1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * This allocator is designed for use with zram. Thus, the allocator is 16 * supposed to work well under low memory conditions. In particular, it 17 * never attempts higher order page allocation which is very likely to 18 * fail under memory pressure. On the other hand, if we just use single 19 * (0-order) pages, it would suffer from very high fragmentation -- 20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page. 21 * This was one of the major issues with its predecessor (xvmalloc). 22 * 23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages 24 * and links them together using various 'struct page' fields. These linked 25 * pages act as a single higher-order page i.e. an object can span 0-order 26 * page boundaries. The code refers to these linked pages as a single entity 27 * called zspage. 28 * 29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE 30 * since this satisfies the requirements of all its current users (in the 31 * worst case, page is incompressible and is thus stored "as-is" i.e. in 32 * uncompressed form). For allocation requests larger than this size, failure 33 * is returned (see zs_malloc). 34 * 35 * Additionally, zs_malloc() does not return a dereferenceable pointer. 36 * Instead, it returns an opaque handle (unsigned long) which encodes actual 37 * location of the allocated object. The reason for this indirection is that 38 * zsmalloc does not keep zspages permanently mapped since that would cause 39 * issues on 32-bit systems where the VA region for kernel space mappings 40 * is very small. So, before using the allocating memory, the object has to 41 * be mapped using zs_map_object() to get a usable pointer and subsequently 42 * unmapped using zs_unmap_object(). 43 * 44 * Following is how we use various fields and flags of underlying 45 * struct page(s) to form a zspage. 46 * 47 * Usage of struct page fields: 48 * page->first_page: points to the first component (0-order) page 49 * page->index (union with page->freelist): offset of the first object 50 * starting in this page. For the first page, this is 51 * always 0, so we use this field (aka freelist) to point 52 * to the first free object in zspage. 53 * page->lru: links together all component pages (except the first page) 54 * of a zspage 55 * 56 * For _first_ page only: 57 * 58 * page->private (union with page->first_page): refers to the 59 * component page after the first page 60 * page->freelist: points to the first free object in zspage. 61 * Free objects are linked together using in-place 62 * metadata. 63 * page->objects: maximum number of objects we can store in this 64 * zspage (class->zspage_order * PAGE_SIZE / class->size) 65 * page->lru: links together first pages of various zspages. 66 * Basically forming list of zspages in a fullness group. 67 * page->mapping: class index and fullness group of the zspage 68 * 69 * Usage of struct page flags: 70 * PG_private: identifies the first component page 71 * PG_private2: identifies the last component page 72 * 73 */ 74 75 #ifdef CONFIG_ZSMALLOC_DEBUG 76 #define DEBUG 77 #endif 78 79 #include <linux/module.h> 80 #include <linux/kernel.h> 81 #include <linux/bitops.h> 82 #include <linux/errno.h> 83 #include <linux/highmem.h> 84 #include <linux/string.h> 85 #include <linux/slab.h> 86 #include <asm/tlbflush.h> 87 #include <asm/pgtable.h> 88 #include <linux/cpumask.h> 89 #include <linux/cpu.h> 90 #include <linux/vmalloc.h> 91 #include <linux/hardirq.h> 92 #include <linux/spinlock.h> 93 #include <linux/types.h> 94 #include <linux/zsmalloc.h> 95 #include <linux/zpool.h> 96 97 /* 98 * This must be power of 2 and greater than of equal to sizeof(link_free). 99 * These two conditions ensure that any 'struct link_free' itself doesn't 100 * span more than 1 page which avoids complex case of mapping 2 pages simply 101 * to restore link_free pointer values. 102 */ 103 #define ZS_ALIGN 8 104 105 /* 106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 108 */ 109 #define ZS_MAX_ZSPAGE_ORDER 2 110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 111 112 /* 113 * Object location (<PFN>, <obj_idx>) is encoded as 114 * as single (unsigned long) handle value. 115 * 116 * Note that object index <obj_idx> is relative to system 117 * page <PFN> it is stored in, so for each sub-page belonging 118 * to a zspage, obj_idx starts with 0. 119 * 120 * This is made more complicated by various memory models and PAE. 121 */ 122 123 #ifndef MAX_PHYSMEM_BITS 124 #ifdef CONFIG_HIGHMEM64G 125 #define MAX_PHYSMEM_BITS 36 126 #else /* !CONFIG_HIGHMEM64G */ 127 /* 128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 129 * be PAGE_SHIFT 130 */ 131 #define MAX_PHYSMEM_BITS BITS_PER_LONG 132 #endif 133 #endif 134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 137 138 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 143 144 /* 145 * On systems with 4K page size, this gives 255 size classes! There is a 146 * trader-off here: 147 * - Large number of size classes is potentially wasteful as free page are 148 * spread across these classes 149 * - Small number of size classes causes large internal fragmentation 150 * - Probably its better to use specific size classes (empirically 151 * determined). NOTE: all those class sizes must be set as multiple of 152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 153 * 154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 155 * (reason above) 156 */ 157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) 158 159 /* 160 * We do not maintain any list for completely empty or full pages 161 */ 162 enum fullness_group { 163 ZS_ALMOST_FULL, 164 ZS_ALMOST_EMPTY, 165 _ZS_NR_FULLNESS_GROUPS, 166 167 ZS_EMPTY, 168 ZS_FULL 169 }; 170 171 /* 172 * number of size_classes 173 */ 174 static int zs_size_classes; 175 176 /* 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 178 * n <= N / f, where 179 * n = number of allocated objects 180 * N = total number of objects zspage can store 181 * f = fullness_threshold_frac 182 * 183 * Similarly, we assign zspage to: 184 * ZS_ALMOST_FULL when n > N / f 185 * ZS_EMPTY when n == 0 186 * ZS_FULL when n == N 187 * 188 * (see: fix_fullness_group()) 189 */ 190 static const int fullness_threshold_frac = 4; 191 192 struct size_class { 193 /* 194 * Size of objects stored in this class. Must be multiple 195 * of ZS_ALIGN. 196 */ 197 int size; 198 unsigned int index; 199 200 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 201 int pages_per_zspage; 202 203 spinlock_t lock; 204 205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; 206 }; 207 208 /* 209 * Placed within free objects to form a singly linked list. 210 * For every zspage, first_page->freelist gives head of this list. 211 * 212 * This must be power of 2 and less than or equal to ZS_ALIGN 213 */ 214 struct link_free { 215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */ 216 void *next; 217 }; 218 219 struct zs_pool { 220 struct size_class **size_class; 221 222 gfp_t flags; /* allocation flags used when growing pool */ 223 atomic_long_t pages_allocated; 224 }; 225 226 /* 227 * A zspage's class index and fullness group 228 * are encoded in its (first)page->mapping 229 */ 230 #define CLASS_IDX_BITS 28 231 #define FULLNESS_BITS 4 232 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) 233 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) 234 235 struct mapping_area { 236 #ifdef CONFIG_PGTABLE_MAPPING 237 struct vm_struct *vm; /* vm area for mapping object that span pages */ 238 #else 239 char *vm_buf; /* copy buffer for objects that span pages */ 240 #endif 241 char *vm_addr; /* address of kmap_atomic()'ed pages */ 242 enum zs_mapmode vm_mm; /* mapping mode */ 243 }; 244 245 /* zpool driver */ 246 247 #ifdef CONFIG_ZPOOL 248 249 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops) 250 { 251 return zs_create_pool(gfp); 252 } 253 254 static void zs_zpool_destroy(void *pool) 255 { 256 zs_destroy_pool(pool); 257 } 258 259 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 260 unsigned long *handle) 261 { 262 *handle = zs_malloc(pool, size); 263 return *handle ? 0 : -1; 264 } 265 static void zs_zpool_free(void *pool, unsigned long handle) 266 { 267 zs_free(pool, handle); 268 } 269 270 static int zs_zpool_shrink(void *pool, unsigned int pages, 271 unsigned int *reclaimed) 272 { 273 return -EINVAL; 274 } 275 276 static void *zs_zpool_map(void *pool, unsigned long handle, 277 enum zpool_mapmode mm) 278 { 279 enum zs_mapmode zs_mm; 280 281 switch (mm) { 282 case ZPOOL_MM_RO: 283 zs_mm = ZS_MM_RO; 284 break; 285 case ZPOOL_MM_WO: 286 zs_mm = ZS_MM_WO; 287 break; 288 case ZPOOL_MM_RW: /* fallthru */ 289 default: 290 zs_mm = ZS_MM_RW; 291 break; 292 } 293 294 return zs_map_object(pool, handle, zs_mm); 295 } 296 static void zs_zpool_unmap(void *pool, unsigned long handle) 297 { 298 zs_unmap_object(pool, handle); 299 } 300 301 static u64 zs_zpool_total_size(void *pool) 302 { 303 return zs_get_total_pages(pool) << PAGE_SHIFT; 304 } 305 306 static struct zpool_driver zs_zpool_driver = { 307 .type = "zsmalloc", 308 .owner = THIS_MODULE, 309 .create = zs_zpool_create, 310 .destroy = zs_zpool_destroy, 311 .malloc = zs_zpool_malloc, 312 .free = zs_zpool_free, 313 .shrink = zs_zpool_shrink, 314 .map = zs_zpool_map, 315 .unmap = zs_zpool_unmap, 316 .total_size = zs_zpool_total_size, 317 }; 318 319 MODULE_ALIAS("zpool-zsmalloc"); 320 #endif /* CONFIG_ZPOOL */ 321 322 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 323 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 324 325 static int is_first_page(struct page *page) 326 { 327 return PagePrivate(page); 328 } 329 330 static int is_last_page(struct page *page) 331 { 332 return PagePrivate2(page); 333 } 334 335 static void get_zspage_mapping(struct page *page, unsigned int *class_idx, 336 enum fullness_group *fullness) 337 { 338 unsigned long m; 339 BUG_ON(!is_first_page(page)); 340 341 m = (unsigned long)page->mapping; 342 *fullness = m & FULLNESS_MASK; 343 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; 344 } 345 346 static void set_zspage_mapping(struct page *page, unsigned int class_idx, 347 enum fullness_group fullness) 348 { 349 unsigned long m; 350 BUG_ON(!is_first_page(page)); 351 352 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | 353 (fullness & FULLNESS_MASK); 354 page->mapping = (struct address_space *)m; 355 } 356 357 /* 358 * zsmalloc divides the pool into various size classes where each 359 * class maintains a list of zspages where each zspage is divided 360 * into equal sized chunks. Each allocation falls into one of these 361 * classes depending on its size. This function returns index of the 362 * size class which has chunk size big enough to hold the give size. 363 */ 364 static int get_size_class_index(int size) 365 { 366 int idx = 0; 367 368 if (likely(size > ZS_MIN_ALLOC_SIZE)) 369 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 370 ZS_SIZE_CLASS_DELTA); 371 372 return idx; 373 } 374 375 /* 376 * For each size class, zspages are divided into different groups 377 * depending on how "full" they are. This was done so that we could 378 * easily find empty or nearly empty zspages when we try to shrink 379 * the pool (not yet implemented). This function returns fullness 380 * status of the given page. 381 */ 382 static enum fullness_group get_fullness_group(struct page *page) 383 { 384 int inuse, max_objects; 385 enum fullness_group fg; 386 BUG_ON(!is_first_page(page)); 387 388 inuse = page->inuse; 389 max_objects = page->objects; 390 391 if (inuse == 0) 392 fg = ZS_EMPTY; 393 else if (inuse == max_objects) 394 fg = ZS_FULL; 395 else if (inuse <= max_objects / fullness_threshold_frac) 396 fg = ZS_ALMOST_EMPTY; 397 else 398 fg = ZS_ALMOST_FULL; 399 400 return fg; 401 } 402 403 /* 404 * Each size class maintains various freelists and zspages are assigned 405 * to one of these freelists based on the number of live objects they 406 * have. This functions inserts the given zspage into the freelist 407 * identified by <class, fullness_group>. 408 */ 409 static void insert_zspage(struct page *page, struct size_class *class, 410 enum fullness_group fullness) 411 { 412 struct page **head; 413 414 BUG_ON(!is_first_page(page)); 415 416 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 417 return; 418 419 head = &class->fullness_list[fullness]; 420 if (*head) 421 list_add_tail(&page->lru, &(*head)->lru); 422 423 *head = page; 424 } 425 426 /* 427 * This function removes the given zspage from the freelist identified 428 * by <class, fullness_group>. 429 */ 430 static void remove_zspage(struct page *page, struct size_class *class, 431 enum fullness_group fullness) 432 { 433 struct page **head; 434 435 BUG_ON(!is_first_page(page)); 436 437 if (fullness >= _ZS_NR_FULLNESS_GROUPS) 438 return; 439 440 head = &class->fullness_list[fullness]; 441 BUG_ON(!*head); 442 if (list_empty(&(*head)->lru)) 443 *head = NULL; 444 else if (*head == page) 445 *head = (struct page *)list_entry((*head)->lru.next, 446 struct page, lru); 447 448 list_del_init(&page->lru); 449 } 450 451 /* 452 * Each size class maintains zspages in different fullness groups depending 453 * on the number of live objects they contain. When allocating or freeing 454 * objects, the fullness status of the page can change, say, from ALMOST_FULL 455 * to ALMOST_EMPTY when freeing an object. This function checks if such 456 * a status change has occurred for the given page and accordingly moves the 457 * page from the freelist of the old fullness group to that of the new 458 * fullness group. 459 */ 460 static enum fullness_group fix_fullness_group(struct zs_pool *pool, 461 struct page *page) 462 { 463 int class_idx; 464 struct size_class *class; 465 enum fullness_group currfg, newfg; 466 467 BUG_ON(!is_first_page(page)); 468 469 get_zspage_mapping(page, &class_idx, &currfg); 470 newfg = get_fullness_group(page); 471 if (newfg == currfg) 472 goto out; 473 474 class = pool->size_class[class_idx]; 475 remove_zspage(page, class, currfg); 476 insert_zspage(page, class, newfg); 477 set_zspage_mapping(page, class_idx, newfg); 478 479 out: 480 return newfg; 481 } 482 483 /* 484 * We have to decide on how many pages to link together 485 * to form a zspage for each size class. This is important 486 * to reduce wastage due to unusable space left at end of 487 * each zspage which is given as: 488 * wastage = Zp - Zp % size_class 489 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 490 * 491 * For example, for size class of 3/8 * PAGE_SIZE, we should 492 * link together 3 PAGE_SIZE sized pages to form a zspage 493 * since then we can perfectly fit in 8 such objects. 494 */ 495 static int get_pages_per_zspage(int class_size) 496 { 497 int i, max_usedpc = 0; 498 /* zspage order which gives maximum used size per KB */ 499 int max_usedpc_order = 1; 500 501 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 502 int zspage_size; 503 int waste, usedpc; 504 505 zspage_size = i * PAGE_SIZE; 506 waste = zspage_size % class_size; 507 usedpc = (zspage_size - waste) * 100 / zspage_size; 508 509 if (usedpc > max_usedpc) { 510 max_usedpc = usedpc; 511 max_usedpc_order = i; 512 } 513 } 514 515 return max_usedpc_order; 516 } 517 518 /* 519 * A single 'zspage' is composed of many system pages which are 520 * linked together using fields in struct page. This function finds 521 * the first/head page, given any component page of a zspage. 522 */ 523 static struct page *get_first_page(struct page *page) 524 { 525 if (is_first_page(page)) 526 return page; 527 else 528 return page->first_page; 529 } 530 531 static struct page *get_next_page(struct page *page) 532 { 533 struct page *next; 534 535 if (is_last_page(page)) 536 next = NULL; 537 else if (is_first_page(page)) 538 next = (struct page *)page_private(page); 539 else 540 next = list_entry(page->lru.next, struct page, lru); 541 542 return next; 543 } 544 545 /* 546 * Encode <page, obj_idx> as a single handle value. 547 * On hardware platforms with physical memory starting at 0x0 the pfn 548 * could be 0 so we ensure that the handle will never be 0 by adjusting the 549 * encoded obj_idx value before encoding. 550 */ 551 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) 552 { 553 unsigned long handle; 554 555 if (!page) { 556 BUG_ON(obj_idx); 557 return NULL; 558 } 559 560 handle = page_to_pfn(page) << OBJ_INDEX_BITS; 561 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); 562 563 return (void *)handle; 564 } 565 566 /* 567 * Decode <page, obj_idx> pair from the given object handle. We adjust the 568 * decoded obj_idx back to its original value since it was adjusted in 569 * obj_location_to_handle(). 570 */ 571 static void obj_handle_to_location(unsigned long handle, struct page **page, 572 unsigned long *obj_idx) 573 { 574 *page = pfn_to_page(handle >> OBJ_INDEX_BITS); 575 *obj_idx = (handle & OBJ_INDEX_MASK) - 1; 576 } 577 578 static unsigned long obj_idx_to_offset(struct page *page, 579 unsigned long obj_idx, int class_size) 580 { 581 unsigned long off = 0; 582 583 if (!is_first_page(page)) 584 off = page->index; 585 586 return off + obj_idx * class_size; 587 } 588 589 static void reset_page(struct page *page) 590 { 591 clear_bit(PG_private, &page->flags); 592 clear_bit(PG_private_2, &page->flags); 593 set_page_private(page, 0); 594 page->mapping = NULL; 595 page->freelist = NULL; 596 page_mapcount_reset(page); 597 } 598 599 static void free_zspage(struct page *first_page) 600 { 601 struct page *nextp, *tmp, *head_extra; 602 603 BUG_ON(!is_first_page(first_page)); 604 BUG_ON(first_page->inuse); 605 606 head_extra = (struct page *)page_private(first_page); 607 608 reset_page(first_page); 609 __free_page(first_page); 610 611 /* zspage with only 1 system page */ 612 if (!head_extra) 613 return; 614 615 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { 616 list_del(&nextp->lru); 617 reset_page(nextp); 618 __free_page(nextp); 619 } 620 reset_page(head_extra); 621 __free_page(head_extra); 622 } 623 624 /* Initialize a newly allocated zspage */ 625 static void init_zspage(struct page *first_page, struct size_class *class) 626 { 627 unsigned long off = 0; 628 struct page *page = first_page; 629 630 BUG_ON(!is_first_page(first_page)); 631 while (page) { 632 struct page *next_page; 633 struct link_free *link; 634 unsigned int i = 1; 635 void *vaddr; 636 637 /* 638 * page->index stores offset of first object starting 639 * in the page. For the first page, this is always 0, 640 * so we use first_page->index (aka ->freelist) to store 641 * head of corresponding zspage's freelist. 642 */ 643 if (page != first_page) 644 page->index = off; 645 646 vaddr = kmap_atomic(page); 647 link = (struct link_free *)vaddr + off / sizeof(*link); 648 649 while ((off += class->size) < PAGE_SIZE) { 650 link->next = obj_location_to_handle(page, i++); 651 link += class->size / sizeof(*link); 652 } 653 654 /* 655 * We now come to the last (full or partial) object on this 656 * page, which must point to the first object on the next 657 * page (if present) 658 */ 659 next_page = get_next_page(page); 660 link->next = obj_location_to_handle(next_page, 0); 661 kunmap_atomic(vaddr); 662 page = next_page; 663 off %= PAGE_SIZE; 664 } 665 } 666 667 /* 668 * Allocate a zspage for the given size class 669 */ 670 static struct page *alloc_zspage(struct size_class *class, gfp_t flags) 671 { 672 int i, error; 673 struct page *first_page = NULL, *uninitialized_var(prev_page); 674 675 /* 676 * Allocate individual pages and link them together as: 677 * 1. first page->private = first sub-page 678 * 2. all sub-pages are linked together using page->lru 679 * 3. each sub-page is linked to the first page using page->first_page 680 * 681 * For each size class, First/Head pages are linked together using 682 * page->lru. Also, we set PG_private to identify the first page 683 * (i.e. no other sub-page has this flag set) and PG_private_2 to 684 * identify the last page. 685 */ 686 error = -ENOMEM; 687 for (i = 0; i < class->pages_per_zspage; i++) { 688 struct page *page; 689 690 page = alloc_page(flags); 691 if (!page) 692 goto cleanup; 693 694 INIT_LIST_HEAD(&page->lru); 695 if (i == 0) { /* first page */ 696 SetPagePrivate(page); 697 set_page_private(page, 0); 698 first_page = page; 699 first_page->inuse = 0; 700 } 701 if (i == 1) 702 set_page_private(first_page, (unsigned long)page); 703 if (i >= 1) 704 page->first_page = first_page; 705 if (i >= 2) 706 list_add(&page->lru, &prev_page->lru); 707 if (i == class->pages_per_zspage - 1) /* last page */ 708 SetPagePrivate2(page); 709 prev_page = page; 710 } 711 712 init_zspage(first_page, class); 713 714 first_page->freelist = obj_location_to_handle(first_page, 0); 715 /* Maximum number of objects we can store in this zspage */ 716 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; 717 718 error = 0; /* Success */ 719 720 cleanup: 721 if (unlikely(error) && first_page) { 722 free_zspage(first_page); 723 first_page = NULL; 724 } 725 726 return first_page; 727 } 728 729 static struct page *find_get_zspage(struct size_class *class) 730 { 731 int i; 732 struct page *page; 733 734 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { 735 page = class->fullness_list[i]; 736 if (page) 737 break; 738 } 739 740 return page; 741 } 742 743 #ifdef CONFIG_PGTABLE_MAPPING 744 static inline int __zs_cpu_up(struct mapping_area *area) 745 { 746 /* 747 * Make sure we don't leak memory if a cpu UP notification 748 * and zs_init() race and both call zs_cpu_up() on the same cpu 749 */ 750 if (area->vm) 751 return 0; 752 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 753 if (!area->vm) 754 return -ENOMEM; 755 return 0; 756 } 757 758 static inline void __zs_cpu_down(struct mapping_area *area) 759 { 760 if (area->vm) 761 free_vm_area(area->vm); 762 area->vm = NULL; 763 } 764 765 static inline void *__zs_map_object(struct mapping_area *area, 766 struct page *pages[2], int off, int size) 767 { 768 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 769 area->vm_addr = area->vm->addr; 770 return area->vm_addr + off; 771 } 772 773 static inline void __zs_unmap_object(struct mapping_area *area, 774 struct page *pages[2], int off, int size) 775 { 776 unsigned long addr = (unsigned long)area->vm_addr; 777 778 unmap_kernel_range(addr, PAGE_SIZE * 2); 779 } 780 781 #else /* CONFIG_PGTABLE_MAPPING */ 782 783 static inline int __zs_cpu_up(struct mapping_area *area) 784 { 785 /* 786 * Make sure we don't leak memory if a cpu UP notification 787 * and zs_init() race and both call zs_cpu_up() on the same cpu 788 */ 789 if (area->vm_buf) 790 return 0; 791 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 792 if (!area->vm_buf) 793 return -ENOMEM; 794 return 0; 795 } 796 797 static inline void __zs_cpu_down(struct mapping_area *area) 798 { 799 kfree(area->vm_buf); 800 area->vm_buf = NULL; 801 } 802 803 static void *__zs_map_object(struct mapping_area *area, 804 struct page *pages[2], int off, int size) 805 { 806 int sizes[2]; 807 void *addr; 808 char *buf = area->vm_buf; 809 810 /* disable page faults to match kmap_atomic() return conditions */ 811 pagefault_disable(); 812 813 /* no read fastpath */ 814 if (area->vm_mm == ZS_MM_WO) 815 goto out; 816 817 sizes[0] = PAGE_SIZE - off; 818 sizes[1] = size - sizes[0]; 819 820 /* copy object to per-cpu buffer */ 821 addr = kmap_atomic(pages[0]); 822 memcpy(buf, addr + off, sizes[0]); 823 kunmap_atomic(addr); 824 addr = kmap_atomic(pages[1]); 825 memcpy(buf + sizes[0], addr, sizes[1]); 826 kunmap_atomic(addr); 827 out: 828 return area->vm_buf; 829 } 830 831 static void __zs_unmap_object(struct mapping_area *area, 832 struct page *pages[2], int off, int size) 833 { 834 int sizes[2]; 835 void *addr; 836 char *buf = area->vm_buf; 837 838 /* no write fastpath */ 839 if (area->vm_mm == ZS_MM_RO) 840 goto out; 841 842 sizes[0] = PAGE_SIZE - off; 843 sizes[1] = size - sizes[0]; 844 845 /* copy per-cpu buffer to object */ 846 addr = kmap_atomic(pages[0]); 847 memcpy(addr + off, buf, sizes[0]); 848 kunmap_atomic(addr); 849 addr = kmap_atomic(pages[1]); 850 memcpy(addr, buf + sizes[0], sizes[1]); 851 kunmap_atomic(addr); 852 853 out: 854 /* enable page faults to match kunmap_atomic() return conditions */ 855 pagefault_enable(); 856 } 857 858 #endif /* CONFIG_PGTABLE_MAPPING */ 859 860 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, 861 void *pcpu) 862 { 863 int ret, cpu = (long)pcpu; 864 struct mapping_area *area; 865 866 switch (action) { 867 case CPU_UP_PREPARE: 868 area = &per_cpu(zs_map_area, cpu); 869 ret = __zs_cpu_up(area); 870 if (ret) 871 return notifier_from_errno(ret); 872 break; 873 case CPU_DEAD: 874 case CPU_UP_CANCELED: 875 area = &per_cpu(zs_map_area, cpu); 876 __zs_cpu_down(area); 877 break; 878 } 879 880 return NOTIFY_OK; 881 } 882 883 static struct notifier_block zs_cpu_nb = { 884 .notifier_call = zs_cpu_notifier 885 }; 886 887 static int zs_register_cpu_notifier(void) 888 { 889 int cpu, uninitialized_var(ret); 890 891 cpu_notifier_register_begin(); 892 893 __register_cpu_notifier(&zs_cpu_nb); 894 for_each_online_cpu(cpu) { 895 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 896 if (notifier_to_errno(ret)) 897 break; 898 } 899 900 cpu_notifier_register_done(); 901 return notifier_to_errno(ret); 902 } 903 904 static void zs_unregister_cpu_notifier(void) 905 { 906 int cpu; 907 908 cpu_notifier_register_begin(); 909 910 for_each_online_cpu(cpu) 911 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); 912 __unregister_cpu_notifier(&zs_cpu_nb); 913 914 cpu_notifier_register_done(); 915 } 916 917 static void init_zs_size_classes(void) 918 { 919 int nr; 920 921 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 922 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 923 nr += 1; 924 925 zs_size_classes = nr; 926 } 927 928 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage) 929 { 930 return pages_per_zspage * PAGE_SIZE / size; 931 } 932 933 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage) 934 { 935 if (prev->pages_per_zspage != pages_per_zspage) 936 return false; 937 938 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage) 939 != get_maxobj_per_zspage(size, pages_per_zspage)) 940 return false; 941 942 return true; 943 } 944 945 unsigned long zs_get_total_pages(struct zs_pool *pool) 946 { 947 return atomic_long_read(&pool->pages_allocated); 948 } 949 EXPORT_SYMBOL_GPL(zs_get_total_pages); 950 951 /** 952 * zs_map_object - get address of allocated object from handle. 953 * @pool: pool from which the object was allocated 954 * @handle: handle returned from zs_malloc 955 * 956 * Before using an object allocated from zs_malloc, it must be mapped using 957 * this function. When done with the object, it must be unmapped using 958 * zs_unmap_object. 959 * 960 * Only one object can be mapped per cpu at a time. There is no protection 961 * against nested mappings. 962 * 963 * This function returns with preemption and page faults disabled. 964 */ 965 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 966 enum zs_mapmode mm) 967 { 968 struct page *page; 969 unsigned long obj_idx, off; 970 971 unsigned int class_idx; 972 enum fullness_group fg; 973 struct size_class *class; 974 struct mapping_area *area; 975 struct page *pages[2]; 976 977 BUG_ON(!handle); 978 979 /* 980 * Because we use per-cpu mapping areas shared among the 981 * pools/users, we can't allow mapping in interrupt context 982 * because it can corrupt another users mappings. 983 */ 984 BUG_ON(in_interrupt()); 985 986 obj_handle_to_location(handle, &page, &obj_idx); 987 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 988 class = pool->size_class[class_idx]; 989 off = obj_idx_to_offset(page, obj_idx, class->size); 990 991 area = &get_cpu_var(zs_map_area); 992 area->vm_mm = mm; 993 if (off + class->size <= PAGE_SIZE) { 994 /* this object is contained entirely within a page */ 995 area->vm_addr = kmap_atomic(page); 996 return area->vm_addr + off; 997 } 998 999 /* this object spans two pages */ 1000 pages[0] = page; 1001 pages[1] = get_next_page(page); 1002 BUG_ON(!pages[1]); 1003 1004 return __zs_map_object(area, pages, off, class->size); 1005 } 1006 EXPORT_SYMBOL_GPL(zs_map_object); 1007 1008 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1009 { 1010 struct page *page; 1011 unsigned long obj_idx, off; 1012 1013 unsigned int class_idx; 1014 enum fullness_group fg; 1015 struct size_class *class; 1016 struct mapping_area *area; 1017 1018 BUG_ON(!handle); 1019 1020 obj_handle_to_location(handle, &page, &obj_idx); 1021 get_zspage_mapping(get_first_page(page), &class_idx, &fg); 1022 class = pool->size_class[class_idx]; 1023 off = obj_idx_to_offset(page, obj_idx, class->size); 1024 1025 area = this_cpu_ptr(&zs_map_area); 1026 if (off + class->size <= PAGE_SIZE) 1027 kunmap_atomic(area->vm_addr); 1028 else { 1029 struct page *pages[2]; 1030 1031 pages[0] = page; 1032 pages[1] = get_next_page(page); 1033 BUG_ON(!pages[1]); 1034 1035 __zs_unmap_object(area, pages, off, class->size); 1036 } 1037 put_cpu_var(zs_map_area); 1038 } 1039 EXPORT_SYMBOL_GPL(zs_unmap_object); 1040 1041 /** 1042 * zs_malloc - Allocate block of given size from pool. 1043 * @pool: pool to allocate from 1044 * @size: size of block to allocate 1045 * 1046 * On success, handle to the allocated object is returned, 1047 * otherwise 0. 1048 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1049 */ 1050 unsigned long zs_malloc(struct zs_pool *pool, size_t size) 1051 { 1052 unsigned long obj; 1053 struct link_free *link; 1054 struct size_class *class; 1055 void *vaddr; 1056 1057 struct page *first_page, *m_page; 1058 unsigned long m_objidx, m_offset; 1059 1060 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1061 return 0; 1062 1063 class = pool->size_class[get_size_class_index(size)]; 1064 1065 spin_lock(&class->lock); 1066 first_page = find_get_zspage(class); 1067 1068 if (!first_page) { 1069 spin_unlock(&class->lock); 1070 first_page = alloc_zspage(class, pool->flags); 1071 if (unlikely(!first_page)) 1072 return 0; 1073 1074 set_zspage_mapping(first_page, class->index, ZS_EMPTY); 1075 atomic_long_add(class->pages_per_zspage, 1076 &pool->pages_allocated); 1077 spin_lock(&class->lock); 1078 } 1079 1080 obj = (unsigned long)first_page->freelist; 1081 obj_handle_to_location(obj, &m_page, &m_objidx); 1082 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); 1083 1084 vaddr = kmap_atomic(m_page); 1085 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1086 first_page->freelist = link->next; 1087 memset(link, POISON_INUSE, sizeof(*link)); 1088 kunmap_atomic(vaddr); 1089 1090 first_page->inuse++; 1091 /* Now move the zspage to another fullness group, if required */ 1092 fix_fullness_group(pool, first_page); 1093 spin_unlock(&class->lock); 1094 1095 return obj; 1096 } 1097 EXPORT_SYMBOL_GPL(zs_malloc); 1098 1099 void zs_free(struct zs_pool *pool, unsigned long obj) 1100 { 1101 struct link_free *link; 1102 struct page *first_page, *f_page; 1103 unsigned long f_objidx, f_offset; 1104 void *vaddr; 1105 1106 int class_idx; 1107 struct size_class *class; 1108 enum fullness_group fullness; 1109 1110 if (unlikely(!obj)) 1111 return; 1112 1113 obj_handle_to_location(obj, &f_page, &f_objidx); 1114 first_page = get_first_page(f_page); 1115 1116 get_zspage_mapping(first_page, &class_idx, &fullness); 1117 class = pool->size_class[class_idx]; 1118 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); 1119 1120 spin_lock(&class->lock); 1121 1122 /* Insert this object in containing zspage's freelist */ 1123 vaddr = kmap_atomic(f_page); 1124 link = (struct link_free *)(vaddr + f_offset); 1125 link->next = first_page->freelist; 1126 kunmap_atomic(vaddr); 1127 first_page->freelist = (void *)obj; 1128 1129 first_page->inuse--; 1130 fullness = fix_fullness_group(pool, first_page); 1131 spin_unlock(&class->lock); 1132 1133 if (fullness == ZS_EMPTY) { 1134 atomic_long_sub(class->pages_per_zspage, 1135 &pool->pages_allocated); 1136 free_zspage(first_page); 1137 } 1138 } 1139 EXPORT_SYMBOL_GPL(zs_free); 1140 1141 /** 1142 * zs_create_pool - Creates an allocation pool to work from. 1143 * @flags: allocation flags used to allocate pool metadata 1144 * 1145 * This function must be called before anything when using 1146 * the zsmalloc allocator. 1147 * 1148 * On success, a pointer to the newly created pool is returned, 1149 * otherwise NULL. 1150 */ 1151 struct zs_pool *zs_create_pool(gfp_t flags) 1152 { 1153 int i; 1154 struct zs_pool *pool; 1155 struct size_class *prev_class = NULL; 1156 1157 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 1158 if (!pool) 1159 return NULL; 1160 1161 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 1162 GFP_KERNEL); 1163 if (!pool->size_class) { 1164 kfree(pool); 1165 return NULL; 1166 } 1167 1168 /* 1169 * Iterate reversly, because, size of size_class that we want to use 1170 * for merging should be larger or equal to current size. 1171 */ 1172 for (i = zs_size_classes - 1; i >= 0; i--) { 1173 int size; 1174 int pages_per_zspage; 1175 struct size_class *class; 1176 1177 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 1178 if (size > ZS_MAX_ALLOC_SIZE) 1179 size = ZS_MAX_ALLOC_SIZE; 1180 pages_per_zspage = get_pages_per_zspage(size); 1181 1182 /* 1183 * size_class is used for normal zsmalloc operation such 1184 * as alloc/free for that size. Although it is natural that we 1185 * have one size_class for each size, there is a chance that we 1186 * can get more memory utilization if we use one size_class for 1187 * many different sizes whose size_class have same 1188 * characteristics. So, we makes size_class point to 1189 * previous size_class if possible. 1190 */ 1191 if (prev_class) { 1192 if (can_merge(prev_class, size, pages_per_zspage)) { 1193 pool->size_class[i] = prev_class; 1194 continue; 1195 } 1196 } 1197 1198 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 1199 if (!class) 1200 goto err; 1201 1202 class->size = size; 1203 class->index = i; 1204 class->pages_per_zspage = pages_per_zspage; 1205 spin_lock_init(&class->lock); 1206 pool->size_class[i] = class; 1207 1208 prev_class = class; 1209 } 1210 1211 pool->flags = flags; 1212 1213 return pool; 1214 1215 err: 1216 zs_destroy_pool(pool); 1217 return NULL; 1218 } 1219 EXPORT_SYMBOL_GPL(zs_create_pool); 1220 1221 void zs_destroy_pool(struct zs_pool *pool) 1222 { 1223 int i; 1224 1225 for (i = 0; i < zs_size_classes; i++) { 1226 int fg; 1227 struct size_class *class = pool->size_class[i]; 1228 1229 if (!class) 1230 continue; 1231 1232 if (class->index != i) 1233 continue; 1234 1235 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { 1236 if (class->fullness_list[fg]) { 1237 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 1238 class->size, fg); 1239 } 1240 } 1241 kfree(class); 1242 } 1243 1244 kfree(pool->size_class); 1245 kfree(pool); 1246 } 1247 EXPORT_SYMBOL_GPL(zs_destroy_pool); 1248 1249 static int __init zs_init(void) 1250 { 1251 int ret = zs_register_cpu_notifier(); 1252 1253 if (ret) { 1254 zs_unregister_cpu_notifier(); 1255 return ret; 1256 } 1257 1258 init_zs_size_classes(); 1259 1260 #ifdef CONFIG_ZPOOL 1261 zpool_register_driver(&zs_zpool_driver); 1262 #endif 1263 return 0; 1264 } 1265 1266 static void __exit zs_exit(void) 1267 { 1268 #ifdef CONFIG_ZPOOL 1269 zpool_unregister_driver(&zs_zpool_driver); 1270 #endif 1271 zs_unregister_cpu_notifier(); 1272 } 1273 1274 module_init(zs_init); 1275 module_exit(zs_exit); 1276 1277 MODULE_LICENSE("Dual BSD/GPL"); 1278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 1279