullness_group currfg, newfg; 798 799 get_zspage_mapping(zspage, &class_idx, &currfg); 800 newfg = get_fullness_group(class, zspage); 801 if (newfg == currfg) 802 goto out; 803 804 if (!is_zspage_isolated(zspage)) { 805 remove_zspage(class, zspage, currfg); 806 insert_zspage(class, zspage, newfg); 807 } 808 809 set_zspage_mapping(zspage, class_idx, newfg); 810 811 out: 812 return newfg; 813 } 814 815 /* 816 * We have to decide on how many pages to link together 817 * to form a zspage for each size class. This is important 818 * to reduce wastage due to unusable space left at end of 819 * each zspage which is given as: 820 * wastage = Zp % class_size 821 * usage = Zp - wastage 822 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 823 * 824 * For example, for size class of 3/8 * PAGE_SIZE, we should 825 * link together 3 PAGE_SIZE sized pages to form a zspage 826 * since then we can perfectly fit in 8 such objects. 827 */ 828 static int get_pages_per_zspage(int class_size) 829 { 830 int i, max_usedpc = 0; 831 /* zspage order which gives maximum used size per KB */ 832 int max_usedpc_order = 1; 833 834 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 835 int zspage_size; 836 int waste, usedpc; 837 838 zspage_size = i * PAGE_SIZE; 839 waste = zspage_size % class_size; 840 usedpc = (zspage_size - waste) * 100 / zspage_size; 841 842 if (usedpc > max_usedpc) { 843 max_usedpc = usedpc; 844 max_usedpc_order = i; 845 } 846 } 847 848 return max_usedpc_order; 849 } 850 851 static struct zspage *get_zspage(struct page *page) 852 { 853 struct zspage *zspage = (struct zspage *)page->private; 854 855 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 856 return zspage; 857 } 858 859 static struct page *get_next_page(struct page *page) 860 { 861 if (unlikely(PageHugeObject(page))) 862 return NULL; 863 864 return page->freelist; 865 } 866 867 /** 868 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 869 * @page: page object resides in zspage 870 * @obj_idx: object index 871 */ 872 static void obj_to_location(unsigned long obj, struct page **page, 873 unsigned int *obj_idx) 874 { 875 obj >>= OBJ_TAG_BITS; 876 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 877 *obj_idx = (obj & OBJ_INDEX_MASK); 878 } 879 880 /** 881 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 882 * @page: page object resides in zspage 883 * @obj_idx: object index 884 */ 885 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 886 { 887 unsigned long obj; 888 889 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 890 obj |= obj_idx & OBJ_INDEX_MASK; 891 obj <<= OBJ_TAG_BITS; 892 893 return obj; 894 } 895 896 static unsigned long handle_to_obj(unsigned long handle) 897 { 898 return *(unsigned long *)handle; 899 } 900 901 static unsigned long obj_to_head(struct page *page, void *obj) 902 { 903 if (unlikely(PageHugeObject(page))) { 904 VM_BUG_ON_PAGE(!is_first_page(page), page); 905 return page->index; 906 } else 907 return *(unsigned long *)obj; 908 } 909 910 static inline int testpin_tag(unsigned long handle) 911 { 912 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 913 } 914 915 static inline int trypin_tag(unsigned long handle) 916 { 917 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 918 } 919 920 static void pin_tag(unsigned long handle) 921 { 922 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 923 } 924 925 static void unpin_tag(unsigned long handle) 926 { 927 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 928 } 929 930 static void reset_page(struct page *page) 931 { 932 __ClearPageMovable(page); 933 ClearPagePrivate(page); 934 set_page_private(page, 0); 935 page_mapcount_reset(page); 936 ClearPageHugeObject(page); 937 page->freelist = NULL; 938 } 939 940 /* 941 * To prevent zspage destroy during migration, zspage freeing should 942 * hold locks of all pages in the zspage. 943 */ 944 void lock_zspage(struct zspage *zspage) 945 { 946 struct page *page = get_first_page(zspage); 947 948 do { 949 lock_page(page); 950 } while ((page = get_next_page(page)) != NULL); 951 } 952 953 int trylock_zspage(struct zspage *zspage) 954 { 955 struct page *cursor, *fail; 956 957 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 958 get_next_page(cursor)) { 959 if (!trylock_page(cursor)) { 960 fail = cursor; 961 goto unlock; 962 } 963 } 964 965 return 1; 966 unlock: 967 for (cursor = get_first_page(zspage); cursor != fail; cursor = 968 get_next_page(cursor)) 969 unlock_page(cursor); 970 971 return 0; 972 } 973 974 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 975 struct zspage *zspage) 976 { 977 struct page *page, *next; 978 enum fullness_group fg; 979 unsigned int class_idx; 980 981 get_zspage_mapping(zspage, &class_idx, &fg); 982 983 assert_spin_locked(&class->lock); 984 985 VM_BUG_ON(get_zspage_inuse(zspage)); 986 VM_BUG_ON(fg != ZS_EMPTY); 987 988 next = page = get_first_page(zspage); 989 do { 990 VM_BUG_ON_PAGE(!PageLocked(page), page); 991 next = get_next_page(page); 992 reset_page(page); 993 unlock_page(page); 994 dec_zone_page_state(page, NR_ZSPAGES); 995 put_page(page); 996 page = next; 997 } while (page != NULL); 998 999 cache_free_zspage(pool, zspage); 1000 1001 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1002 atomic_long_sub(class->pages_per_zspage, 1003 &pool->pages_allocated); 1004 } 1005 1006 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1007 struct zspage *zspage) 1008 { 1009 VM_BUG_ON(get_zspage_inuse(zspage)); 1010 VM_BUG_ON(list_empty(&zspage->list)); 1011 1012 if (!trylock_zspage(zspage)) { 1013 kick_deferred_free(pool); 1014 return; 1015 } 1016 1017 remove_zspage(class, zspage, ZS_EMPTY); 1018 __free_zspage(pool, class, zspage); 1019 } 1020 1021 /* Initialize a newly allocated zspage */ 1022 static void init_zspage(struct size_class *class, struct zspage *zspage) 1023 { 1024 unsigned int freeobj = 1; 1025 unsigned long off = 0; 1026 struct page *page = get_first_page(zspage); 1027 1028 while (page) { 1029 struct page *next_page; 1030 struct link_free *link; 1031 void *vaddr; 1032 1033 set_first_obj_offset(page, off); 1034 1035 vaddr = kmap_atomic(page); 1036 link = (struct link_free *)vaddr + off / sizeof(*link); 1037 1038 while ((off += class->size) < PAGE_SIZE) { 1039 link->next = freeobj++ << OBJ_TAG_BITS; 1040 link += class->size / sizeof(*link); 1041 } 1042 1043 /* 1044 * We now come to the last (full or partial) object on this 1045 * page, which must point to the first object on the next 1046 * page (if present) 1047 */ 1048 next_page = get_next_page(page); 1049 if (next_page) { 1050 link->next = freeobj++ << OBJ_TAG_BITS; 1051 } else { 1052 /* 1053 * Reset OBJ_TAG_BITS bit to last link to tell 1054 * whether it's allocated object or not. 1055 */ 1056 link->next = -1 << OBJ_TAG_BITS; 1057 } 1058 kunmap_atomic(vaddr); 1059 page = next_page; 1060 off %= PAGE_SIZE; 1061 } 1062 1063 set_freeobj(zspage, 0); 1064 } 1065 1066 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1067 struct page *pages[]) 1068 { 1069 int i; 1070 struct page *page; 1071 struct page *prev_page = NULL; 1072 int nr_pages = class->pages_per_zspage; 1073 1074 /* 1075 * Allocate individual pages and link them together as: 1076 * 1. all pages are linked together using page->freelist 1077 * 2. each sub-page point to zspage using page->private 1078 * 1079 * we set PG_private to identify the first page (i.e. no other sub-page 1080 * has this flag set). 1081 */ 1082 for (i = 0; i < nr_pages; i++) { 1083 page = pages[i]; 1084 set_page_private(page, (unsigned long)zspage); 1085 page->freelist = NULL; 1086 if (i == 0) { 1087 zspage->first_page = page; 1088 SetPagePrivate(page); 1089 if (unlikely(class->objs_per_zspage == 1 && 1090 class->pages_per_zspage == 1)) 1091 SetPageHugeObject(page); 1092 } else { 1093 prev_page->freelist = page; 1094 } 1095 prev_page = page; 1096 } 1097 } 1098 1099 /* 1100 * Allocate a zspage for the given size class 1101 */ 1102 static struct zspage *alloc_zspage(struct zs_pool *pool, 1103 struct size_class *class, 1104 gfp_t gfp) 1105 { 1106 int i; 1107 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1108 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1109 1110 if (!zspage) 1111 return NULL; 1112 1113 memset(zspage, 0, sizeof(struct zspage)); 1114 zspage->magic = ZSPAGE_MAGIC; 1115 migrate_lock_init(zspage); 1116 1117 for (i = 0; i < class->pages_per_zspage; i++) { 1118 struct page *page; 1119 1120 page = alloc_page(gfp); 1121 if (!page) { 1122 while (--i >= 0) { 1123 dec_zone_page_state(pages[i], NR_ZSPAGES); 1124 __free_page(pages[i]); 1125 } 1126 cache_free_zspage(pool, zspage); 1127 return NULL; 1128 } 1129 1130 inc_zone_page_state(page, NR_ZSPAGES); 1131 pages[i] = page; 1132 } 1133 1134 create_page_chain(class, zspage, pages); 1135 init_zspage(class, zspage); 1136 1137 return zspage; 1138 } 1139 1140 static struct zspage *find_get_zspage(struct size_class *class) 1141 { 1142 int i; 1143 struct zspage *zspage; 1144 1145 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1146 zspage = list_first_entry_or_null(&class->fullness_list[i], 1147 struct zspage, list); 1148 if (zspage) 1149 break; 1150 } 1151 1152 return zspage; 1153 } 1154 1155 #ifdef CONFIG_PGTABLE_MAPPING 1156 static inline int __zs_cpu_up(struct mapping_area *area) 1157 { 1158 /* 1159 * Make sure we don't leak memory if a cpu UP notification 1160 * and zs_init() race and both call zs_cpu_up() on the same cpu 1161 */ 1162 if (area->vm) 1163 return 0; 1164 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1165 if (!area->vm) 1166 return -ENOMEM; 1167 return 0; 1168 } 1169 1170 static inline void __zs_cpu_down(struct mapping_area *area) 1171 { 1172 if (area->vm) 1173 free_vm_area(area->vm); 1174 area->vm = NULL; 1175 } 1176 1177 static inline void *__zs_map_object(struct mapping_area *area, 1178 struct page *pages[2], int off, int size) 1179 { 1180 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1181 area->vm_addr = area->vm->addr; 1182 return area->vm_addr + off; 1183 } 1184 1185 static inline void __zs_unmap_object(struct mapping_area *area, 1186 struct page *pages[2], int off, int size) 1187 { 1188 unsigned long addr = (unsigned long)area->vm_addr; 1189 1190 unmap_kernel_range(addr, PAGE_SIZE * 2); 1191 } 1192 1193 #else /* CONFIG_PGTABLE_MAPPING */ 1194 1195 static inline int __zs_cpu_up(struct mapping_area *area) 1196 { 1197 /* 1198 * Make sure we don't leak memory if a cpu UP notification 1199 * and zs_init() race and both call zs_cpu_up() on the same cpu 1200 */ 1201 if (area->vm_buf) 1202 return 0; 1203 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1204 if (!area->vm_buf) 1205 return -ENOMEM; 1206 return 0; 1207 } 1208 1209 static inline void __zs_cpu_down(struct mapping_area *area) 1210 { 1211 kfree(area->vm_buf); 1212 area->vm_buf = NULL; 1213 } 1214 1215 static void *__zs_map_object(struct mapping_area *area, 1216 struct page *pages[2], int off, int size) 1217 { 1218 int sizes[2]; 1219 void *addr; 1220 char *buf = area->vm_buf; 1221 1222 /* disable page faults to match kmap_atomic() return conditions */ 1223 pagefault_disable(); 1224 1225 /* no read fastpath */ 1226 if (area->vm_mm == ZS_MM_WO) 1227 goto out; 1228 1229 sizes[0] = PAGE_SIZE - off; 1230 sizes[1] = size - sizes[0]; 1231 1232 /* copy object to per-cpu buffer */ 1233 addr = kmap_atomic(pages[0]); 1234 memcpy(buf, addr + off, sizes[0]); 1235 kunmap_atomic(addr); 1236 addr = kmap_atomic(pages[1]); 1237 memcpy(buf + sizes[0], addr, sizes[1]); 1238 kunmap_atomic(addr); 1239 out: 1240 return area->vm_buf; 1241 } 1242 1243 static void __zs_unmap_object(struct mapping_area *area, 1244 struct page *pages[2], int off, int size) 1245 { 1246 int sizes[2]; 1247 void *addr; 1248 char *buf; 1249 1250 /* no write fastpath */ 1251 if (area->vm_mm == ZS_MM_RO) 1252 goto out; 1253 1254 buf = area->vm_buf; 1255 buf = buf + ZS_HANDLE_SIZE; 1256 size -= ZS_HANDLE_SIZE; 1257 off += ZS_HANDLE_SIZE; 1258 1259 sizes[0] = PAGE_SIZE - off; 1260 sizes[1] = size - sizes[0]; 1261 1262 /* copy per-cpu buffer to object */ 1263 addr = kmap_atomic(pages[0]); 1264 memcpy(addr + off, buf, sizes[0]); 1265 kunmap_atomic(addr); 1266 addr = kmap_atomic(pages[1]); 1267 memcpy(addr, buf + sizes[0], sizes[1]); 1268 kunmap_atomic(addr); 1269 1270 out: 1271 /* enable page faults to match kunmap_atomic() return conditions */ 1272 pagefault_enable(); 1273 } 1274 1275 #endif /* CONFIG_PGTABLE_MAPPING */ 1276 1277 static int zs_cpu_prepare(unsigned int cpu) 1278 { 1279 struct mapping_area *area; 1280 1281 area = &per_cpu(zs_map_area, cpu); 1282 return __zs_cpu_up(area); 1283 } 1284 1285 static int zs_cpu_dead(unsigned int cpu) 1286 { 1287 struct mapping_area *area; 1288 1289 area = &per_cpu(zs_map_area, cpu); 1290 __zs_cpu_down(area); 1291 return 0; 1292 } 1293 1294 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1295 int objs_per_zspage) 1296 { 1297 if (prev->pages_per_zspage == pages_per_zspage && 1298 prev->objs_per_zspage == objs_per_zspage) 1299 return true; 1300 1301 return false; 1302 } 1303 1304 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1305 { 1306 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1307 } 1308 1309 unsigned long zs_get_total_pages(struct zs_pool *pool) 1310 { 1311 return atomic_long_read(&pool->pages_allocated); 1312 } 1313 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1314 1315 /** 1316 * zs_map_object - get address of allocated object from handle. 1317 * @pool: pool from which the object was allocated 1318 * @handle: handle returned from zs_malloc 1319 * 1320 * Before using an object allocated from zs_malloc, it must be mapped using 1321 * this function. When done with the object, it must be unmapped using 1322 * zs_unmap_object. 1323 * 1324 * Only one object can be mapped per cpu at a time. There is no protection 1325 * against nested mappings. 1326 * 1327 * This function returns with preemption and page faults disabled. 1328 */ 1329 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1330 enum zs_mapmode mm) 1331 { 1332 struct zspage *zspage; 1333 struct page *page; 1334 unsigned long obj, off; 1335 unsigned int obj_idx; 1336 1337 unsigned int class_idx; 1338 enum fullness_group fg; 1339 struct size_class *class; 1340 struct mapping_area *area; 1341 struct page *pages[2]; 1342 void *ret; 1343 1344 /* 1345 * Because we use per-cpu mapping areas shared among the 1346 * pools/users, we can't allow mapping in interrupt context 1347 * because it can corrupt another users mappings. 1348 */ 1349 WARN_ON_ONCE(in_interrupt()); 1350 1351 /* From now on, migration cannot move the object */ 1352 pin_tag(handle); 1353 1354 obj = handle_to_obj(handle); 1355 obj_to_location(obj, &page, &obj_idx); 1356 zspage = get_zspage(page); 1357 1358 /* migration cannot move any subpage in this zspage */ 1359 migrate_read_lock(zspage); 1360 1361 get_zspage_mapping(zspage, &class_idx, &fg); 1362 class = pool->size_class[class_idx]; 1363 off = (class->size * obj_idx) & ~PAGE_MASK; 1364 1365 area = &get_cpu_var(zs_map_area); 1366 area->vm_mm = mm; 1367 if (off + class->size <= PAGE_SIZE) { 1368 /* this object is contained entirely within a page */ 1369 area->vm_addr = kmap_atomic(page); 1370 ret = area->vm_addr + off; 1371 goto out; 1372 } 1373 1374 /* this object spans two pages */ 1375 pages[0] = page; 1376 pages[1] = get_next_page(page); 1377 BUG_ON(!pages[1]); 1378 1379 ret = __zs_map_object(area, pages, off, class->size); 1380 out: 1381 if (likely(!PageHugeObject(page))) 1382 ret += ZS_HANDLE_SIZE; 1383 1384 return ret; 1385 } 1386 EXPORT_SYMBOL_GPL(zs_map_object); 1387 1388 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1389 { 1390 struct zspage *zspage; 1391 struct page *page; 1392 unsigned long obj, off; 1393 unsigned int obj_idx; 1394 1395 unsigned int class_idx; 1396 enum fullness_group fg; 1397 struct size_class *class; 1398 struct mapping_area *area; 1399 1400 obj = handle_to_obj(handle); 1401 obj_to_location(obj, &page, &obj_idx); 1402 zspage = get_zspage(page); 1403 get_zspage_mapping(zspage, &class_idx, &fg); 1404 class = pool->size_class[class_idx]; 1405 off = (class->size * obj_idx) & ~PAGE_MASK; 1406 1407 area = this_cpu_ptr(&zs_map_area); 1408 if (off + class->size <= PAGE_SIZE) 1409 kunmap_atomic(area->vm_addr); 1410 else { 1411 struct page *pages[2]; 1412 1413 pages[0] = page; 1414 pages[1] = get_next_page(page); 1415 BUG_ON(!pages[1]); 1416 1417 __zs_unmap_object(area, pages, off, class->size); 1418 } 1419 put_cpu_var(zs_map_area); 1420 1421 migrate_read_unlock(zspage); 1422 unpin_tag(handle); 1423 } 1424 EXPORT_SYMBOL_GPL(zs_unmap_object); 1425 1426 static unsigned long obj_malloc(struct size_class *class, 1427 struct zspage *zspage, unsigned long handle) 1428 { 1429 int i, nr_page, offset; 1430 unsigned long obj; 1431 struct link_free *link; 1432 1433 struct page *m_page; 1434 unsigned long m_offset; 1435 void *vaddr; 1436 1437 handle |= OBJ_ALLOCATED_TAG; 1438 obj = get_freeobj(zspage); 1439 1440 offset = obj * class->size; 1441 nr_page = offset >> PAGE_SHIFT; 1442 m_offset = offset & ~PAGE_MASK; 1443 m_page = get_first_page(zspage); 1444 1445 for (i = 0; i < nr_page; i++) 1446 m_page = get_next_page(m_page); 1447 1448 vaddr = kmap_atomic(m_page); 1449 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1450 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1451 if (likely(!PageHugeObject(m_page))) 1452 /* record handle in the header of allocated chunk */ 1453 link->handle = handle; 1454 else 1455 /* record handle to page->index */ 1456 zspage->first_page->index = handle; 1457 1458 kunmap_atomic(vaddr); 1459 mod_zspage_inuse(zspage, 1); 1460 zs_stat_inc(class, OBJ_USED, 1); 1461 1462 obj = location_to_obj(m_page, obj); 1463 1464 return obj; 1465 } 1466 1467 1468 /** 1469 * zs_malloc - Allocate block of given size from pool. 1470 * @pool: pool to allocate from 1471 * @size: size of block to allocate 1472 * @gfp: gfp flags when allocating object 1473 * 1474 * On success, handle to the allocated object is returned, 1475 * otherwise 0. 1476 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1477 */ 1478 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1479 { 1480 unsigned long handle, obj; 1481 struct size_class *class; 1482 enum fullness_group newfg; 1483 struct zspage *zspage; 1484 1485 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1486 return 0; 1487 1488 handle = cache_alloc_handle(pool, gfp); 1489 if (!handle) 1490 return 0; 1491 1492 /* extra space in chunk to keep the handle */ 1493 size += ZS_HANDLE_SIZE; 1494 class = pool->size_class[get_size_class_index(size)]; 1495 1496 spin_lock(&class->lock); 1497 zspage = find_get_zspage(class); 1498 if (likely(zspage)) { 1499 obj = obj_malloc(class, zspage, handle); 1500 /* Now move the zspage to another fullness group, if required */ 1501 fix_fullness_group(class, zspage); 1502 record_obj(handle, obj); 1503 spin_unlock(&class->lock); 1504 1505 return handle; 1506 } 1507 1508 spin_unlock(&class->lock); 1509 1510 zspage = alloc_zspage(pool, class, gfp); 1511 if (!zspage) { 1512 cache_free_handle(pool, handle); 1513 return 0; 1514 } 1515 1516 spin_lock(&class->lock); 1517 obj = obj_malloc(class, zspage, handle); 1518 newfg = get_fullness_group(class, zspage); 1519 insert_zspage(class, zspage, newfg); 1520 set_zspage_mapping(zspage, class->index, newfg); 1521 record_obj(handle, obj); 1522 atomic_long_add(class->pages_per_zspage, 1523 &pool->pages_allocated); 1524 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1525 1526 /* We completely set up zspage so mark them as movable */ 1527 SetZsPageMovable(pool, zspage); 1528 spin_unlock(&class->lock); 1529 1530 return handle; 1531 } 1532 EXPORT_SYMBOL_GPL(zs_malloc); 1533 1534 static void obj_free(struct size_class *class, unsigned long obj) 1535 { 1536 struct link_free *link; 1537 struct zspage *zspage; 1538 struct page *f_page; 1539 unsigned long f_offset; 1540 unsigned int f_objidx; 1541 void *vaddr; 1542 1543 obj &= ~OBJ_ALLOCATED_TAG; 1544 obj_to_location(obj, &f_page, &f_objidx); 1545 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1546 zspage = get_zspage(f_page); 1547 1548 vaddr = kmap_atomic(f_page); 1549 1550 /* Insert this object in containing zspage's freelist */ 1551 link = (struct link_free *)(vaddr + f_offset); 1552 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1553 kunmap_atomic(vaddr); 1554 set_freeobj(zspage, f_objidx); 1555 mod_zspage_inuse(zspage, -1); 1556 zs_stat_dec(class, OBJ_USED, 1); 1557 } 1558 1559 void zs_free(struct zs_pool *pool, unsigned long handle) 1560 { 1561 struct zspage *zspage; 1562 struct page *f_page; 1563 unsigned long obj; 1564 unsigned int f_objidx; 1565 int class_idx; 1566 struct size_class *class; 1567 enum fullness_group fullness; 1568 bool isolated; 1569 1570 if (unlikely(!handle)) 1571 return; 1572 1573 pin_tag(handle); 1574 obj = handle_to_obj(handle); 1575 obj_to_location(obj, &f_page, &f_objidx); 1576 zspage = get_zspage(f_page); 1577 1578 migrate_read_lock(zspage); 1579 1580 get_zspage_mapping(zspage, &class_idx, &fullness); 1581 class = pool->size_class[class_idx]; 1582 1583 spin_lock(&class->lock); 1584 obj_free(class, obj); 1585 fullness = fix_fullness_group(class, zspage); 1586 if (fullness != ZS_EMPTY) { 1587 migrate_read_unlock(zspage); 1588 goto out; 1589 } 1590 1591 isolated = is_zspage_isolated(zspage); 1592 migrate_read_unlock(zspage); 1593 /* If zspage is isolated, zs_page_putback will free the zspage */ 1594 if (likely(!isolated)) 1595 free_zspage(pool, class, zspage); 1596 out: 1597 1598 spin_unlock(&class->lock); 1599 unpin_tag(handle); 1600 cache_free_handle(pool, handle); 1601 } 1602 EXPORT_SYMBOL_GPL(zs_free); 1603 1604 static void zs_object_copy(struct size_class *class, unsigned long dst, 1605 unsigned long src) 1606 { 1607 struct page *s_page, *d_page; 1608 unsigned int s_objidx, d_objidx; 1609 unsigned long s_off, d_off; 1610 void *s_addr, *d_addr; 1611 int s_size, d_size, size; 1612 int written = 0; 1613 1614 s_size = d_size = class->size; 1615 1616 obj_to_location(src, &s_page, &s_objidx); 1617 obj_to_location(dst, &d_page, &d_objidx); 1618 1619 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1620 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1621 1622 if (s_off + class->size > PAGE_SIZE) 1623 s_size = PAGE_SIZE - s_off; 1624 1625 if (d_off + class->size > PAGE_SIZE) 1626 d_size = PAGE_SIZE - d_off; 1627 1628 s_addr = kmap_atomic(s_page); 1629 d_addr = kmap_atomic(d_page); 1630 1631 while (1) { 1632 size = min(s_size, d_size); 1633 memcpy(d_addr + d_off, s_addr + s_off, size); 1634 written += size; 1635 1636 if (written == class->size) 1637 break; 1638 1639 s_off += size; 1640 s_size -= size; 1641 d_off += size; 1642 d_size -= size; 1643 1644 if (s_off >= PAGE_SIZE) { 1645 kunmap_atomic(d_addr); 1646 kunmap_atomic(s_addr); 1647 s_page = get_next_page(s_page); 1648 s_addr = kmap_atomic(s_page); 1649 d_addr = kmap_atomic(d_page); 1650 s_size = class->size - written; 1651 s_off = 0; 1652 } 1653 1654 if (d_off >= PAGE_SIZE) { 1655 kunmap_atomic(d_addr); 1656 d_page = get_next_page(d_page); 1657 d_addr = kmap_atomic(d_page); 1658 d_size = class->size - written; 1659 d_off = 0; 1660 } 1661 } 1662 1663 kunmap_atomic(d_addr); 1664 kunmap_atomic(s_addr); 1665 } 1666 1667 /* 1668 * Find alloced object in zspage from index object and 1669 * return handle. 1670 */ 1671 static unsigned long find_alloced_obj(struct size_class *class, 1672 struct page *page, int *obj_idx) 1673 { 1674 unsigned long head; 1675 int offset = 0; 1676 int index = *obj_idx; 1677 unsigned long handle = 0; 1678 void *addr = kmap_atomic(page); 1679 1680 offset = get_first_obj_offset(page); 1681 offset += class->size * index; 1682 1683 while (offset < PAGE_SIZE) { 1684 head = obj_to_head(page, addr + offset); 1685 if (head & OBJ_ALLOCATED_TAG) { 1686 handle = head & ~OBJ_ALLOCATED_TAG; 1687 if (trypin_tag(handle)) 1688 break; 1689 handle = 0; 1690 } 1691 1692 offset += class->size; 1693 index++; 1694 } 1695 1696 kunmap_atomic(addr); 1697 1698 *obj_idx = index; 1699 1700 return handle; 1701 } 1702 1703 struct zs_compact_control { 1704 /* Source spage for migration which could be a subpage of zspage */ 1705 struct page *s_page; 1706 /* Destination page for migration which should be a first page 1707 * of zspage. */ 1708 struct page *d_page; 1709 /* Starting object index within @s_page which used for live object 1710 * in the subpage. */ 1711 int obj_idx; 1712 }; 1713 1714 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1715 struct zs_compact_control *cc) 1716 { 1717 unsigned long used_obj, free_obj; 1718 unsigned long handle; 1719 struct page *s_page = cc->s_page; 1720 struct page *d_page = cc->d_page; 1721 int obj_idx = cc->obj_idx; 1722 int ret = 0; 1723 1724 while (1) { 1725 handle = find_alloced_obj(class, s_page, &obj_idx); 1726 if (!handle) { 1727 s_page = get_next_page(s_page); 1728 if (!s_page) 1729 break; 1730 obj_idx = 0; 1731 continue; 1732 } 1733 1734 /* Stop if there is no more space */ 1735 if (zspage_full(class, get_zspage(d_page))) { 1736 unpin_tag(handle); 1737 ret = -ENOMEM; 1738 break; 1739 } 1740 1741 used_obj = handle_to_obj(handle); 1742 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1743 zs_object_copy(class, free_obj, used_obj); 1744 obj_idx++; 1745 /* 1746 * record_obj updates handle's value to free_obj and it will 1747 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1748 * breaks synchronization using pin_tag(e,g, zs_free) so 1749 * let's keep the lock bit. 1750 */ 1751 free_obj |= BIT(HANDLE_PIN_BIT); 1752 record_obj(handle, free_obj); 1753 unpin_tag(handle); 1754 obj_free(class, used_obj); 1755 } 1756 1757 /* Remember last position in this iteration */ 1758 cc->s_page = s_page; 1759 cc->obj_idx = obj_idx; 1760 1761 return ret; 1762 } 1763 1764 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1765 { 1766 int i; 1767 struct zspage *zspage; 1768 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1769 1770 if (!source) { 1771 fg[0] = ZS_ALMOST_FULL; 1772 fg[1] = ZS_ALMOST_EMPTY; 1773 } 1774 1775 for (i = 0; i < 2; i++) { 1776 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1777 struct zspage, list); 1778 if (zspage) { 1779 VM_BUG_ON(is_zspage_isolated(zspage)); 1780 remove_zspage(class, zspage, fg[i]); 1781 return zspage; 1782 } 1783 } 1784 1785 return zspage; 1786 } 1787 1788 /* 1789 * putback_zspage - add @zspage into right class's fullness list 1790 * @class: destination class 1791 * @zspage: target page 1792 * 1793 * Return @zspage's fullness_group 1794 */ 1795 static enum fullness_group putback_zspage(struct size_class *class, 1796 struct zspage *zspage) 1797 { 1798 enum fullness_group fullness; 1799 1800 VM_BUG_ON(is_zspage_isolated(zspage)); 1801 1802 fullness = get_fullness_group(class, zspage); 1803 insert_zspage(class, zspage, fullness); 1804 set_zspage_mapping(zspage, class->index, fullness); 1805 1806 return fullness; 1807 } 1808 1809 #ifdef CONFIG_COMPACTION 1810 static struct dentry *zs_mount(struct file_system_type *fs_type, 1811 int flags, const char *dev_name, void *data) 1812 { 1813 static const struct dentry_operations ops = { 1814 .d_dname = simple_dname, 1815 }; 1816 1817 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1818 } 1819 1820 static struct file_system_type zsmalloc_fs = { 1821 .name = "zsmalloc", 1822 .mount = zs_mount, 1823 .kill_sb = kill_anon_super, 1824 }; 1825 1826 static int zsmalloc_mount(void) 1827 { 1828 int ret = 0; 1829 1830 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1831 if (IS_ERR(zsmalloc_mnt)) 1832 ret = PTR_ERR(zsmalloc_mnt); 1833 1834 return ret; 1835 } 1836 1837 static void zsmalloc_unmount(void) 1838 { 1839 kern_unmount(zsmalloc_mnt); 1840 } 1841 1842 static void migrate_lock_init(struct zspage *zspage) 1843 { 1844 rwlock_init(&zspage->lock); 1845 } 1846 1847 static void migrate_read_lock(struct zspage *zspage) 1848 { 1849 read_lock(&zspage->lock); 1850 } 1851 1852 static void migrate_read_unlock(struct zspage *zspage) 1853 { 1854 read_unlock(&zspage->lock); 1855 } 1856 1857 static void migrate_write_lock(struct zspage *zspage) 1858 { 1859 write_lock(&zspage->lock); 1860 } 1861 1862 static void migrate_write_unlock(struct zspage *zspage) 1863 { 1864 write_unlock(&zspage->lock); 1865 } 1866 1867 /* Number of isolated subpage for *page migration* in this zspage */ 1868 static void inc_zspage_isolation(struct zspage *zspage) 1869 { 1870 zspage->isolated++; 1871 } 1872 1873 static void dec_zspage_isolation(struct zspage *zspage) 1874 { 1875 zspage->isolated--; 1876 } 1877 1878 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1879 struct page *newpage, struct page *oldpage) 1880 { 1881 struct page *page; 1882 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1883 int idx = 0; 1884 1885 page = get_first_page(zspage); 1886 do { 1887 if (page == oldpage) 1888 pages[idx] = newpage; 1889 else 1890 pages[idx] = page; 1891 idx++; 1892 } while ((page = get_next_page(page)) != NULL); 1893 1894 create_page_chain(class, zspage, pages); 1895 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1896 if (unlikely(PageHugeObject(oldpage))) 1897 newpage->index = oldpage->index; 1898 __SetPageMovable(newpage, page_mapping(oldpage)); 1899 } 1900 1901 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1902 { 1903 struct zs_pool *pool; 1904 struct size_class *class; 1905 int class_idx; 1906 enum fullness_group fullness; 1907 struct zspage *zspage; 1908 struct address_space *mapping; 1909 1910 /* 1911 * Page is locked so zspage couldn't be destroyed. For detail, look at 1912 * lock_zspage in free_zspage. 1913 */ 1914 VM_BUG_ON_PAGE(!PageMovable(page), page); 1915 VM_BUG_ON_PAGE(PageIsolated(page), page); 1916 1917 zspage = get_zspage(page); 1918 1919 /* 1920 * Without class lock, fullness could be stale while class_idx is okay 1921 * because class_idx is constant unless page is freed so we should get 1922 * fullness again under class lock. 1923 */ 1924 get_zspage_mapping(zspage, &class_idx, &fullness); 1925 mapping = page_mapping(page); 1926 pool = mapping->private_data; 1927 class = pool->size_class[class_idx]; 1928 1929 spin_lock(&class->lock); 1930 if (get_zspage_inuse(zspage) == 0) { 1931 spin_unlock(&class->lock); 1932 return false; 1933 } 1934 1935 /* zspage is isolated for object migration */ 1936 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1937 spin_unlock(&class->lock); 1938 return false; 1939 } 1940 1941 /* 1942 * If this is first time isolation for the zspage, isolate zspage from 1943 * size_class to prevent further object allocation from the zspage. 1944 */ 1945 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1946 get_zspage_mapping(zspage, &class_idx, &fullness); 1947 remove_zspage(class, zspage, fullness); 1948 } 1949 1950 inc_zspage_isolation(zspage); 1951 spin_unlock(&class->lock); 1952 1953 return true; 1954 } 1955 1956 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1957 struct page *page, enum migrate_mode mode) 1958 { 1959 struct zs_pool *pool; 1960 struct size_class *class; 1961 int class_idx; 1962 enum fullness_group fullness; 1963 struct zspage *zspage; 1964 struct page *dummy; 1965 void *s_addr, *d_addr, *addr; 1966 int offset, pos; 1967 unsigned long handle, head; 1968 unsigned long old_obj, new_obj; 1969 unsigned int obj_idx; 1970 int ret = -EAGAIN; 1971 1972 VM_BUG_ON_PAGE(!PageMovable(page), page); 1973 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1974 1975 zspage = get_zspage(page); 1976 1977 /* Concurrent compactor cannot migrate any subpage in zspage */ 1978 migrate_write_lock(zspage); 1979 get_zspage_mapping(zspage, &class_idx, &fullness); 1980 pool = mapping->private_data; 1981 class = pool->size_class[class_idx]; 1982 offset = get_first_obj_offset(page); 1983 1984 spin_lock(&class->lock); 1985 if (!get_zspage_inuse(zspage)) { 1986 ret = -EBUSY; 1987 goto unlock_class; 1988 } 1989 1990 pos = offset; 1991 s_addr = kmap_atomic(page); 1992 while (pos < PAGE_SIZE) { 1993 head = obj_to_head(page, s_addr + pos); 1994 if (head & OBJ_ALLOCATED_TAG) { 1995 handle = head & ~OBJ_ALLOCATED_TAG; 1996 if (!trypin_tag(handle)) 1997 goto unpin_objects; 1998 } 1999 pos += class->size; 2000 } 2001 2002 /* 2003 * Here, any user cannot access all objects in the zspage so let's move. 2004 */ 2005 d_addr = kmap_atomic(newpage); 2006 memcpy(d_addr, s_addr, PAGE_SIZE); 2007 kunmap_atomic(d_addr); 2008 2009 for (addr = s_addr + offset; addr < s_addr + pos; 2010 addr += class->size) { 2011 head = obj_to_head(page, addr); 2012 if (head & OBJ_ALLOCATED_TAG) { 2013 handle = head & ~OBJ_ALLOCATED_TAG; 2014 if (!testpin_tag(handle)) 2015 BUG(); 2016 2017 old_obj = handle_to_obj(handle); 2018 obj_to_location(old_obj, &dummy, &obj_idx); 2019 new_obj = (unsigned long)location_to_obj(newpage, 2020 obj_idx); 2021 new_obj |= BIT(HANDLE_PIN_BIT); 2022 record_obj(handle, new_obj); 2023 } 2024 } 2025 2026 replace_sub_page(class, zspage, newpage, page); 2027 get_page(newpage); 2028 2029 dec_zspage_isolation(zspage); 2030 2031 /* 2032 * Page migration is done so let's putback isolated zspage to 2033 * the list if @page is final isolated subpage in the zspage. 2034 */ 2035 if (!is_zspage_isolated(zspage)) 2036 putback_zspage(class, zspage); 2037 2038 reset_page(page); 2039 put_page(page); 2040 page = newpage; 2041 2042 ret = MIGRATEPAGE_SUCCESS; 2043 unpin_objects: 2044 for (addr = s_addr + offset; addr < s_addr + pos; 2045 addr += class->size) { 2046 head = obj_to_head(page, addr); 2047 if (head & OBJ_ALLOCATED_TAG) { 2048 handle = head & ~OBJ_ALLOCATED_TAG; 2049 if (!testpin_tag(handle)) 2050 BUG(); 2051 unpin_tag(handle); 2052 } 2053 } 2054 kunmap_atomic(s_addr); 2055 unlock_class: 2056 spin_unlock(&class->lock); 2057 migrate_write_unlock(zspage); 2058 2059 return ret; 2060 } 2061 2062 void zs_page_putback(struct page *page) 2063 { 2064 struct zs_pool *pool; 2065 struct size_class *class; 2066 int class_idx; 2067 enum fullness_group fg; 2068 struct address_space *mapping; 2069 struct zspage *zspage; 2070 2071 VM_BUG_ON_PAGE(!PageMovable(page), page); 2072 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2073 2074 zspage = get_zspage(page); 2075 get_zspage_mapping(zspage, &class_idx, &fg); 2076 mapping = page_mapping(page); 2077 pool = mapping->private_data; 2078 class = pool->size_class[class_idx]; 2079 2080 spin_lock(&class->lock); 2081 dec_zspage_isolation(zspage); 2082 if (!is_zspage_isolated(zspage)) { 2083 fg = putback_zspage(class, zspage); 2084 /* 2085 * Due to page_lock, we cannot free zspage immediately 2086 * so let's defer. 2087 */ 2088 if (fg == ZS_EMPTY) 2089 schedule_work(&pool->free_work); 2090 } 2091 spin_unlock(&class->lock); 2092 } 2093 2094 const struct address_space_operations zsmalloc_aops = { 2095 .isolate_page = zs_page_isolate, 2096 .migratepage = zs_page_migrate, 2097 .putback_page = zs_page_putback, 2098 }; 2099 2100 static int zs_register_migration(struct zs_pool *pool) 2101 { 2102 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2103 if (IS_ERR(pool->inode)) { 2104 pool->inode = NULL; 2105 return 1; 2106 } 2107 2108 pool->inode->i_mapping->private_data = pool; 2109 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2110 return 0; 2111 } 2112 2113 static void zs_unregister_migration(struct zs_pool *pool) 2114 { 2115 flush_work(&pool->free_work); 2116 iput(pool->inode); 2117 } 2118 2119 /* 2120 * Caller should hold page_lock of all pages in the zspage 2121 * In here, we cannot use zspage meta data. 2122 */ 2123 static void async_free_zspage(struct work_struct *work) 2124 { 2125 int i; 2126 struct size_class *class; 2127 unsigned int class_idx; 2128 enum fullness_group fullness; 2129 struct zspage *zspage, *tmp; 2130 LIST_HEAD(free_pages); 2131 struct zs_pool *pool = container_of(work, struct zs_pool, 2132 free_work); 2133 2134 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2135 class = pool->size_class[i]; 2136 if (class->index != i) 2137 continue; 2138 2139 spin_lock(&class->lock); 2140 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2141 spin_unlock(&class->lock); 2142 } 2143 2144 2145 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2146 list_del(&zspage->list); 2147 lock_zspage(zspage); 2148 2149 get_zspage_mapping(zspage, &class_idx, &fullness); 2150 VM_BUG_ON(fullness != ZS_EMPTY); 2151 class = pool->size_class[class_idx]; 2152 spin_lock(&class->lock); 2153 __free_zspage(pool, pool->size_class[class_idx], zspage); 2154 spin_unlock(&class->lock); 2155 } 2156 }; 2157 2158 static void kick_deferred_free(struct zs_pool *pool) 2159 { 2160 schedule_work(&pool->free_work); 2161 } 2162 2163 static void init_deferred_free(struct zs_pool *pool) 2164 { 2165 INIT_WORK(&pool->free_work, async_free_zspage); 2166 } 2167 2168 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2169 { 2170 struct page *page = get_first_page(zspage); 2171 2172 do { 2173 WARN_ON(!trylock_page(page)); 2174 __SetPageMovable(page, pool->inode->i_mapping); 2175 unlock_page(page); 2176 } while ((page = get_next_page(page)) != NULL); 2177 } 2178 #endif 2179 2180 /* 2181 * 2182 * Based on the number of unused allocated objects calculate 2183 * and return the number of pages that we can free. 2184 */ 2185 static unsigned long zs_can_compact(struct size_class *class) 2186 { 2187 unsigned long obj_wasted; 2188 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2189 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2190 2191 if (obj_allocated <= obj_used) 2192 return 0; 2193 2194 obj_wasted = obj_allocated - obj_used; 2195 obj_wasted /= class->objs_per_zspage; 2196 2197 return obj_wasted * class->pages_per_zspage; 2198 } 2199 2200 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2201 { 2202 struct zs_compact_control cc; 2203 struct zspage *src_zspage; 2204 struct zspage *dst_zspage = NULL; 2205 2206 spin_lock(&class->lock); 2207 while ((src_zspage = isolate_zspage(class, true))) { 2208 2209 if (!zs_can_compact(class)) 2210 break; 2211 2212 cc.obj_idx = 0; 2213 cc.s_page = get_first_page(src_zspage); 2214 2215 while ((dst_zspage = isolate_zspage(class, false))) { 2216 cc.d_page = get_first_page(dst_zspage); 2217 /* 2218 * If there is no more space in dst_page, resched 2219 * and see if anyone had allocated another zspage. 2220 */ 2221 if (!migrate_zspage(pool, class, &cc)) 2222 break; 2223 2224 putback_zspage(class, dst_zspage); 2225 } 2226 2227 /* Stop if we couldn't find slot */ 2228 if (dst_zspage == NULL) 2229 break; 2230 2231 putback_zspage(class, dst_zspage); 2232 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2233 free_zspage(pool, class, src_zspage); 2234 pool->stats.pages_compacted += class->pages_per_zspage; 2235 } 2236 spin_unlock(&class->lock); 2237 cond_resched(); 2238 spin_lock(&class->lock); 2239 } 2240 2241 if (src_zspage) 2242 putback_zspage(class, src_zspage); 2243 2244 spin_unlock(&class->lock); 2245 } 2246 2247 unsigned long zs_compact(struct zs_pool *pool) 2248 { 2249 int i; 2250 struct size_class *class; 2251 2252 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2253 class = pool->size_class[i]; 2254 if (!class) 2255 continue; 2256 if (class->index != i) 2257 continue; 2258 __zs_compact(pool, class); 2259 } 2260 2261 return pool->stats.pages_compacted; 2262 } 2263 EXPORT_SYMBOL_GPL(zs_compact); 2264 2265 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2266 { 2267 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2268 } 2269 EXPORT_SYMBOL_GPL(zs_pool_stats); 2270 2271 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2272 struct shrink_control *sc) 2273 { 2274 unsigned long pages_freed; 2275 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2276 shrinker); 2277 2278 pages_freed = pool->stats.pages_compacted; 2279 /* 2280 * Compact classes and calculate compaction delta. 2281 * Can run concurrently with a manually triggered 2282 * (by user) compaction. 2283 */ 2284 pages_freed = zs_compact(pool) - pages_freed; 2285 2286 return pages_freed ? pages_freed : SHRINK_STOP; 2287 } 2288 2289 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2290 struct shrink_control *sc) 2291 { 2292 int i; 2293 struct size_class *class; 2294 unsigned long pages_to_free = 0; 2295 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2296 shrinker); 2297 2298 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2299 class = pool->size_class[i]; 2300 if (!class) 2301 continue; 2302 if (class->index != i) 2303 continue; 2304 2305 pages_to_free += zs_can_compact(class); 2306 } 2307 2308 return pages_to_free; 2309 } 2310 2311 static void zs_unregister_shrinker(struct zs_pool *pool) 2312 { 2313 if (pool->shrinker_enabled) { 2314 unregister_shrinker(&pool->shrinker); 2315 pool->shrinker_enabled = false; 2316 } 2317 } 2318 2319 static int zs_register_shrinker(struct zs_pool *pool) 2320 { 2321 pool->shrinker.scan_objects = zs_shrinker_scan; 2322 pool->shrinker.count_objects = zs_shrinker_count; 2323 pool->shrinker.batch = 0; 2324 pool->shrinker.seeks = DEFAULT_SEEKS; 2325 2326 return register_shrinker(&pool->shrinker); 2327 } 2328 2329 /** 2330 * zs_create_pool - Creates an allocation pool to work from. 2331 * @name: pool name to be created 2332 * 2333 * This function must be called before anything when using 2334 * the zsmalloc allocator. 2335 * 2336 * On success, a pointer to the newly created pool is returned, 2337 * otherwise NULL. 2338 */ 2339 struct zs_pool *zs_create_pool(const char *name) 2340 { 2341 int i; 2342 struct zs_pool *pool; 2343 struct size_class *prev_class = NULL; 2344 2345 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2346 if (!pool) 2347 return NULL; 2348 2349 init_deferred_free(pool); 2350 2351 pool->name = kstrdup(name, GFP_KERNEL); 2352 if (!pool->name) 2353 goto err; 2354 2355 if (create_cache(pool)) 2356 goto err; 2357 2358 /* 2359 * Iterate reversely, because, size of size_class that we want to use 2360 * for merging should be larger or equal to current size. 2361 */ 2362 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2363 int size; 2364 int pages_per_zspage; 2365 int objs_per_zspage; 2366 struct size_class *class; 2367 int fullness = 0; 2368 2369 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2370 if (size > ZS_MAX_ALLOC_SIZE) 2371 size = ZS_MAX_ALLOC_SIZE; 2372 pages_per_zspage = get_pages_per_zspage(size); 2373 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2374 2375 /* 2376 * size_class is used for normal zsmalloc operation such 2377 * as alloc/free for that size. Although it is natural that we 2378 * have one size_class for each size, there is a chance that we 2379 * can get more memory utilization if we use one size_class for 2380 * many different sizes whose size_class have same 2381 * characteristics. So, we makes size_class point to 2382 * previous size_class if possible. 2383 */ 2384 if (prev_class) { 2385 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2386 pool->size_class[i] = prev_class; 2387 continue; 2388 } 2389 } 2390 2391 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2392 if (!class) 2393 goto err; 2394 2395 class->size = size; 2396 class->index = i; 2397 class->pages_per_zspage = pages_per_zspage; 2398 class->objs_per_zspage = objs_per_zspage; 2399 spin_lock_init(&class->lock); 2400 pool->size_class[i] = class; 2401 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2402 fullness++) 2403 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2404 2405 prev_class = class; 2406 } 2407 2408 /* debug only, don't abort if it fails */ 2409 zs_pool_stat_create(pool, name); 2410 2411 if (zs_register_migration(pool)) 2412 goto err; 2413 2414 /* 2415 * Not critical, we still can use the pool 2416 * and user can trigger compaction manually. 2417 */ 2418 if (zs_register_shrinker(pool) == 0) 2419 pool->shrinker_enabled = true; 2420 return pool; 2421 2422 err: 2423 zs_destroy_pool(pool); 2424 return NULL; 2425 } 2426 EXPORT_SYMBOL_GPL(zs_create_pool); 2427 2428 void zs_destroy_pool(struct zs_pool *pool) 2429 { 2430 int i; 2431 2432 zs_unregister_shrinker(pool); 2433 zs_unregister_migration(pool); 2434 zs_pool_stat_destroy(pool); 2435 2436 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2437 int fg; 2438 struct size_class *class = pool->size_class[i]; 2439 2440 if (!class) 2441 continue; 2442 2443 if (class->index != i) 2444 continue; 2445 2446 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2447 if (!list_empty(&class->fullness_list[fg])) { 2448 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2449 class->size, fg); 2450 } 2451 } 2452 kfree(class); 2453 } 2454 2455 destroy_cache(pool); 2456 kfree(pool->size_class); 2457 kfree(pool->name); 2458 kfree(pool); 2459 } 2460 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2461 2462 static int __init zs_init(void) 2463 { 2464 int ret; 2465 2466 ret = zsmalloc_mount(); 2467 if (ret) 2468 goto out; 2469 2470 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2471 zs_cpu_prepare, zs_cpu_dead); 2472 if (ret) 2473 goto hp_setup_fail; 2474 2475 #ifdef CONFIG_ZPOOL 2476 zpool_register_driver(&zs_zpool_driver); 2477 #endif 2478 2479 zs_stat_init(); 2480 2481 return 0; 2482 2483 hp_setup_fail: 2484 zsmalloc_unmount(); 2485 out: 2486 return ret; 2487 } 2488 2489 static void __exit zs_exit(void) 2490 { 2491 #ifdef CONFIG_ZPOOL 2492 zpool_unregister_driver(&zs_zpool_driver); 2493 #endif 2494 zsmalloc_unmount(); 2495 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2496 2497 zs_stat_exit(); 2498 } 2499 2500 module_init(zs_init); 2501 module_exit(zs_exit); 2502 2503 MODULE_LICENSE("Dual BSD/GPL"); 2504 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2505