1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 static size_t huge_class_size; 197 198 struct size_class { 199 spinlock_t lock; 200 struct list_head fullness_list[NR_ZS_FULLNESS]; 201 /* 202 * Size of objects stored in this class. Must be multiple 203 * of ZS_ALIGN. 204 */ 205 int size; 206 int objs_per_zspage; 207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 208 int pages_per_zspage; 209 210 unsigned int index; 211 struct zs_size_stat stats; 212 }; 213 214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 215 static void SetPageHugeObject(struct page *page) 216 { 217 SetPageOwnerPriv1(page); 218 } 219 220 static void ClearPageHugeObject(struct page *page) 221 { 222 ClearPageOwnerPriv1(page); 223 } 224 225 static int PageHugeObject(struct page *page) 226 { 227 return PageOwnerPriv1(page); 228 } 229 230 /* 231 * Placed within free objects to form a singly linked list. 232 * For every zspage, zspage->freeobj gives head of this list. 233 * 234 * This must be power of 2 and less than or equal to ZS_ALIGN 235 */ 236 struct link_free { 237 union { 238 /* 239 * Free object index; 240 * It's valid for non-allocated object 241 */ 242 unsigned long next; 243 /* 244 * Handle of allocated object. 245 */ 246 unsigned long handle; 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: /* fallthru */ 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc = zs_zpool_malloc, 445 .free = zs_zpool_free, 446 .map = zs_zpool_map, 447 .unmap = zs_zpool_unmap, 448 .total_size = zs_zpool_total_size, 449 }; 450 451 MODULE_ALIAS("zpool-zsmalloc"); 452 #endif /* CONFIG_ZPOOL */ 453 454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 456 457 static bool is_zspage_isolated(struct zspage *zspage) 458 { 459 return zspage->isolated; 460 } 461 462 static __maybe_unused int is_first_page(struct page *page) 463 { 464 return PagePrivate(page); 465 } 466 467 /* Protected by class->lock */ 468 static inline int get_zspage_inuse(struct zspage *zspage) 469 { 470 return zspage->inuse; 471 } 472 473 static inline void set_zspage_inuse(struct zspage *zspage, int val) 474 { 475 zspage->inuse = val; 476 } 477 478 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 479 { 480 zspage->inuse += val; 481 } 482 483 static inline struct page *get_first_page(struct zspage *zspage) 484 { 485 struct page *first_page = zspage->first_page; 486 487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 488 return first_page; 489 } 490 491 static inline int get_first_obj_offset(struct page *page) 492 { 493 return page->units; 494 } 495 496 static inline void set_first_obj_offset(struct page *page, int offset) 497 { 498 page->units = offset; 499 } 500 501 static inline unsigned int get_freeobj(struct zspage *zspage) 502 { 503 return zspage->freeobj; 504 } 505 506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 507 { 508 zspage->freeobj = obj; 509 } 510 511 static void get_zspage_mapping(struct zspage *zspage, 512 unsigned int *class_idx, 513 enum fullness_group *fullness) 514 { 515 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 516 517 *fullness = zspage->fullness; 518 *class_idx = zspage->class; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the give size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type zs_stat_type or fullness_group */ 548 static inline void zs_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 if (!zs_stat_root) 579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 580 } 581 582 static void __exit zs_stat_exit(void) 583 { 584 debugfs_remove_recursive(zs_stat_root); 585 } 586 587 static unsigned long zs_can_compact(struct size_class *class); 588 589 static int zs_stats_size_show(struct seq_file *s, void *v) 590 { 591 int i; 592 struct zs_pool *pool = s->private; 593 struct size_class *class; 594 int objs_per_zspage; 595 unsigned long class_almost_full, class_almost_empty; 596 unsigned long obj_allocated, obj_used, pages_used, freeable; 597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 599 unsigned long total_freeable = 0; 600 601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 602 "class", "size", "almost_full", "almost_empty", 603 "obj_allocated", "obj_used", "pages_used", 604 "pages_per_zspage", "freeable"); 605 606 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 607 class = pool->size_class[i]; 608 609 if (class->index != i) 610 continue; 611 612 spin_lock(&class->lock); 613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 616 obj_used = zs_stat_get(class, OBJ_USED); 617 freeable = zs_can_compact(class); 618 spin_unlock(&class->lock); 619 620 objs_per_zspage = class->objs_per_zspage; 621 pages_used = obj_allocated / objs_per_zspage * 622 class->pages_per_zspage; 623 624 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 625 " %10lu %10lu %16d %8lu\n", 626 i, class->size, class_almost_full, class_almost_empty, 627 obj_allocated, obj_used, pages_used, 628 class->pages_per_zspage, freeable); 629 630 total_class_almost_full += class_almost_full; 631 total_class_almost_empty += class_almost_empty; 632 total_objs += obj_allocated; 633 total_used_objs += obj_used; 634 total_pages += pages_used; 635 total_freeable += freeable; 636 } 637 638 seq_puts(s, "\n"); 639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 640 "Total", "", total_class_almost_full, 641 total_class_almost_empty, total_objs, 642 total_used_objs, total_pages, "", total_freeable); 643 644 return 0; 645 } 646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 647 648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 649 { 650 struct dentry *entry; 651 652 if (!zs_stat_root) { 653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 654 return; 655 } 656 657 entry = debugfs_create_dir(name, zs_stat_root); 658 if (!entry) { 659 pr_warn("debugfs dir <%s> creation failed\n", name); 660 return; 661 } 662 pool->stat_dentry = entry; 663 664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 665 pool->stat_dentry, pool, &zs_stats_size_fops); 666 if (!entry) { 667 pr_warn("%s: debugfs file entry <%s> creation failed\n", 668 name, "classes"); 669 debugfs_remove_recursive(pool->stat_dentry); 670 pool->stat_dentry = NULL; 671 } 672 } 673 674 static void zs_pool_stat_destroy(struct zs_pool *pool) 675 { 676 debugfs_remove_recursive(pool->stat_dentry); 677 } 678 679 #else /* CONFIG_ZSMALLOC_STAT */ 680 static void __init zs_stat_init(void) 681 { 682 } 683 684 static void __exit zs_stat_exit(void) 685 { 686 } 687 688 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 689 { 690 } 691 692 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 693 { 694 } 695 #endif 696 697 698 /* 699 * For each size class, zspages are divided into different groups 700 * depending on how "full" they are. This was done so that we could 701 * easily find empty or nearly empty zspages when we try to shrink 702 * the pool (not yet implemented). This function returns fullness 703 * status of the given page. 704 */ 705 static enum fullness_group get_fullness_group(struct size_class *class, 706 struct zspage *zspage) 707 { 708 int inuse, objs_per_zspage; 709 enum fullness_group fg; 710 711 inuse = get_zspage_inuse(zspage); 712 objs_per_zspage = class->objs_per_zspage; 713 714 if (inuse == 0) 715 fg = ZS_EMPTY; 716 else if (inuse == objs_per_zspage) 717 fg = ZS_FULL; 718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 719 fg = ZS_ALMOST_EMPTY; 720 else 721 fg = ZS_ALMOST_FULL; 722 723 return fg; 724 } 725 726 /* 727 * Each size class maintains various freelists and zspages are assigned 728 * to one of these freelists based on the number of live objects they 729 * have. This functions inserts the given zspage into the freelist 730 * identified by <class, fullness_group>. 731 */ 732 static void insert_zspage(struct size_class *class, 733 struct zspage *zspage, 734 enum fullness_group fullness) 735 { 736 struct zspage *head; 737 738 zs_stat_inc(class, fullness, 1); 739 head = list_first_entry_or_null(&class->fullness_list[fullness], 740 struct zspage, list); 741 /* 742 * We want to see more ZS_FULL pages and less almost empty/full. 743 * Put pages with higher ->inuse first. 744 */ 745 if (head) { 746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 747 list_add(&zspage->list, &head->list); 748 return; 749 } 750 } 751 list_add(&zspage->list, &class->fullness_list[fullness]); 752 } 753 754 /* 755 * This function removes the given zspage from the freelist identified 756 * by <class, fullness_group>. 757 */ 758 static void remove_zspage(struct size_class *class, 759 struct zspage *zspage, 760 enum fullness_group fullness) 761 { 762 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 763 VM_BUG_ON(is_zspage_isolated(zspage)); 764 765 list_del_init(&zspage->list); 766 zs_stat_dec(class, fullness, 1); 767 } 768 769 /* 770 * Each size class maintains zspages in different fullness groups depending 771 * on the number of live objects they contain. When allocating or freeing 772 * objects, the fullness status of the page can change, say, from ALMOST_FULL 773 * to ALMOST_EMPTY when freeing an object. This function checks if such 774 * a status change has occurred for the given page and accordingly moves the 775 * page from the freelist of the old fullness group to that of the new 776 * fullness group. 777 */ 778 static enum fullness_group fix_fullness_group(struct size_class *class, 779 struct zspage *zspage) 780 { 781 int class_idx; 782 enum fullness_group currfg, newfg; 783 784 get_zspage_mapping(zspage, &class_idx, &currfg); 785 newfg = get_fullness_group(class, zspage); 786 if (newfg == currfg) 787 goto out; 788 789 if (!is_zspage_isolated(zspage)) { 790 remove_zspage(class, zspage, currfg); 791 insert_zspage(class, zspage, newfg); 792 } 793 794 set_zspage_mapping(zspage, class_idx, newfg); 795 796 out: 797 return newfg; 798 } 799 800 /* 801 * We have to decide on how many pages to link together 802 * to form a zspage for each size class. This is important 803 * to reduce wastage due to unusable space left at end of 804 * each zspage which is given as: 805 * wastage = Zp % class_size 806 * usage = Zp - wastage 807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 808 * 809 * For example, for size class of 3/8 * PAGE_SIZE, we should 810 * link together 3 PAGE_SIZE sized pages to form a zspage 811 * since then we can perfectly fit in 8 such objects. 812 */ 813 static int get_pages_per_zspage(int class_size) 814 { 815 int i, max_usedpc = 0; 816 /* zspage order which gives maximum used size per KB */ 817 int max_usedpc_order = 1; 818 819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 820 int zspage_size; 821 int waste, usedpc; 822 823 zspage_size = i * PAGE_SIZE; 824 waste = zspage_size % class_size; 825 usedpc = (zspage_size - waste) * 100 / zspage_size; 826 827 if (usedpc > max_usedpc) { 828 max_usedpc = usedpc; 829 max_usedpc_order = i; 830 } 831 } 832 833 return max_usedpc_order; 834 } 835 836 static struct zspage *get_zspage(struct page *page) 837 { 838 struct zspage *zspage = (struct zspage *)page->private; 839 840 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 841 return zspage; 842 } 843 844 static struct page *get_next_page(struct page *page) 845 { 846 if (unlikely(PageHugeObject(page))) 847 return NULL; 848 849 return page->freelist; 850 } 851 852 /** 853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 854 * @obj: the encoded object value 855 * @page: page object resides in zspage 856 * @obj_idx: object index 857 */ 858 static void obj_to_location(unsigned long obj, struct page **page, 859 unsigned int *obj_idx) 860 { 861 obj >>= OBJ_TAG_BITS; 862 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 863 *obj_idx = (obj & OBJ_INDEX_MASK); 864 } 865 866 /** 867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 868 * @page: page object resides in zspage 869 * @obj_idx: object index 870 */ 871 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 872 { 873 unsigned long obj; 874 875 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 876 obj |= obj_idx & OBJ_INDEX_MASK; 877 obj <<= OBJ_TAG_BITS; 878 879 return obj; 880 } 881 882 static unsigned long handle_to_obj(unsigned long handle) 883 { 884 return *(unsigned long *)handle; 885 } 886 887 static unsigned long obj_to_head(struct page *page, void *obj) 888 { 889 if (unlikely(PageHugeObject(page))) { 890 VM_BUG_ON_PAGE(!is_first_page(page), page); 891 return page->index; 892 } else 893 return *(unsigned long *)obj; 894 } 895 896 static inline int testpin_tag(unsigned long handle) 897 { 898 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 899 } 900 901 static inline int trypin_tag(unsigned long handle) 902 { 903 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 904 } 905 906 static void pin_tag(unsigned long handle) 907 { 908 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 909 } 910 911 static void unpin_tag(unsigned long handle) 912 { 913 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 914 } 915 916 static void reset_page(struct page *page) 917 { 918 __ClearPageMovable(page); 919 ClearPagePrivate(page); 920 set_page_private(page, 0); 921 page_mapcount_reset(page); 922 ClearPageHugeObject(page); 923 page->freelist = NULL; 924 } 925 926 /* 927 * To prevent zspage destroy during migration, zspage freeing should 928 * hold locks of all pages in the zspage. 929 */ 930 void lock_zspage(struct zspage *zspage) 931 { 932 struct page *page = get_first_page(zspage); 933 934 do { 935 lock_page(page); 936 } while ((page = get_next_page(page)) != NULL); 937 } 938 939 int trylock_zspage(struct zspage *zspage) 940 { 941 struct page *cursor, *fail; 942 943 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 944 get_next_page(cursor)) { 945 if (!trylock_page(cursor)) { 946 fail = cursor; 947 goto unlock; 948 } 949 } 950 951 return 1; 952 unlock: 953 for (cursor = get_first_page(zspage); cursor != fail; cursor = 954 get_next_page(cursor)) 955 unlock_page(cursor); 956 957 return 0; 958 } 959 960 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 961 struct zspage *zspage) 962 { 963 struct page *page, *next; 964 enum fullness_group fg; 965 unsigned int class_idx; 966 967 get_zspage_mapping(zspage, &class_idx, &fg); 968 969 assert_spin_locked(&class->lock); 970 971 VM_BUG_ON(get_zspage_inuse(zspage)); 972 VM_BUG_ON(fg != ZS_EMPTY); 973 974 next = page = get_first_page(zspage); 975 do { 976 VM_BUG_ON_PAGE(!PageLocked(page), page); 977 next = get_next_page(page); 978 reset_page(page); 979 unlock_page(page); 980 dec_zone_page_state(page, NR_ZSPAGES); 981 put_page(page); 982 page = next; 983 } while (page != NULL); 984 985 cache_free_zspage(pool, zspage); 986 987 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 988 atomic_long_sub(class->pages_per_zspage, 989 &pool->pages_allocated); 990 } 991 992 static void free_zspage(struct zs_pool *pool, struct size_class *class, 993 struct zspage *zspage) 994 { 995 VM_BUG_ON(get_zspage_inuse(zspage)); 996 VM_BUG_ON(list_empty(&zspage->list)); 997 998 if (!trylock_zspage(zspage)) { 999 kick_deferred_free(pool); 1000 return; 1001 } 1002 1003 remove_zspage(class, zspage, ZS_EMPTY); 1004 __free_zspage(pool, class, zspage); 1005 } 1006 1007 /* Initialize a newly allocated zspage */ 1008 static void init_zspage(struct size_class *class, struct zspage *zspage) 1009 { 1010 unsigned int freeobj = 1; 1011 unsigned long off = 0; 1012 struct page *page = get_first_page(zspage); 1013 1014 while (page) { 1015 struct page *next_page; 1016 struct link_free *link; 1017 void *vaddr; 1018 1019 set_first_obj_offset(page, off); 1020 1021 vaddr = kmap_atomic(page); 1022 link = (struct link_free *)vaddr + off / sizeof(*link); 1023 1024 while ((off += class->size) < PAGE_SIZE) { 1025 link->next = freeobj++ << OBJ_TAG_BITS; 1026 link += class->size / sizeof(*link); 1027 } 1028 1029 /* 1030 * We now come to the last (full or partial) object on this 1031 * page, which must point to the first object on the next 1032 * page (if present) 1033 */ 1034 next_page = get_next_page(page); 1035 if (next_page) { 1036 link->next = freeobj++ << OBJ_TAG_BITS; 1037 } else { 1038 /* 1039 * Reset OBJ_TAG_BITS bit to last link to tell 1040 * whether it's allocated object or not. 1041 */ 1042 link->next = -1UL << OBJ_TAG_BITS; 1043 } 1044 kunmap_atomic(vaddr); 1045 page = next_page; 1046 off %= PAGE_SIZE; 1047 } 1048 1049 set_freeobj(zspage, 0); 1050 } 1051 1052 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1053 struct page *pages[]) 1054 { 1055 int i; 1056 struct page *page; 1057 struct page *prev_page = NULL; 1058 int nr_pages = class->pages_per_zspage; 1059 1060 /* 1061 * Allocate individual pages and link them together as: 1062 * 1. all pages are linked together using page->freelist 1063 * 2. each sub-page point to zspage using page->private 1064 * 1065 * we set PG_private to identify the first page (i.e. no other sub-page 1066 * has this flag set). 1067 */ 1068 for (i = 0; i < nr_pages; i++) { 1069 page = pages[i]; 1070 set_page_private(page, (unsigned long)zspage); 1071 page->freelist = NULL; 1072 if (i == 0) { 1073 zspage->first_page = page; 1074 SetPagePrivate(page); 1075 if (unlikely(class->objs_per_zspage == 1 && 1076 class->pages_per_zspage == 1)) 1077 SetPageHugeObject(page); 1078 } else { 1079 prev_page->freelist = page; 1080 } 1081 prev_page = page; 1082 } 1083 } 1084 1085 /* 1086 * Allocate a zspage for the given size class 1087 */ 1088 static struct zspage *alloc_zspage(struct zs_pool *pool, 1089 struct size_class *class, 1090 gfp_t gfp) 1091 { 1092 int i; 1093 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1094 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1095 1096 if (!zspage) 1097 return NULL; 1098 1099 memset(zspage, 0, sizeof(struct zspage)); 1100 zspage->magic = ZSPAGE_MAGIC; 1101 migrate_lock_init(zspage); 1102 1103 for (i = 0; i < class->pages_per_zspage; i++) { 1104 struct page *page; 1105 1106 page = alloc_page(gfp); 1107 if (!page) { 1108 while (--i >= 0) { 1109 dec_zone_page_state(pages[i], NR_ZSPAGES); 1110 __free_page(pages[i]); 1111 } 1112 cache_free_zspage(pool, zspage); 1113 return NULL; 1114 } 1115 1116 inc_zone_page_state(page, NR_ZSPAGES); 1117 pages[i] = page; 1118 } 1119 1120 create_page_chain(class, zspage, pages); 1121 init_zspage(class, zspage); 1122 1123 return zspage; 1124 } 1125 1126 static struct zspage *find_get_zspage(struct size_class *class) 1127 { 1128 int i; 1129 struct zspage *zspage; 1130 1131 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1132 zspage = list_first_entry_or_null(&class->fullness_list[i], 1133 struct zspage, list); 1134 if (zspage) 1135 break; 1136 } 1137 1138 return zspage; 1139 } 1140 1141 #ifdef CONFIG_PGTABLE_MAPPING 1142 static inline int __zs_cpu_up(struct mapping_area *area) 1143 { 1144 /* 1145 * Make sure we don't leak memory if a cpu UP notification 1146 * and zs_init() race and both call zs_cpu_up() on the same cpu 1147 */ 1148 if (area->vm) 1149 return 0; 1150 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1151 if (!area->vm) 1152 return -ENOMEM; 1153 return 0; 1154 } 1155 1156 static inline void __zs_cpu_down(struct mapping_area *area) 1157 { 1158 if (area->vm) 1159 free_vm_area(area->vm); 1160 area->vm = NULL; 1161 } 1162 1163 static inline void *__zs_map_object(struct mapping_area *area, 1164 struct page *pages[2], int off, int size) 1165 { 1166 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1167 area->vm_addr = area->vm->addr; 1168 return area->vm_addr + off; 1169 } 1170 1171 static inline void __zs_unmap_object(struct mapping_area *area, 1172 struct page *pages[2], int off, int size) 1173 { 1174 unsigned long addr = (unsigned long)area->vm_addr; 1175 1176 unmap_kernel_range(addr, PAGE_SIZE * 2); 1177 } 1178 1179 #else /* CONFIG_PGTABLE_MAPPING */ 1180 1181 static inline int __zs_cpu_up(struct mapping_area *area) 1182 { 1183 /* 1184 * Make sure we don't leak memory if a cpu UP notification 1185 * and zs_init() race and both call zs_cpu_up() on the same cpu 1186 */ 1187 if (area->vm_buf) 1188 return 0; 1189 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1190 if (!area->vm_buf) 1191 return -ENOMEM; 1192 return 0; 1193 } 1194 1195 static inline void __zs_cpu_down(struct mapping_area *area) 1196 { 1197 kfree(area->vm_buf); 1198 area->vm_buf = NULL; 1199 } 1200 1201 static void *__zs_map_object(struct mapping_area *area, 1202 struct page *pages[2], int off, int size) 1203 { 1204 int sizes[2]; 1205 void *addr; 1206 char *buf = area->vm_buf; 1207 1208 /* disable page faults to match kmap_atomic() return conditions */ 1209 pagefault_disable(); 1210 1211 /* no read fastpath */ 1212 if (area->vm_mm == ZS_MM_WO) 1213 goto out; 1214 1215 sizes[0] = PAGE_SIZE - off; 1216 sizes[1] = size - sizes[0]; 1217 1218 /* copy object to per-cpu buffer */ 1219 addr = kmap_atomic(pages[0]); 1220 memcpy(buf, addr + off, sizes[0]); 1221 kunmap_atomic(addr); 1222 addr = kmap_atomic(pages[1]); 1223 memcpy(buf + sizes[0], addr, sizes[1]); 1224 kunmap_atomic(addr); 1225 out: 1226 return area->vm_buf; 1227 } 1228 1229 static void __zs_unmap_object(struct mapping_area *area, 1230 struct page *pages[2], int off, int size) 1231 { 1232 int sizes[2]; 1233 void *addr; 1234 char *buf; 1235 1236 /* no write fastpath */ 1237 if (area->vm_mm == ZS_MM_RO) 1238 goto out; 1239 1240 buf = area->vm_buf; 1241 buf = buf + ZS_HANDLE_SIZE; 1242 size -= ZS_HANDLE_SIZE; 1243 off += ZS_HANDLE_SIZE; 1244 1245 sizes[0] = PAGE_SIZE - off; 1246 sizes[1] = size - sizes[0]; 1247 1248 /* copy per-cpu buffer to object */ 1249 addr = kmap_atomic(pages[0]); 1250 memcpy(addr + off, buf, sizes[0]); 1251 kunmap_atomic(addr); 1252 addr = kmap_atomic(pages[1]); 1253 memcpy(addr, buf + sizes[0], sizes[1]); 1254 kunmap_atomic(addr); 1255 1256 out: 1257 /* enable page faults to match kunmap_atomic() return conditions */ 1258 pagefault_enable(); 1259 } 1260 1261 #endif /* CONFIG_PGTABLE_MAPPING */ 1262 1263 static int zs_cpu_prepare(unsigned int cpu) 1264 { 1265 struct mapping_area *area; 1266 1267 area = &per_cpu(zs_map_area, cpu); 1268 return __zs_cpu_up(area); 1269 } 1270 1271 static int zs_cpu_dead(unsigned int cpu) 1272 { 1273 struct mapping_area *area; 1274 1275 area = &per_cpu(zs_map_area, cpu); 1276 __zs_cpu_down(area); 1277 return 0; 1278 } 1279 1280 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1281 int objs_per_zspage) 1282 { 1283 if (prev->pages_per_zspage == pages_per_zspage && 1284 prev->objs_per_zspage == objs_per_zspage) 1285 return true; 1286 1287 return false; 1288 } 1289 1290 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1291 { 1292 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1293 } 1294 1295 unsigned long zs_get_total_pages(struct zs_pool *pool) 1296 { 1297 return atomic_long_read(&pool->pages_allocated); 1298 } 1299 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1300 1301 /** 1302 * zs_map_object - get address of allocated object from handle. 1303 * @pool: pool from which the object was allocated 1304 * @handle: handle returned from zs_malloc 1305 * @mm: maping mode to use 1306 * 1307 * Before using an object allocated from zs_malloc, it must be mapped using 1308 * this function. When done with the object, it must be unmapped using 1309 * zs_unmap_object. 1310 * 1311 * Only one object can be mapped per cpu at a time. There is no protection 1312 * against nested mappings. 1313 * 1314 * This function returns with preemption and page faults disabled. 1315 */ 1316 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1317 enum zs_mapmode mm) 1318 { 1319 struct zspage *zspage; 1320 struct page *page; 1321 unsigned long obj, off; 1322 unsigned int obj_idx; 1323 1324 unsigned int class_idx; 1325 enum fullness_group fg; 1326 struct size_class *class; 1327 struct mapping_area *area; 1328 struct page *pages[2]; 1329 void *ret; 1330 1331 /* 1332 * Because we use per-cpu mapping areas shared among the 1333 * pools/users, we can't allow mapping in interrupt context 1334 * because it can corrupt another users mappings. 1335 */ 1336 BUG_ON(in_interrupt()); 1337 1338 /* From now on, migration cannot move the object */ 1339 pin_tag(handle); 1340 1341 obj = handle_to_obj(handle); 1342 obj_to_location(obj, &page, &obj_idx); 1343 zspage = get_zspage(page); 1344 1345 /* migration cannot move any subpage in this zspage */ 1346 migrate_read_lock(zspage); 1347 1348 get_zspage_mapping(zspage, &class_idx, &fg); 1349 class = pool->size_class[class_idx]; 1350 off = (class->size * obj_idx) & ~PAGE_MASK; 1351 1352 area = &get_cpu_var(zs_map_area); 1353 area->vm_mm = mm; 1354 if (off + class->size <= PAGE_SIZE) { 1355 /* this object is contained entirely within a page */ 1356 area->vm_addr = kmap_atomic(page); 1357 ret = area->vm_addr + off; 1358 goto out; 1359 } 1360 1361 /* this object spans two pages */ 1362 pages[0] = page; 1363 pages[1] = get_next_page(page); 1364 BUG_ON(!pages[1]); 1365 1366 ret = __zs_map_object(area, pages, off, class->size); 1367 out: 1368 if (likely(!PageHugeObject(page))) 1369 ret += ZS_HANDLE_SIZE; 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL_GPL(zs_map_object); 1374 1375 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1376 { 1377 struct zspage *zspage; 1378 struct page *page; 1379 unsigned long obj, off; 1380 unsigned int obj_idx; 1381 1382 unsigned int class_idx; 1383 enum fullness_group fg; 1384 struct size_class *class; 1385 struct mapping_area *area; 1386 1387 obj = handle_to_obj(handle); 1388 obj_to_location(obj, &page, &obj_idx); 1389 zspage = get_zspage(page); 1390 get_zspage_mapping(zspage, &class_idx, &fg); 1391 class = pool->size_class[class_idx]; 1392 off = (class->size * obj_idx) & ~PAGE_MASK; 1393 1394 area = this_cpu_ptr(&zs_map_area); 1395 if (off + class->size <= PAGE_SIZE) 1396 kunmap_atomic(area->vm_addr); 1397 else { 1398 struct page *pages[2]; 1399 1400 pages[0] = page; 1401 pages[1] = get_next_page(page); 1402 BUG_ON(!pages[1]); 1403 1404 __zs_unmap_object(area, pages, off, class->size); 1405 } 1406 put_cpu_var(zs_map_area); 1407 1408 migrate_read_unlock(zspage); 1409 unpin_tag(handle); 1410 } 1411 EXPORT_SYMBOL_GPL(zs_unmap_object); 1412 1413 /** 1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1415 * zsmalloc &size_class. 1416 * @pool: zsmalloc pool to use 1417 * 1418 * The function returns the size of the first huge class - any object of equal 1419 * or bigger size will be stored in zspage consisting of a single physical 1420 * page. 1421 * 1422 * Context: Any context. 1423 * 1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1425 */ 1426 size_t zs_huge_class_size(struct zs_pool *pool) 1427 { 1428 return huge_class_size; 1429 } 1430 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1431 1432 static unsigned long obj_malloc(struct size_class *class, 1433 struct zspage *zspage, unsigned long handle) 1434 { 1435 int i, nr_page, offset; 1436 unsigned long obj; 1437 struct link_free *link; 1438 1439 struct page *m_page; 1440 unsigned long m_offset; 1441 void *vaddr; 1442 1443 handle |= OBJ_ALLOCATED_TAG; 1444 obj = get_freeobj(zspage); 1445 1446 offset = obj * class->size; 1447 nr_page = offset >> PAGE_SHIFT; 1448 m_offset = offset & ~PAGE_MASK; 1449 m_page = get_first_page(zspage); 1450 1451 for (i = 0; i < nr_page; i++) 1452 m_page = get_next_page(m_page); 1453 1454 vaddr = kmap_atomic(m_page); 1455 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1456 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1457 if (likely(!PageHugeObject(m_page))) 1458 /* record handle in the header of allocated chunk */ 1459 link->handle = handle; 1460 else 1461 /* record handle to page->index */ 1462 zspage->first_page->index = handle; 1463 1464 kunmap_atomic(vaddr); 1465 mod_zspage_inuse(zspage, 1); 1466 zs_stat_inc(class, OBJ_USED, 1); 1467 1468 obj = location_to_obj(m_page, obj); 1469 1470 return obj; 1471 } 1472 1473 1474 /** 1475 * zs_malloc - Allocate block of given size from pool. 1476 * @pool: pool to allocate from 1477 * @size: size of block to allocate 1478 * @gfp: gfp flags when allocating object 1479 * 1480 * On success, handle to the allocated object is returned, 1481 * otherwise 0. 1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1483 */ 1484 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1485 { 1486 unsigned long handle, obj; 1487 struct size_class *class; 1488 enum fullness_group newfg; 1489 struct zspage *zspage; 1490 1491 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1492 return 0; 1493 1494 handle = cache_alloc_handle(pool, gfp); 1495 if (!handle) 1496 return 0; 1497 1498 /* extra space in chunk to keep the handle */ 1499 size += ZS_HANDLE_SIZE; 1500 class = pool->size_class[get_size_class_index(size)]; 1501 1502 spin_lock(&class->lock); 1503 zspage = find_get_zspage(class); 1504 if (likely(zspage)) { 1505 obj = obj_malloc(class, zspage, handle); 1506 /* Now move the zspage to another fullness group, if required */ 1507 fix_fullness_group(class, zspage); 1508 record_obj(handle, obj); 1509 spin_unlock(&class->lock); 1510 1511 return handle; 1512 } 1513 1514 spin_unlock(&class->lock); 1515 1516 zspage = alloc_zspage(pool, class, gfp); 1517 if (!zspage) { 1518 cache_free_handle(pool, handle); 1519 return 0; 1520 } 1521 1522 spin_lock(&class->lock); 1523 obj = obj_malloc(class, zspage, handle); 1524 newfg = get_fullness_group(class, zspage); 1525 insert_zspage(class, zspage, newfg); 1526 set_zspage_mapping(zspage, class->index, newfg); 1527 record_obj(handle, obj); 1528 atomic_long_add(class->pages_per_zspage, 1529 &pool->pages_allocated); 1530 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1531 1532 /* We completely set up zspage so mark them as movable */ 1533 SetZsPageMovable(pool, zspage); 1534 spin_unlock(&class->lock); 1535 1536 return handle; 1537 } 1538 EXPORT_SYMBOL_GPL(zs_malloc); 1539 1540 static void obj_free(struct size_class *class, unsigned long obj) 1541 { 1542 struct link_free *link; 1543 struct zspage *zspage; 1544 struct page *f_page; 1545 unsigned long f_offset; 1546 unsigned int f_objidx; 1547 void *vaddr; 1548 1549 obj &= ~OBJ_ALLOCATED_TAG; 1550 obj_to_location(obj, &f_page, &f_objidx); 1551 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1552 zspage = get_zspage(f_page); 1553 1554 vaddr = kmap_atomic(f_page); 1555 1556 /* Insert this object in containing zspage's freelist */ 1557 link = (struct link_free *)(vaddr + f_offset); 1558 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1559 kunmap_atomic(vaddr); 1560 set_freeobj(zspage, f_objidx); 1561 mod_zspage_inuse(zspage, -1); 1562 zs_stat_dec(class, OBJ_USED, 1); 1563 } 1564 1565 void zs_free(struct zs_pool *pool, unsigned long handle) 1566 { 1567 struct zspage *zspage; 1568 struct page *f_page; 1569 unsigned long obj; 1570 unsigned int f_objidx; 1571 int class_idx; 1572 struct size_class *class; 1573 enum fullness_group fullness; 1574 bool isolated; 1575 1576 if (unlikely(!handle)) 1577 return; 1578 1579 pin_tag(handle); 1580 obj = handle_to_obj(handle); 1581 obj_to_location(obj, &f_page, &f_objidx); 1582 zspage = get_zspage(f_page); 1583 1584 migrate_read_lock(zspage); 1585 1586 get_zspage_mapping(zspage, &class_idx, &fullness); 1587 class = pool->size_class[class_idx]; 1588 1589 spin_lock(&class->lock); 1590 obj_free(class, obj); 1591 fullness = fix_fullness_group(class, zspage); 1592 if (fullness != ZS_EMPTY) { 1593 migrate_read_unlock(zspage); 1594 goto out; 1595 } 1596 1597 isolated = is_zspage_isolated(zspage); 1598 migrate_read_unlock(zspage); 1599 /* If zspage is isolated, zs_page_putback will free the zspage */ 1600 if (likely(!isolated)) 1601 free_zspage(pool, class, zspage); 1602 out: 1603 1604 spin_unlock(&class->lock); 1605 unpin_tag(handle); 1606 cache_free_handle(pool, handle); 1607 } 1608 EXPORT_SYMBOL_GPL(zs_free); 1609 1610 static void zs_object_copy(struct size_class *class, unsigned long dst, 1611 unsigned long src) 1612 { 1613 struct page *s_page, *d_page; 1614 unsigned int s_objidx, d_objidx; 1615 unsigned long s_off, d_off; 1616 void *s_addr, *d_addr; 1617 int s_size, d_size, size; 1618 int written = 0; 1619 1620 s_size = d_size = class->size; 1621 1622 obj_to_location(src, &s_page, &s_objidx); 1623 obj_to_location(dst, &d_page, &d_objidx); 1624 1625 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1626 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1627 1628 if (s_off + class->size > PAGE_SIZE) 1629 s_size = PAGE_SIZE - s_off; 1630 1631 if (d_off + class->size > PAGE_SIZE) 1632 d_size = PAGE_SIZE - d_off; 1633 1634 s_addr = kmap_atomic(s_page); 1635 d_addr = kmap_atomic(d_page); 1636 1637 while (1) { 1638 size = min(s_size, d_size); 1639 memcpy(d_addr + d_off, s_addr + s_off, size); 1640 written += size; 1641 1642 if (written == class->size) 1643 break; 1644 1645 s_off += size; 1646 s_size -= size; 1647 d_off += size; 1648 d_size -= size; 1649 1650 if (s_off >= PAGE_SIZE) { 1651 kunmap_atomic(d_addr); 1652 kunmap_atomic(s_addr); 1653 s_page = get_next_page(s_page); 1654 s_addr = kmap_atomic(s_page); 1655 d_addr = kmap_atomic(d_page); 1656 s_size = class->size - written; 1657 s_off = 0; 1658 } 1659 1660 if (d_off >= PAGE_SIZE) { 1661 kunmap_atomic(d_addr); 1662 d_page = get_next_page(d_page); 1663 d_addr = kmap_atomic(d_page); 1664 d_size = class->size - written; 1665 d_off = 0; 1666 } 1667 } 1668 1669 kunmap_atomic(d_addr); 1670 kunmap_atomic(s_addr); 1671 } 1672 1673 /* 1674 * Find alloced object in zspage from index object and 1675 * return handle. 1676 */ 1677 static unsigned long find_alloced_obj(struct size_class *class, 1678 struct page *page, int *obj_idx) 1679 { 1680 unsigned long head; 1681 int offset = 0; 1682 int index = *obj_idx; 1683 unsigned long handle = 0; 1684 void *addr = kmap_atomic(page); 1685 1686 offset = get_first_obj_offset(page); 1687 offset += class->size * index; 1688 1689 while (offset < PAGE_SIZE) { 1690 head = obj_to_head(page, addr + offset); 1691 if (head & OBJ_ALLOCATED_TAG) { 1692 handle = head & ~OBJ_ALLOCATED_TAG; 1693 if (trypin_tag(handle)) 1694 break; 1695 handle = 0; 1696 } 1697 1698 offset += class->size; 1699 index++; 1700 } 1701 1702 kunmap_atomic(addr); 1703 1704 *obj_idx = index; 1705 1706 return handle; 1707 } 1708 1709 struct zs_compact_control { 1710 /* Source spage for migration which could be a subpage of zspage */ 1711 struct page *s_page; 1712 /* Destination page for migration which should be a first page 1713 * of zspage. */ 1714 struct page *d_page; 1715 /* Starting object index within @s_page which used for live object 1716 * in the subpage. */ 1717 int obj_idx; 1718 }; 1719 1720 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1721 struct zs_compact_control *cc) 1722 { 1723 unsigned long used_obj, free_obj; 1724 unsigned long handle; 1725 struct page *s_page = cc->s_page; 1726 struct page *d_page = cc->d_page; 1727 int obj_idx = cc->obj_idx; 1728 int ret = 0; 1729 1730 while (1) { 1731 handle = find_alloced_obj(class, s_page, &obj_idx); 1732 if (!handle) { 1733 s_page = get_next_page(s_page); 1734 if (!s_page) 1735 break; 1736 obj_idx = 0; 1737 continue; 1738 } 1739 1740 /* Stop if there is no more space */ 1741 if (zspage_full(class, get_zspage(d_page))) { 1742 unpin_tag(handle); 1743 ret = -ENOMEM; 1744 break; 1745 } 1746 1747 used_obj = handle_to_obj(handle); 1748 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1749 zs_object_copy(class, free_obj, used_obj); 1750 obj_idx++; 1751 /* 1752 * record_obj updates handle's value to free_obj and it will 1753 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1754 * breaks synchronization using pin_tag(e,g, zs_free) so 1755 * let's keep the lock bit. 1756 */ 1757 free_obj |= BIT(HANDLE_PIN_BIT); 1758 record_obj(handle, free_obj); 1759 unpin_tag(handle); 1760 obj_free(class, used_obj); 1761 } 1762 1763 /* Remember last position in this iteration */ 1764 cc->s_page = s_page; 1765 cc->obj_idx = obj_idx; 1766 1767 return ret; 1768 } 1769 1770 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1771 { 1772 int i; 1773 struct zspage *zspage; 1774 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1775 1776 if (!source) { 1777 fg[0] = ZS_ALMOST_FULL; 1778 fg[1] = ZS_ALMOST_EMPTY; 1779 } 1780 1781 for (i = 0; i < 2; i++) { 1782 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1783 struct zspage, list); 1784 if (zspage) { 1785 VM_BUG_ON(is_zspage_isolated(zspage)); 1786 remove_zspage(class, zspage, fg[i]); 1787 return zspage; 1788 } 1789 } 1790 1791 return zspage; 1792 } 1793 1794 /* 1795 * putback_zspage - add @zspage into right class's fullness list 1796 * @class: destination class 1797 * @zspage: target page 1798 * 1799 * Return @zspage's fullness_group 1800 */ 1801 static enum fullness_group putback_zspage(struct size_class *class, 1802 struct zspage *zspage) 1803 { 1804 enum fullness_group fullness; 1805 1806 VM_BUG_ON(is_zspage_isolated(zspage)); 1807 1808 fullness = get_fullness_group(class, zspage); 1809 insert_zspage(class, zspage, fullness); 1810 set_zspage_mapping(zspage, class->index, fullness); 1811 1812 return fullness; 1813 } 1814 1815 #ifdef CONFIG_COMPACTION 1816 static struct dentry *zs_mount(struct file_system_type *fs_type, 1817 int flags, const char *dev_name, void *data) 1818 { 1819 static const struct dentry_operations ops = { 1820 .d_dname = simple_dname, 1821 }; 1822 1823 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1824 } 1825 1826 static struct file_system_type zsmalloc_fs = { 1827 .name = "zsmalloc", 1828 .mount = zs_mount, 1829 .kill_sb = kill_anon_super, 1830 }; 1831 1832 static int zsmalloc_mount(void) 1833 { 1834 int ret = 0; 1835 1836 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1837 if (IS_ERR(zsmalloc_mnt)) 1838 ret = PTR_ERR(zsmalloc_mnt); 1839 1840 return ret; 1841 } 1842 1843 static void zsmalloc_unmount(void) 1844 { 1845 kern_unmount(zsmalloc_mnt); 1846 } 1847 1848 static void migrate_lock_init(struct zspage *zspage) 1849 { 1850 rwlock_init(&zspage->lock); 1851 } 1852 1853 static void migrate_read_lock(struct zspage *zspage) 1854 { 1855 read_lock(&zspage->lock); 1856 } 1857 1858 static void migrate_read_unlock(struct zspage *zspage) 1859 { 1860 read_unlock(&zspage->lock); 1861 } 1862 1863 static void migrate_write_lock(struct zspage *zspage) 1864 { 1865 write_lock(&zspage->lock); 1866 } 1867 1868 static void migrate_write_unlock(struct zspage *zspage) 1869 { 1870 write_unlock(&zspage->lock); 1871 } 1872 1873 /* Number of isolated subpage for *page migration* in this zspage */ 1874 static void inc_zspage_isolation(struct zspage *zspage) 1875 { 1876 zspage->isolated++; 1877 } 1878 1879 static void dec_zspage_isolation(struct zspage *zspage) 1880 { 1881 zspage->isolated--; 1882 } 1883 1884 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1885 struct page *newpage, struct page *oldpage) 1886 { 1887 struct page *page; 1888 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1889 int idx = 0; 1890 1891 page = get_first_page(zspage); 1892 do { 1893 if (page == oldpage) 1894 pages[idx] = newpage; 1895 else 1896 pages[idx] = page; 1897 idx++; 1898 } while ((page = get_next_page(page)) != NULL); 1899 1900 create_page_chain(class, zspage, pages); 1901 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1902 if (unlikely(PageHugeObject(oldpage))) 1903 newpage->index = oldpage->index; 1904 __SetPageMovable(newpage, page_mapping(oldpage)); 1905 } 1906 1907 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1908 { 1909 struct zs_pool *pool; 1910 struct size_class *class; 1911 int class_idx; 1912 enum fullness_group fullness; 1913 struct zspage *zspage; 1914 struct address_space *mapping; 1915 1916 /* 1917 * Page is locked so zspage couldn't be destroyed. For detail, look at 1918 * lock_zspage in free_zspage. 1919 */ 1920 VM_BUG_ON_PAGE(!PageMovable(page), page); 1921 VM_BUG_ON_PAGE(PageIsolated(page), page); 1922 1923 zspage = get_zspage(page); 1924 1925 /* 1926 * Without class lock, fullness could be stale while class_idx is okay 1927 * because class_idx is constant unless page is freed so we should get 1928 * fullness again under class lock. 1929 */ 1930 get_zspage_mapping(zspage, &class_idx, &fullness); 1931 mapping = page_mapping(page); 1932 pool = mapping->private_data; 1933 class = pool->size_class[class_idx]; 1934 1935 spin_lock(&class->lock); 1936 if (get_zspage_inuse(zspage) == 0) { 1937 spin_unlock(&class->lock); 1938 return false; 1939 } 1940 1941 /* zspage is isolated for object migration */ 1942 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1943 spin_unlock(&class->lock); 1944 return false; 1945 } 1946 1947 /* 1948 * If this is first time isolation for the zspage, isolate zspage from 1949 * size_class to prevent further object allocation from the zspage. 1950 */ 1951 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1952 get_zspage_mapping(zspage, &class_idx, &fullness); 1953 remove_zspage(class, zspage, fullness); 1954 } 1955 1956 inc_zspage_isolation(zspage); 1957 spin_unlock(&class->lock); 1958 1959 return true; 1960 } 1961 1962 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1963 struct page *page, enum migrate_mode mode) 1964 { 1965 struct zs_pool *pool; 1966 struct size_class *class; 1967 int class_idx; 1968 enum fullness_group fullness; 1969 struct zspage *zspage; 1970 struct page *dummy; 1971 void *s_addr, *d_addr, *addr; 1972 int offset, pos; 1973 unsigned long handle, head; 1974 unsigned long old_obj, new_obj; 1975 unsigned int obj_idx; 1976 int ret = -EAGAIN; 1977 1978 /* 1979 * We cannot support the _NO_COPY case here, because copy needs to 1980 * happen under the zs lock, which does not work with 1981 * MIGRATE_SYNC_NO_COPY workflow. 1982 */ 1983 if (mode == MIGRATE_SYNC_NO_COPY) 1984 return -EINVAL; 1985 1986 VM_BUG_ON_PAGE(!PageMovable(page), page); 1987 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1988 1989 zspage = get_zspage(page); 1990 1991 /* Concurrent compactor cannot migrate any subpage in zspage */ 1992 migrate_write_lock(zspage); 1993 get_zspage_mapping(zspage, &class_idx, &fullness); 1994 pool = mapping->private_data; 1995 class = pool->size_class[class_idx]; 1996 offset = get_first_obj_offset(page); 1997 1998 spin_lock(&class->lock); 1999 if (!get_zspage_inuse(zspage)) { 2000 /* 2001 * Set "offset" to end of the page so that every loops 2002 * skips unnecessary object scanning. 2003 */ 2004 offset = PAGE_SIZE; 2005 } 2006 2007 pos = offset; 2008 s_addr = kmap_atomic(page); 2009 while (pos < PAGE_SIZE) { 2010 head = obj_to_head(page, s_addr + pos); 2011 if (head & OBJ_ALLOCATED_TAG) { 2012 handle = head & ~OBJ_ALLOCATED_TAG; 2013 if (!trypin_tag(handle)) 2014 goto unpin_objects; 2015 } 2016 pos += class->size; 2017 } 2018 2019 /* 2020 * Here, any user cannot access all objects in the zspage so let's move. 2021 */ 2022 d_addr = kmap_atomic(newpage); 2023 memcpy(d_addr, s_addr, PAGE_SIZE); 2024 kunmap_atomic(d_addr); 2025 2026 for (addr = s_addr + offset; addr < s_addr + pos; 2027 addr += class->size) { 2028 head = obj_to_head(page, addr); 2029 if (head & OBJ_ALLOCATED_TAG) { 2030 handle = head & ~OBJ_ALLOCATED_TAG; 2031 if (!testpin_tag(handle)) 2032 BUG(); 2033 2034 old_obj = handle_to_obj(handle); 2035 obj_to_location(old_obj, &dummy, &obj_idx); 2036 new_obj = (unsigned long)location_to_obj(newpage, 2037 obj_idx); 2038 new_obj |= BIT(HANDLE_PIN_BIT); 2039 record_obj(handle, new_obj); 2040 } 2041 } 2042 2043 replace_sub_page(class, zspage, newpage, page); 2044 get_page(newpage); 2045 2046 dec_zspage_isolation(zspage); 2047 2048 /* 2049 * Page migration is done so let's putback isolated zspage to 2050 * the list if @page is final isolated subpage in the zspage. 2051 */ 2052 if (!is_zspage_isolated(zspage)) 2053 putback_zspage(class, zspage); 2054 2055 reset_page(page); 2056 put_page(page); 2057 page = newpage; 2058 2059 ret = MIGRATEPAGE_SUCCESS; 2060 unpin_objects: 2061 for (addr = s_addr + offset; addr < s_addr + pos; 2062 addr += class->size) { 2063 head = obj_to_head(page, addr); 2064 if (head & OBJ_ALLOCATED_TAG) { 2065 handle = head & ~OBJ_ALLOCATED_TAG; 2066 if (!testpin_tag(handle)) 2067 BUG(); 2068 unpin_tag(handle); 2069 } 2070 } 2071 kunmap_atomic(s_addr); 2072 spin_unlock(&class->lock); 2073 migrate_write_unlock(zspage); 2074 2075 return ret; 2076 } 2077 2078 void zs_page_putback(struct page *page) 2079 { 2080 struct zs_pool *pool; 2081 struct size_class *class; 2082 int class_idx; 2083 enum fullness_group fg; 2084 struct address_space *mapping; 2085 struct zspage *zspage; 2086 2087 VM_BUG_ON_PAGE(!PageMovable(page), page); 2088 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2089 2090 zspage = get_zspage(page); 2091 get_zspage_mapping(zspage, &class_idx, &fg); 2092 mapping = page_mapping(page); 2093 pool = mapping->private_data; 2094 class = pool->size_class[class_idx]; 2095 2096 spin_lock(&class->lock); 2097 dec_zspage_isolation(zspage); 2098 if (!is_zspage_isolated(zspage)) { 2099 fg = putback_zspage(class, zspage); 2100 /* 2101 * Due to page_lock, we cannot free zspage immediately 2102 * so let's defer. 2103 */ 2104 if (fg == ZS_EMPTY) 2105 schedule_work(&pool->free_work); 2106 } 2107 spin_unlock(&class->lock); 2108 } 2109 2110 const struct address_space_operations zsmalloc_aops = { 2111 .isolate_page = zs_page_isolate, 2112 .migratepage = zs_page_migrate, 2113 .putback_page = zs_page_putback, 2114 }; 2115 2116 static int zs_register_migration(struct zs_pool *pool) 2117 { 2118 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2119 if (IS_ERR(pool->inode)) { 2120 pool->inode = NULL; 2121 return 1; 2122 } 2123 2124 pool->inode->i_mapping->private_data = pool; 2125 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2126 return 0; 2127 } 2128 2129 static void zs_unregister_migration(struct zs_pool *pool) 2130 { 2131 flush_work(&pool->free_work); 2132 iput(pool->inode); 2133 } 2134 2135 /* 2136 * Caller should hold page_lock of all pages in the zspage 2137 * In here, we cannot use zspage meta data. 2138 */ 2139 static void async_free_zspage(struct work_struct *work) 2140 { 2141 int i; 2142 struct size_class *class; 2143 unsigned int class_idx; 2144 enum fullness_group fullness; 2145 struct zspage *zspage, *tmp; 2146 LIST_HEAD(free_pages); 2147 struct zs_pool *pool = container_of(work, struct zs_pool, 2148 free_work); 2149 2150 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2151 class = pool->size_class[i]; 2152 if (class->index != i) 2153 continue; 2154 2155 spin_lock(&class->lock); 2156 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2157 spin_unlock(&class->lock); 2158 } 2159 2160 2161 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2162 list_del(&zspage->list); 2163 lock_zspage(zspage); 2164 2165 get_zspage_mapping(zspage, &class_idx, &fullness); 2166 VM_BUG_ON(fullness != ZS_EMPTY); 2167 class = pool->size_class[class_idx]; 2168 spin_lock(&class->lock); 2169 __free_zspage(pool, pool->size_class[class_idx], zspage); 2170 spin_unlock(&class->lock); 2171 } 2172 }; 2173 2174 static void kick_deferred_free(struct zs_pool *pool) 2175 { 2176 schedule_work(&pool->free_work); 2177 } 2178 2179 static void init_deferred_free(struct zs_pool *pool) 2180 { 2181 INIT_WORK(&pool->free_work, async_free_zspage); 2182 } 2183 2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2185 { 2186 struct page *page = get_first_page(zspage); 2187 2188 do { 2189 WARN_ON(!trylock_page(page)); 2190 __SetPageMovable(page, pool->inode->i_mapping); 2191 unlock_page(page); 2192 } while ((page = get_next_page(page)) != NULL); 2193 } 2194 #endif 2195 2196 /* 2197 * 2198 * Based on the number of unused allocated objects calculate 2199 * and return the number of pages that we can free. 2200 */ 2201 static unsigned long zs_can_compact(struct size_class *class) 2202 { 2203 unsigned long obj_wasted; 2204 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2205 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2206 2207 if (obj_allocated <= obj_used) 2208 return 0; 2209 2210 obj_wasted = obj_allocated - obj_used; 2211 obj_wasted /= class->objs_per_zspage; 2212 2213 return obj_wasted * class->pages_per_zspage; 2214 } 2215 2216 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2217 { 2218 struct zs_compact_control cc; 2219 struct zspage *src_zspage; 2220 struct zspage *dst_zspage = NULL; 2221 2222 spin_lock(&class->lock); 2223 while ((src_zspage = isolate_zspage(class, true))) { 2224 2225 if (!zs_can_compact(class)) 2226 break; 2227 2228 cc.obj_idx = 0; 2229 cc.s_page = get_first_page(src_zspage); 2230 2231 while ((dst_zspage = isolate_zspage(class, false))) { 2232 cc.d_page = get_first_page(dst_zspage); 2233 /* 2234 * If there is no more space in dst_page, resched 2235 * and see if anyone had allocated another zspage. 2236 */ 2237 if (!migrate_zspage(pool, class, &cc)) 2238 break; 2239 2240 putback_zspage(class, dst_zspage); 2241 } 2242 2243 /* Stop if we couldn't find slot */ 2244 if (dst_zspage == NULL) 2245 break; 2246 2247 putback_zspage(class, dst_zspage); 2248 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2249 free_zspage(pool, class, src_zspage); 2250 pool->stats.pages_compacted += class->pages_per_zspage; 2251 } 2252 spin_unlock(&class->lock); 2253 cond_resched(); 2254 spin_lock(&class->lock); 2255 } 2256 2257 if (src_zspage) 2258 putback_zspage(class, src_zspage); 2259 2260 spin_unlock(&class->lock); 2261 } 2262 2263 unsigned long zs_compact(struct zs_pool *pool) 2264 { 2265 int i; 2266 struct size_class *class; 2267 2268 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2269 class = pool->size_class[i]; 2270 if (!class) 2271 continue; 2272 if (class->index != i) 2273 continue; 2274 __zs_compact(pool, class); 2275 } 2276 2277 return pool->stats.pages_compacted; 2278 } 2279 EXPORT_SYMBOL_GPL(zs_compact); 2280 2281 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2282 { 2283 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2284 } 2285 EXPORT_SYMBOL_GPL(zs_pool_stats); 2286 2287 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2288 struct shrink_control *sc) 2289 { 2290 unsigned long pages_freed; 2291 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2292 shrinker); 2293 2294 pages_freed = pool->stats.pages_compacted; 2295 /* 2296 * Compact classes and calculate compaction delta. 2297 * Can run concurrently with a manually triggered 2298 * (by user) compaction. 2299 */ 2300 pages_freed = zs_compact(pool) - pages_freed; 2301 2302 return pages_freed ? pages_freed : SHRINK_STOP; 2303 } 2304 2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2306 struct shrink_control *sc) 2307 { 2308 int i; 2309 struct size_class *class; 2310 unsigned long pages_to_free = 0; 2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2312 shrinker); 2313 2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2315 class = pool->size_class[i]; 2316 if (!class) 2317 continue; 2318 if (class->index != i) 2319 continue; 2320 2321 pages_to_free += zs_can_compact(class); 2322 } 2323 2324 return pages_to_free; 2325 } 2326 2327 static void zs_unregister_shrinker(struct zs_pool *pool) 2328 { 2329 unregister_shrinker(&pool->shrinker); 2330 } 2331 2332 static int zs_register_shrinker(struct zs_pool *pool) 2333 { 2334 pool->shrinker.scan_objects = zs_shrinker_scan; 2335 pool->shrinker.count_objects = zs_shrinker_count; 2336 pool->shrinker.batch = 0; 2337 pool->shrinker.seeks = DEFAULT_SEEKS; 2338 2339 return register_shrinker(&pool->shrinker); 2340 } 2341 2342 /** 2343 * zs_create_pool - Creates an allocation pool to work from. 2344 * @name: pool name to be created 2345 * 2346 * This function must be called before anything when using 2347 * the zsmalloc allocator. 2348 * 2349 * On success, a pointer to the newly created pool is returned, 2350 * otherwise NULL. 2351 */ 2352 struct zs_pool *zs_create_pool(const char *name) 2353 { 2354 int i; 2355 struct zs_pool *pool; 2356 struct size_class *prev_class = NULL; 2357 2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2359 if (!pool) 2360 return NULL; 2361 2362 init_deferred_free(pool); 2363 2364 pool->name = kstrdup(name, GFP_KERNEL); 2365 if (!pool->name) 2366 goto err; 2367 2368 if (create_cache(pool)) 2369 goto err; 2370 2371 /* 2372 * Iterate reversely, because, size of size_class that we want to use 2373 * for merging should be larger or equal to current size. 2374 */ 2375 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2376 int size; 2377 int pages_per_zspage; 2378 int objs_per_zspage; 2379 struct size_class *class; 2380 int fullness = 0; 2381 2382 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2383 if (size > ZS_MAX_ALLOC_SIZE) 2384 size = ZS_MAX_ALLOC_SIZE; 2385 pages_per_zspage = get_pages_per_zspage(size); 2386 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2387 2388 /* 2389 * We iterate from biggest down to smallest classes, 2390 * so huge_class_size holds the size of the first huge 2391 * class. Any object bigger than or equal to that will 2392 * endup in the huge class. 2393 */ 2394 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2395 !huge_class_size) { 2396 huge_class_size = size; 2397 /* 2398 * The object uses ZS_HANDLE_SIZE bytes to store the 2399 * handle. We need to subtract it, because zs_malloc() 2400 * unconditionally adds handle size before it performs 2401 * size class search - so object may be smaller than 2402 * huge class size, yet it still can end up in the huge 2403 * class because it grows by ZS_HANDLE_SIZE extra bytes 2404 * right before class lookup. 2405 */ 2406 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2407 } 2408 2409 /* 2410 * size_class is used for normal zsmalloc operation such 2411 * as alloc/free for that size. Although it is natural that we 2412 * have one size_class for each size, there is a chance that we 2413 * can get more memory utilization if we use one size_class for 2414 * many different sizes whose size_class have same 2415 * characteristics. So, we makes size_class point to 2416 * previous size_class if possible. 2417 */ 2418 if (prev_class) { 2419 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2420 pool->size_class[i] = prev_class; 2421 continue; 2422 } 2423 } 2424 2425 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2426 if (!class) 2427 goto err; 2428 2429 class->size = size; 2430 class->index = i; 2431 class->pages_per_zspage = pages_per_zspage; 2432 class->objs_per_zspage = objs_per_zspage; 2433 spin_lock_init(&class->lock); 2434 pool->size_class[i] = class; 2435 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2436 fullness++) 2437 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2438 2439 prev_class = class; 2440 } 2441 2442 /* debug only, don't abort if it fails */ 2443 zs_pool_stat_create(pool, name); 2444 2445 if (zs_register_migration(pool)) 2446 goto err; 2447 2448 /* 2449 * Not critical since shrinker is only used to trigger internal 2450 * defragmentation of the pool which is pretty optional thing. If 2451 * registration fails we still can use the pool normally and user can 2452 * trigger compaction manually. Thus, ignore return code. 2453 */ 2454 zs_register_shrinker(pool); 2455 2456 return pool; 2457 2458 err: 2459 zs_destroy_pool(pool); 2460 return NULL; 2461 } 2462 EXPORT_SYMBOL_GPL(zs_create_pool); 2463 2464 void zs_destroy_pool(struct zs_pool *pool) 2465 { 2466 int i; 2467 2468 zs_unregister_shrinker(pool); 2469 zs_unregister_migration(pool); 2470 zs_pool_stat_destroy(pool); 2471 2472 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2473 int fg; 2474 struct size_class *class = pool->size_class[i]; 2475 2476 if (!class) 2477 continue; 2478 2479 if (class->index != i) 2480 continue; 2481 2482 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2483 if (!list_empty(&class->fullness_list[fg])) { 2484 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2485 class->size, fg); 2486 } 2487 } 2488 kfree(class); 2489 } 2490 2491 destroy_cache(pool); 2492 kfree(pool->name); 2493 kfree(pool); 2494 } 2495 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2496 2497 static int __init zs_init(void) 2498 { 2499 int ret; 2500 2501 ret = zsmalloc_mount(); 2502 if (ret) 2503 goto out; 2504 2505 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2506 zs_cpu_prepare, zs_cpu_dead); 2507 if (ret) 2508 goto hp_setup_fail; 2509 2510 #ifdef CONFIG_ZPOOL 2511 zpool_register_driver(&zs_zpool_driver); 2512 #endif 2513 2514 zs_stat_init(); 2515 2516 return 0; 2517 2518 hp_setup_fail: 2519 zsmalloc_unmount(); 2520 out: 2521 return ret; 2522 } 2523 2524 static void __exit zs_exit(void) 2525 { 2526 #ifdef CONFIG_ZPOOL 2527 zpool_unregister_driver(&zs_zpool_driver); 2528 #endif 2529 zsmalloc_unmount(); 2530 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2531 2532 zs_stat_exit(); 2533 } 2534 2535 module_init(zs_init); 2536 module_exit(zs_exit); 2537 2538 MODULE_LICENSE("Dual BSD/GPL"); 2539 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2540