1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_private2: identifies the last component page 28 * PG_owner_priv_1: indentifies the huge component page 29 * 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/module.h> 35 #include <linux/kernel.h> 36 #include <linux/sched.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/types.h> 50 #include <linux/debugfs.h> 51 #include <linux/zsmalloc.h> 52 #include <linux/zpool.h> 53 #include <linux/mount.h> 54 #include <linux/migrate.h> 55 #include <linux/pagemap.h> 56 57 #define ZSPAGE_MAGIC 0x58 58 59 /* 60 * This must be power of 2 and greater than of equal to sizeof(link_free). 61 * These two conditions ensure that any 'struct link_free' itself doesn't 62 * span more than 1 page which avoids complex case of mapping 2 pages simply 63 * to restore link_free pointer values. 64 */ 65 #define ZS_ALIGN 8 66 67 /* 68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 70 */ 71 #define ZS_MAX_ZSPAGE_ORDER 2 72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 73 74 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 75 76 /* 77 * Object location (<PFN>, <obj_idx>) is encoded as 78 * as single (unsigned long) handle value. 79 * 80 * Note that object index <obj_idx> starts from 0. 81 * 82 * This is made more complicated by various memory models and PAE. 83 */ 84 85 #ifndef MAX_PHYSMEM_BITS 86 #ifdef CONFIG_HIGHMEM64G 87 #define MAX_PHYSMEM_BITS 36 88 #else /* !CONFIG_HIGHMEM64G */ 89 /* 90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 91 * be PAGE_SHIFT 92 */ 93 #define MAX_PHYSMEM_BITS BITS_PER_LONG 94 #endif 95 #endif 96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 97 98 /* 99 * Memory for allocating for handle keeps object position by 100 * encoding <page, obj_idx> and the encoded value has a room 101 * in least bit(ie, look at obj_to_location). 102 * We use the bit to synchronize between object access by 103 * user and migration. 104 */ 105 #define HANDLE_PIN_BIT 0 106 107 /* 108 * Head in allocated object should have OBJ_ALLOCATED_TAG 109 * to identify the object was allocated or not. 110 * It's okay to add the status bit in the least bit because 111 * header keeps handle which is 4byte-aligned address so we 112 * have room for two bit at least. 113 */ 114 #define OBJ_ALLOCATED_TAG 1 115 #define OBJ_TAG_BITS 1 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 121 #define ZS_MIN_ALLOC_SIZE \ 122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 123 /* each chunk includes extra space to keep handle */ 124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 125 126 /* 127 * On systems with 4K page size, this gives 255 size classes! There is a 128 * trader-off here: 129 * - Large number of size classes is potentially wasteful as free page are 130 * spread across these classes 131 * - Small number of size classes causes large internal fragmentation 132 * - Probably its better to use specific size classes (empirically 133 * determined). NOTE: all those class sizes must be set as multiple of 134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 135 * 136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 137 * (reason above) 138 */ 139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 140 141 enum fullness_group { 142 ZS_EMPTY, 143 ZS_ALMOST_EMPTY, 144 ZS_ALMOST_FULL, 145 ZS_FULL, 146 NR_ZS_FULLNESS, 147 }; 148 149 enum zs_stat_type { 150 CLASS_EMPTY, 151 CLASS_ALMOST_EMPTY, 152 CLASS_ALMOST_FULL, 153 CLASS_FULL, 154 OBJ_ALLOCATED, 155 OBJ_USED, 156 NR_ZS_STAT_TYPE, 157 }; 158 159 struct zs_size_stat { 160 unsigned long objs[NR_ZS_STAT_TYPE]; 161 }; 162 163 #ifdef CONFIG_ZSMALLOC_STAT 164 static struct dentry *zs_stat_root; 165 #endif 166 167 #ifdef CONFIG_COMPACTION 168 static struct vfsmount *zsmalloc_mnt; 169 #endif 170 171 /* 172 * number of size_classes 173 */ 174 static int zs_size_classes; 175 176 /* 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 178 * n <= N / f, where 179 * n = number of allocated objects 180 * N = total number of objects zspage can store 181 * f = fullness_threshold_frac 182 * 183 * Similarly, we assign zspage to: 184 * ZS_ALMOST_FULL when n > N / f 185 * ZS_EMPTY when n == 0 186 * ZS_FULL when n == N 187 * 188 * (see: fix_fullness_group()) 189 */ 190 static const int fullness_threshold_frac = 4; 191 192 struct size_class { 193 spinlock_t lock; 194 struct list_head fullness_list[NR_ZS_FULLNESS]; 195 /* 196 * Size of objects stored in this class. Must be multiple 197 * of ZS_ALIGN. 198 */ 199 int size; 200 int objs_per_zspage; 201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 202 int pages_per_zspage; 203 204 unsigned int index; 205 struct zs_size_stat stats; 206 }; 207 208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 209 static void SetPageHugeObject(struct page *page) 210 { 211 SetPageOwnerPriv1(page); 212 } 213 214 static void ClearPageHugeObject(struct page *page) 215 { 216 ClearPageOwnerPriv1(page); 217 } 218 219 static int PageHugeObject(struct page *page) 220 { 221 return PageOwnerPriv1(page); 222 } 223 224 /* 225 * Placed within free objects to form a singly linked list. 226 * For every zspage, zspage->freeobj gives head of this list. 227 * 228 * This must be power of 2 and less than or equal to ZS_ALIGN 229 */ 230 struct link_free { 231 union { 232 /* 233 * Free object index; 234 * It's valid for non-allocated object 235 */ 236 unsigned long next; 237 /* 238 * Handle of allocated object. 239 */ 240 unsigned long handle; 241 }; 242 }; 243 244 struct zs_pool { 245 const char *name; 246 247 struct size_class **size_class; 248 struct kmem_cache *handle_cachep; 249 struct kmem_cache *zspage_cachep; 250 251 atomic_long_t pages_allocated; 252 253 struct zs_pool_stats stats; 254 255 /* Compact classes */ 256 struct shrinker shrinker; 257 /* 258 * To signify that register_shrinker() was successful 259 * and unregister_shrinker() will not Oops. 260 */ 261 bool shrinker_enabled; 262 #ifdef CONFIG_ZSMALLOC_STAT 263 struct dentry *stat_dentry; 264 #endif 265 #ifdef CONFIG_COMPACTION 266 struct inode *inode; 267 struct work_struct free_work; 268 #endif 269 }; 270 271 /* 272 * A zspage's class index and fullness group 273 * are encoded in its (first)page->mapping 274 */ 275 #define FULLNESS_BITS 2 276 #define CLASS_BITS 8 277 #define ISOLATED_BITS 3 278 #define MAGIC_VAL_BITS 8 279 280 struct zspage { 281 struct { 282 unsigned int fullness:FULLNESS_BITS; 283 unsigned int class:CLASS_BITS; 284 unsigned int isolated:ISOLATED_BITS; 285 unsigned int magic:MAGIC_VAL_BITS; 286 }; 287 unsigned int inuse; 288 unsigned int freeobj; 289 struct page *first_page; 290 struct list_head list; /* fullness list */ 291 #ifdef CONFIG_COMPACTION 292 rwlock_t lock; 293 #endif 294 }; 295 296 struct mapping_area { 297 #ifdef CONFIG_PGTABLE_MAPPING 298 struct vm_struct *vm; /* vm area for mapping object that span pages */ 299 #else 300 char *vm_buf; /* copy buffer for objects that span pages */ 301 #endif 302 char *vm_addr; /* address of kmap_atomic()'ed pages */ 303 enum zs_mapmode vm_mm; /* mapping mode */ 304 }; 305 306 #ifdef CONFIG_COMPACTION 307 static int zs_register_migration(struct zs_pool *pool); 308 static void zs_unregister_migration(struct zs_pool *pool); 309 static void migrate_lock_init(struct zspage *zspage); 310 static void migrate_read_lock(struct zspage *zspage); 311 static void migrate_read_unlock(struct zspage *zspage); 312 static void kick_deferred_free(struct zs_pool *pool); 313 static void init_deferred_free(struct zs_pool *pool); 314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 315 #else 316 static int zsmalloc_mount(void) { return 0; } 317 static void zsmalloc_unmount(void) {} 318 static int zs_register_migration(struct zs_pool *pool) { return 0; } 319 static void zs_unregister_migration(struct zs_pool *pool) {} 320 static void migrate_lock_init(struct zspage *zspage) {} 321 static void migrate_read_lock(struct zspage *zspage) {} 322 static void migrate_read_unlock(struct zspage *zspage) {} 323 static void kick_deferred_free(struct zs_pool *pool) {} 324 static void init_deferred_free(struct zs_pool *pool) {} 325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 326 #endif 327 328 static int create_cache(struct zs_pool *pool) 329 { 330 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 331 0, 0, NULL); 332 if (!pool->handle_cachep) 333 return 1; 334 335 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 336 0, 0, NULL); 337 if (!pool->zspage_cachep) { 338 kmem_cache_destroy(pool->handle_cachep); 339 pool->handle_cachep = NULL; 340 return 1; 341 } 342 343 return 0; 344 } 345 346 static void destroy_cache(struct zs_pool *pool) 347 { 348 kmem_cache_destroy(pool->handle_cachep); 349 kmem_cache_destroy(pool->zspage_cachep); 350 } 351 352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 353 { 354 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 355 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 356 } 357 358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 359 { 360 kmem_cache_free(pool->handle_cachep, (void *)handle); 361 } 362 363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 364 { 365 return kmem_cache_alloc(pool->zspage_cachep, 366 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 367 }; 368 369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 370 { 371 kmem_cache_free(pool->zspage_cachep, zspage); 372 } 373 374 static void record_obj(unsigned long handle, unsigned long obj) 375 { 376 /* 377 * lsb of @obj represents handle lock while other bits 378 * represent object value the handle is pointing so 379 * updating shouldn't do store tearing. 380 */ 381 WRITE_ONCE(*(unsigned long *)handle, obj); 382 } 383 384 /* zpool driver */ 385 386 #ifdef CONFIG_ZPOOL 387 388 static void *zs_zpool_create(const char *name, gfp_t gfp, 389 const struct zpool_ops *zpool_ops, 390 struct zpool *zpool) 391 { 392 /* 393 * Ignore global gfp flags: zs_malloc() may be invoked from 394 * different contexts and its caller must provide a valid 395 * gfp mask. 396 */ 397 return zs_create_pool(name); 398 } 399 400 static void zs_zpool_destroy(void *pool) 401 { 402 zs_destroy_pool(pool); 403 } 404 405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 406 unsigned long *handle) 407 { 408 *handle = zs_malloc(pool, size, gfp); 409 return *handle ? 0 : -1; 410 } 411 static void zs_zpool_free(void *pool, unsigned long handle) 412 { 413 zs_free(pool, handle); 414 } 415 416 static int zs_zpool_shrink(void *pool, unsigned int pages, 417 unsigned int *reclaimed) 418 { 419 return -EINVAL; 420 } 421 422 static void *zs_zpool_map(void *pool, unsigned long handle, 423 enum zpool_mapmode mm) 424 { 425 enum zs_mapmode zs_mm; 426 427 switch (mm) { 428 case ZPOOL_MM_RO: 429 zs_mm = ZS_MM_RO; 430 break; 431 case ZPOOL_MM_WO: 432 zs_mm = ZS_MM_WO; 433 break; 434 case ZPOOL_MM_RW: /* fallthru */ 435 default: 436 zs_mm = ZS_MM_RW; 437 break; 438 } 439 440 return zs_map_object(pool, handle, zs_mm); 441 } 442 static void zs_zpool_unmap(void *pool, unsigned long handle) 443 { 444 zs_unmap_object(pool, handle); 445 } 446 447 static u64 zs_zpool_total_size(void *pool) 448 { 449 return zs_get_total_pages(pool) << PAGE_SHIFT; 450 } 451 452 static struct zpool_driver zs_zpool_driver = { 453 .type = "zsmalloc", 454 .owner = THIS_MODULE, 455 .create = zs_zpool_create, 456 .destroy = zs_zpool_destroy, 457 .malloc = zs_zpool_malloc, 458 .free = zs_zpool_free, 459 .shrink = zs_zpool_shrink, 460 .map = zs_zpool_map, 461 .unmap = zs_zpool_unmap, 462 .total_size = zs_zpool_total_size, 463 }; 464 465 MODULE_ALIAS("zpool-zsmalloc"); 466 #endif /* CONFIG_ZPOOL */ 467 468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 470 471 static bool is_zspage_isolated(struct zspage *zspage) 472 { 473 return zspage->isolated; 474 } 475 476 static int is_first_page(struct page *page) 477 { 478 return PagePrivate(page); 479 } 480 481 /* Protected by class->lock */ 482 static inline int get_zspage_inuse(struct zspage *zspage) 483 { 484 return zspage->inuse; 485 } 486 487 static inline void set_zspage_inuse(struct zspage *zspage, int val) 488 { 489 zspage->inuse = val; 490 } 491 492 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 493 { 494 zspage->inuse += val; 495 } 496 497 static inline struct page *get_first_page(struct zspage *zspage) 498 { 499 struct page *first_page = zspage->first_page; 500 501 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 502 return first_page; 503 } 504 505 static inline int get_first_obj_offset(struct page *page) 506 { 507 return page->units; 508 } 509 510 static inline void set_first_obj_offset(struct page *page, int offset) 511 { 512 page->units = offset; 513 } 514 515 static inline unsigned int get_freeobj(struct zspage *zspage) 516 { 517 return zspage->freeobj; 518 } 519 520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 521 { 522 zspage->freeobj = obj; 523 } 524 525 static void get_zspage_mapping(struct zspage *zspage, 526 unsigned int *class_idx, 527 enum fullness_group *fullness) 528 { 529 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 530 531 *fullness = zspage->fullness; 532 *class_idx = zspage->class; 533 } 534 535 static void set_zspage_mapping(struct zspage *zspage, 536 unsigned int class_idx, 537 enum fullness_group fullness) 538 { 539 zspage->class = class_idx; 540 zspage->fullness = fullness; 541 } 542 543 /* 544 * zsmalloc divides the pool into various size classes where each 545 * class maintains a list of zspages where each zspage is divided 546 * into equal sized chunks. Each allocation falls into one of these 547 * classes depending on its size. This function returns index of the 548 * size class which has chunk size big enough to hold the give size. 549 */ 550 static int get_size_class_index(int size) 551 { 552 int idx = 0; 553 554 if (likely(size > ZS_MIN_ALLOC_SIZE)) 555 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 556 ZS_SIZE_CLASS_DELTA); 557 558 return min(zs_size_classes - 1, idx); 559 } 560 561 static inline void zs_stat_inc(struct size_class *class, 562 enum zs_stat_type type, unsigned long cnt) 563 { 564 class->stats.objs[type] += cnt; 565 } 566 567 static inline void zs_stat_dec(struct size_class *class, 568 enum zs_stat_type type, unsigned long cnt) 569 { 570 class->stats.objs[type] -= cnt; 571 } 572 573 static inline unsigned long zs_stat_get(struct size_class *class, 574 enum zs_stat_type type) 575 { 576 return class->stats.objs[type]; 577 } 578 579 #ifdef CONFIG_ZSMALLOC_STAT 580 581 static void __init zs_stat_init(void) 582 { 583 if (!debugfs_initialized()) { 584 pr_warn("debugfs not available, stat dir not created\n"); 585 return; 586 } 587 588 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 589 if (!zs_stat_root) 590 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 591 } 592 593 static void __exit zs_stat_exit(void) 594 { 595 debugfs_remove_recursive(zs_stat_root); 596 } 597 598 static unsigned long zs_can_compact(struct size_class *class); 599 600 static int zs_stats_size_show(struct seq_file *s, void *v) 601 { 602 int i; 603 struct zs_pool *pool = s->private; 604 struct size_class *class; 605 int objs_per_zspage; 606 unsigned long class_almost_full, class_almost_empty; 607 unsigned long obj_allocated, obj_used, pages_used, freeable; 608 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 609 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 610 unsigned long total_freeable = 0; 611 612 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 613 "class", "size", "almost_full", "almost_empty", 614 "obj_allocated", "obj_used", "pages_used", 615 "pages_per_zspage", "freeable"); 616 617 for (i = 0; i < zs_size_classes; i++) { 618 class = pool->size_class[i]; 619 620 if (class->index != i) 621 continue; 622 623 spin_lock(&class->lock); 624 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 625 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 626 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 627 obj_used = zs_stat_get(class, OBJ_USED); 628 freeable = zs_can_compact(class); 629 spin_unlock(&class->lock); 630 631 objs_per_zspage = class->objs_per_zspage; 632 pages_used = obj_allocated / objs_per_zspage * 633 class->pages_per_zspage; 634 635 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 636 " %10lu %10lu %16d %8lu\n", 637 i, class->size, class_almost_full, class_almost_empty, 638 obj_allocated, obj_used, pages_used, 639 class->pages_per_zspage, freeable); 640 641 total_class_almost_full += class_almost_full; 642 total_class_almost_empty += class_almost_empty; 643 total_objs += obj_allocated; 644 total_used_objs += obj_used; 645 total_pages += pages_used; 646 total_freeable += freeable; 647 } 648 649 seq_puts(s, "\n"); 650 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 651 "Total", "", total_class_almost_full, 652 total_class_almost_empty, total_objs, 653 total_used_objs, total_pages, "", total_freeable); 654 655 return 0; 656 } 657 658 static int zs_stats_size_open(struct inode *inode, struct file *file) 659 { 660 return single_open(file, zs_stats_size_show, inode->i_private); 661 } 662 663 static const struct file_operations zs_stat_size_ops = { 664 .open = zs_stats_size_open, 665 .read = seq_read, 666 .llseek = seq_lseek, 667 .release = single_release, 668 }; 669 670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 671 { 672 struct dentry *entry; 673 674 if (!zs_stat_root) { 675 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 676 return; 677 } 678 679 entry = debugfs_create_dir(name, zs_stat_root); 680 if (!entry) { 681 pr_warn("debugfs dir <%s> creation failed\n", name); 682 return; 683 } 684 pool->stat_dentry = entry; 685 686 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 687 pool->stat_dentry, pool, &zs_stat_size_ops); 688 if (!entry) { 689 pr_warn("%s: debugfs file entry <%s> creation failed\n", 690 name, "classes"); 691 debugfs_remove_recursive(pool->stat_dentry); 692 pool->stat_dentry = NULL; 693 } 694 } 695 696 static void zs_pool_stat_destroy(struct zs_pool *pool) 697 { 698 debugfs_remove_recursive(pool->stat_dentry); 699 } 700 701 #else /* CONFIG_ZSMALLOC_STAT */ 702 static void __init zs_stat_init(void) 703 { 704 } 705 706 static void __exit zs_stat_exit(void) 707 { 708 } 709 710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 711 { 712 } 713 714 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 715 { 716 } 717 #endif 718 719 720 /* 721 * For each size class, zspages are divided into different groups 722 * depending on how "full" they are. This was done so that we could 723 * easily find empty or nearly empty zspages when we try to shrink 724 * the pool (not yet implemented). This function returns fullness 725 * status of the given page. 726 */ 727 static enum fullness_group get_fullness_group(struct size_class *class, 728 struct zspage *zspage) 729 { 730 int inuse, objs_per_zspage; 731 enum fullness_group fg; 732 733 inuse = get_zspage_inuse(zspage); 734 objs_per_zspage = class->objs_per_zspage; 735 736 if (inuse == 0) 737 fg = ZS_EMPTY; 738 else if (inuse == objs_per_zspage) 739 fg = ZS_FULL; 740 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 741 fg = ZS_ALMOST_EMPTY; 742 else 743 fg = ZS_ALMOST_FULL; 744 745 return fg; 746 } 747 748 /* 749 * Each size class maintains various freelists and zspages are assigned 750 * to one of these freelists based on the number of live objects they 751 * have. This functions inserts the given zspage into the freelist 752 * identified by <class, fullness_group>. 753 */ 754 static void insert_zspage(struct size_class *class, 755 struct zspage *zspage, 756 enum fullness_group fullness) 757 { 758 struct zspage *head; 759 760 zs_stat_inc(class, fullness, 1); 761 head = list_first_entry_or_null(&class->fullness_list[fullness], 762 struct zspage, list); 763 /* 764 * We want to see more ZS_FULL pages and less almost empty/full. 765 * Put pages with higher ->inuse first. 766 */ 767 if (head) { 768 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 769 list_add(&zspage->list, &head->list); 770 return; 771 } 772 } 773 list_add(&zspage->list, &class->fullness_list[fullness]); 774 } 775 776 /* 777 * This function removes the given zspage from the freelist identified 778 * by <class, fullness_group>. 779 */ 780 static void remove_zspage(struct size_class *class, 781 struct zspage *zspage, 782 enum fullness_group fullness) 783 { 784 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 785 VM_BUG_ON(is_zspage_isolated(zspage)); 786 787 list_del_init(&zspage->list); 788 zs_stat_dec(class, fullness, 1); 789 } 790 791 /* 792 * Each size class maintains zspages in different fullness groups depending 793 * on the number of live objects they contain. When allocating or freeing 794 * objects, the fullness status of the page can change, say, from ALMOST_FULL 795 * to ALMOST_EMPTY when freeing an object. This function checks if such 796 * a status change has occurred for the given page and accordingly moves the 797 * page from the freelist of the old fullness group to that of the new 798 * fullness group. 799 */ 800 static enum fullness_group fix_fullness_group(struct size_class *class, 801 struct zspage *zspage) 802 { 803 int class_idx; 804 enum fullness_group currfg, newfg; 805 806 get_zspage_mapping(zspage, &class_idx, &currfg); 807 newfg = get_fullness_group(class, zspage); 808 if (newfg == currfg) 809 goto out; 810 811 if (!is_zspage_isolated(zspage)) { 812 remove_zspage(class, zspage, currfg); 813 insert_zspage(class, zspage, newfg); 814 } 815 816 set_zspage_mapping(zspage, class_idx, newfg); 817 818 out: 819 return newfg; 820 } 821 822 /* 823 * We have to decide on how many pages to link together 824 * to form a zspage for each size class. This is important 825 * to reduce wastage due to unusable space left at end of 826 * each zspage which is given as: 827 * wastage = Zp % class_size 828 * usage = Zp - wastage 829 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 830 * 831 * For example, for size class of 3/8 * PAGE_SIZE, we should 832 * link together 3 PAGE_SIZE sized pages to form a zspage 833 * since then we can perfectly fit in 8 such objects. 834 */ 835 static int get_pages_per_zspage(int class_size) 836 { 837 int i, max_usedpc = 0; 838 /* zspage order which gives maximum used size per KB */ 839 int max_usedpc_order = 1; 840 841 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 842 int zspage_size; 843 int waste, usedpc; 844 845 zspage_size = i * PAGE_SIZE; 846 waste = zspage_size % class_size; 847 usedpc = (zspage_size - waste) * 100 / zspage_size; 848 849 if (usedpc > max_usedpc) { 850 max_usedpc = usedpc; 851 max_usedpc_order = i; 852 } 853 } 854 855 return max_usedpc_order; 856 } 857 858 static struct zspage *get_zspage(struct page *page) 859 { 860 struct zspage *zspage = (struct zspage *)page->private; 861 862 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 863 return zspage; 864 } 865 866 static struct page *get_next_page(struct page *page) 867 { 868 if (unlikely(PageHugeObject(page))) 869 return NULL; 870 871 return page->freelist; 872 } 873 874 /** 875 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 876 * @page: page object resides in zspage 877 * @obj_idx: object index 878 */ 879 static void obj_to_location(unsigned long obj, struct page **page, 880 unsigned int *obj_idx) 881 { 882 obj >>= OBJ_TAG_BITS; 883 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 884 *obj_idx = (obj & OBJ_INDEX_MASK); 885 } 886 887 /** 888 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 889 * @page: page object resides in zspage 890 * @obj_idx: object index 891 */ 892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 893 { 894 unsigned long obj; 895 896 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 897 obj |= obj_idx & OBJ_INDEX_MASK; 898 obj <<= OBJ_TAG_BITS; 899 900 return obj; 901 } 902 903 static unsigned long handle_to_obj(unsigned long handle) 904 { 905 return *(unsigned long *)handle; 906 } 907 908 static unsigned long obj_to_head(struct page *page, void *obj) 909 { 910 if (unlikely(PageHugeObject(page))) { 911 VM_BUG_ON_PAGE(!is_first_page(page), page); 912 return page->index; 913 } else 914 return *(unsigned long *)obj; 915 } 916 917 static inline int testpin_tag(unsigned long handle) 918 { 919 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 920 } 921 922 static inline int trypin_tag(unsigned long handle) 923 { 924 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 925 } 926 927 static void pin_tag(unsigned long handle) 928 { 929 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 930 } 931 932 static void unpin_tag(unsigned long handle) 933 { 934 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 935 } 936 937 static void reset_page(struct page *page) 938 { 939 __ClearPageMovable(page); 940 ClearPagePrivate(page); 941 ClearPagePrivate2(page); 942 set_page_private(page, 0); 943 page_mapcount_reset(page); 944 ClearPageHugeObject(page); 945 page->freelist = NULL; 946 } 947 948 /* 949 * To prevent zspage destroy during migration, zspage freeing should 950 * hold locks of all pages in the zspage. 951 */ 952 void lock_zspage(struct zspage *zspage) 953 { 954 struct page *page = get_first_page(zspage); 955 956 do { 957 lock_page(page); 958 } while ((page = get_next_page(page)) != NULL); 959 } 960 961 int trylock_zspage(struct zspage *zspage) 962 { 963 struct page *cursor, *fail; 964 965 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 966 get_next_page(cursor)) { 967 if (!trylock_page(cursor)) { 968 fail = cursor; 969 goto unlock; 970 } 971 } 972 973 return 1; 974 unlock: 975 for (cursor = get_first_page(zspage); cursor != fail; cursor = 976 get_next_page(cursor)) 977 unlock_page(cursor); 978 979 return 0; 980 } 981 982 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 983 struct zspage *zspage) 984 { 985 struct page *page, *next; 986 enum fullness_group fg; 987 unsigned int class_idx; 988 989 get_zspage_mapping(zspage, &class_idx, &fg); 990 991 assert_spin_locked(&class->lock); 992 993 VM_BUG_ON(get_zspage_inuse(zspage)); 994 VM_BUG_ON(fg != ZS_EMPTY); 995 996 next = page = get_first_page(zspage); 997 do { 998 VM_BUG_ON_PAGE(!PageLocked(page), page); 999 next = get_next_page(page); 1000 reset_page(page); 1001 unlock_page(page); 1002 dec_zone_page_state(page, NR_ZSPAGES); 1003 put_page(page); 1004 page = next; 1005 } while (page != NULL); 1006 1007 cache_free_zspage(pool, zspage); 1008 1009 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1010 atomic_long_sub(class->pages_per_zspage, 1011 &pool->pages_allocated); 1012 } 1013 1014 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1015 struct zspage *zspage) 1016 { 1017 VM_BUG_ON(get_zspage_inuse(zspage)); 1018 VM_BUG_ON(list_empty(&zspage->list)); 1019 1020 if (!trylock_zspage(zspage)) { 1021 kick_deferred_free(pool); 1022 return; 1023 } 1024 1025 remove_zspage(class, zspage, ZS_EMPTY); 1026 __free_zspage(pool, class, zspage); 1027 } 1028 1029 /* Initialize a newly allocated zspage */ 1030 static void init_zspage(struct size_class *class, struct zspage *zspage) 1031 { 1032 unsigned int freeobj = 1; 1033 unsigned long off = 0; 1034 struct page *page = get_first_page(zspage); 1035 1036 while (page) { 1037 struct page *next_page; 1038 struct link_free *link; 1039 void *vaddr; 1040 1041 set_first_obj_offset(page, off); 1042 1043 vaddr = kmap_atomic(page); 1044 link = (struct link_free *)vaddr + off / sizeof(*link); 1045 1046 while ((off += class->size) < PAGE_SIZE) { 1047 link->next = freeobj++ << OBJ_TAG_BITS; 1048 link += class->size / sizeof(*link); 1049 } 1050 1051 /* 1052 * We now come to the last (full or partial) object on this 1053 * page, which must point to the first object on the next 1054 * page (if present) 1055 */ 1056 next_page = get_next_page(page); 1057 if (next_page) { 1058 link->next = freeobj++ << OBJ_TAG_BITS; 1059 } else { 1060 /* 1061 * Reset OBJ_TAG_BITS bit to last link to tell 1062 * whether it's allocated object or not. 1063 */ 1064 link->next = -1 << OBJ_TAG_BITS; 1065 } 1066 kunmap_atomic(vaddr); 1067 page = next_page; 1068 off %= PAGE_SIZE; 1069 } 1070 1071 set_freeobj(zspage, 0); 1072 } 1073 1074 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1075 struct page *pages[]) 1076 { 1077 int i; 1078 struct page *page; 1079 struct page *prev_page = NULL; 1080 int nr_pages = class->pages_per_zspage; 1081 1082 /* 1083 * Allocate individual pages and link them together as: 1084 * 1. all pages are linked together using page->freelist 1085 * 2. each sub-page point to zspage using page->private 1086 * 1087 * we set PG_private to identify the first page (i.e. no other sub-page 1088 * has this flag set) and PG_private_2 to identify the last page. 1089 */ 1090 for (i = 0; i < nr_pages; i++) { 1091 page = pages[i]; 1092 set_page_private(page, (unsigned long)zspage); 1093 page->freelist = NULL; 1094 if (i == 0) { 1095 zspage->first_page = page; 1096 SetPagePrivate(page); 1097 if (unlikely(class->objs_per_zspage == 1 && 1098 class->pages_per_zspage == 1)) 1099 SetPageHugeObject(page); 1100 } else { 1101 prev_page->freelist = page; 1102 } 1103 if (i == nr_pages - 1) 1104 SetPagePrivate2(page); 1105 prev_page = page; 1106 } 1107 } 1108 1109 /* 1110 * Allocate a zspage for the given size class 1111 */ 1112 static struct zspage *alloc_zspage(struct zs_pool *pool, 1113 struct size_class *class, 1114 gfp_t gfp) 1115 { 1116 int i; 1117 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1118 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1119 1120 if (!zspage) 1121 return NULL; 1122 1123 memset(zspage, 0, sizeof(struct zspage)); 1124 zspage->magic = ZSPAGE_MAGIC; 1125 migrate_lock_init(zspage); 1126 1127 for (i = 0; i < class->pages_per_zspage; i++) { 1128 struct page *page; 1129 1130 page = alloc_page(gfp); 1131 if (!page) { 1132 while (--i >= 0) { 1133 dec_zone_page_state(pages[i], NR_ZSPAGES); 1134 __free_page(pages[i]); 1135 } 1136 cache_free_zspage(pool, zspage); 1137 return NULL; 1138 } 1139 1140 inc_zone_page_state(page, NR_ZSPAGES); 1141 pages[i] = page; 1142 } 1143 1144 create_page_chain(class, zspage, pages); 1145 init_zspage(class, zspage); 1146 1147 return zspage; 1148 } 1149 1150 static struct zspage *find_get_zspage(struct size_class *class) 1151 { 1152 int i; 1153 struct zspage *zspage; 1154 1155 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1156 zspage = list_first_entry_or_null(&class->fullness_list[i], 1157 struct zspage, list); 1158 if (zspage) 1159 break; 1160 } 1161 1162 return zspage; 1163 } 1164 1165 #ifdef CONFIG_PGTABLE_MAPPING 1166 static inline int __zs_cpu_up(struct mapping_area *area) 1167 { 1168 /* 1169 * Make sure we don't leak memory if a cpu UP notification 1170 * and zs_init() race and both call zs_cpu_up() on the same cpu 1171 */ 1172 if (area->vm) 1173 return 0; 1174 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1175 if (!area->vm) 1176 return -ENOMEM; 1177 return 0; 1178 } 1179 1180 static inline void __zs_cpu_down(struct mapping_area *area) 1181 { 1182 if (area->vm) 1183 free_vm_area(area->vm); 1184 area->vm = NULL; 1185 } 1186 1187 static inline void *__zs_map_object(struct mapping_area *area, 1188 struct page *pages[2], int off, int size) 1189 { 1190 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1191 area->vm_addr = area->vm->addr; 1192 return area->vm_addr + off; 1193 } 1194 1195 static inline void __zs_unmap_object(struct mapping_area *area, 1196 struct page *pages[2], int off, int size) 1197 { 1198 unsigned long addr = (unsigned long)area->vm_addr; 1199 1200 unmap_kernel_range(addr, PAGE_SIZE * 2); 1201 } 1202 1203 #else /* CONFIG_PGTABLE_MAPPING */ 1204 1205 static inline int __zs_cpu_up(struct mapping_area *area) 1206 { 1207 /* 1208 * Make sure we don't leak memory if a cpu UP notification 1209 * and zs_init() race and both call zs_cpu_up() on the same cpu 1210 */ 1211 if (area->vm_buf) 1212 return 0; 1213 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1214 if (!area->vm_buf) 1215 return -ENOMEM; 1216 return 0; 1217 } 1218 1219 static inline void __zs_cpu_down(struct mapping_area *area) 1220 { 1221 kfree(area->vm_buf); 1222 area->vm_buf = NULL; 1223 } 1224 1225 static void *__zs_map_object(struct mapping_area *area, 1226 struct page *pages[2], int off, int size) 1227 { 1228 int sizes[2]; 1229 void *addr; 1230 char *buf = area->vm_buf; 1231 1232 /* disable page faults to match kmap_atomic() return conditions */ 1233 pagefault_disable(); 1234 1235 /* no read fastpath */ 1236 if (area->vm_mm == ZS_MM_WO) 1237 goto out; 1238 1239 sizes[0] = PAGE_SIZE - off; 1240 sizes[1] = size - sizes[0]; 1241 1242 /* copy object to per-cpu buffer */ 1243 addr = kmap_atomic(pages[0]); 1244 memcpy(buf, addr + off, sizes[0]); 1245 kunmap_atomic(addr); 1246 addr = kmap_atomic(pages[1]); 1247 memcpy(buf + sizes[0], addr, sizes[1]); 1248 kunmap_atomic(addr); 1249 out: 1250 return area->vm_buf; 1251 } 1252 1253 static void __zs_unmap_object(struct mapping_area *area, 1254 struct page *pages[2], int off, int size) 1255 { 1256 int sizes[2]; 1257 void *addr; 1258 char *buf; 1259 1260 /* no write fastpath */ 1261 if (area->vm_mm == ZS_MM_RO) 1262 goto out; 1263 1264 buf = area->vm_buf; 1265 buf = buf + ZS_HANDLE_SIZE; 1266 size -= ZS_HANDLE_SIZE; 1267 off += ZS_HANDLE_SIZE; 1268 1269 sizes[0] = PAGE_SIZE - off; 1270 sizes[1] = size - sizes[0]; 1271 1272 /* copy per-cpu buffer to object */ 1273 addr = kmap_atomic(pages[0]); 1274 memcpy(addr + off, buf, sizes[0]); 1275 kunmap_atomic(addr); 1276 addr = kmap_atomic(pages[1]); 1277 memcpy(addr, buf + sizes[0], sizes[1]); 1278 kunmap_atomic(addr); 1279 1280 out: 1281 /* enable page faults to match kunmap_atomic() return conditions */ 1282 pagefault_enable(); 1283 } 1284 1285 #endif /* CONFIG_PGTABLE_MAPPING */ 1286 1287 static int zs_cpu_prepare(unsigned int cpu) 1288 { 1289 struct mapping_area *area; 1290 1291 area = &per_cpu(zs_map_area, cpu); 1292 return __zs_cpu_up(area); 1293 } 1294 1295 static int zs_cpu_dead(unsigned int cpu) 1296 { 1297 struct mapping_area *area; 1298 1299 area = &per_cpu(zs_map_area, cpu); 1300 __zs_cpu_down(area); 1301 return 0; 1302 } 1303 1304 static void __init init_zs_size_classes(void) 1305 { 1306 int nr; 1307 1308 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 1309 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 1310 nr += 1; 1311 1312 zs_size_classes = nr; 1313 } 1314 1315 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1316 int objs_per_zspage) 1317 { 1318 if (prev->pages_per_zspage == pages_per_zspage && 1319 prev->objs_per_zspage == objs_per_zspage) 1320 return true; 1321 1322 return false; 1323 } 1324 1325 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1326 { 1327 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1328 } 1329 1330 unsigned long zs_get_total_pages(struct zs_pool *pool) 1331 { 1332 return atomic_long_read(&pool->pages_allocated); 1333 } 1334 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1335 1336 /** 1337 * zs_map_object - get address of allocated object from handle. 1338 * @pool: pool from which the object was allocated 1339 * @handle: handle returned from zs_malloc 1340 * 1341 * Before using an object allocated from zs_malloc, it must be mapped using 1342 * this function. When done with the object, it must be unmapped using 1343 * zs_unmap_object. 1344 * 1345 * Only one object can be mapped per cpu at a time. There is no protection 1346 * against nested mappings. 1347 * 1348 * This function returns with preemption and page faults disabled. 1349 */ 1350 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1351 enum zs_mapmode mm) 1352 { 1353 struct zspage *zspage; 1354 struct page *page; 1355 unsigned long obj, off; 1356 unsigned int obj_idx; 1357 1358 unsigned int class_idx; 1359 enum fullness_group fg; 1360 struct size_class *class; 1361 struct mapping_area *area; 1362 struct page *pages[2]; 1363 void *ret; 1364 1365 /* 1366 * Because we use per-cpu mapping areas shared among the 1367 * pools/users, we can't allow mapping in interrupt context 1368 * because it can corrupt another users mappings. 1369 */ 1370 WARN_ON_ONCE(in_interrupt()); 1371 1372 /* From now on, migration cannot move the object */ 1373 pin_tag(handle); 1374 1375 obj = handle_to_obj(handle); 1376 obj_to_location(obj, &page, &obj_idx); 1377 zspage = get_zspage(page); 1378 1379 /* migration cannot move any subpage in this zspage */ 1380 migrate_read_lock(zspage); 1381 1382 get_zspage_mapping(zspage, &class_idx, &fg); 1383 class = pool->size_class[class_idx]; 1384 off = (class->size * obj_idx) & ~PAGE_MASK; 1385 1386 area = &get_cpu_var(zs_map_area); 1387 area->vm_mm = mm; 1388 if (off + class->size <= PAGE_SIZE) { 1389 /* this object is contained entirely within a page */ 1390 area->vm_addr = kmap_atomic(page); 1391 ret = area->vm_addr + off; 1392 goto out; 1393 } 1394 1395 /* this object spans two pages */ 1396 pages[0] = page; 1397 pages[1] = get_next_page(page); 1398 BUG_ON(!pages[1]); 1399 1400 ret = __zs_map_object(area, pages, off, class->size); 1401 out: 1402 if (likely(!PageHugeObject(page))) 1403 ret += ZS_HANDLE_SIZE; 1404 1405 return ret; 1406 } 1407 EXPORT_SYMBOL_GPL(zs_map_object); 1408 1409 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1410 { 1411 struct zspage *zspage; 1412 struct page *page; 1413 unsigned long obj, off; 1414 unsigned int obj_idx; 1415 1416 unsigned int class_idx; 1417 enum fullness_group fg; 1418 struct size_class *class; 1419 struct mapping_area *area; 1420 1421 obj = handle_to_obj(handle); 1422 obj_to_location(obj, &page, &obj_idx); 1423 zspage = get_zspage(page); 1424 get_zspage_mapping(zspage, &class_idx, &fg); 1425 class = pool->size_class[class_idx]; 1426 off = (class->size * obj_idx) & ~PAGE_MASK; 1427 1428 area = this_cpu_ptr(&zs_map_area); 1429 if (off + class->size <= PAGE_SIZE) 1430 kunmap_atomic(area->vm_addr); 1431 else { 1432 struct page *pages[2]; 1433 1434 pages[0] = page; 1435 pages[1] = get_next_page(page); 1436 BUG_ON(!pages[1]); 1437 1438 __zs_unmap_object(area, pages, off, class->size); 1439 } 1440 put_cpu_var(zs_map_area); 1441 1442 migrate_read_unlock(zspage); 1443 unpin_tag(handle); 1444 } 1445 EXPORT_SYMBOL_GPL(zs_unmap_object); 1446 1447 static unsigned long obj_malloc(struct size_class *class, 1448 struct zspage *zspage, unsigned long handle) 1449 { 1450 int i, nr_page, offset; 1451 unsigned long obj; 1452 struct link_free *link; 1453 1454 struct page *m_page; 1455 unsigned long m_offset; 1456 void *vaddr; 1457 1458 handle |= OBJ_ALLOCATED_TAG; 1459 obj = get_freeobj(zspage); 1460 1461 offset = obj * class->size; 1462 nr_page = offset >> PAGE_SHIFT; 1463 m_offset = offset & ~PAGE_MASK; 1464 m_page = get_first_page(zspage); 1465 1466 for (i = 0; i < nr_page; i++) 1467 m_page = get_next_page(m_page); 1468 1469 vaddr = kmap_atomic(m_page); 1470 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1471 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1472 if (likely(!PageHugeObject(m_page))) 1473 /* record handle in the header of allocated chunk */ 1474 link->handle = handle; 1475 else 1476 /* record handle to page->index */ 1477 zspage->first_page->index = handle; 1478 1479 kunmap_atomic(vaddr); 1480 mod_zspage_inuse(zspage, 1); 1481 zs_stat_inc(class, OBJ_USED, 1); 1482 1483 obj = location_to_obj(m_page, obj); 1484 1485 return obj; 1486 } 1487 1488 1489 /** 1490 * zs_malloc - Allocate block of given size from pool. 1491 * @pool: pool to allocate from 1492 * @size: size of block to allocate 1493 * @gfp: gfp flags when allocating object 1494 * 1495 * On success, handle to the allocated object is returned, 1496 * otherwise 0. 1497 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1498 */ 1499 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1500 { 1501 unsigned long handle, obj; 1502 struct size_class *class; 1503 enum fullness_group newfg; 1504 struct zspage *zspage; 1505 1506 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1507 return 0; 1508 1509 handle = cache_alloc_handle(pool, gfp); 1510 if (!handle) 1511 return 0; 1512 1513 /* extra space in chunk to keep the handle */ 1514 size += ZS_HANDLE_SIZE; 1515 class = pool->size_class[get_size_class_index(size)]; 1516 1517 spin_lock(&class->lock); 1518 zspage = find_get_zspage(class); 1519 if (likely(zspage)) { 1520 obj = obj_malloc(class, zspage, handle); 1521 /* Now move the zspage to another fullness group, if required */ 1522 fix_fullness_group(class, zspage); 1523 record_obj(handle, obj); 1524 spin_unlock(&class->lock); 1525 1526 return handle; 1527 } 1528 1529 spin_unlock(&class->lock); 1530 1531 zspage = alloc_zspage(pool, class, gfp); 1532 if (!zspage) { 1533 cache_free_handle(pool, handle); 1534 return 0; 1535 } 1536 1537 spin_lock(&class->lock); 1538 obj = obj_malloc(class, zspage, handle); 1539 newfg = get_fullness_group(class, zspage); 1540 insert_zspage(class, zspage, newfg); 1541 set_zspage_mapping(zspage, class->index, newfg); 1542 record_obj(handle, obj); 1543 atomic_long_add(class->pages_per_zspage, 1544 &pool->pages_allocated); 1545 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1546 1547 /* We completely set up zspage so mark them as movable */ 1548 SetZsPageMovable(pool, zspage); 1549 spin_unlock(&class->lock); 1550 1551 return handle; 1552 } 1553 EXPORT_SYMBOL_GPL(zs_malloc); 1554 1555 static void obj_free(struct size_class *class, unsigned long obj) 1556 { 1557 struct link_free *link; 1558 struct zspage *zspage; 1559 struct page *f_page; 1560 unsigned long f_offset; 1561 unsigned int f_objidx; 1562 void *vaddr; 1563 1564 obj &= ~OBJ_ALLOCATED_TAG; 1565 obj_to_location(obj, &f_page, &f_objidx); 1566 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1567 zspage = get_zspage(f_page); 1568 1569 vaddr = kmap_atomic(f_page); 1570 1571 /* Insert this object in containing zspage's freelist */ 1572 link = (struct link_free *)(vaddr + f_offset); 1573 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1574 kunmap_atomic(vaddr); 1575 set_freeobj(zspage, f_objidx); 1576 mod_zspage_inuse(zspage, -1); 1577 zs_stat_dec(class, OBJ_USED, 1); 1578 } 1579 1580 void zs_free(struct zs_pool *pool, unsigned long handle) 1581 { 1582 struct zspage *zspage; 1583 struct page *f_page; 1584 unsigned long obj; 1585 unsigned int f_objidx; 1586 int class_idx; 1587 struct size_class *class; 1588 enum fullness_group fullness; 1589 bool isolated; 1590 1591 if (unlikely(!handle)) 1592 return; 1593 1594 pin_tag(handle); 1595 obj = handle_to_obj(handle); 1596 obj_to_location(obj, &f_page, &f_objidx); 1597 zspage = get_zspage(f_page); 1598 1599 migrate_read_lock(zspage); 1600 1601 get_zspage_mapping(zspage, &class_idx, &fullness); 1602 class = pool->size_class[class_idx]; 1603 1604 spin_lock(&class->lock); 1605 obj_free(class, obj); 1606 fullness = fix_fullness_group(class, zspage); 1607 if (fullness != ZS_EMPTY) { 1608 migrate_read_unlock(zspage); 1609 goto out; 1610 } 1611 1612 isolated = is_zspage_isolated(zspage); 1613 migrate_read_unlock(zspage); 1614 /* If zspage is isolated, zs_page_putback will free the zspage */ 1615 if (likely(!isolated)) 1616 free_zspage(pool, class, zspage); 1617 out: 1618 1619 spin_unlock(&class->lock); 1620 unpin_tag(handle); 1621 cache_free_handle(pool, handle); 1622 } 1623 EXPORT_SYMBOL_GPL(zs_free); 1624 1625 static void zs_object_copy(struct size_class *class, unsigned long dst, 1626 unsigned long src) 1627 { 1628 struct page *s_page, *d_page; 1629 unsigned int s_objidx, d_objidx; 1630 unsigned long s_off, d_off; 1631 void *s_addr, *d_addr; 1632 int s_size, d_size, size; 1633 int written = 0; 1634 1635 s_size = d_size = class->size; 1636 1637 obj_to_location(src, &s_page, &s_objidx); 1638 obj_to_location(dst, &d_page, &d_objidx); 1639 1640 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1641 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1642 1643 if (s_off + class->size > PAGE_SIZE) 1644 s_size = PAGE_SIZE - s_off; 1645 1646 if (d_off + class->size > PAGE_SIZE) 1647 d_size = PAGE_SIZE - d_off; 1648 1649 s_addr = kmap_atomic(s_page); 1650 d_addr = kmap_atomic(d_page); 1651 1652 while (1) { 1653 size = min(s_size, d_size); 1654 memcpy(d_addr + d_off, s_addr + s_off, size); 1655 written += size; 1656 1657 if (written == class->size) 1658 break; 1659 1660 s_off += size; 1661 s_size -= size; 1662 d_off += size; 1663 d_size -= size; 1664 1665 if (s_off >= PAGE_SIZE) { 1666 kunmap_atomic(d_addr); 1667 kunmap_atomic(s_addr); 1668 s_page = get_next_page(s_page); 1669 s_addr = kmap_atomic(s_page); 1670 d_addr = kmap_atomic(d_page); 1671 s_size = class->size - written; 1672 s_off = 0; 1673 } 1674 1675 if (d_off >= PAGE_SIZE) { 1676 kunmap_atomic(d_addr); 1677 d_page = get_next_page(d_page); 1678 d_addr = kmap_atomic(d_page); 1679 d_size = class->size - written; 1680 d_off = 0; 1681 } 1682 } 1683 1684 kunmap_atomic(d_addr); 1685 kunmap_atomic(s_addr); 1686 } 1687 1688 /* 1689 * Find alloced object in zspage from index object and 1690 * return handle. 1691 */ 1692 static unsigned long find_alloced_obj(struct size_class *class, 1693 struct page *page, int *obj_idx) 1694 { 1695 unsigned long head; 1696 int offset = 0; 1697 int index = *obj_idx; 1698 unsigned long handle = 0; 1699 void *addr = kmap_atomic(page); 1700 1701 offset = get_first_obj_offset(page); 1702 offset += class->size * index; 1703 1704 while (offset < PAGE_SIZE) { 1705 head = obj_to_head(page, addr + offset); 1706 if (head & OBJ_ALLOCATED_TAG) { 1707 handle = head & ~OBJ_ALLOCATED_TAG; 1708 if (trypin_tag(handle)) 1709 break; 1710 handle = 0; 1711 } 1712 1713 offset += class->size; 1714 index++; 1715 } 1716 1717 kunmap_atomic(addr); 1718 1719 *obj_idx = index; 1720 1721 return handle; 1722 } 1723 1724 struct zs_compact_control { 1725 /* Source spage for migration which could be a subpage of zspage */ 1726 struct page *s_page; 1727 /* Destination page for migration which should be a first page 1728 * of zspage. */ 1729 struct page *d_page; 1730 /* Starting object index within @s_page which used for live object 1731 * in the subpage. */ 1732 int obj_idx; 1733 }; 1734 1735 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1736 struct zs_compact_control *cc) 1737 { 1738 unsigned long used_obj, free_obj; 1739 unsigned long handle; 1740 struct page *s_page = cc->s_page; 1741 struct page *d_page = cc->d_page; 1742 int obj_idx = cc->obj_idx; 1743 int ret = 0; 1744 1745 while (1) { 1746 handle = find_alloced_obj(class, s_page, &obj_idx); 1747 if (!handle) { 1748 s_page = get_next_page(s_page); 1749 if (!s_page) 1750 break; 1751 obj_idx = 0; 1752 continue; 1753 } 1754 1755 /* Stop if there is no more space */ 1756 if (zspage_full(class, get_zspage(d_page))) { 1757 unpin_tag(handle); 1758 ret = -ENOMEM; 1759 break; 1760 } 1761 1762 used_obj = handle_to_obj(handle); 1763 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1764 zs_object_copy(class, free_obj, used_obj); 1765 obj_idx++; 1766 /* 1767 * record_obj updates handle's value to free_obj and it will 1768 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1769 * breaks synchronization using pin_tag(e,g, zs_free) so 1770 * let's keep the lock bit. 1771 */ 1772 free_obj |= BIT(HANDLE_PIN_BIT); 1773 record_obj(handle, free_obj); 1774 unpin_tag(handle); 1775 obj_free(class, used_obj); 1776 } 1777 1778 /* Remember last position in this iteration */ 1779 cc->s_page = s_page; 1780 cc->obj_idx = obj_idx; 1781 1782 return ret; 1783 } 1784 1785 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1786 { 1787 int i; 1788 struct zspage *zspage; 1789 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1790 1791 if (!source) { 1792 fg[0] = ZS_ALMOST_FULL; 1793 fg[1] = ZS_ALMOST_EMPTY; 1794 } 1795 1796 for (i = 0; i < 2; i++) { 1797 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1798 struct zspage, list); 1799 if (zspage) { 1800 VM_BUG_ON(is_zspage_isolated(zspage)); 1801 remove_zspage(class, zspage, fg[i]); 1802 return zspage; 1803 } 1804 } 1805 1806 return zspage; 1807 } 1808 1809 /* 1810 * putback_zspage - add @zspage into right class's fullness list 1811 * @class: destination class 1812 * @zspage: target page 1813 * 1814 * Return @zspage's fullness_group 1815 */ 1816 static enum fullness_group putback_zspage(struct size_class *class, 1817 struct zspage *zspage) 1818 { 1819 enum fullness_group fullness; 1820 1821 VM_BUG_ON(is_zspage_isolated(zspage)); 1822 1823 fullness = get_fullness_group(class, zspage); 1824 insert_zspage(class, zspage, fullness); 1825 set_zspage_mapping(zspage, class->index, fullness); 1826 1827 return fullness; 1828 } 1829 1830 #ifdef CONFIG_COMPACTION 1831 static struct dentry *zs_mount(struct file_system_type *fs_type, 1832 int flags, const char *dev_name, void *data) 1833 { 1834 static const struct dentry_operations ops = { 1835 .d_dname = simple_dname, 1836 }; 1837 1838 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1839 } 1840 1841 static struct file_system_type zsmalloc_fs = { 1842 .name = "zsmalloc", 1843 .mount = zs_mount, 1844 .kill_sb = kill_anon_super, 1845 }; 1846 1847 static int zsmalloc_mount(void) 1848 { 1849 int ret = 0; 1850 1851 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1852 if (IS_ERR(zsmalloc_mnt)) 1853 ret = PTR_ERR(zsmalloc_mnt); 1854 1855 return ret; 1856 } 1857 1858 static void zsmalloc_unmount(void) 1859 { 1860 kern_unmount(zsmalloc_mnt); 1861 } 1862 1863 static void migrate_lock_init(struct zspage *zspage) 1864 { 1865 rwlock_init(&zspage->lock); 1866 } 1867 1868 static void migrate_read_lock(struct zspage *zspage) 1869 { 1870 read_lock(&zspage->lock); 1871 } 1872 1873 static void migrate_read_unlock(struct zspage *zspage) 1874 { 1875 read_unlock(&zspage->lock); 1876 } 1877 1878 static void migrate_write_lock(struct zspage *zspage) 1879 { 1880 write_lock(&zspage->lock); 1881 } 1882 1883 static void migrate_write_unlock(struct zspage *zspage) 1884 { 1885 write_unlock(&zspage->lock); 1886 } 1887 1888 /* Number of isolated subpage for *page migration* in this zspage */ 1889 static void inc_zspage_isolation(struct zspage *zspage) 1890 { 1891 zspage->isolated++; 1892 } 1893 1894 static void dec_zspage_isolation(struct zspage *zspage) 1895 { 1896 zspage->isolated--; 1897 } 1898 1899 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1900 struct page *newpage, struct page *oldpage) 1901 { 1902 struct page *page; 1903 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1904 int idx = 0; 1905 1906 page = get_first_page(zspage); 1907 do { 1908 if (page == oldpage) 1909 pages[idx] = newpage; 1910 else 1911 pages[idx] = page; 1912 idx++; 1913 } while ((page = get_next_page(page)) != NULL); 1914 1915 create_page_chain(class, zspage, pages); 1916 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1917 if (unlikely(PageHugeObject(oldpage))) 1918 newpage->index = oldpage->index; 1919 __SetPageMovable(newpage, page_mapping(oldpage)); 1920 } 1921 1922 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1923 { 1924 struct zs_pool *pool; 1925 struct size_class *class; 1926 int class_idx; 1927 enum fullness_group fullness; 1928 struct zspage *zspage; 1929 struct address_space *mapping; 1930 1931 /* 1932 * Page is locked so zspage couldn't be destroyed. For detail, look at 1933 * lock_zspage in free_zspage. 1934 */ 1935 VM_BUG_ON_PAGE(!PageMovable(page), page); 1936 VM_BUG_ON_PAGE(PageIsolated(page), page); 1937 1938 zspage = get_zspage(page); 1939 1940 /* 1941 * Without class lock, fullness could be stale while class_idx is okay 1942 * because class_idx is constant unless page is freed so we should get 1943 * fullness again under class lock. 1944 */ 1945 get_zspage_mapping(zspage, &class_idx, &fullness); 1946 mapping = page_mapping(page); 1947 pool = mapping->private_data; 1948 class = pool->size_class[class_idx]; 1949 1950 spin_lock(&class->lock); 1951 if (get_zspage_inuse(zspage) == 0) { 1952 spin_unlock(&class->lock); 1953 return false; 1954 } 1955 1956 /* zspage is isolated for object migration */ 1957 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1958 spin_unlock(&class->lock); 1959 return false; 1960 } 1961 1962 /* 1963 * If this is first time isolation for the zspage, isolate zspage from 1964 * size_class to prevent further object allocation from the zspage. 1965 */ 1966 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1967 get_zspage_mapping(zspage, &class_idx, &fullness); 1968 remove_zspage(class, zspage, fullness); 1969 } 1970 1971 inc_zspage_isolation(zspage); 1972 spin_unlock(&class->lock); 1973 1974 return true; 1975 } 1976 1977 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1978 struct page *page, enum migrate_mode mode) 1979 { 1980 struct zs_pool *pool; 1981 struct size_class *class; 1982 int class_idx; 1983 enum fullness_group fullness; 1984 struct zspage *zspage; 1985 struct page *dummy; 1986 void *s_addr, *d_addr, *addr; 1987 int offset, pos; 1988 unsigned long handle, head; 1989 unsigned long old_obj, new_obj; 1990 unsigned int obj_idx; 1991 int ret = -EAGAIN; 1992 1993 VM_BUG_ON_PAGE(!PageMovable(page), page); 1994 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1995 1996 zspage = get_zspage(page); 1997 1998 /* Concurrent compactor cannot migrate any subpage in zspage */ 1999 migrate_write_lock(zspage); 2000 get_zspage_mapping(zspage, &class_idx, &fullness); 2001 pool = mapping->private_data; 2002 class = pool->size_class[class_idx]; 2003 offset = get_first_obj_offset(page); 2004 2005 spin_lock(&class->lock); 2006 if (!get_zspage_inuse(zspage)) { 2007 ret = -EBUSY; 2008 goto unlock_class; 2009 } 2010 2011 pos = offset; 2012 s_addr = kmap_atomic(page); 2013 while (pos < PAGE_SIZE) { 2014 head = obj_to_head(page, s_addr + pos); 2015 if (head & OBJ_ALLOCATED_TAG) { 2016 handle = head & ~OBJ_ALLOCATED_TAG; 2017 if (!trypin_tag(handle)) 2018 goto unpin_objects; 2019 } 2020 pos += class->size; 2021 } 2022 2023 /* 2024 * Here, any user cannot access all objects in the zspage so let's move. 2025 */ 2026 d_addr = kmap_atomic(newpage); 2027 memcpy(d_addr, s_addr, PAGE_SIZE); 2028 kunmap_atomic(d_addr); 2029 2030 for (addr = s_addr + offset; addr < s_addr + pos; 2031 addr += class->size) { 2032 head = obj_to_head(page, addr); 2033 if (head & OBJ_ALLOCATED_TAG) { 2034 handle = head & ~OBJ_ALLOCATED_TAG; 2035 if (!testpin_tag(handle)) 2036 BUG(); 2037 2038 old_obj = handle_to_obj(handle); 2039 obj_to_location(old_obj, &dummy, &obj_idx); 2040 new_obj = (unsigned long)location_to_obj(newpage, 2041 obj_idx); 2042 new_obj |= BIT(HANDLE_PIN_BIT); 2043 record_obj(handle, new_obj); 2044 } 2045 } 2046 2047 replace_sub_page(class, zspage, newpage, page); 2048 get_page(newpage); 2049 2050 dec_zspage_isolation(zspage); 2051 2052 /* 2053 * Page migration is done so let's putback isolated zspage to 2054 * the list if @page is final isolated subpage in the zspage. 2055 */ 2056 if (!is_zspage_isolated(zspage)) 2057 putback_zspage(class, zspage); 2058 2059 reset_page(page); 2060 put_page(page); 2061 page = newpage; 2062 2063 ret = MIGRATEPAGE_SUCCESS; 2064 unpin_objects: 2065 for (addr = s_addr + offset; addr < s_addr + pos; 2066 addr += class->size) { 2067 head = obj_to_head(page, addr); 2068 if (head & OBJ_ALLOCATED_TAG) { 2069 handle = head & ~OBJ_ALLOCATED_TAG; 2070 if (!testpin_tag(handle)) 2071 BUG(); 2072 unpin_tag(handle); 2073 } 2074 } 2075 kunmap_atomic(s_addr); 2076 unlock_class: 2077 spin_unlock(&class->lock); 2078 migrate_write_unlock(zspage); 2079 2080 return ret; 2081 } 2082 2083 void zs_page_putback(struct page *page) 2084 { 2085 struct zs_pool *pool; 2086 struct size_class *class; 2087 int class_idx; 2088 enum fullness_group fg; 2089 struct address_space *mapping; 2090 struct zspage *zspage; 2091 2092 VM_BUG_ON_PAGE(!PageMovable(page), page); 2093 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2094 2095 zspage = get_zspage(page); 2096 get_zspage_mapping(zspage, &class_idx, &fg); 2097 mapping = page_mapping(page); 2098 pool = mapping->private_data; 2099 class = pool->size_class[class_idx]; 2100 2101 spin_lock(&class->lock); 2102 dec_zspage_isolation(zspage); 2103 if (!is_zspage_isolated(zspage)) { 2104 fg = putback_zspage(class, zspage); 2105 /* 2106 * Due to page_lock, we cannot free zspage immediately 2107 * so let's defer. 2108 */ 2109 if (fg == ZS_EMPTY) 2110 schedule_work(&pool->free_work); 2111 } 2112 spin_unlock(&class->lock); 2113 } 2114 2115 const struct address_space_operations zsmalloc_aops = { 2116 .isolate_page = zs_page_isolate, 2117 .migratepage = zs_page_migrate, 2118 .putback_page = zs_page_putback, 2119 }; 2120 2121 static int zs_register_migration(struct zs_pool *pool) 2122 { 2123 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2124 if (IS_ERR(pool->inode)) { 2125 pool->inode = NULL; 2126 return 1; 2127 } 2128 2129 pool->inode->i_mapping->private_data = pool; 2130 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2131 return 0; 2132 } 2133 2134 static void zs_unregister_migration(struct zs_pool *pool) 2135 { 2136 flush_work(&pool->free_work); 2137 iput(pool->inode); 2138 } 2139 2140 /* 2141 * Caller should hold page_lock of all pages in the zspage 2142 * In here, we cannot use zspage meta data. 2143 */ 2144 static void async_free_zspage(struct work_struct *work) 2145 { 2146 int i; 2147 struct size_class *class; 2148 unsigned int class_idx; 2149 enum fullness_group fullness; 2150 struct zspage *zspage, *tmp; 2151 LIST_HEAD(free_pages); 2152 struct zs_pool *pool = container_of(work, struct zs_pool, 2153 free_work); 2154 2155 for (i = 0; i < zs_size_classes; i++) { 2156 class = pool->size_class[i]; 2157 if (class->index != i) 2158 continue; 2159 2160 spin_lock(&class->lock); 2161 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2162 spin_unlock(&class->lock); 2163 } 2164 2165 2166 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2167 list_del(&zspage->list); 2168 lock_zspage(zspage); 2169 2170 get_zspage_mapping(zspage, &class_idx, &fullness); 2171 VM_BUG_ON(fullness != ZS_EMPTY); 2172 class = pool->size_class[class_idx]; 2173 spin_lock(&class->lock); 2174 __free_zspage(pool, pool->size_class[class_idx], zspage); 2175 spin_unlock(&class->lock); 2176 } 2177 }; 2178 2179 static void kick_deferred_free(struct zs_pool *pool) 2180 { 2181 schedule_work(&pool->free_work); 2182 } 2183 2184 static void init_deferred_free(struct zs_pool *pool) 2185 { 2186 INIT_WORK(&pool->free_work, async_free_zspage); 2187 } 2188 2189 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2190 { 2191 struct page *page = get_first_page(zspage); 2192 2193 do { 2194 WARN_ON(!trylock_page(page)); 2195 __SetPageMovable(page, pool->inode->i_mapping); 2196 unlock_page(page); 2197 } while ((page = get_next_page(page)) != NULL); 2198 } 2199 #endif 2200 2201 /* 2202 * 2203 * Based on the number of unused allocated objects calculate 2204 * and return the number of pages that we can free. 2205 */ 2206 static unsigned long zs_can_compact(struct size_class *class) 2207 { 2208 unsigned long obj_wasted; 2209 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2210 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2211 2212 if (obj_allocated <= obj_used) 2213 return 0; 2214 2215 obj_wasted = obj_allocated - obj_used; 2216 obj_wasted /= class->objs_per_zspage; 2217 2218 return obj_wasted * class->pages_per_zspage; 2219 } 2220 2221 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2222 { 2223 struct zs_compact_control cc; 2224 struct zspage *src_zspage; 2225 struct zspage *dst_zspage = NULL; 2226 2227 spin_lock(&class->lock); 2228 while ((src_zspage = isolate_zspage(class, true))) { 2229 2230 if (!zs_can_compact(class)) 2231 break; 2232 2233 cc.obj_idx = 0; 2234 cc.s_page = get_first_page(src_zspage); 2235 2236 while ((dst_zspage = isolate_zspage(class, false))) { 2237 cc.d_page = get_first_page(dst_zspage); 2238 /* 2239 * If there is no more space in dst_page, resched 2240 * and see if anyone had allocated another zspage. 2241 */ 2242 if (!migrate_zspage(pool, class, &cc)) 2243 break; 2244 2245 putback_zspage(class, dst_zspage); 2246 } 2247 2248 /* Stop if we couldn't find slot */ 2249 if (dst_zspage == NULL) 2250 break; 2251 2252 putback_zspage(class, dst_zspage); 2253 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2254 free_zspage(pool, class, src_zspage); 2255 pool->stats.pages_compacted += class->pages_per_zspage; 2256 } 2257 spin_unlock(&class->lock); 2258 cond_resched(); 2259 spin_lock(&class->lock); 2260 } 2261 2262 if (src_zspage) 2263 putback_zspage(class, src_zspage); 2264 2265 spin_unlock(&class->lock); 2266 } 2267 2268 unsigned long zs_compact(struct zs_pool *pool) 2269 { 2270 int i; 2271 struct size_class *class; 2272 2273 for (i = zs_size_classes - 1; i >= 0; i--) { 2274 class = pool->size_class[i]; 2275 if (!class) 2276 continue; 2277 if (class->index != i) 2278 continue; 2279 __zs_compact(pool, class); 2280 } 2281 2282 return pool->stats.pages_compacted; 2283 } 2284 EXPORT_SYMBOL_GPL(zs_compact); 2285 2286 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2287 { 2288 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2289 } 2290 EXPORT_SYMBOL_GPL(zs_pool_stats); 2291 2292 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2293 struct shrink_control *sc) 2294 { 2295 unsigned long pages_freed; 2296 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2297 shrinker); 2298 2299 pages_freed = pool->stats.pages_compacted; 2300 /* 2301 * Compact classes and calculate compaction delta. 2302 * Can run concurrently with a manually triggered 2303 * (by user) compaction. 2304 */ 2305 pages_freed = zs_compact(pool) - pages_freed; 2306 2307 return pages_freed ? pages_freed : SHRINK_STOP; 2308 } 2309 2310 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2311 struct shrink_control *sc) 2312 { 2313 int i; 2314 struct size_class *class; 2315 unsigned long pages_to_free = 0; 2316 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2317 shrinker); 2318 2319 for (i = zs_size_classes - 1; i >= 0; i--) { 2320 class = pool->size_class[i]; 2321 if (!class) 2322 continue; 2323 if (class->index != i) 2324 continue; 2325 2326 pages_to_free += zs_can_compact(class); 2327 } 2328 2329 return pages_to_free; 2330 } 2331 2332 static void zs_unregister_shrinker(struct zs_pool *pool) 2333 { 2334 if (pool->shrinker_enabled) { 2335 unregister_shrinker(&pool->shrinker); 2336 pool->shrinker_enabled = false; 2337 } 2338 } 2339 2340 static int zs_register_shrinker(struct zs_pool *pool) 2341 { 2342 pool->shrinker.scan_objects = zs_shrinker_scan; 2343 pool->shrinker.count_objects = zs_shrinker_count; 2344 pool->shrinker.batch = 0; 2345 pool->shrinker.seeks = DEFAULT_SEEKS; 2346 2347 return register_shrinker(&pool->shrinker); 2348 } 2349 2350 /** 2351 * zs_create_pool - Creates an allocation pool to work from. 2352 * @name: pool name to be created 2353 * 2354 * This function must be called before anything when using 2355 * the zsmalloc allocator. 2356 * 2357 * On success, a pointer to the newly created pool is returned, 2358 * otherwise NULL. 2359 */ 2360 struct zs_pool *zs_create_pool(const char *name) 2361 { 2362 int i; 2363 struct zs_pool *pool; 2364 struct size_class *prev_class = NULL; 2365 2366 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2367 if (!pool) 2368 return NULL; 2369 2370 init_deferred_free(pool); 2371 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 2372 GFP_KERNEL); 2373 if (!pool->size_class) { 2374 kfree(pool); 2375 return NULL; 2376 } 2377 2378 pool->name = kstrdup(name, GFP_KERNEL); 2379 if (!pool->name) 2380 goto err; 2381 2382 if (create_cache(pool)) 2383 goto err; 2384 2385 /* 2386 * Iterate reversly, because, size of size_class that we want to use 2387 * for merging should be larger or equal to current size. 2388 */ 2389 for (i = zs_size_classes - 1; i >= 0; i--) { 2390 int size; 2391 int pages_per_zspage; 2392 int objs_per_zspage; 2393 struct size_class *class; 2394 int fullness = 0; 2395 2396 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2397 if (size > ZS_MAX_ALLOC_SIZE) 2398 size = ZS_MAX_ALLOC_SIZE; 2399 pages_per_zspage = get_pages_per_zspage(size); 2400 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2401 2402 /* 2403 * size_class is used for normal zsmalloc operation such 2404 * as alloc/free for that size. Although it is natural that we 2405 * have one size_class for each size, there is a chance that we 2406 * can get more memory utilization if we use one size_class for 2407 * many different sizes whose size_class have same 2408 * characteristics. So, we makes size_class point to 2409 * previous size_class if possible. 2410 */ 2411 if (prev_class) { 2412 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2413 pool->size_class[i] = prev_class; 2414 continue; 2415 } 2416 } 2417 2418 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2419 if (!class) 2420 goto err; 2421 2422 class->size = size; 2423 class->index = i; 2424 class->pages_per_zspage = pages_per_zspage; 2425 class->objs_per_zspage = objs_per_zspage; 2426 spin_lock_init(&class->lock); 2427 pool->size_class[i] = class; 2428 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2429 fullness++) 2430 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2431 2432 prev_class = class; 2433 } 2434 2435 /* debug only, don't abort if it fails */ 2436 zs_pool_stat_create(pool, name); 2437 2438 if (zs_register_migration(pool)) 2439 goto err; 2440 2441 /* 2442 * Not critical, we still can use the pool 2443 * and user can trigger compaction manually. 2444 */ 2445 if (zs_register_shrinker(pool) == 0) 2446 pool->shrinker_enabled = true; 2447 return pool; 2448 2449 err: 2450 zs_destroy_pool(pool); 2451 return NULL; 2452 } 2453 EXPORT_SYMBOL_GPL(zs_create_pool); 2454 2455 void zs_destroy_pool(struct zs_pool *pool) 2456 { 2457 int i; 2458 2459 zs_unregister_shrinker(pool); 2460 zs_unregister_migration(pool); 2461 zs_pool_stat_destroy(pool); 2462 2463 for (i = 0; i < zs_size_classes; i++) { 2464 int fg; 2465 struct size_class *class = pool->size_class[i]; 2466 2467 if (!class) 2468 continue; 2469 2470 if (class->index != i) 2471 continue; 2472 2473 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2474 if (!list_empty(&class->fullness_list[fg])) { 2475 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2476 class->size, fg); 2477 } 2478 } 2479 kfree(class); 2480 } 2481 2482 destroy_cache(pool); 2483 kfree(pool->size_class); 2484 kfree(pool->name); 2485 kfree(pool); 2486 } 2487 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2488 2489 static int __init zs_init(void) 2490 { 2491 int ret; 2492 2493 ret = zsmalloc_mount(); 2494 if (ret) 2495 goto out; 2496 2497 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2498 zs_cpu_prepare, zs_cpu_dead); 2499 if (ret) 2500 goto hp_setup_fail; 2501 2502 init_zs_size_classes(); 2503 2504 #ifdef CONFIG_ZPOOL 2505 zpool_register_driver(&zs_zpool_driver); 2506 #endif 2507 2508 zs_stat_init(); 2509 2510 return 0; 2511 2512 hp_setup_fail: 2513 zsmalloc_unmount(); 2514 out: 2515 return ret; 2516 } 2517 2518 static void __exit zs_exit(void) 2519 { 2520 #ifdef CONFIG_ZPOOL 2521 zpool_unregister_driver(&zs_zpool_driver); 2522 #endif 2523 zsmalloc_unmount(); 2524 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2525 2526 zs_stat_exit(); 2527 } 2528 2529 module_init(zs_init); 2530 module_exit(zs_exit); 2531 2532 MODULE_LICENSE("Dual BSD/GPL"); 2533 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2534