xref: /openbmc/linux/mm/zsmalloc.c (revision 4bce6fce)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->first_page: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private (union with page->first_page): refers to the
30  *		component page after the first page
31  *		If the page is first_page for huge object, it stores handle.
32  *		Look at size_class->huge.
33  *	page->freelist: points to the first free object in zspage.
34  *		Free objects are linked together using in-place
35  *		metadata.
36  *	page->objects: maximum number of objects we can store in this
37  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
38  *	page->lru: links together first pages of various zspages.
39  *		Basically forming list of zspages in a fullness group.
40  *	page->mapping: class index and fullness group of the zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #ifdef CONFIG_ZSMALLOC_DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <asm/tlbflush.h>
61 #include <asm/pgtable.h>
62 #include <linux/cpumask.h>
63 #include <linux/cpu.h>
64 #include <linux/vmalloc.h>
65 #include <linux/hardirq.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/debugfs.h>
69 #include <linux/zsmalloc.h>
70 #include <linux/zpool.h>
71 
72 /*
73  * This must be power of 2 and greater than of equal to sizeof(link_free).
74  * These two conditions ensure that any 'struct link_free' itself doesn't
75  * span more than 1 page which avoids complex case of mapping 2 pages simply
76  * to restore link_free pointer values.
77  */
78 #define ZS_ALIGN		8
79 
80 /*
81  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83  */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86 
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88 
89 /*
90  * Object location (<PFN>, <obj_idx>) is encoded as
91  * as single (unsigned long) handle value.
92  *
93  * Note that object index <obj_idx> is relative to system
94  * page <PFN> it is stored in, so for each sub-page belonging
95  * to a zspage, obj_idx starts with 0.
96  *
97  * This is made more complicated by various memory models and PAE.
98  */
99 
100 #ifndef MAX_PHYSMEM_BITS
101 #ifdef CONFIG_HIGHMEM64G
102 #define MAX_PHYSMEM_BITS 36
103 #else /* !CONFIG_HIGHMEM64G */
104 /*
105  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106  * be PAGE_SHIFT
107  */
108 #define MAX_PHYSMEM_BITS BITS_PER_LONG
109 #endif
110 #endif
111 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
112 
113 /*
114  * Memory for allocating for handle keeps object position by
115  * encoding <page, obj_idx> and the encoded value has a room
116  * in least bit(ie, look at obj_to_location).
117  * We use the bit to synchronize between object access by
118  * user and migration.
119  */
120 #define HANDLE_PIN_BIT	0
121 
122 /*
123  * Head in allocated object should have OBJ_ALLOCATED_TAG
124  * to identify the object was allocated or not.
125  * It's okay to add the status bit in the least bit because
126  * header keeps handle which is 4byte-aligned address so we
127  * have room for two bit at least.
128  */
129 #define OBJ_ALLOCATED_TAG 1
130 #define OBJ_TAG_BITS 1
131 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
133 
134 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
135 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
136 #define ZS_MIN_ALLOC_SIZE \
137 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138 /* each chunk includes extra space to keep handle */
139 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
140 
141 /*
142  * On systems with 4K page size, this gives 255 size classes! There is a
143  * trader-off here:
144  *  - Large number of size classes is potentially wasteful as free page are
145  *    spread across these classes
146  *  - Small number of size classes causes large internal fragmentation
147  *  - Probably its better to use specific size classes (empirically
148  *    determined). NOTE: all those class sizes must be set as multiple of
149  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
150  *
151  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
152  *  (reason above)
153  */
154 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
155 
156 /*
157  * We do not maintain any list for completely empty or full pages
158  */
159 enum fullness_group {
160 	ZS_ALMOST_FULL,
161 	ZS_ALMOST_EMPTY,
162 	_ZS_NR_FULLNESS_GROUPS,
163 
164 	ZS_EMPTY,
165 	ZS_FULL
166 };
167 
168 enum zs_stat_type {
169 	OBJ_ALLOCATED,
170 	OBJ_USED,
171 	CLASS_ALMOST_FULL,
172 	CLASS_ALMOST_EMPTY,
173 	NR_ZS_STAT_TYPE,
174 };
175 
176 #ifdef CONFIG_ZSMALLOC_STAT
177 
178 static struct dentry *zs_stat_root;
179 
180 struct zs_size_stat {
181 	unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183 
184 #endif
185 
186 /*
187  * number of size_classes
188  */
189 static int zs_size_classes;
190 
191 /*
192  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
193  *	n <= N / f, where
194  * n = number of allocated objects
195  * N = total number of objects zspage can store
196  * f = fullness_threshold_frac
197  *
198  * Similarly, we assign zspage to:
199  *	ZS_ALMOST_FULL	when n > N / f
200  *	ZS_EMPTY	when n == 0
201  *	ZS_FULL		when n == N
202  *
203  * (see: fix_fullness_group())
204  */
205 static const int fullness_threshold_frac = 4;
206 
207 struct size_class {
208 	/*
209 	 * Size of objects stored in this class. Must be multiple
210 	 * of ZS_ALIGN.
211 	 */
212 	int size;
213 	unsigned int index;
214 
215 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
216 	int pages_per_zspage;
217 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
218 	bool huge;
219 
220 #ifdef CONFIG_ZSMALLOC_STAT
221 	struct zs_size_stat stats;
222 #endif
223 
224 	spinlock_t lock;
225 
226 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
227 };
228 
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, first_page->freelist gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236 	union {
237 		/*
238 		 * Position of next free chunk (encodes <PFN, obj_idx>)
239 		 * It's valid for non-allocated object
240 		 */
241 		void *next;
242 		/*
243 		 * Handle of allocated object.
244 		 */
245 		unsigned long handle;
246 	};
247 };
248 
249 struct zs_pool {
250 	char *name;
251 
252 	struct size_class **size_class;
253 	struct kmem_cache *handle_cachep;
254 
255 	gfp_t flags;	/* allocation flags used when growing pool */
256 	atomic_long_t pages_allocated;
257 
258 #ifdef CONFIG_ZSMALLOC_STAT
259 	struct dentry *stat_dentry;
260 #endif
261 };
262 
263 /*
264  * A zspage's class index and fullness group
265  * are encoded in its (first)page->mapping
266  */
267 #define CLASS_IDX_BITS	28
268 #define FULLNESS_BITS	4
269 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
271 
272 struct mapping_area {
273 #ifdef CONFIG_PGTABLE_MAPPING
274 	struct vm_struct *vm; /* vm area for mapping object that span pages */
275 #else
276 	char *vm_buf; /* copy buffer for objects that span pages */
277 #endif
278 	char *vm_addr; /* address of kmap_atomic()'ed pages */
279 	enum zs_mapmode vm_mm; /* mapping mode */
280 	bool huge;
281 };
282 
283 static int create_handle_cache(struct zs_pool *pool)
284 {
285 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
286 					0, 0, NULL);
287 	return pool->handle_cachep ? 0 : 1;
288 }
289 
290 static void destroy_handle_cache(struct zs_pool *pool)
291 {
292 	kmem_cache_destroy(pool->handle_cachep);
293 }
294 
295 static unsigned long alloc_handle(struct zs_pool *pool)
296 {
297 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
298 		pool->flags & ~__GFP_HIGHMEM);
299 }
300 
301 static void free_handle(struct zs_pool *pool, unsigned long handle)
302 {
303 	kmem_cache_free(pool->handle_cachep, (void *)handle);
304 }
305 
306 static void record_obj(unsigned long handle, unsigned long obj)
307 {
308 	*(unsigned long *)handle = obj;
309 }
310 
311 /* zpool driver */
312 
313 #ifdef CONFIG_ZPOOL
314 
315 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
316 {
317 	return zs_create_pool(name, gfp);
318 }
319 
320 static void zs_zpool_destroy(void *pool)
321 {
322 	zs_destroy_pool(pool);
323 }
324 
325 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
326 			unsigned long *handle)
327 {
328 	*handle = zs_malloc(pool, size);
329 	return *handle ? 0 : -1;
330 }
331 static void zs_zpool_free(void *pool, unsigned long handle)
332 {
333 	zs_free(pool, handle);
334 }
335 
336 static int zs_zpool_shrink(void *pool, unsigned int pages,
337 			unsigned int *reclaimed)
338 {
339 	return -EINVAL;
340 }
341 
342 static void *zs_zpool_map(void *pool, unsigned long handle,
343 			enum zpool_mapmode mm)
344 {
345 	enum zs_mapmode zs_mm;
346 
347 	switch (mm) {
348 	case ZPOOL_MM_RO:
349 		zs_mm = ZS_MM_RO;
350 		break;
351 	case ZPOOL_MM_WO:
352 		zs_mm = ZS_MM_WO;
353 		break;
354 	case ZPOOL_MM_RW: /* fallthru */
355 	default:
356 		zs_mm = ZS_MM_RW;
357 		break;
358 	}
359 
360 	return zs_map_object(pool, handle, zs_mm);
361 }
362 static void zs_zpool_unmap(void *pool, unsigned long handle)
363 {
364 	zs_unmap_object(pool, handle);
365 }
366 
367 static u64 zs_zpool_total_size(void *pool)
368 {
369 	return zs_get_total_pages(pool) << PAGE_SHIFT;
370 }
371 
372 static struct zpool_driver zs_zpool_driver = {
373 	.type =		"zsmalloc",
374 	.owner =	THIS_MODULE,
375 	.create =	zs_zpool_create,
376 	.destroy =	zs_zpool_destroy,
377 	.malloc =	zs_zpool_malloc,
378 	.free =		zs_zpool_free,
379 	.shrink =	zs_zpool_shrink,
380 	.map =		zs_zpool_map,
381 	.unmap =	zs_zpool_unmap,
382 	.total_size =	zs_zpool_total_size,
383 };
384 
385 MODULE_ALIAS("zpool-zsmalloc");
386 #endif /* CONFIG_ZPOOL */
387 
388 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
389 {
390 	return pages_per_zspage * PAGE_SIZE / size;
391 }
392 
393 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
394 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
395 
396 static int is_first_page(struct page *page)
397 {
398 	return PagePrivate(page);
399 }
400 
401 static int is_last_page(struct page *page)
402 {
403 	return PagePrivate2(page);
404 }
405 
406 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
407 				enum fullness_group *fullness)
408 {
409 	unsigned long m;
410 	BUG_ON(!is_first_page(page));
411 
412 	m = (unsigned long)page->mapping;
413 	*fullness = m & FULLNESS_MASK;
414 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
415 }
416 
417 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
418 				enum fullness_group fullness)
419 {
420 	unsigned long m;
421 	BUG_ON(!is_first_page(page));
422 
423 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
424 			(fullness & FULLNESS_MASK);
425 	page->mapping = (struct address_space *)m;
426 }
427 
428 /*
429  * zsmalloc divides the pool into various size classes where each
430  * class maintains a list of zspages where each zspage is divided
431  * into equal sized chunks. Each allocation falls into one of these
432  * classes depending on its size. This function returns index of the
433  * size class which has chunk size big enough to hold the give size.
434  */
435 static int get_size_class_index(int size)
436 {
437 	int idx = 0;
438 
439 	if (likely(size > ZS_MIN_ALLOC_SIZE))
440 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
441 				ZS_SIZE_CLASS_DELTA);
442 
443 	return min(zs_size_classes - 1, idx);
444 }
445 
446 #ifdef CONFIG_ZSMALLOC_STAT
447 
448 static inline void zs_stat_inc(struct size_class *class,
449 				enum zs_stat_type type, unsigned long cnt)
450 {
451 	class->stats.objs[type] += cnt;
452 }
453 
454 static inline void zs_stat_dec(struct size_class *class,
455 				enum zs_stat_type type, unsigned long cnt)
456 {
457 	class->stats.objs[type] -= cnt;
458 }
459 
460 static inline unsigned long zs_stat_get(struct size_class *class,
461 				enum zs_stat_type type)
462 {
463 	return class->stats.objs[type];
464 }
465 
466 static int __init zs_stat_init(void)
467 {
468 	if (!debugfs_initialized())
469 		return -ENODEV;
470 
471 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
472 	if (!zs_stat_root)
473 		return -ENOMEM;
474 
475 	return 0;
476 }
477 
478 static void __exit zs_stat_exit(void)
479 {
480 	debugfs_remove_recursive(zs_stat_root);
481 }
482 
483 static int zs_stats_size_show(struct seq_file *s, void *v)
484 {
485 	int i;
486 	struct zs_pool *pool = s->private;
487 	struct size_class *class;
488 	int objs_per_zspage;
489 	unsigned long class_almost_full, class_almost_empty;
490 	unsigned long obj_allocated, obj_used, pages_used;
491 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
492 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
493 
494 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
495 			"class", "size", "almost_full", "almost_empty",
496 			"obj_allocated", "obj_used", "pages_used",
497 			"pages_per_zspage");
498 
499 	for (i = 0; i < zs_size_classes; i++) {
500 		class = pool->size_class[i];
501 
502 		if (class->index != i)
503 			continue;
504 
505 		spin_lock(&class->lock);
506 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
507 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
508 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
509 		obj_used = zs_stat_get(class, OBJ_USED);
510 		spin_unlock(&class->lock);
511 
512 		objs_per_zspage = get_maxobj_per_zspage(class->size,
513 				class->pages_per_zspage);
514 		pages_used = obj_allocated / objs_per_zspage *
515 				class->pages_per_zspage;
516 
517 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
518 			i, class->size, class_almost_full, class_almost_empty,
519 			obj_allocated, obj_used, pages_used,
520 			class->pages_per_zspage);
521 
522 		total_class_almost_full += class_almost_full;
523 		total_class_almost_empty += class_almost_empty;
524 		total_objs += obj_allocated;
525 		total_used_objs += obj_used;
526 		total_pages += pages_used;
527 	}
528 
529 	seq_puts(s, "\n");
530 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
531 			"Total", "", total_class_almost_full,
532 			total_class_almost_empty, total_objs,
533 			total_used_objs, total_pages);
534 
535 	return 0;
536 }
537 
538 static int zs_stats_size_open(struct inode *inode, struct file *file)
539 {
540 	return single_open(file, zs_stats_size_show, inode->i_private);
541 }
542 
543 static const struct file_operations zs_stat_size_ops = {
544 	.open           = zs_stats_size_open,
545 	.read           = seq_read,
546 	.llseek         = seq_lseek,
547 	.release        = single_release,
548 };
549 
550 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
551 {
552 	struct dentry *entry;
553 
554 	if (!zs_stat_root)
555 		return -ENODEV;
556 
557 	entry = debugfs_create_dir(name, zs_stat_root);
558 	if (!entry) {
559 		pr_warn("debugfs dir <%s> creation failed\n", name);
560 		return -ENOMEM;
561 	}
562 	pool->stat_dentry = entry;
563 
564 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
565 			pool->stat_dentry, pool, &zs_stat_size_ops);
566 	if (!entry) {
567 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
568 				name, "classes");
569 		return -ENOMEM;
570 	}
571 
572 	return 0;
573 }
574 
575 static void zs_pool_stat_destroy(struct zs_pool *pool)
576 {
577 	debugfs_remove_recursive(pool->stat_dentry);
578 }
579 
580 #else /* CONFIG_ZSMALLOC_STAT */
581 
582 static inline void zs_stat_inc(struct size_class *class,
583 				enum zs_stat_type type, unsigned long cnt)
584 {
585 }
586 
587 static inline void zs_stat_dec(struct size_class *class,
588 				enum zs_stat_type type, unsigned long cnt)
589 {
590 }
591 
592 static inline unsigned long zs_stat_get(struct size_class *class,
593 				enum zs_stat_type type)
594 {
595 	return 0;
596 }
597 
598 static int __init zs_stat_init(void)
599 {
600 	return 0;
601 }
602 
603 static void __exit zs_stat_exit(void)
604 {
605 }
606 
607 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
608 {
609 	return 0;
610 }
611 
612 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
613 {
614 }
615 
616 #endif
617 
618 
619 /*
620  * For each size class, zspages are divided into different groups
621  * depending on how "full" they are. This was done so that we could
622  * easily find empty or nearly empty zspages when we try to shrink
623  * the pool (not yet implemented). This function returns fullness
624  * status of the given page.
625  */
626 static enum fullness_group get_fullness_group(struct page *page)
627 {
628 	int inuse, max_objects;
629 	enum fullness_group fg;
630 	BUG_ON(!is_first_page(page));
631 
632 	inuse = page->inuse;
633 	max_objects = page->objects;
634 
635 	if (inuse == 0)
636 		fg = ZS_EMPTY;
637 	else if (inuse == max_objects)
638 		fg = ZS_FULL;
639 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
640 		fg = ZS_ALMOST_EMPTY;
641 	else
642 		fg = ZS_ALMOST_FULL;
643 
644 	return fg;
645 }
646 
647 /*
648  * Each size class maintains various freelists and zspages are assigned
649  * to one of these freelists based on the number of live objects they
650  * have. This functions inserts the given zspage into the freelist
651  * identified by <class, fullness_group>.
652  */
653 static void insert_zspage(struct page *page, struct size_class *class,
654 				enum fullness_group fullness)
655 {
656 	struct page **head;
657 
658 	BUG_ON(!is_first_page(page));
659 
660 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
661 		return;
662 
663 	head = &class->fullness_list[fullness];
664 	if (*head)
665 		list_add_tail(&page->lru, &(*head)->lru);
666 
667 	*head = page;
668 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
669 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
670 }
671 
672 /*
673  * This function removes the given zspage from the freelist identified
674  * by <class, fullness_group>.
675  */
676 static void remove_zspage(struct page *page, struct size_class *class,
677 				enum fullness_group fullness)
678 {
679 	struct page **head;
680 
681 	BUG_ON(!is_first_page(page));
682 
683 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
684 		return;
685 
686 	head = &class->fullness_list[fullness];
687 	BUG_ON(!*head);
688 	if (list_empty(&(*head)->lru))
689 		*head = NULL;
690 	else if (*head == page)
691 		*head = (struct page *)list_entry((*head)->lru.next,
692 					struct page, lru);
693 
694 	list_del_init(&page->lru);
695 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
696 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
697 }
698 
699 /*
700  * Each size class maintains zspages in different fullness groups depending
701  * on the number of live objects they contain. When allocating or freeing
702  * objects, the fullness status of the page can change, say, from ALMOST_FULL
703  * to ALMOST_EMPTY when freeing an object. This function checks if such
704  * a status change has occurred for the given page and accordingly moves the
705  * page from the freelist of the old fullness group to that of the new
706  * fullness group.
707  */
708 static enum fullness_group fix_fullness_group(struct size_class *class,
709 						struct page *page)
710 {
711 	int class_idx;
712 	enum fullness_group currfg, newfg;
713 
714 	BUG_ON(!is_first_page(page));
715 
716 	get_zspage_mapping(page, &class_idx, &currfg);
717 	newfg = get_fullness_group(page);
718 	if (newfg == currfg)
719 		goto out;
720 
721 	remove_zspage(page, class, currfg);
722 	insert_zspage(page, class, newfg);
723 	set_zspage_mapping(page, class_idx, newfg);
724 
725 out:
726 	return newfg;
727 }
728 
729 /*
730  * We have to decide on how many pages to link together
731  * to form a zspage for each size class. This is important
732  * to reduce wastage due to unusable space left at end of
733  * each zspage which is given as:
734  *     wastage = Zp % class_size
735  *     usage = Zp - wastage
736  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
737  *
738  * For example, for size class of 3/8 * PAGE_SIZE, we should
739  * link together 3 PAGE_SIZE sized pages to form a zspage
740  * since then we can perfectly fit in 8 such objects.
741  */
742 static int get_pages_per_zspage(int class_size)
743 {
744 	int i, max_usedpc = 0;
745 	/* zspage order which gives maximum used size per KB */
746 	int max_usedpc_order = 1;
747 
748 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
749 		int zspage_size;
750 		int waste, usedpc;
751 
752 		zspage_size = i * PAGE_SIZE;
753 		waste = zspage_size % class_size;
754 		usedpc = (zspage_size - waste) * 100 / zspage_size;
755 
756 		if (usedpc > max_usedpc) {
757 			max_usedpc = usedpc;
758 			max_usedpc_order = i;
759 		}
760 	}
761 
762 	return max_usedpc_order;
763 }
764 
765 /*
766  * A single 'zspage' is composed of many system pages which are
767  * linked together using fields in struct page. This function finds
768  * the first/head page, given any component page of a zspage.
769  */
770 static struct page *get_first_page(struct page *page)
771 {
772 	if (is_first_page(page))
773 		return page;
774 	else
775 		return page->first_page;
776 }
777 
778 static struct page *get_next_page(struct page *page)
779 {
780 	struct page *next;
781 
782 	if (is_last_page(page))
783 		next = NULL;
784 	else if (is_first_page(page))
785 		next = (struct page *)page_private(page);
786 	else
787 		next = list_entry(page->lru.next, struct page, lru);
788 
789 	return next;
790 }
791 
792 /*
793  * Encode <page, obj_idx> as a single handle value.
794  * We use the least bit of handle for tagging.
795  */
796 static void *location_to_obj(struct page *page, unsigned long obj_idx)
797 {
798 	unsigned long obj;
799 
800 	if (!page) {
801 		BUG_ON(obj_idx);
802 		return NULL;
803 	}
804 
805 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
806 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
807 	obj <<= OBJ_TAG_BITS;
808 
809 	return (void *)obj;
810 }
811 
812 /*
813  * Decode <page, obj_idx> pair from the given object handle. We adjust the
814  * decoded obj_idx back to its original value since it was adjusted in
815  * location_to_obj().
816  */
817 static void obj_to_location(unsigned long obj, struct page **page,
818 				unsigned long *obj_idx)
819 {
820 	obj >>= OBJ_TAG_BITS;
821 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
822 	*obj_idx = (obj & OBJ_INDEX_MASK);
823 }
824 
825 static unsigned long handle_to_obj(unsigned long handle)
826 {
827 	return *(unsigned long *)handle;
828 }
829 
830 static unsigned long obj_to_head(struct size_class *class, struct page *page,
831 			void *obj)
832 {
833 	if (class->huge) {
834 		VM_BUG_ON(!is_first_page(page));
835 		return *(unsigned long *)page_private(page);
836 	} else
837 		return *(unsigned long *)obj;
838 }
839 
840 static unsigned long obj_idx_to_offset(struct page *page,
841 				unsigned long obj_idx, int class_size)
842 {
843 	unsigned long off = 0;
844 
845 	if (!is_first_page(page))
846 		off = page->index;
847 
848 	return off + obj_idx * class_size;
849 }
850 
851 static inline int trypin_tag(unsigned long handle)
852 {
853 	unsigned long *ptr = (unsigned long *)handle;
854 
855 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
856 }
857 
858 static void pin_tag(unsigned long handle)
859 {
860 	while (!trypin_tag(handle));
861 }
862 
863 static void unpin_tag(unsigned long handle)
864 {
865 	unsigned long *ptr = (unsigned long *)handle;
866 
867 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
868 }
869 
870 static void reset_page(struct page *page)
871 {
872 	clear_bit(PG_private, &page->flags);
873 	clear_bit(PG_private_2, &page->flags);
874 	set_page_private(page, 0);
875 	page->mapping = NULL;
876 	page->freelist = NULL;
877 	page_mapcount_reset(page);
878 }
879 
880 static void free_zspage(struct page *first_page)
881 {
882 	struct page *nextp, *tmp, *head_extra;
883 
884 	BUG_ON(!is_first_page(first_page));
885 	BUG_ON(first_page->inuse);
886 
887 	head_extra = (struct page *)page_private(first_page);
888 
889 	reset_page(first_page);
890 	__free_page(first_page);
891 
892 	/* zspage with only 1 system page */
893 	if (!head_extra)
894 		return;
895 
896 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
897 		list_del(&nextp->lru);
898 		reset_page(nextp);
899 		__free_page(nextp);
900 	}
901 	reset_page(head_extra);
902 	__free_page(head_extra);
903 }
904 
905 /* Initialize a newly allocated zspage */
906 static void init_zspage(struct page *first_page, struct size_class *class)
907 {
908 	unsigned long off = 0;
909 	struct page *page = first_page;
910 
911 	BUG_ON(!is_first_page(first_page));
912 	while (page) {
913 		struct page *next_page;
914 		struct link_free *link;
915 		unsigned int i = 1;
916 		void *vaddr;
917 
918 		/*
919 		 * page->index stores offset of first object starting
920 		 * in the page. For the first page, this is always 0,
921 		 * so we use first_page->index (aka ->freelist) to store
922 		 * head of corresponding zspage's freelist.
923 		 */
924 		if (page != first_page)
925 			page->index = off;
926 
927 		vaddr = kmap_atomic(page);
928 		link = (struct link_free *)vaddr + off / sizeof(*link);
929 
930 		while ((off += class->size) < PAGE_SIZE) {
931 			link->next = location_to_obj(page, i++);
932 			link += class->size / sizeof(*link);
933 		}
934 
935 		/*
936 		 * We now come to the last (full or partial) object on this
937 		 * page, which must point to the first object on the next
938 		 * page (if present)
939 		 */
940 		next_page = get_next_page(page);
941 		link->next = location_to_obj(next_page, 0);
942 		kunmap_atomic(vaddr);
943 		page = next_page;
944 		off %= PAGE_SIZE;
945 	}
946 }
947 
948 /*
949  * Allocate a zspage for the given size class
950  */
951 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
952 {
953 	int i, error;
954 	struct page *first_page = NULL, *uninitialized_var(prev_page);
955 
956 	/*
957 	 * Allocate individual pages and link them together as:
958 	 * 1. first page->private = first sub-page
959 	 * 2. all sub-pages are linked together using page->lru
960 	 * 3. each sub-page is linked to the first page using page->first_page
961 	 *
962 	 * For each size class, First/Head pages are linked together using
963 	 * page->lru. Also, we set PG_private to identify the first page
964 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
965 	 * identify the last page.
966 	 */
967 	error = -ENOMEM;
968 	for (i = 0; i < class->pages_per_zspage; i++) {
969 		struct page *page;
970 
971 		page = alloc_page(flags);
972 		if (!page)
973 			goto cleanup;
974 
975 		INIT_LIST_HEAD(&page->lru);
976 		if (i == 0) {	/* first page */
977 			SetPagePrivate(page);
978 			set_page_private(page, 0);
979 			first_page = page;
980 			first_page->inuse = 0;
981 		}
982 		if (i == 1)
983 			set_page_private(first_page, (unsigned long)page);
984 		if (i >= 1)
985 			page->first_page = first_page;
986 		if (i >= 2)
987 			list_add(&page->lru, &prev_page->lru);
988 		if (i == class->pages_per_zspage - 1)	/* last page */
989 			SetPagePrivate2(page);
990 		prev_page = page;
991 	}
992 
993 	init_zspage(first_page, class);
994 
995 	first_page->freelist = location_to_obj(first_page, 0);
996 	/* Maximum number of objects we can store in this zspage */
997 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
998 
999 	error = 0; /* Success */
1000 
1001 cleanup:
1002 	if (unlikely(error) && first_page) {
1003 		free_zspage(first_page);
1004 		first_page = NULL;
1005 	}
1006 
1007 	return first_page;
1008 }
1009 
1010 static struct page *find_get_zspage(struct size_class *class)
1011 {
1012 	int i;
1013 	struct page *page;
1014 
1015 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1016 		page = class->fullness_list[i];
1017 		if (page)
1018 			break;
1019 	}
1020 
1021 	return page;
1022 }
1023 
1024 #ifdef CONFIG_PGTABLE_MAPPING
1025 static inline int __zs_cpu_up(struct mapping_area *area)
1026 {
1027 	/*
1028 	 * Make sure we don't leak memory if a cpu UP notification
1029 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1030 	 */
1031 	if (area->vm)
1032 		return 0;
1033 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1034 	if (!area->vm)
1035 		return -ENOMEM;
1036 	return 0;
1037 }
1038 
1039 static inline void __zs_cpu_down(struct mapping_area *area)
1040 {
1041 	if (area->vm)
1042 		free_vm_area(area->vm);
1043 	area->vm = NULL;
1044 }
1045 
1046 static inline void *__zs_map_object(struct mapping_area *area,
1047 				struct page *pages[2], int off, int size)
1048 {
1049 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1050 	area->vm_addr = area->vm->addr;
1051 	return area->vm_addr + off;
1052 }
1053 
1054 static inline void __zs_unmap_object(struct mapping_area *area,
1055 				struct page *pages[2], int off, int size)
1056 {
1057 	unsigned long addr = (unsigned long)area->vm_addr;
1058 
1059 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1060 }
1061 
1062 #else /* CONFIG_PGTABLE_MAPPING */
1063 
1064 static inline int __zs_cpu_up(struct mapping_area *area)
1065 {
1066 	/*
1067 	 * Make sure we don't leak memory if a cpu UP notification
1068 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1069 	 */
1070 	if (area->vm_buf)
1071 		return 0;
1072 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1073 	if (!area->vm_buf)
1074 		return -ENOMEM;
1075 	return 0;
1076 }
1077 
1078 static inline void __zs_cpu_down(struct mapping_area *area)
1079 {
1080 	kfree(area->vm_buf);
1081 	area->vm_buf = NULL;
1082 }
1083 
1084 static void *__zs_map_object(struct mapping_area *area,
1085 			struct page *pages[2], int off, int size)
1086 {
1087 	int sizes[2];
1088 	void *addr;
1089 	char *buf = area->vm_buf;
1090 
1091 	/* disable page faults to match kmap_atomic() return conditions */
1092 	pagefault_disable();
1093 
1094 	/* no read fastpath */
1095 	if (area->vm_mm == ZS_MM_WO)
1096 		goto out;
1097 
1098 	sizes[0] = PAGE_SIZE - off;
1099 	sizes[1] = size - sizes[0];
1100 
1101 	/* copy object to per-cpu buffer */
1102 	addr = kmap_atomic(pages[0]);
1103 	memcpy(buf, addr + off, sizes[0]);
1104 	kunmap_atomic(addr);
1105 	addr = kmap_atomic(pages[1]);
1106 	memcpy(buf + sizes[0], addr, sizes[1]);
1107 	kunmap_atomic(addr);
1108 out:
1109 	return area->vm_buf;
1110 }
1111 
1112 static void __zs_unmap_object(struct mapping_area *area,
1113 			struct page *pages[2], int off, int size)
1114 {
1115 	int sizes[2];
1116 	void *addr;
1117 	char *buf;
1118 
1119 	/* no write fastpath */
1120 	if (area->vm_mm == ZS_MM_RO)
1121 		goto out;
1122 
1123 	buf = area->vm_buf;
1124 	if (!area->huge) {
1125 		buf = buf + ZS_HANDLE_SIZE;
1126 		size -= ZS_HANDLE_SIZE;
1127 		off += ZS_HANDLE_SIZE;
1128 	}
1129 
1130 	sizes[0] = PAGE_SIZE - off;
1131 	sizes[1] = size - sizes[0];
1132 
1133 	/* copy per-cpu buffer to object */
1134 	addr = kmap_atomic(pages[0]);
1135 	memcpy(addr + off, buf, sizes[0]);
1136 	kunmap_atomic(addr);
1137 	addr = kmap_atomic(pages[1]);
1138 	memcpy(addr, buf + sizes[0], sizes[1]);
1139 	kunmap_atomic(addr);
1140 
1141 out:
1142 	/* enable page faults to match kunmap_atomic() return conditions */
1143 	pagefault_enable();
1144 }
1145 
1146 #endif /* CONFIG_PGTABLE_MAPPING */
1147 
1148 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1149 				void *pcpu)
1150 {
1151 	int ret, cpu = (long)pcpu;
1152 	struct mapping_area *area;
1153 
1154 	switch (action) {
1155 	case CPU_UP_PREPARE:
1156 		area = &per_cpu(zs_map_area, cpu);
1157 		ret = __zs_cpu_up(area);
1158 		if (ret)
1159 			return notifier_from_errno(ret);
1160 		break;
1161 	case CPU_DEAD:
1162 	case CPU_UP_CANCELED:
1163 		area = &per_cpu(zs_map_area, cpu);
1164 		__zs_cpu_down(area);
1165 		break;
1166 	}
1167 
1168 	return NOTIFY_OK;
1169 }
1170 
1171 static struct notifier_block zs_cpu_nb = {
1172 	.notifier_call = zs_cpu_notifier
1173 };
1174 
1175 static int zs_register_cpu_notifier(void)
1176 {
1177 	int cpu, uninitialized_var(ret);
1178 
1179 	cpu_notifier_register_begin();
1180 
1181 	__register_cpu_notifier(&zs_cpu_nb);
1182 	for_each_online_cpu(cpu) {
1183 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1184 		if (notifier_to_errno(ret))
1185 			break;
1186 	}
1187 
1188 	cpu_notifier_register_done();
1189 	return notifier_to_errno(ret);
1190 }
1191 
1192 static void zs_unregister_cpu_notifier(void)
1193 {
1194 	int cpu;
1195 
1196 	cpu_notifier_register_begin();
1197 
1198 	for_each_online_cpu(cpu)
1199 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1200 	__unregister_cpu_notifier(&zs_cpu_nb);
1201 
1202 	cpu_notifier_register_done();
1203 }
1204 
1205 static void init_zs_size_classes(void)
1206 {
1207 	int nr;
1208 
1209 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1210 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1211 		nr += 1;
1212 
1213 	zs_size_classes = nr;
1214 }
1215 
1216 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1217 {
1218 	if (prev->pages_per_zspage != pages_per_zspage)
1219 		return false;
1220 
1221 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1222 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1223 		return false;
1224 
1225 	return true;
1226 }
1227 
1228 static bool zspage_full(struct page *page)
1229 {
1230 	BUG_ON(!is_first_page(page));
1231 
1232 	return page->inuse == page->objects;
1233 }
1234 
1235 unsigned long zs_get_total_pages(struct zs_pool *pool)
1236 {
1237 	return atomic_long_read(&pool->pages_allocated);
1238 }
1239 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1240 
1241 /**
1242  * zs_map_object - get address of allocated object from handle.
1243  * @pool: pool from which the object was allocated
1244  * @handle: handle returned from zs_malloc
1245  *
1246  * Before using an object allocated from zs_malloc, it must be mapped using
1247  * this function. When done with the object, it must be unmapped using
1248  * zs_unmap_object.
1249  *
1250  * Only one object can be mapped per cpu at a time. There is no protection
1251  * against nested mappings.
1252  *
1253  * This function returns with preemption and page faults disabled.
1254  */
1255 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1256 			enum zs_mapmode mm)
1257 {
1258 	struct page *page;
1259 	unsigned long obj, obj_idx, off;
1260 
1261 	unsigned int class_idx;
1262 	enum fullness_group fg;
1263 	struct size_class *class;
1264 	struct mapping_area *area;
1265 	struct page *pages[2];
1266 	void *ret;
1267 
1268 	BUG_ON(!handle);
1269 
1270 	/*
1271 	 * Because we use per-cpu mapping areas shared among the
1272 	 * pools/users, we can't allow mapping in interrupt context
1273 	 * because it can corrupt another users mappings.
1274 	 */
1275 	BUG_ON(in_interrupt());
1276 
1277 	/* From now on, migration cannot move the object */
1278 	pin_tag(handle);
1279 
1280 	obj = handle_to_obj(handle);
1281 	obj_to_location(obj, &page, &obj_idx);
1282 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1283 	class = pool->size_class[class_idx];
1284 	off = obj_idx_to_offset(page, obj_idx, class->size);
1285 
1286 	area = &get_cpu_var(zs_map_area);
1287 	area->vm_mm = mm;
1288 	if (off + class->size <= PAGE_SIZE) {
1289 		/* this object is contained entirely within a page */
1290 		area->vm_addr = kmap_atomic(page);
1291 		ret = area->vm_addr + off;
1292 		goto out;
1293 	}
1294 
1295 	/* this object spans two pages */
1296 	pages[0] = page;
1297 	pages[1] = get_next_page(page);
1298 	BUG_ON(!pages[1]);
1299 
1300 	ret = __zs_map_object(area, pages, off, class->size);
1301 out:
1302 	if (!class->huge)
1303 		ret += ZS_HANDLE_SIZE;
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(zs_map_object);
1308 
1309 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1310 {
1311 	struct page *page;
1312 	unsigned long obj, obj_idx, off;
1313 
1314 	unsigned int class_idx;
1315 	enum fullness_group fg;
1316 	struct size_class *class;
1317 	struct mapping_area *area;
1318 
1319 	BUG_ON(!handle);
1320 
1321 	obj = handle_to_obj(handle);
1322 	obj_to_location(obj, &page, &obj_idx);
1323 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1324 	class = pool->size_class[class_idx];
1325 	off = obj_idx_to_offset(page, obj_idx, class->size);
1326 
1327 	area = this_cpu_ptr(&zs_map_area);
1328 	if (off + class->size <= PAGE_SIZE)
1329 		kunmap_atomic(area->vm_addr);
1330 	else {
1331 		struct page *pages[2];
1332 
1333 		pages[0] = page;
1334 		pages[1] = get_next_page(page);
1335 		BUG_ON(!pages[1]);
1336 
1337 		__zs_unmap_object(area, pages, off, class->size);
1338 	}
1339 	put_cpu_var(zs_map_area);
1340 	unpin_tag(handle);
1341 }
1342 EXPORT_SYMBOL_GPL(zs_unmap_object);
1343 
1344 static unsigned long obj_malloc(struct page *first_page,
1345 		struct size_class *class, unsigned long handle)
1346 {
1347 	unsigned long obj;
1348 	struct link_free *link;
1349 
1350 	struct page *m_page;
1351 	unsigned long m_objidx, m_offset;
1352 	void *vaddr;
1353 
1354 	handle |= OBJ_ALLOCATED_TAG;
1355 	obj = (unsigned long)first_page->freelist;
1356 	obj_to_location(obj, &m_page, &m_objidx);
1357 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1358 
1359 	vaddr = kmap_atomic(m_page);
1360 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1361 	first_page->freelist = link->next;
1362 	if (!class->huge)
1363 		/* record handle in the header of allocated chunk */
1364 		link->handle = handle;
1365 	else
1366 		/* record handle in first_page->private */
1367 		set_page_private(first_page, handle);
1368 	kunmap_atomic(vaddr);
1369 	first_page->inuse++;
1370 	zs_stat_inc(class, OBJ_USED, 1);
1371 
1372 	return obj;
1373 }
1374 
1375 
1376 /**
1377  * zs_malloc - Allocate block of given size from pool.
1378  * @pool: pool to allocate from
1379  * @size: size of block to allocate
1380  *
1381  * On success, handle to the allocated object is returned,
1382  * otherwise 0.
1383  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1384  */
1385 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1386 {
1387 	unsigned long handle, obj;
1388 	struct size_class *class;
1389 	struct page *first_page;
1390 
1391 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1392 		return 0;
1393 
1394 	handle = alloc_handle(pool);
1395 	if (!handle)
1396 		return 0;
1397 
1398 	/* extra space in chunk to keep the handle */
1399 	size += ZS_HANDLE_SIZE;
1400 	class = pool->size_class[get_size_class_index(size)];
1401 
1402 	spin_lock(&class->lock);
1403 	first_page = find_get_zspage(class);
1404 
1405 	if (!first_page) {
1406 		spin_unlock(&class->lock);
1407 		first_page = alloc_zspage(class, pool->flags);
1408 		if (unlikely(!first_page)) {
1409 			free_handle(pool, handle);
1410 			return 0;
1411 		}
1412 
1413 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1414 		atomic_long_add(class->pages_per_zspage,
1415 					&pool->pages_allocated);
1416 
1417 		spin_lock(&class->lock);
1418 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1419 				class->size, class->pages_per_zspage));
1420 	}
1421 
1422 	obj = obj_malloc(first_page, class, handle);
1423 	/* Now move the zspage to another fullness group, if required */
1424 	fix_fullness_group(class, first_page);
1425 	record_obj(handle, obj);
1426 	spin_unlock(&class->lock);
1427 
1428 	return handle;
1429 }
1430 EXPORT_SYMBOL_GPL(zs_malloc);
1431 
1432 static void obj_free(struct zs_pool *pool, struct size_class *class,
1433 			unsigned long obj)
1434 {
1435 	struct link_free *link;
1436 	struct page *first_page, *f_page;
1437 	unsigned long f_objidx, f_offset;
1438 	void *vaddr;
1439 	int class_idx;
1440 	enum fullness_group fullness;
1441 
1442 	BUG_ON(!obj);
1443 
1444 	obj &= ~OBJ_ALLOCATED_TAG;
1445 	obj_to_location(obj, &f_page, &f_objidx);
1446 	first_page = get_first_page(f_page);
1447 
1448 	get_zspage_mapping(first_page, &class_idx, &fullness);
1449 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1450 
1451 	vaddr = kmap_atomic(f_page);
1452 
1453 	/* Insert this object in containing zspage's freelist */
1454 	link = (struct link_free *)(vaddr + f_offset);
1455 	link->next = first_page->freelist;
1456 	if (class->huge)
1457 		set_page_private(first_page, 0);
1458 	kunmap_atomic(vaddr);
1459 	first_page->freelist = (void *)obj;
1460 	first_page->inuse--;
1461 	zs_stat_dec(class, OBJ_USED, 1);
1462 }
1463 
1464 void zs_free(struct zs_pool *pool, unsigned long handle)
1465 {
1466 	struct page *first_page, *f_page;
1467 	unsigned long obj, f_objidx;
1468 	int class_idx;
1469 	struct size_class *class;
1470 	enum fullness_group fullness;
1471 
1472 	if (unlikely(!handle))
1473 		return;
1474 
1475 	pin_tag(handle);
1476 	obj = handle_to_obj(handle);
1477 	obj_to_location(obj, &f_page, &f_objidx);
1478 	first_page = get_first_page(f_page);
1479 
1480 	get_zspage_mapping(first_page, &class_idx, &fullness);
1481 	class = pool->size_class[class_idx];
1482 
1483 	spin_lock(&class->lock);
1484 	obj_free(pool, class, obj);
1485 	fullness = fix_fullness_group(class, first_page);
1486 	if (fullness == ZS_EMPTY) {
1487 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1488 				class->size, class->pages_per_zspage));
1489 		atomic_long_sub(class->pages_per_zspage,
1490 				&pool->pages_allocated);
1491 		free_zspage(first_page);
1492 	}
1493 	spin_unlock(&class->lock);
1494 	unpin_tag(handle);
1495 
1496 	free_handle(pool, handle);
1497 }
1498 EXPORT_SYMBOL_GPL(zs_free);
1499 
1500 static void zs_object_copy(unsigned long src, unsigned long dst,
1501 				struct size_class *class)
1502 {
1503 	struct page *s_page, *d_page;
1504 	unsigned long s_objidx, d_objidx;
1505 	unsigned long s_off, d_off;
1506 	void *s_addr, *d_addr;
1507 	int s_size, d_size, size;
1508 	int written = 0;
1509 
1510 	s_size = d_size = class->size;
1511 
1512 	obj_to_location(src, &s_page, &s_objidx);
1513 	obj_to_location(dst, &d_page, &d_objidx);
1514 
1515 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1516 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1517 
1518 	if (s_off + class->size > PAGE_SIZE)
1519 		s_size = PAGE_SIZE - s_off;
1520 
1521 	if (d_off + class->size > PAGE_SIZE)
1522 		d_size = PAGE_SIZE - d_off;
1523 
1524 	s_addr = kmap_atomic(s_page);
1525 	d_addr = kmap_atomic(d_page);
1526 
1527 	while (1) {
1528 		size = min(s_size, d_size);
1529 		memcpy(d_addr + d_off, s_addr + s_off, size);
1530 		written += size;
1531 
1532 		if (written == class->size)
1533 			break;
1534 
1535 		s_off += size;
1536 		s_size -= size;
1537 		d_off += size;
1538 		d_size -= size;
1539 
1540 		if (s_off >= PAGE_SIZE) {
1541 			kunmap_atomic(d_addr);
1542 			kunmap_atomic(s_addr);
1543 			s_page = get_next_page(s_page);
1544 			BUG_ON(!s_page);
1545 			s_addr = kmap_atomic(s_page);
1546 			d_addr = kmap_atomic(d_page);
1547 			s_size = class->size - written;
1548 			s_off = 0;
1549 		}
1550 
1551 		if (d_off >= PAGE_SIZE) {
1552 			kunmap_atomic(d_addr);
1553 			d_page = get_next_page(d_page);
1554 			BUG_ON(!d_page);
1555 			d_addr = kmap_atomic(d_page);
1556 			d_size = class->size - written;
1557 			d_off = 0;
1558 		}
1559 	}
1560 
1561 	kunmap_atomic(d_addr);
1562 	kunmap_atomic(s_addr);
1563 }
1564 
1565 /*
1566  * Find alloced object in zspage from index object and
1567  * return handle.
1568  */
1569 static unsigned long find_alloced_obj(struct page *page, int index,
1570 					struct size_class *class)
1571 {
1572 	unsigned long head;
1573 	int offset = 0;
1574 	unsigned long handle = 0;
1575 	void *addr = kmap_atomic(page);
1576 
1577 	if (!is_first_page(page))
1578 		offset = page->index;
1579 	offset += class->size * index;
1580 
1581 	while (offset < PAGE_SIZE) {
1582 		head = obj_to_head(class, page, addr + offset);
1583 		if (head & OBJ_ALLOCATED_TAG) {
1584 			handle = head & ~OBJ_ALLOCATED_TAG;
1585 			if (trypin_tag(handle))
1586 				break;
1587 			handle = 0;
1588 		}
1589 
1590 		offset += class->size;
1591 		index++;
1592 	}
1593 
1594 	kunmap_atomic(addr);
1595 	return handle;
1596 }
1597 
1598 struct zs_compact_control {
1599 	/* Source page for migration which could be a subpage of zspage. */
1600 	struct page *s_page;
1601 	/* Destination page for migration which should be a first page
1602 	 * of zspage. */
1603 	struct page *d_page;
1604 	 /* Starting object index within @s_page which used for live object
1605 	  * in the subpage. */
1606 	int index;
1607 	/* how many of objects are migrated */
1608 	int nr_migrated;
1609 };
1610 
1611 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1612 				struct zs_compact_control *cc)
1613 {
1614 	unsigned long used_obj, free_obj;
1615 	unsigned long handle;
1616 	struct page *s_page = cc->s_page;
1617 	struct page *d_page = cc->d_page;
1618 	unsigned long index = cc->index;
1619 	int nr_migrated = 0;
1620 	int ret = 0;
1621 
1622 	while (1) {
1623 		handle = find_alloced_obj(s_page, index, class);
1624 		if (!handle) {
1625 			s_page = get_next_page(s_page);
1626 			if (!s_page)
1627 				break;
1628 			index = 0;
1629 			continue;
1630 		}
1631 
1632 		/* Stop if there is no more space */
1633 		if (zspage_full(d_page)) {
1634 			unpin_tag(handle);
1635 			ret = -ENOMEM;
1636 			break;
1637 		}
1638 
1639 		used_obj = handle_to_obj(handle);
1640 		free_obj = obj_malloc(d_page, class, handle);
1641 		zs_object_copy(used_obj, free_obj, class);
1642 		index++;
1643 		record_obj(handle, free_obj);
1644 		unpin_tag(handle);
1645 		obj_free(pool, class, used_obj);
1646 		nr_migrated++;
1647 	}
1648 
1649 	/* Remember last position in this iteration */
1650 	cc->s_page = s_page;
1651 	cc->index = index;
1652 	cc->nr_migrated = nr_migrated;
1653 
1654 	return ret;
1655 }
1656 
1657 static struct page *alloc_target_page(struct size_class *class)
1658 {
1659 	int i;
1660 	struct page *page;
1661 
1662 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1663 		page = class->fullness_list[i];
1664 		if (page) {
1665 			remove_zspage(page, class, i);
1666 			break;
1667 		}
1668 	}
1669 
1670 	return page;
1671 }
1672 
1673 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1674 				struct page *first_page)
1675 {
1676 	enum fullness_group fullness;
1677 
1678 	BUG_ON(!is_first_page(first_page));
1679 
1680 	fullness = get_fullness_group(first_page);
1681 	insert_zspage(first_page, class, fullness);
1682 	set_zspage_mapping(first_page, class->index, fullness);
1683 
1684 	if (fullness == ZS_EMPTY) {
1685 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1686 			class->size, class->pages_per_zspage));
1687 		atomic_long_sub(class->pages_per_zspage,
1688 				&pool->pages_allocated);
1689 
1690 		free_zspage(first_page);
1691 	}
1692 }
1693 
1694 static struct page *isolate_source_page(struct size_class *class)
1695 {
1696 	struct page *page;
1697 
1698 	page = class->fullness_list[ZS_ALMOST_EMPTY];
1699 	if (page)
1700 		remove_zspage(page, class, ZS_ALMOST_EMPTY);
1701 
1702 	return page;
1703 }
1704 
1705 static unsigned long __zs_compact(struct zs_pool *pool,
1706 				struct size_class *class)
1707 {
1708 	int nr_to_migrate;
1709 	struct zs_compact_control cc;
1710 	struct page *src_page;
1711 	struct page *dst_page = NULL;
1712 	unsigned long nr_total_migrated = 0;
1713 
1714 	spin_lock(&class->lock);
1715 	while ((src_page = isolate_source_page(class))) {
1716 
1717 		BUG_ON(!is_first_page(src_page));
1718 
1719 		/* The goal is to migrate all live objects in source page */
1720 		nr_to_migrate = src_page->inuse;
1721 		cc.index = 0;
1722 		cc.s_page = src_page;
1723 
1724 		while ((dst_page = alloc_target_page(class))) {
1725 			cc.d_page = dst_page;
1726 			/*
1727 			 * If there is no more space in dst_page, try to
1728 			 * allocate another zspage.
1729 			 */
1730 			if (!migrate_zspage(pool, class, &cc))
1731 				break;
1732 
1733 			putback_zspage(pool, class, dst_page);
1734 			nr_total_migrated += cc.nr_migrated;
1735 			nr_to_migrate -= cc.nr_migrated;
1736 		}
1737 
1738 		/* Stop if we couldn't find slot */
1739 		if (dst_page == NULL)
1740 			break;
1741 
1742 		putback_zspage(pool, class, dst_page);
1743 		putback_zspage(pool, class, src_page);
1744 		spin_unlock(&class->lock);
1745 		nr_total_migrated += cc.nr_migrated;
1746 		cond_resched();
1747 		spin_lock(&class->lock);
1748 	}
1749 
1750 	if (src_page)
1751 		putback_zspage(pool, class, src_page);
1752 
1753 	spin_unlock(&class->lock);
1754 
1755 	return nr_total_migrated;
1756 }
1757 
1758 unsigned long zs_compact(struct zs_pool *pool)
1759 {
1760 	int i;
1761 	unsigned long nr_migrated = 0;
1762 	struct size_class *class;
1763 
1764 	for (i = zs_size_classes - 1; i >= 0; i--) {
1765 		class = pool->size_class[i];
1766 		if (!class)
1767 			continue;
1768 		if (class->index != i)
1769 			continue;
1770 		nr_migrated += __zs_compact(pool, class);
1771 	}
1772 
1773 	return nr_migrated;
1774 }
1775 EXPORT_SYMBOL_GPL(zs_compact);
1776 
1777 /**
1778  * zs_create_pool - Creates an allocation pool to work from.
1779  * @flags: allocation flags used to allocate pool metadata
1780  *
1781  * This function must be called before anything when using
1782  * the zsmalloc allocator.
1783  *
1784  * On success, a pointer to the newly created pool is returned,
1785  * otherwise NULL.
1786  */
1787 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1788 {
1789 	int i;
1790 	struct zs_pool *pool;
1791 	struct size_class *prev_class = NULL;
1792 
1793 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1794 	if (!pool)
1795 		return NULL;
1796 
1797 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1798 			GFP_KERNEL);
1799 	if (!pool->size_class) {
1800 		kfree(pool);
1801 		return NULL;
1802 	}
1803 
1804 	pool->name = kstrdup(name, GFP_KERNEL);
1805 	if (!pool->name)
1806 		goto err;
1807 
1808 	if (create_handle_cache(pool))
1809 		goto err;
1810 
1811 	/*
1812 	 * Iterate reversly, because, size of size_class that we want to use
1813 	 * for merging should be larger or equal to current size.
1814 	 */
1815 	for (i = zs_size_classes - 1; i >= 0; i--) {
1816 		int size;
1817 		int pages_per_zspage;
1818 		struct size_class *class;
1819 
1820 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1821 		if (size > ZS_MAX_ALLOC_SIZE)
1822 			size = ZS_MAX_ALLOC_SIZE;
1823 		pages_per_zspage = get_pages_per_zspage(size);
1824 
1825 		/*
1826 		 * size_class is used for normal zsmalloc operation such
1827 		 * as alloc/free for that size. Although it is natural that we
1828 		 * have one size_class for each size, there is a chance that we
1829 		 * can get more memory utilization if we use one size_class for
1830 		 * many different sizes whose size_class have same
1831 		 * characteristics. So, we makes size_class point to
1832 		 * previous size_class if possible.
1833 		 */
1834 		if (prev_class) {
1835 			if (can_merge(prev_class, size, pages_per_zspage)) {
1836 				pool->size_class[i] = prev_class;
1837 				continue;
1838 			}
1839 		}
1840 
1841 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1842 		if (!class)
1843 			goto err;
1844 
1845 		class->size = size;
1846 		class->index = i;
1847 		class->pages_per_zspage = pages_per_zspage;
1848 		if (pages_per_zspage == 1 &&
1849 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1850 			class->huge = true;
1851 		spin_lock_init(&class->lock);
1852 		pool->size_class[i] = class;
1853 
1854 		prev_class = class;
1855 	}
1856 
1857 	pool->flags = flags;
1858 
1859 	if (zs_pool_stat_create(name, pool))
1860 		goto err;
1861 
1862 	return pool;
1863 
1864 err:
1865 	zs_destroy_pool(pool);
1866 	return NULL;
1867 }
1868 EXPORT_SYMBOL_GPL(zs_create_pool);
1869 
1870 void zs_destroy_pool(struct zs_pool *pool)
1871 {
1872 	int i;
1873 
1874 	zs_pool_stat_destroy(pool);
1875 
1876 	for (i = 0; i < zs_size_classes; i++) {
1877 		int fg;
1878 		struct size_class *class = pool->size_class[i];
1879 
1880 		if (!class)
1881 			continue;
1882 
1883 		if (class->index != i)
1884 			continue;
1885 
1886 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1887 			if (class->fullness_list[fg]) {
1888 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1889 					class->size, fg);
1890 			}
1891 		}
1892 		kfree(class);
1893 	}
1894 
1895 	destroy_handle_cache(pool);
1896 	kfree(pool->size_class);
1897 	kfree(pool->name);
1898 	kfree(pool);
1899 }
1900 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1901 
1902 static int __init zs_init(void)
1903 {
1904 	int ret = zs_register_cpu_notifier();
1905 
1906 	if (ret)
1907 		goto notifier_fail;
1908 
1909 	init_zs_size_classes();
1910 
1911 #ifdef CONFIG_ZPOOL
1912 	zpool_register_driver(&zs_zpool_driver);
1913 #endif
1914 
1915 	ret = zs_stat_init();
1916 	if (ret) {
1917 		pr_err("zs stat initialization failed\n");
1918 		goto stat_fail;
1919 	}
1920 	return 0;
1921 
1922 stat_fail:
1923 #ifdef CONFIG_ZPOOL
1924 	zpool_unregister_driver(&zs_zpool_driver);
1925 #endif
1926 notifier_fail:
1927 	zs_unregister_cpu_notifier();
1928 
1929 	return ret;
1930 }
1931 
1932 static void __exit zs_exit(void)
1933 {
1934 #ifdef CONFIG_ZPOOL
1935 	zpool_unregister_driver(&zs_zpool_driver);
1936 #endif
1937 	zs_unregister_cpu_notifier();
1938 
1939 	zs_stat_exit();
1940 }
1941 
1942 module_init(zs_init);
1943 module_exit(zs_exit);
1944 
1945 MODULE_LICENSE("Dual BSD/GPL");
1946 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1947