1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->migrate_lock 37 * class->lock 38 * zspage->lock 39 */ 40 41 #include <linux/module.h> 42 #include <linux/kernel.h> 43 #include <linux/sched.h> 44 #include <linux/magic.h> 45 #include <linux/bitops.h> 46 #include <linux/errno.h> 47 #include <linux/highmem.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/pgtable.h> 51 #include <asm/tlbflush.h> 52 #include <linux/cpumask.h> 53 #include <linux/cpu.h> 54 #include <linux/vmalloc.h> 55 #include <linux/preempt.h> 56 #include <linux/spinlock.h> 57 #include <linux/shrinker.h> 58 #include <linux/types.h> 59 #include <linux/debugfs.h> 60 #include <linux/zsmalloc.h> 61 #include <linux/zpool.h> 62 #include <linux/mount.h> 63 #include <linux/pseudo_fs.h> 64 #include <linux/migrate.h> 65 #include <linux/wait.h> 66 #include <linux/pagemap.h> 67 #include <linux/fs.h> 68 #include <linux/local_lock.h> 69 70 #define ZSPAGE_MAGIC 0x58 71 72 /* 73 * This must be power of 2 and greater than or equal to sizeof(link_free). 74 * These two conditions ensure that any 'struct link_free' itself doesn't 75 * span more than 1 page which avoids complex case of mapping 2 pages simply 76 * to restore link_free pointer values. 77 */ 78 #define ZS_ALIGN 8 79 80 /* 81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 83 */ 84 #define ZS_MAX_ZSPAGE_ORDER 2 85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 86 87 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 88 89 /* 90 * Object location (<PFN>, <obj_idx>) is encoded as 91 * a single (unsigned long) handle value. 92 * 93 * Note that object index <obj_idx> starts from 0. 94 * 95 * This is made more complicated by various memory models and PAE. 96 */ 97 98 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 99 #ifdef MAX_PHYSMEM_BITS 100 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 101 #else 102 /* 103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 104 * be PAGE_SHIFT 105 */ 106 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 107 #endif 108 #endif 109 110 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 111 112 /* 113 * Head in allocated object should have OBJ_ALLOCATED_TAG 114 * to identify the object was allocated or not. 115 * It's okay to add the status bit in the least bit because 116 * header keeps handle which is 4byte-aligned address so we 117 * have room for two bit at least. 118 */ 119 #define OBJ_ALLOCATED_TAG 1 120 #define OBJ_TAG_BITS 1 121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 123 124 #define HUGE_BITS 1 125 #define FULLNESS_BITS 2 126 #define CLASS_BITS 8 127 #define ISOLATED_BITS 3 128 #define MAGIC_VAL_BITS 8 129 130 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 132 #define ZS_MIN_ALLOC_SIZE \ 133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 134 /* each chunk includes extra space to keep handle */ 135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 136 137 /* 138 * On systems with 4K page size, this gives 255 size classes! There is a 139 * trader-off here: 140 * - Large number of size classes is potentially wasteful as free page are 141 * spread across these classes 142 * - Small number of size classes causes large internal fragmentation 143 * - Probably its better to use specific size classes (empirically 144 * determined). NOTE: all those class sizes must be set as multiple of 145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 146 * 147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 148 * (reason above) 149 */ 150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 151 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 152 ZS_SIZE_CLASS_DELTA) + 1) 153 154 enum fullness_group { 155 ZS_EMPTY, 156 ZS_ALMOST_EMPTY, 157 ZS_ALMOST_FULL, 158 ZS_FULL, 159 NR_ZS_FULLNESS, 160 }; 161 162 enum class_stat_type { 163 CLASS_EMPTY, 164 CLASS_ALMOST_EMPTY, 165 CLASS_ALMOST_FULL, 166 CLASS_FULL, 167 OBJ_ALLOCATED, 168 OBJ_USED, 169 NR_ZS_STAT_TYPE, 170 }; 171 172 struct zs_size_stat { 173 unsigned long objs[NR_ZS_STAT_TYPE]; 174 }; 175 176 #ifdef CONFIG_ZSMALLOC_STAT 177 static struct dentry *zs_stat_root; 178 #endif 179 180 #ifdef CONFIG_COMPACTION 181 static struct vfsmount *zsmalloc_mnt; 182 #endif 183 184 /* 185 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 186 * n <= N / f, where 187 * n = number of allocated objects 188 * N = total number of objects zspage can store 189 * f = fullness_threshold_frac 190 * 191 * Similarly, we assign zspage to: 192 * ZS_ALMOST_FULL when n > N / f 193 * ZS_EMPTY when n == 0 194 * ZS_FULL when n == N 195 * 196 * (see: fix_fullness_group()) 197 */ 198 static const int fullness_threshold_frac = 4; 199 static size_t huge_class_size; 200 201 struct size_class { 202 spinlock_t lock; 203 struct list_head fullness_list[NR_ZS_FULLNESS]; 204 /* 205 * Size of objects stored in this class. Must be multiple 206 * of ZS_ALIGN. 207 */ 208 int size; 209 int objs_per_zspage; 210 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 211 int pages_per_zspage; 212 213 unsigned int index; 214 struct zs_size_stat stats; 215 }; 216 217 /* 218 * Placed within free objects to form a singly linked list. 219 * For every zspage, zspage->freeobj gives head of this list. 220 * 221 * This must be power of 2 and less than or equal to ZS_ALIGN 222 */ 223 struct link_free { 224 union { 225 /* 226 * Free object index; 227 * It's valid for non-allocated object 228 */ 229 unsigned long next; 230 /* 231 * Handle of allocated object. 232 */ 233 unsigned long handle; 234 }; 235 }; 236 237 struct zs_pool { 238 const char *name; 239 240 struct size_class *size_class[ZS_SIZE_CLASSES]; 241 struct kmem_cache *handle_cachep; 242 struct kmem_cache *zspage_cachep; 243 244 atomic_long_t pages_allocated; 245 246 struct zs_pool_stats stats; 247 248 /* Compact classes */ 249 struct shrinker shrinker; 250 251 #ifdef CONFIG_ZSMALLOC_STAT 252 struct dentry *stat_dentry; 253 #endif 254 #ifdef CONFIG_COMPACTION 255 struct inode *inode; 256 struct work_struct free_work; 257 #endif 258 /* protect page/zspage migration */ 259 rwlock_t migrate_lock; 260 }; 261 262 struct zspage { 263 struct { 264 unsigned int huge:HUGE_BITS; 265 unsigned int fullness:FULLNESS_BITS; 266 unsigned int class:CLASS_BITS + 1; 267 unsigned int isolated:ISOLATED_BITS; 268 unsigned int magic:MAGIC_VAL_BITS; 269 }; 270 unsigned int inuse; 271 unsigned int freeobj; 272 struct page *first_page; 273 struct list_head list; /* fullness list */ 274 #ifdef CONFIG_COMPACTION 275 rwlock_t lock; 276 #endif 277 }; 278 279 struct mapping_area { 280 local_lock_t lock; 281 char *vm_buf; /* copy buffer for objects that span pages */ 282 char *vm_addr; /* address of kmap_atomic()'ed pages */ 283 enum zs_mapmode vm_mm; /* mapping mode */ 284 }; 285 286 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 287 static void SetZsHugePage(struct zspage *zspage) 288 { 289 zspage->huge = 1; 290 } 291 292 static bool ZsHugePage(struct zspage *zspage) 293 { 294 return zspage->huge; 295 } 296 297 #ifdef CONFIG_COMPACTION 298 static int zs_register_migration(struct zs_pool *pool); 299 static void zs_unregister_migration(struct zs_pool *pool); 300 static void migrate_lock_init(struct zspage *zspage); 301 static void migrate_read_lock(struct zspage *zspage); 302 static void migrate_read_unlock(struct zspage *zspage); 303 static void migrate_write_lock(struct zspage *zspage); 304 static void migrate_write_lock_nested(struct zspage *zspage); 305 static void migrate_write_unlock(struct zspage *zspage); 306 static void kick_deferred_free(struct zs_pool *pool); 307 static void init_deferred_free(struct zs_pool *pool); 308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 309 #else 310 static int zsmalloc_mount(void) { return 0; } 311 static void zsmalloc_unmount(void) {} 312 static int zs_register_migration(struct zs_pool *pool) { return 0; } 313 static void zs_unregister_migration(struct zs_pool *pool) {} 314 static void migrate_lock_init(struct zspage *zspage) {} 315 static void migrate_read_lock(struct zspage *zspage) {} 316 static void migrate_read_unlock(struct zspage *zspage) {} 317 static void migrate_write_lock(struct zspage *zspage) {} 318 static void migrate_write_lock_nested(struct zspage *zspage) {} 319 static void migrate_write_unlock(struct zspage *zspage) {} 320 static void kick_deferred_free(struct zs_pool *pool) {} 321 static void init_deferred_free(struct zs_pool *pool) {} 322 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 323 #endif 324 325 static int create_cache(struct zs_pool *pool) 326 { 327 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 328 0, 0, NULL); 329 if (!pool->handle_cachep) 330 return 1; 331 332 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 333 0, 0, NULL); 334 if (!pool->zspage_cachep) { 335 kmem_cache_destroy(pool->handle_cachep); 336 pool->handle_cachep = NULL; 337 return 1; 338 } 339 340 return 0; 341 } 342 343 static void destroy_cache(struct zs_pool *pool) 344 { 345 kmem_cache_destroy(pool->handle_cachep); 346 kmem_cache_destroy(pool->zspage_cachep); 347 } 348 349 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 350 { 351 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 352 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 353 } 354 355 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 356 { 357 kmem_cache_free(pool->handle_cachep, (void *)handle); 358 } 359 360 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 361 { 362 return kmem_cache_zalloc(pool->zspage_cachep, 363 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 364 } 365 366 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 367 { 368 kmem_cache_free(pool->zspage_cachep, zspage); 369 } 370 371 /* class->lock(which owns the handle) synchronizes races */ 372 static void record_obj(unsigned long handle, unsigned long obj) 373 { 374 *(unsigned long *)handle = obj; 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc_support_movable = true, 445 .malloc = zs_zpool_malloc, 446 .free = zs_zpool_free, 447 .map = zs_zpool_map, 448 .unmap = zs_zpool_unmap, 449 .total_size = zs_zpool_total_size, 450 }; 451 452 MODULE_ALIAS("zpool-zsmalloc"); 453 #endif /* CONFIG_ZPOOL */ 454 455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 457 .lock = INIT_LOCAL_LOCK(lock), 458 }; 459 460 static __maybe_unused int is_first_page(struct page *page) 461 { 462 return PagePrivate(page); 463 } 464 465 /* Protected by class->lock */ 466 static inline int get_zspage_inuse(struct zspage *zspage) 467 { 468 return zspage->inuse; 469 } 470 471 472 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 473 { 474 zspage->inuse += val; 475 } 476 477 static inline struct page *get_first_page(struct zspage *zspage) 478 { 479 struct page *first_page = zspage->first_page; 480 481 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 482 return first_page; 483 } 484 485 static inline int get_first_obj_offset(struct page *page) 486 { 487 return page->page_type; 488 } 489 490 static inline void set_first_obj_offset(struct page *page, int offset) 491 { 492 page->page_type = offset; 493 } 494 495 static inline unsigned int get_freeobj(struct zspage *zspage) 496 { 497 return zspage->freeobj; 498 } 499 500 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 501 { 502 zspage->freeobj = obj; 503 } 504 505 static void get_zspage_mapping(struct zspage *zspage, 506 unsigned int *class_idx, 507 enum fullness_group *fullness) 508 { 509 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 510 511 *fullness = zspage->fullness; 512 *class_idx = zspage->class; 513 } 514 515 static struct size_class *zspage_class(struct zs_pool *pool, 516 struct zspage *zspage) 517 { 518 return pool->size_class[zspage->class]; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the given size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type class_stat_type or fullness_group */ 548 static inline void class_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type class_stat_type or fullness_group */ 555 static inline void class_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type class_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 } 579 580 static void __exit zs_stat_exit(void) 581 { 582 debugfs_remove_recursive(zs_stat_root); 583 } 584 585 static unsigned long zs_can_compact(struct size_class *class); 586 587 static int zs_stats_size_show(struct seq_file *s, void *v) 588 { 589 int i; 590 struct zs_pool *pool = s->private; 591 struct size_class *class; 592 int objs_per_zspage; 593 unsigned long class_almost_full, class_almost_empty; 594 unsigned long obj_allocated, obj_used, pages_used, freeable; 595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 597 unsigned long total_freeable = 0; 598 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 600 "class", "size", "almost_full", "almost_empty", 601 "obj_allocated", "obj_used", "pages_used", 602 "pages_per_zspage", "freeable"); 603 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 605 class = pool->size_class[i]; 606 607 if (class->index != i) 608 continue; 609 610 spin_lock(&class->lock); 611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 614 obj_used = zs_stat_get(class, OBJ_USED); 615 freeable = zs_can_compact(class); 616 spin_unlock(&class->lock); 617 618 objs_per_zspage = class->objs_per_zspage; 619 pages_used = obj_allocated / objs_per_zspage * 620 class->pages_per_zspage; 621 622 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 623 " %10lu %10lu %16d %8lu\n", 624 i, class->size, class_almost_full, class_almost_empty, 625 obj_allocated, obj_used, pages_used, 626 class->pages_per_zspage, freeable); 627 628 total_class_almost_full += class_almost_full; 629 total_class_almost_empty += class_almost_empty; 630 total_objs += obj_allocated; 631 total_used_objs += obj_used; 632 total_pages += pages_used; 633 total_freeable += freeable; 634 } 635 636 seq_puts(s, "\n"); 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 638 "Total", "", total_class_almost_full, 639 total_class_almost_empty, total_objs, 640 total_used_objs, total_pages, "", total_freeable); 641 642 return 0; 643 } 644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 645 646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 647 { 648 if (!zs_stat_root) { 649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 650 return; 651 } 652 653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 654 655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 656 &zs_stats_size_fops); 657 } 658 659 static void zs_pool_stat_destroy(struct zs_pool *pool) 660 { 661 debugfs_remove_recursive(pool->stat_dentry); 662 } 663 664 #else /* CONFIG_ZSMALLOC_STAT */ 665 static void __init zs_stat_init(void) 666 { 667 } 668 669 static void __exit zs_stat_exit(void) 670 { 671 } 672 673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 674 { 675 } 676 677 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 678 { 679 } 680 #endif 681 682 683 /* 684 * For each size class, zspages are divided into different groups 685 * depending on how "full" they are. This was done so that we could 686 * easily find empty or nearly empty zspages when we try to shrink 687 * the pool (not yet implemented). This function returns fullness 688 * status of the given page. 689 */ 690 static enum fullness_group get_fullness_group(struct size_class *class, 691 struct zspage *zspage) 692 { 693 int inuse, objs_per_zspage; 694 enum fullness_group fg; 695 696 inuse = get_zspage_inuse(zspage); 697 objs_per_zspage = class->objs_per_zspage; 698 699 if (inuse == 0) 700 fg = ZS_EMPTY; 701 else if (inuse == objs_per_zspage) 702 fg = ZS_FULL; 703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 704 fg = ZS_ALMOST_EMPTY; 705 else 706 fg = ZS_ALMOST_FULL; 707 708 return fg; 709 } 710 711 /* 712 * Each size class maintains various freelists and zspages are assigned 713 * to one of these freelists based on the number of live objects they 714 * have. This functions inserts the given zspage into the freelist 715 * identified by <class, fullness_group>. 716 */ 717 static void insert_zspage(struct size_class *class, 718 struct zspage *zspage, 719 enum fullness_group fullness) 720 { 721 struct zspage *head; 722 723 class_stat_inc(class, fullness, 1); 724 head = list_first_entry_or_null(&class->fullness_list[fullness], 725 struct zspage, list); 726 /* 727 * We want to see more ZS_FULL pages and less almost empty/full. 728 * Put pages with higher ->inuse first. 729 */ 730 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 731 list_add(&zspage->list, &head->list); 732 else 733 list_add(&zspage->list, &class->fullness_list[fullness]); 734 } 735 736 /* 737 * This function removes the given zspage from the freelist identified 738 * by <class, fullness_group>. 739 */ 740 static void remove_zspage(struct size_class *class, 741 struct zspage *zspage, 742 enum fullness_group fullness) 743 { 744 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 745 746 list_del_init(&zspage->list); 747 class_stat_dec(class, fullness, 1); 748 } 749 750 /* 751 * Each size class maintains zspages in different fullness groups depending 752 * on the number of live objects they contain. When allocating or freeing 753 * objects, the fullness status of the page can change, say, from ALMOST_FULL 754 * to ALMOST_EMPTY when freeing an object. This function checks if such 755 * a status change has occurred for the given page and accordingly moves the 756 * page from the freelist of the old fullness group to that of the new 757 * fullness group. 758 */ 759 static enum fullness_group fix_fullness_group(struct size_class *class, 760 struct zspage *zspage) 761 { 762 int class_idx; 763 enum fullness_group currfg, newfg; 764 765 get_zspage_mapping(zspage, &class_idx, &currfg); 766 newfg = get_fullness_group(class, zspage); 767 if (newfg == currfg) 768 goto out; 769 770 remove_zspage(class, zspage, currfg); 771 insert_zspage(class, zspage, newfg); 772 set_zspage_mapping(zspage, class_idx, newfg); 773 out: 774 return newfg; 775 } 776 777 /* 778 * We have to decide on how many pages to link together 779 * to form a zspage for each size class. This is important 780 * to reduce wastage due to unusable space left at end of 781 * each zspage which is given as: 782 * wastage = Zp % class_size 783 * usage = Zp - wastage 784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 785 * 786 * For example, for size class of 3/8 * PAGE_SIZE, we should 787 * link together 3 PAGE_SIZE sized pages to form a zspage 788 * since then we can perfectly fit in 8 such objects. 789 */ 790 static int get_pages_per_zspage(int class_size) 791 { 792 int i, max_usedpc = 0; 793 /* zspage order which gives maximum used size per KB */ 794 int max_usedpc_order = 1; 795 796 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 797 int zspage_size; 798 int waste, usedpc; 799 800 zspage_size = i * PAGE_SIZE; 801 waste = zspage_size % class_size; 802 usedpc = (zspage_size - waste) * 100 / zspage_size; 803 804 if (usedpc > max_usedpc) { 805 max_usedpc = usedpc; 806 max_usedpc_order = i; 807 } 808 } 809 810 return max_usedpc_order; 811 } 812 813 static struct zspage *get_zspage(struct page *page) 814 { 815 struct zspage *zspage = (struct zspage *)page_private(page); 816 817 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 818 return zspage; 819 } 820 821 static struct page *get_next_page(struct page *page) 822 { 823 struct zspage *zspage = get_zspage(page); 824 825 if (unlikely(ZsHugePage(zspage))) 826 return NULL; 827 828 return (struct page *)page->index; 829 } 830 831 /** 832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 833 * @obj: the encoded object value 834 * @page: page object resides in zspage 835 * @obj_idx: object index 836 */ 837 static void obj_to_location(unsigned long obj, struct page **page, 838 unsigned int *obj_idx) 839 { 840 obj >>= OBJ_TAG_BITS; 841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 842 *obj_idx = (obj & OBJ_INDEX_MASK); 843 } 844 845 static void obj_to_page(unsigned long obj, struct page **page) 846 { 847 obj >>= OBJ_TAG_BITS; 848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 849 } 850 851 /** 852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 853 * @page: page object resides in zspage 854 * @obj_idx: object index 855 */ 856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 857 { 858 unsigned long obj; 859 860 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 861 obj |= obj_idx & OBJ_INDEX_MASK; 862 obj <<= OBJ_TAG_BITS; 863 864 return obj; 865 } 866 867 static unsigned long handle_to_obj(unsigned long handle) 868 { 869 return *(unsigned long *)handle; 870 } 871 872 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 873 { 874 unsigned long handle; 875 struct zspage *zspage = get_zspage(page); 876 877 if (unlikely(ZsHugePage(zspage))) { 878 VM_BUG_ON_PAGE(!is_first_page(page), page); 879 handle = page->index; 880 } else 881 handle = *(unsigned long *)obj; 882 883 if (!(handle & OBJ_ALLOCATED_TAG)) 884 return false; 885 886 *phandle = handle & ~OBJ_ALLOCATED_TAG; 887 return true; 888 } 889 890 static void reset_page(struct page *page) 891 { 892 __ClearPageMovable(page); 893 ClearPagePrivate(page); 894 set_page_private(page, 0); 895 page_mapcount_reset(page); 896 page->index = 0; 897 } 898 899 static int trylock_zspage(struct zspage *zspage) 900 { 901 struct page *cursor, *fail; 902 903 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 904 get_next_page(cursor)) { 905 if (!trylock_page(cursor)) { 906 fail = cursor; 907 goto unlock; 908 } 909 } 910 911 return 1; 912 unlock: 913 for (cursor = get_first_page(zspage); cursor != fail; cursor = 914 get_next_page(cursor)) 915 unlock_page(cursor); 916 917 return 0; 918 } 919 920 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 921 struct zspage *zspage) 922 { 923 struct page *page, *next; 924 enum fullness_group fg; 925 unsigned int class_idx; 926 927 get_zspage_mapping(zspage, &class_idx, &fg); 928 929 assert_spin_locked(&class->lock); 930 931 VM_BUG_ON(get_zspage_inuse(zspage)); 932 VM_BUG_ON(fg != ZS_EMPTY); 933 934 next = page = get_first_page(zspage); 935 do { 936 VM_BUG_ON_PAGE(!PageLocked(page), page); 937 next = get_next_page(page); 938 reset_page(page); 939 unlock_page(page); 940 dec_zone_page_state(page, NR_ZSPAGES); 941 put_page(page); 942 page = next; 943 } while (page != NULL); 944 945 cache_free_zspage(pool, zspage); 946 947 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 948 atomic_long_sub(class->pages_per_zspage, 949 &pool->pages_allocated); 950 } 951 952 static void free_zspage(struct zs_pool *pool, struct size_class *class, 953 struct zspage *zspage) 954 { 955 VM_BUG_ON(get_zspage_inuse(zspage)); 956 VM_BUG_ON(list_empty(&zspage->list)); 957 958 /* 959 * Since zs_free couldn't be sleepable, this function cannot call 960 * lock_page. The page locks trylock_zspage got will be released 961 * by __free_zspage. 962 */ 963 if (!trylock_zspage(zspage)) { 964 kick_deferred_free(pool); 965 return; 966 } 967 968 remove_zspage(class, zspage, ZS_EMPTY); 969 __free_zspage(pool, class, zspage); 970 } 971 972 /* Initialize a newly allocated zspage */ 973 static void init_zspage(struct size_class *class, struct zspage *zspage) 974 { 975 unsigned int freeobj = 1; 976 unsigned long off = 0; 977 struct page *page = get_first_page(zspage); 978 979 while (page) { 980 struct page *next_page; 981 struct link_free *link; 982 void *vaddr; 983 984 set_first_obj_offset(page, off); 985 986 vaddr = kmap_atomic(page); 987 link = (struct link_free *)vaddr + off / sizeof(*link); 988 989 while ((off += class->size) < PAGE_SIZE) { 990 link->next = freeobj++ << OBJ_TAG_BITS; 991 link += class->size / sizeof(*link); 992 } 993 994 /* 995 * We now come to the last (full or partial) object on this 996 * page, which must point to the first object on the next 997 * page (if present) 998 */ 999 next_page = get_next_page(page); 1000 if (next_page) { 1001 link->next = freeobj++ << OBJ_TAG_BITS; 1002 } else { 1003 /* 1004 * Reset OBJ_TAG_BITS bit to last link to tell 1005 * whether it's allocated object or not. 1006 */ 1007 link->next = -1UL << OBJ_TAG_BITS; 1008 } 1009 kunmap_atomic(vaddr); 1010 page = next_page; 1011 off %= PAGE_SIZE; 1012 } 1013 1014 set_freeobj(zspage, 0); 1015 } 1016 1017 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1018 struct page *pages[]) 1019 { 1020 int i; 1021 struct page *page; 1022 struct page *prev_page = NULL; 1023 int nr_pages = class->pages_per_zspage; 1024 1025 /* 1026 * Allocate individual pages and link them together as: 1027 * 1. all pages are linked together using page->index 1028 * 2. each sub-page point to zspage using page->private 1029 * 1030 * we set PG_private to identify the first page (i.e. no other sub-page 1031 * has this flag set). 1032 */ 1033 for (i = 0; i < nr_pages; i++) { 1034 page = pages[i]; 1035 set_page_private(page, (unsigned long)zspage); 1036 page->index = 0; 1037 if (i == 0) { 1038 zspage->first_page = page; 1039 SetPagePrivate(page); 1040 if (unlikely(class->objs_per_zspage == 1 && 1041 class->pages_per_zspage == 1)) 1042 SetZsHugePage(zspage); 1043 } else { 1044 prev_page->index = (unsigned long)page; 1045 } 1046 prev_page = page; 1047 } 1048 } 1049 1050 /* 1051 * Allocate a zspage for the given size class 1052 */ 1053 static struct zspage *alloc_zspage(struct zs_pool *pool, 1054 struct size_class *class, 1055 gfp_t gfp) 1056 { 1057 int i; 1058 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1059 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1060 1061 if (!zspage) 1062 return NULL; 1063 1064 zspage->magic = ZSPAGE_MAGIC; 1065 migrate_lock_init(zspage); 1066 1067 for (i = 0; i < class->pages_per_zspage; i++) { 1068 struct page *page; 1069 1070 page = alloc_page(gfp); 1071 if (!page) { 1072 while (--i >= 0) { 1073 dec_zone_page_state(pages[i], NR_ZSPAGES); 1074 __free_page(pages[i]); 1075 } 1076 cache_free_zspage(pool, zspage); 1077 return NULL; 1078 } 1079 1080 inc_zone_page_state(page, NR_ZSPAGES); 1081 pages[i] = page; 1082 } 1083 1084 create_page_chain(class, zspage, pages); 1085 init_zspage(class, zspage); 1086 1087 return zspage; 1088 } 1089 1090 static struct zspage *find_get_zspage(struct size_class *class) 1091 { 1092 int i; 1093 struct zspage *zspage; 1094 1095 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1096 zspage = list_first_entry_or_null(&class->fullness_list[i], 1097 struct zspage, list); 1098 if (zspage) 1099 break; 1100 } 1101 1102 return zspage; 1103 } 1104 1105 static inline int __zs_cpu_up(struct mapping_area *area) 1106 { 1107 /* 1108 * Make sure we don't leak memory if a cpu UP notification 1109 * and zs_init() race and both call zs_cpu_up() on the same cpu 1110 */ 1111 if (area->vm_buf) 1112 return 0; 1113 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1114 if (!area->vm_buf) 1115 return -ENOMEM; 1116 return 0; 1117 } 1118 1119 static inline void __zs_cpu_down(struct mapping_area *area) 1120 { 1121 kfree(area->vm_buf); 1122 area->vm_buf = NULL; 1123 } 1124 1125 static void *__zs_map_object(struct mapping_area *area, 1126 struct page *pages[2], int off, int size) 1127 { 1128 int sizes[2]; 1129 void *addr; 1130 char *buf = area->vm_buf; 1131 1132 /* disable page faults to match kmap_atomic() return conditions */ 1133 pagefault_disable(); 1134 1135 /* no read fastpath */ 1136 if (area->vm_mm == ZS_MM_WO) 1137 goto out; 1138 1139 sizes[0] = PAGE_SIZE - off; 1140 sizes[1] = size - sizes[0]; 1141 1142 /* copy object to per-cpu buffer */ 1143 addr = kmap_atomic(pages[0]); 1144 memcpy(buf, addr + off, sizes[0]); 1145 kunmap_atomic(addr); 1146 addr = kmap_atomic(pages[1]); 1147 memcpy(buf + sizes[0], addr, sizes[1]); 1148 kunmap_atomic(addr); 1149 out: 1150 return area->vm_buf; 1151 } 1152 1153 static void __zs_unmap_object(struct mapping_area *area, 1154 struct page *pages[2], int off, int size) 1155 { 1156 int sizes[2]; 1157 void *addr; 1158 char *buf; 1159 1160 /* no write fastpath */ 1161 if (area->vm_mm == ZS_MM_RO) 1162 goto out; 1163 1164 buf = area->vm_buf; 1165 buf = buf + ZS_HANDLE_SIZE; 1166 size -= ZS_HANDLE_SIZE; 1167 off += ZS_HANDLE_SIZE; 1168 1169 sizes[0] = PAGE_SIZE - off; 1170 sizes[1] = size - sizes[0]; 1171 1172 /* copy per-cpu buffer to object */ 1173 addr = kmap_atomic(pages[0]); 1174 memcpy(addr + off, buf, sizes[0]); 1175 kunmap_atomic(addr); 1176 addr = kmap_atomic(pages[1]); 1177 memcpy(addr, buf + sizes[0], sizes[1]); 1178 kunmap_atomic(addr); 1179 1180 out: 1181 /* enable page faults to match kunmap_atomic() return conditions */ 1182 pagefault_enable(); 1183 } 1184 1185 static int zs_cpu_prepare(unsigned int cpu) 1186 { 1187 struct mapping_area *area; 1188 1189 area = &per_cpu(zs_map_area, cpu); 1190 return __zs_cpu_up(area); 1191 } 1192 1193 static int zs_cpu_dead(unsigned int cpu) 1194 { 1195 struct mapping_area *area; 1196 1197 area = &per_cpu(zs_map_area, cpu); 1198 __zs_cpu_down(area); 1199 return 0; 1200 } 1201 1202 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1203 int objs_per_zspage) 1204 { 1205 if (prev->pages_per_zspage == pages_per_zspage && 1206 prev->objs_per_zspage == objs_per_zspage) 1207 return true; 1208 1209 return false; 1210 } 1211 1212 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1213 { 1214 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1215 } 1216 1217 unsigned long zs_get_total_pages(struct zs_pool *pool) 1218 { 1219 return atomic_long_read(&pool->pages_allocated); 1220 } 1221 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1222 1223 /** 1224 * zs_map_object - get address of allocated object from handle. 1225 * @pool: pool from which the object was allocated 1226 * @handle: handle returned from zs_malloc 1227 * @mm: mapping mode to use 1228 * 1229 * Before using an object allocated from zs_malloc, it must be mapped using 1230 * this function. When done with the object, it must be unmapped using 1231 * zs_unmap_object. 1232 * 1233 * Only one object can be mapped per cpu at a time. There is no protection 1234 * against nested mappings. 1235 * 1236 * This function returns with preemption and page faults disabled. 1237 */ 1238 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1239 enum zs_mapmode mm) 1240 { 1241 struct zspage *zspage; 1242 struct page *page; 1243 unsigned long obj, off; 1244 unsigned int obj_idx; 1245 1246 struct size_class *class; 1247 struct mapping_area *area; 1248 struct page *pages[2]; 1249 void *ret; 1250 1251 /* 1252 * Because we use per-cpu mapping areas shared among the 1253 * pools/users, we can't allow mapping in interrupt context 1254 * because it can corrupt another users mappings. 1255 */ 1256 BUG_ON(in_interrupt()); 1257 1258 /* It guarantees it can get zspage from handle safely */ 1259 read_lock(&pool->migrate_lock); 1260 obj = handle_to_obj(handle); 1261 obj_to_location(obj, &page, &obj_idx); 1262 zspage = get_zspage(page); 1263 1264 /* 1265 * migration cannot move any zpages in this zspage. Here, class->lock 1266 * is too heavy since callers would take some time until they calls 1267 * zs_unmap_object API so delegate the locking from class to zspage 1268 * which is smaller granularity. 1269 */ 1270 migrate_read_lock(zspage); 1271 read_unlock(&pool->migrate_lock); 1272 1273 class = zspage_class(pool, zspage); 1274 off = (class->size * obj_idx) & ~PAGE_MASK; 1275 1276 local_lock(&zs_map_area.lock); 1277 area = this_cpu_ptr(&zs_map_area); 1278 area->vm_mm = mm; 1279 if (off + class->size <= PAGE_SIZE) { 1280 /* this object is contained entirely within a page */ 1281 area->vm_addr = kmap_atomic(page); 1282 ret = area->vm_addr + off; 1283 goto out; 1284 } 1285 1286 /* this object spans two pages */ 1287 pages[0] = page; 1288 pages[1] = get_next_page(page); 1289 BUG_ON(!pages[1]); 1290 1291 ret = __zs_map_object(area, pages, off, class->size); 1292 out: 1293 if (likely(!ZsHugePage(zspage))) 1294 ret += ZS_HANDLE_SIZE; 1295 1296 return ret; 1297 } 1298 EXPORT_SYMBOL_GPL(zs_map_object); 1299 1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1301 { 1302 struct zspage *zspage; 1303 struct page *page; 1304 unsigned long obj, off; 1305 unsigned int obj_idx; 1306 1307 struct size_class *class; 1308 struct mapping_area *area; 1309 1310 obj = handle_to_obj(handle); 1311 obj_to_location(obj, &page, &obj_idx); 1312 zspage = get_zspage(page); 1313 class = zspage_class(pool, zspage); 1314 off = (class->size * obj_idx) & ~PAGE_MASK; 1315 1316 area = this_cpu_ptr(&zs_map_area); 1317 if (off + class->size <= PAGE_SIZE) 1318 kunmap_atomic(area->vm_addr); 1319 else { 1320 struct page *pages[2]; 1321 1322 pages[0] = page; 1323 pages[1] = get_next_page(page); 1324 BUG_ON(!pages[1]); 1325 1326 __zs_unmap_object(area, pages, off, class->size); 1327 } 1328 local_unlock(&zs_map_area.lock); 1329 1330 migrate_read_unlock(zspage); 1331 } 1332 EXPORT_SYMBOL_GPL(zs_unmap_object); 1333 1334 /** 1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1336 * zsmalloc &size_class. 1337 * @pool: zsmalloc pool to use 1338 * 1339 * The function returns the size of the first huge class - any object of equal 1340 * or bigger size will be stored in zspage consisting of a single physical 1341 * page. 1342 * 1343 * Context: Any context. 1344 * 1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1346 */ 1347 size_t zs_huge_class_size(struct zs_pool *pool) 1348 { 1349 return huge_class_size; 1350 } 1351 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1352 1353 static unsigned long obj_malloc(struct zs_pool *pool, 1354 struct zspage *zspage, unsigned long handle) 1355 { 1356 int i, nr_page, offset; 1357 unsigned long obj; 1358 struct link_free *link; 1359 struct size_class *class; 1360 1361 struct page *m_page; 1362 unsigned long m_offset; 1363 void *vaddr; 1364 1365 class = pool->size_class[zspage->class]; 1366 handle |= OBJ_ALLOCATED_TAG; 1367 obj = get_freeobj(zspage); 1368 1369 offset = obj * class->size; 1370 nr_page = offset >> PAGE_SHIFT; 1371 m_offset = offset & ~PAGE_MASK; 1372 m_page = get_first_page(zspage); 1373 1374 for (i = 0; i < nr_page; i++) 1375 m_page = get_next_page(m_page); 1376 1377 vaddr = kmap_atomic(m_page); 1378 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1379 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1380 if (likely(!ZsHugePage(zspage))) 1381 /* record handle in the header of allocated chunk */ 1382 link->handle = handle; 1383 else 1384 /* record handle to page->index */ 1385 zspage->first_page->index = handle; 1386 1387 kunmap_atomic(vaddr); 1388 mod_zspage_inuse(zspage, 1); 1389 1390 obj = location_to_obj(m_page, obj); 1391 1392 return obj; 1393 } 1394 1395 1396 /** 1397 * zs_malloc - Allocate block of given size from pool. 1398 * @pool: pool to allocate from 1399 * @size: size of block to allocate 1400 * @gfp: gfp flags when allocating object 1401 * 1402 * On success, handle to the allocated object is returned, 1403 * otherwise 0. 1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1405 */ 1406 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1407 { 1408 unsigned long handle, obj; 1409 struct size_class *class; 1410 enum fullness_group newfg; 1411 struct zspage *zspage; 1412 1413 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1414 return 0; 1415 1416 handle = cache_alloc_handle(pool, gfp); 1417 if (!handle) 1418 return 0; 1419 1420 /* extra space in chunk to keep the handle */ 1421 size += ZS_HANDLE_SIZE; 1422 class = pool->size_class[get_size_class_index(size)]; 1423 1424 /* class->lock effectively protects the zpage migration */ 1425 spin_lock(&class->lock); 1426 zspage = find_get_zspage(class); 1427 if (likely(zspage)) { 1428 obj = obj_malloc(pool, zspage, handle); 1429 /* Now move the zspage to another fullness group, if required */ 1430 fix_fullness_group(class, zspage); 1431 record_obj(handle, obj); 1432 class_stat_inc(class, OBJ_USED, 1); 1433 spin_unlock(&class->lock); 1434 1435 return handle; 1436 } 1437 1438 spin_unlock(&class->lock); 1439 1440 zspage = alloc_zspage(pool, class, gfp); 1441 if (!zspage) { 1442 cache_free_handle(pool, handle); 1443 return 0; 1444 } 1445 1446 spin_lock(&class->lock); 1447 obj = obj_malloc(pool, zspage, handle); 1448 newfg = get_fullness_group(class, zspage); 1449 insert_zspage(class, zspage, newfg); 1450 set_zspage_mapping(zspage, class->index, newfg); 1451 record_obj(handle, obj); 1452 atomic_long_add(class->pages_per_zspage, 1453 &pool->pages_allocated); 1454 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1455 class_stat_inc(class, OBJ_USED, 1); 1456 1457 /* We completely set up zspage so mark them as movable */ 1458 SetZsPageMovable(pool, zspage); 1459 spin_unlock(&class->lock); 1460 1461 return handle; 1462 } 1463 EXPORT_SYMBOL_GPL(zs_malloc); 1464 1465 static void obj_free(int class_size, unsigned long obj) 1466 { 1467 struct link_free *link; 1468 struct zspage *zspage; 1469 struct page *f_page; 1470 unsigned long f_offset; 1471 unsigned int f_objidx; 1472 void *vaddr; 1473 1474 obj_to_location(obj, &f_page, &f_objidx); 1475 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1476 zspage = get_zspage(f_page); 1477 1478 vaddr = kmap_atomic(f_page); 1479 1480 /* Insert this object in containing zspage's freelist */ 1481 link = (struct link_free *)(vaddr + f_offset); 1482 if (likely(!ZsHugePage(zspage))) 1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1484 else 1485 f_page->index = 0; 1486 kunmap_atomic(vaddr); 1487 set_freeobj(zspage, f_objidx); 1488 mod_zspage_inuse(zspage, -1); 1489 } 1490 1491 void zs_free(struct zs_pool *pool, unsigned long handle) 1492 { 1493 struct zspage *zspage; 1494 struct page *f_page; 1495 unsigned long obj; 1496 struct size_class *class; 1497 enum fullness_group fullness; 1498 1499 if (unlikely(!handle)) 1500 return; 1501 1502 /* 1503 * The pool->migrate_lock protects the race with zpage's migration 1504 * so it's safe to get the page from handle. 1505 */ 1506 read_lock(&pool->migrate_lock); 1507 obj = handle_to_obj(handle); 1508 obj_to_page(obj, &f_page); 1509 zspage = get_zspage(f_page); 1510 class = zspage_class(pool, zspage); 1511 spin_lock(&class->lock); 1512 read_unlock(&pool->migrate_lock); 1513 1514 obj_free(class->size, obj); 1515 class_stat_dec(class, OBJ_USED, 1); 1516 fullness = fix_fullness_group(class, zspage); 1517 if (fullness != ZS_EMPTY) 1518 goto out; 1519 1520 free_zspage(pool, class, zspage); 1521 out: 1522 spin_unlock(&class->lock); 1523 cache_free_handle(pool, handle); 1524 } 1525 EXPORT_SYMBOL_GPL(zs_free); 1526 1527 static void zs_object_copy(struct size_class *class, unsigned long dst, 1528 unsigned long src) 1529 { 1530 struct page *s_page, *d_page; 1531 unsigned int s_objidx, d_objidx; 1532 unsigned long s_off, d_off; 1533 void *s_addr, *d_addr; 1534 int s_size, d_size, size; 1535 int written = 0; 1536 1537 s_size = d_size = class->size; 1538 1539 obj_to_location(src, &s_page, &s_objidx); 1540 obj_to_location(dst, &d_page, &d_objidx); 1541 1542 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1543 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1544 1545 if (s_off + class->size > PAGE_SIZE) 1546 s_size = PAGE_SIZE - s_off; 1547 1548 if (d_off + class->size > PAGE_SIZE) 1549 d_size = PAGE_SIZE - d_off; 1550 1551 s_addr = kmap_atomic(s_page); 1552 d_addr = kmap_atomic(d_page); 1553 1554 while (1) { 1555 size = min(s_size, d_size); 1556 memcpy(d_addr + d_off, s_addr + s_off, size); 1557 written += size; 1558 1559 if (written == class->size) 1560 break; 1561 1562 s_off += size; 1563 s_size -= size; 1564 d_off += size; 1565 d_size -= size; 1566 1567 if (s_off >= PAGE_SIZE) { 1568 kunmap_atomic(d_addr); 1569 kunmap_atomic(s_addr); 1570 s_page = get_next_page(s_page); 1571 s_addr = kmap_atomic(s_page); 1572 d_addr = kmap_atomic(d_page); 1573 s_size = class->size - written; 1574 s_off = 0; 1575 } 1576 1577 if (d_off >= PAGE_SIZE) { 1578 kunmap_atomic(d_addr); 1579 d_page = get_next_page(d_page); 1580 d_addr = kmap_atomic(d_page); 1581 d_size = class->size - written; 1582 d_off = 0; 1583 } 1584 } 1585 1586 kunmap_atomic(d_addr); 1587 kunmap_atomic(s_addr); 1588 } 1589 1590 /* 1591 * Find alloced object in zspage from index object and 1592 * return handle. 1593 */ 1594 static unsigned long find_alloced_obj(struct size_class *class, 1595 struct page *page, int *obj_idx) 1596 { 1597 int offset = 0; 1598 int index = *obj_idx; 1599 unsigned long handle = 0; 1600 void *addr = kmap_atomic(page); 1601 1602 offset = get_first_obj_offset(page); 1603 offset += class->size * index; 1604 1605 while (offset < PAGE_SIZE) { 1606 if (obj_allocated(page, addr + offset, &handle)) 1607 break; 1608 1609 offset += class->size; 1610 index++; 1611 } 1612 1613 kunmap_atomic(addr); 1614 1615 *obj_idx = index; 1616 1617 return handle; 1618 } 1619 1620 struct zs_compact_control { 1621 /* Source spage for migration which could be a subpage of zspage */ 1622 struct page *s_page; 1623 /* Destination page for migration which should be a first page 1624 * of zspage. */ 1625 struct page *d_page; 1626 /* Starting object index within @s_page which used for live object 1627 * in the subpage. */ 1628 int obj_idx; 1629 }; 1630 1631 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1632 struct zs_compact_control *cc) 1633 { 1634 unsigned long used_obj, free_obj; 1635 unsigned long handle; 1636 struct page *s_page = cc->s_page; 1637 struct page *d_page = cc->d_page; 1638 int obj_idx = cc->obj_idx; 1639 int ret = 0; 1640 1641 while (1) { 1642 handle = find_alloced_obj(class, s_page, &obj_idx); 1643 if (!handle) { 1644 s_page = get_next_page(s_page); 1645 if (!s_page) 1646 break; 1647 obj_idx = 0; 1648 continue; 1649 } 1650 1651 /* Stop if there is no more space */ 1652 if (zspage_full(class, get_zspage(d_page))) { 1653 ret = -ENOMEM; 1654 break; 1655 } 1656 1657 used_obj = handle_to_obj(handle); 1658 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1659 zs_object_copy(class, free_obj, used_obj); 1660 obj_idx++; 1661 record_obj(handle, free_obj); 1662 obj_free(class->size, used_obj); 1663 } 1664 1665 /* Remember last position in this iteration */ 1666 cc->s_page = s_page; 1667 cc->obj_idx = obj_idx; 1668 1669 return ret; 1670 } 1671 1672 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1673 { 1674 int i; 1675 struct zspage *zspage; 1676 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1677 1678 if (!source) { 1679 fg[0] = ZS_ALMOST_FULL; 1680 fg[1] = ZS_ALMOST_EMPTY; 1681 } 1682 1683 for (i = 0; i < 2; i++) { 1684 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1685 struct zspage, list); 1686 if (zspage) { 1687 remove_zspage(class, zspage, fg[i]); 1688 return zspage; 1689 } 1690 } 1691 1692 return zspage; 1693 } 1694 1695 /* 1696 * putback_zspage - add @zspage into right class's fullness list 1697 * @class: destination class 1698 * @zspage: target page 1699 * 1700 * Return @zspage's fullness_group 1701 */ 1702 static enum fullness_group putback_zspage(struct size_class *class, 1703 struct zspage *zspage) 1704 { 1705 enum fullness_group fullness; 1706 1707 fullness = get_fullness_group(class, zspage); 1708 insert_zspage(class, zspage, fullness); 1709 set_zspage_mapping(zspage, class->index, fullness); 1710 1711 return fullness; 1712 } 1713 1714 #ifdef CONFIG_COMPACTION 1715 /* 1716 * To prevent zspage destroy during migration, zspage freeing should 1717 * hold locks of all pages in the zspage. 1718 */ 1719 static void lock_zspage(struct zspage *zspage) 1720 { 1721 struct page *curr_page, *page; 1722 1723 /* 1724 * Pages we haven't locked yet can be migrated off the list while we're 1725 * trying to lock them, so we need to be careful and only attempt to 1726 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1727 * may no longer belong to the zspage. This means that we may wait for 1728 * the wrong page to unlock, so we must take a reference to the page 1729 * prior to waiting for it to unlock outside migrate_read_lock(). 1730 */ 1731 while (1) { 1732 migrate_read_lock(zspage); 1733 page = get_first_page(zspage); 1734 if (trylock_page(page)) 1735 break; 1736 get_page(page); 1737 migrate_read_unlock(zspage); 1738 wait_on_page_locked(page); 1739 put_page(page); 1740 } 1741 1742 curr_page = page; 1743 while ((page = get_next_page(curr_page))) { 1744 if (trylock_page(page)) { 1745 curr_page = page; 1746 } else { 1747 get_page(page); 1748 migrate_read_unlock(zspage); 1749 wait_on_page_locked(page); 1750 put_page(page); 1751 migrate_read_lock(zspage); 1752 } 1753 } 1754 migrate_read_unlock(zspage); 1755 } 1756 1757 static int zs_init_fs_context(struct fs_context *fc) 1758 { 1759 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; 1760 } 1761 1762 static struct file_system_type zsmalloc_fs = { 1763 .name = "zsmalloc", 1764 .init_fs_context = zs_init_fs_context, 1765 .kill_sb = kill_anon_super, 1766 }; 1767 1768 static int zsmalloc_mount(void) 1769 { 1770 int ret = 0; 1771 1772 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1773 if (IS_ERR(zsmalloc_mnt)) 1774 ret = PTR_ERR(zsmalloc_mnt); 1775 1776 return ret; 1777 } 1778 1779 static void zsmalloc_unmount(void) 1780 { 1781 kern_unmount(zsmalloc_mnt); 1782 } 1783 1784 static void migrate_lock_init(struct zspage *zspage) 1785 { 1786 rwlock_init(&zspage->lock); 1787 } 1788 1789 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1790 { 1791 read_lock(&zspage->lock); 1792 } 1793 1794 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1795 { 1796 read_unlock(&zspage->lock); 1797 } 1798 1799 static void migrate_write_lock(struct zspage *zspage) 1800 { 1801 write_lock(&zspage->lock); 1802 } 1803 1804 static void migrate_write_lock_nested(struct zspage *zspage) 1805 { 1806 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1807 } 1808 1809 static void migrate_write_unlock(struct zspage *zspage) 1810 { 1811 write_unlock(&zspage->lock); 1812 } 1813 1814 /* Number of isolated subpage for *page migration* in this zspage */ 1815 static void inc_zspage_isolation(struct zspage *zspage) 1816 { 1817 zspage->isolated++; 1818 } 1819 1820 static void dec_zspage_isolation(struct zspage *zspage) 1821 { 1822 VM_BUG_ON(zspage->isolated == 0); 1823 zspage->isolated--; 1824 } 1825 1826 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1827 struct page *newpage, struct page *oldpage) 1828 { 1829 struct page *page; 1830 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1831 int idx = 0; 1832 1833 page = get_first_page(zspage); 1834 do { 1835 if (page == oldpage) 1836 pages[idx] = newpage; 1837 else 1838 pages[idx] = page; 1839 idx++; 1840 } while ((page = get_next_page(page)) != NULL); 1841 1842 create_page_chain(class, zspage, pages); 1843 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1844 if (unlikely(ZsHugePage(zspage))) 1845 newpage->index = oldpage->index; 1846 __SetPageMovable(newpage, page_mapping(oldpage)); 1847 } 1848 1849 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1850 { 1851 struct zspage *zspage; 1852 1853 /* 1854 * Page is locked so zspage couldn't be destroyed. For detail, look at 1855 * lock_zspage in free_zspage. 1856 */ 1857 VM_BUG_ON_PAGE(!PageMovable(page), page); 1858 VM_BUG_ON_PAGE(PageIsolated(page), page); 1859 1860 zspage = get_zspage(page); 1861 migrate_write_lock(zspage); 1862 inc_zspage_isolation(zspage); 1863 migrate_write_unlock(zspage); 1864 1865 return true; 1866 } 1867 1868 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1869 struct page *page, enum migrate_mode mode) 1870 { 1871 struct zs_pool *pool; 1872 struct size_class *class; 1873 struct zspage *zspage; 1874 struct page *dummy; 1875 void *s_addr, *d_addr, *addr; 1876 int offset; 1877 unsigned long handle; 1878 unsigned long old_obj, new_obj; 1879 unsigned int obj_idx; 1880 1881 /* 1882 * We cannot support the _NO_COPY case here, because copy needs to 1883 * happen under the zs lock, which does not work with 1884 * MIGRATE_SYNC_NO_COPY workflow. 1885 */ 1886 if (mode == MIGRATE_SYNC_NO_COPY) 1887 return -EINVAL; 1888 1889 VM_BUG_ON_PAGE(!PageMovable(page), page); 1890 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1891 1892 pool = mapping->private_data; 1893 1894 /* 1895 * The pool migrate_lock protects the race between zpage migration 1896 * and zs_free. 1897 */ 1898 write_lock(&pool->migrate_lock); 1899 zspage = get_zspage(page); 1900 class = zspage_class(pool, zspage); 1901 1902 /* 1903 * the class lock protects zpage alloc/free in the zspage. 1904 */ 1905 spin_lock(&class->lock); 1906 /* the migrate_write_lock protects zpage access via zs_map_object */ 1907 migrate_write_lock(zspage); 1908 1909 offset = get_first_obj_offset(page); 1910 s_addr = kmap_atomic(page); 1911 1912 /* 1913 * Here, any user cannot access all objects in the zspage so let's move. 1914 */ 1915 d_addr = kmap_atomic(newpage); 1916 memcpy(d_addr, s_addr, PAGE_SIZE); 1917 kunmap_atomic(d_addr); 1918 1919 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1920 addr += class->size) { 1921 if (obj_allocated(page, addr, &handle)) { 1922 1923 old_obj = handle_to_obj(handle); 1924 obj_to_location(old_obj, &dummy, &obj_idx); 1925 new_obj = (unsigned long)location_to_obj(newpage, 1926 obj_idx); 1927 record_obj(handle, new_obj); 1928 } 1929 } 1930 kunmap_atomic(s_addr); 1931 1932 replace_sub_page(class, zspage, newpage, page); 1933 /* 1934 * Since we complete the data copy and set up new zspage structure, 1935 * it's okay to release migration_lock. 1936 */ 1937 write_unlock(&pool->migrate_lock); 1938 spin_unlock(&class->lock); 1939 dec_zspage_isolation(zspage); 1940 migrate_write_unlock(zspage); 1941 1942 get_page(newpage); 1943 if (page_zone(newpage) != page_zone(page)) { 1944 dec_zone_page_state(page, NR_ZSPAGES); 1945 inc_zone_page_state(newpage, NR_ZSPAGES); 1946 } 1947 1948 reset_page(page); 1949 put_page(page); 1950 1951 return MIGRATEPAGE_SUCCESS; 1952 } 1953 1954 static void zs_page_putback(struct page *page) 1955 { 1956 struct zspage *zspage; 1957 1958 VM_BUG_ON_PAGE(!PageMovable(page), page); 1959 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1960 1961 zspage = get_zspage(page); 1962 migrate_write_lock(zspage); 1963 dec_zspage_isolation(zspage); 1964 migrate_write_unlock(zspage); 1965 } 1966 1967 static const struct address_space_operations zsmalloc_aops = { 1968 .isolate_page = zs_page_isolate, 1969 .migratepage = zs_page_migrate, 1970 .putback_page = zs_page_putback, 1971 }; 1972 1973 static int zs_register_migration(struct zs_pool *pool) 1974 { 1975 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 1976 if (IS_ERR(pool->inode)) { 1977 pool->inode = NULL; 1978 return 1; 1979 } 1980 1981 pool->inode->i_mapping->private_data = pool; 1982 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 1983 return 0; 1984 } 1985 1986 static void zs_unregister_migration(struct zs_pool *pool) 1987 { 1988 flush_work(&pool->free_work); 1989 iput(pool->inode); 1990 } 1991 1992 /* 1993 * Caller should hold page_lock of all pages in the zspage 1994 * In here, we cannot use zspage meta data. 1995 */ 1996 static void async_free_zspage(struct work_struct *work) 1997 { 1998 int i; 1999 struct size_class *class; 2000 unsigned int class_idx; 2001 enum fullness_group fullness; 2002 struct zspage *zspage, *tmp; 2003 LIST_HEAD(free_pages); 2004 struct zs_pool *pool = container_of(work, struct zs_pool, 2005 free_work); 2006 2007 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2008 class = pool->size_class[i]; 2009 if (class->index != i) 2010 continue; 2011 2012 spin_lock(&class->lock); 2013 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2014 spin_unlock(&class->lock); 2015 } 2016 2017 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2018 list_del(&zspage->list); 2019 lock_zspage(zspage); 2020 2021 get_zspage_mapping(zspage, &class_idx, &fullness); 2022 VM_BUG_ON(fullness != ZS_EMPTY); 2023 class = pool->size_class[class_idx]; 2024 spin_lock(&class->lock); 2025 __free_zspage(pool, class, zspage); 2026 spin_unlock(&class->lock); 2027 } 2028 }; 2029 2030 static void kick_deferred_free(struct zs_pool *pool) 2031 { 2032 schedule_work(&pool->free_work); 2033 } 2034 2035 static void init_deferred_free(struct zs_pool *pool) 2036 { 2037 INIT_WORK(&pool->free_work, async_free_zspage); 2038 } 2039 2040 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2041 { 2042 struct page *page = get_first_page(zspage); 2043 2044 do { 2045 WARN_ON(!trylock_page(page)); 2046 __SetPageMovable(page, pool->inode->i_mapping); 2047 unlock_page(page); 2048 } while ((page = get_next_page(page)) != NULL); 2049 } 2050 #endif 2051 2052 /* 2053 * 2054 * Based on the number of unused allocated objects calculate 2055 * and return the number of pages that we can free. 2056 */ 2057 static unsigned long zs_can_compact(struct size_class *class) 2058 { 2059 unsigned long obj_wasted; 2060 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2061 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2062 2063 if (obj_allocated <= obj_used) 2064 return 0; 2065 2066 obj_wasted = obj_allocated - obj_used; 2067 obj_wasted /= class->objs_per_zspage; 2068 2069 return obj_wasted * class->pages_per_zspage; 2070 } 2071 2072 static unsigned long __zs_compact(struct zs_pool *pool, 2073 struct size_class *class) 2074 { 2075 struct zs_compact_control cc; 2076 struct zspage *src_zspage; 2077 struct zspage *dst_zspage = NULL; 2078 unsigned long pages_freed = 0; 2079 2080 /* protect the race between zpage migration and zs_free */ 2081 write_lock(&pool->migrate_lock); 2082 /* protect zpage allocation/free */ 2083 spin_lock(&class->lock); 2084 while ((src_zspage = isolate_zspage(class, true))) { 2085 /* protect someone accessing the zspage(i.e., zs_map_object) */ 2086 migrate_write_lock(src_zspage); 2087 2088 if (!zs_can_compact(class)) 2089 break; 2090 2091 cc.obj_idx = 0; 2092 cc.s_page = get_first_page(src_zspage); 2093 2094 while ((dst_zspage = isolate_zspage(class, false))) { 2095 migrate_write_lock_nested(dst_zspage); 2096 2097 cc.d_page = get_first_page(dst_zspage); 2098 /* 2099 * If there is no more space in dst_page, resched 2100 * and see if anyone had allocated another zspage. 2101 */ 2102 if (!migrate_zspage(pool, class, &cc)) 2103 break; 2104 2105 putback_zspage(class, dst_zspage); 2106 migrate_write_unlock(dst_zspage); 2107 dst_zspage = NULL; 2108 if (rwlock_is_contended(&pool->migrate_lock)) 2109 break; 2110 } 2111 2112 /* Stop if we couldn't find slot */ 2113 if (dst_zspage == NULL) 2114 break; 2115 2116 putback_zspage(class, dst_zspage); 2117 migrate_write_unlock(dst_zspage); 2118 2119 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2120 migrate_write_unlock(src_zspage); 2121 free_zspage(pool, class, src_zspage); 2122 pages_freed += class->pages_per_zspage; 2123 } else 2124 migrate_write_unlock(src_zspage); 2125 spin_unlock(&class->lock); 2126 write_unlock(&pool->migrate_lock); 2127 cond_resched(); 2128 write_lock(&pool->migrate_lock); 2129 spin_lock(&class->lock); 2130 } 2131 2132 if (src_zspage) { 2133 putback_zspage(class, src_zspage); 2134 migrate_write_unlock(src_zspage); 2135 } 2136 2137 spin_unlock(&class->lock); 2138 write_unlock(&pool->migrate_lock); 2139 2140 return pages_freed; 2141 } 2142 2143 unsigned long zs_compact(struct zs_pool *pool) 2144 { 2145 int i; 2146 struct size_class *class; 2147 unsigned long pages_freed = 0; 2148 2149 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2150 class = pool->size_class[i]; 2151 if (!class) 2152 continue; 2153 if (class->index != i) 2154 continue; 2155 pages_freed += __zs_compact(pool, class); 2156 } 2157 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2158 2159 return pages_freed; 2160 } 2161 EXPORT_SYMBOL_GPL(zs_compact); 2162 2163 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2164 { 2165 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2166 } 2167 EXPORT_SYMBOL_GPL(zs_pool_stats); 2168 2169 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2170 struct shrink_control *sc) 2171 { 2172 unsigned long pages_freed; 2173 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2174 shrinker); 2175 2176 /* 2177 * Compact classes and calculate compaction delta. 2178 * Can run concurrently with a manually triggered 2179 * (by user) compaction. 2180 */ 2181 pages_freed = zs_compact(pool); 2182 2183 return pages_freed ? pages_freed : SHRINK_STOP; 2184 } 2185 2186 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2187 struct shrink_control *sc) 2188 { 2189 int i; 2190 struct size_class *class; 2191 unsigned long pages_to_free = 0; 2192 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2193 shrinker); 2194 2195 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2196 class = pool->size_class[i]; 2197 if (!class) 2198 continue; 2199 if (class->index != i) 2200 continue; 2201 2202 pages_to_free += zs_can_compact(class); 2203 } 2204 2205 return pages_to_free; 2206 } 2207 2208 static void zs_unregister_shrinker(struct zs_pool *pool) 2209 { 2210 unregister_shrinker(&pool->shrinker); 2211 } 2212 2213 static int zs_register_shrinker(struct zs_pool *pool) 2214 { 2215 pool->shrinker.scan_objects = zs_shrinker_scan; 2216 pool->shrinker.count_objects = zs_shrinker_count; 2217 pool->shrinker.batch = 0; 2218 pool->shrinker.seeks = DEFAULT_SEEKS; 2219 2220 return register_shrinker(&pool->shrinker); 2221 } 2222 2223 /** 2224 * zs_create_pool - Creates an allocation pool to work from. 2225 * @name: pool name to be created 2226 * 2227 * This function must be called before anything when using 2228 * the zsmalloc allocator. 2229 * 2230 * On success, a pointer to the newly created pool is returned, 2231 * otherwise NULL. 2232 */ 2233 struct zs_pool *zs_create_pool(const char *name) 2234 { 2235 int i; 2236 struct zs_pool *pool; 2237 struct size_class *prev_class = NULL; 2238 2239 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2240 if (!pool) 2241 return NULL; 2242 2243 init_deferred_free(pool); 2244 rwlock_init(&pool->migrate_lock); 2245 2246 pool->name = kstrdup(name, GFP_KERNEL); 2247 if (!pool->name) 2248 goto err; 2249 2250 if (create_cache(pool)) 2251 goto err; 2252 2253 /* 2254 * Iterate reversely, because, size of size_class that we want to use 2255 * for merging should be larger or equal to current size. 2256 */ 2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2258 int size; 2259 int pages_per_zspage; 2260 int objs_per_zspage; 2261 struct size_class *class; 2262 int fullness = 0; 2263 2264 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2265 if (size > ZS_MAX_ALLOC_SIZE) 2266 size = ZS_MAX_ALLOC_SIZE; 2267 pages_per_zspage = get_pages_per_zspage(size); 2268 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2269 2270 /* 2271 * We iterate from biggest down to smallest classes, 2272 * so huge_class_size holds the size of the first huge 2273 * class. Any object bigger than or equal to that will 2274 * endup in the huge class. 2275 */ 2276 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2277 !huge_class_size) { 2278 huge_class_size = size; 2279 /* 2280 * The object uses ZS_HANDLE_SIZE bytes to store the 2281 * handle. We need to subtract it, because zs_malloc() 2282 * unconditionally adds handle size before it performs 2283 * size class search - so object may be smaller than 2284 * huge class size, yet it still can end up in the huge 2285 * class because it grows by ZS_HANDLE_SIZE extra bytes 2286 * right before class lookup. 2287 */ 2288 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2289 } 2290 2291 /* 2292 * size_class is used for normal zsmalloc operation such 2293 * as alloc/free for that size. Although it is natural that we 2294 * have one size_class for each size, there is a chance that we 2295 * can get more memory utilization if we use one size_class for 2296 * many different sizes whose size_class have same 2297 * characteristics. So, we makes size_class point to 2298 * previous size_class if possible. 2299 */ 2300 if (prev_class) { 2301 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2302 pool->size_class[i] = prev_class; 2303 continue; 2304 } 2305 } 2306 2307 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2308 if (!class) 2309 goto err; 2310 2311 class->size = size; 2312 class->index = i; 2313 class->pages_per_zspage = pages_per_zspage; 2314 class->objs_per_zspage = objs_per_zspage; 2315 spin_lock_init(&class->lock); 2316 pool->size_class[i] = class; 2317 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2318 fullness++) 2319 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2320 2321 prev_class = class; 2322 } 2323 2324 /* debug only, don't abort if it fails */ 2325 zs_pool_stat_create(pool, name); 2326 2327 if (zs_register_migration(pool)) 2328 goto err; 2329 2330 /* 2331 * Not critical since shrinker is only used to trigger internal 2332 * defragmentation of the pool which is pretty optional thing. If 2333 * registration fails we still can use the pool normally and user can 2334 * trigger compaction manually. Thus, ignore return code. 2335 */ 2336 zs_register_shrinker(pool); 2337 2338 return pool; 2339 2340 err: 2341 zs_destroy_pool(pool); 2342 return NULL; 2343 } 2344 EXPORT_SYMBOL_GPL(zs_create_pool); 2345 2346 void zs_destroy_pool(struct zs_pool *pool) 2347 { 2348 int i; 2349 2350 zs_unregister_shrinker(pool); 2351 zs_unregister_migration(pool); 2352 zs_pool_stat_destroy(pool); 2353 2354 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2355 int fg; 2356 struct size_class *class = pool->size_class[i]; 2357 2358 if (!class) 2359 continue; 2360 2361 if (class->index != i) 2362 continue; 2363 2364 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2365 if (!list_empty(&class->fullness_list[fg])) { 2366 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2367 class->size, fg); 2368 } 2369 } 2370 kfree(class); 2371 } 2372 2373 destroy_cache(pool); 2374 kfree(pool->name); 2375 kfree(pool); 2376 } 2377 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2378 2379 static int __init zs_init(void) 2380 { 2381 int ret; 2382 2383 ret = zsmalloc_mount(); 2384 if (ret) 2385 goto out; 2386 2387 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2388 zs_cpu_prepare, zs_cpu_dead); 2389 if (ret) 2390 goto hp_setup_fail; 2391 2392 #ifdef CONFIG_ZPOOL 2393 zpool_register_driver(&zs_zpool_driver); 2394 #endif 2395 2396 zs_stat_init(); 2397 2398 return 0; 2399 2400 hp_setup_fail: 2401 zsmalloc_unmount(); 2402 out: 2403 return ret; 2404 } 2405 2406 static void __exit zs_exit(void) 2407 { 2408 #ifdef CONFIG_ZPOOL 2409 zpool_unregister_driver(&zs_zpool_driver); 2410 #endif 2411 zsmalloc_unmount(); 2412 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2413 2414 zs_stat_exit(); 2415 } 2416 2417 module_init(zs_init); 2418 module_exit(zs_exit); 2419 2420 MODULE_LICENSE("Dual BSD/GPL"); 2421 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2422