xref: /openbmc/linux/mm/zsmalloc.c (revision 270384cc)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * This allocator is designed for use with zram. Thus, the allocator is
16  * supposed to work well under low memory conditions. In particular, it
17  * never attempts higher order page allocation which is very likely to
18  * fail under memory pressure. On the other hand, if we just use single
19  * (0-order) pages, it would suffer from very high fragmentation --
20  * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21  * This was one of the major issues with its predecessor (xvmalloc).
22  *
23  * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24  * and links them together using various 'struct page' fields. These linked
25  * pages act as a single higher-order page i.e. an object can span 0-order
26  * page boundaries. The code refers to these linked pages as a single entity
27  * called zspage.
28  *
29  * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30  * since this satisfies the requirements of all its current users (in the
31  * worst case, page is incompressible and is thus stored "as-is" i.e. in
32  * uncompressed form). For allocation requests larger than this size, failure
33  * is returned (see zs_malloc).
34  *
35  * Additionally, zs_malloc() does not return a dereferenceable pointer.
36  * Instead, it returns an opaque handle (unsigned long) which encodes actual
37  * location of the allocated object. The reason for this indirection is that
38  * zsmalloc does not keep zspages permanently mapped since that would cause
39  * issues on 32-bit systems where the VA region for kernel space mappings
40  * is very small. So, before using the allocating memory, the object has to
41  * be mapped using zs_map_object() to get a usable pointer and subsequently
42  * unmapped using zs_unmap_object().
43  *
44  * Following is how we use various fields and flags of underlying
45  * struct page(s) to form a zspage.
46  *
47  * Usage of struct page fields:
48  *	page->first_page: points to the first component (0-order) page
49  *	page->index (union with page->freelist): offset of the first object
50  *		starting in this page. For the first page, this is
51  *		always 0, so we use this field (aka freelist) to point
52  *		to the first free object in zspage.
53  *	page->lru: links together all component pages (except the first page)
54  *		of a zspage
55  *
56  *	For _first_ page only:
57  *
58  *	page->private (union with page->first_page): refers to the
59  *		component page after the first page
60  *	page->freelist: points to the first free object in zspage.
61  *		Free objects are linked together using in-place
62  *		metadata.
63  *	page->objects: maximum number of objects we can store in this
64  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
65  *	page->lru: links together first pages of various zspages.
66  *		Basically forming list of zspages in a fullness group.
67  *	page->mapping: class index and fullness group of the zspage
68  *
69  * Usage of struct page flags:
70  *	PG_private: identifies the first component page
71  *	PG_private2: identifies the last component page
72  *
73  */
74 
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78 
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
96 
97 /*
98  * This must be power of 2 and greater than of equal to sizeof(link_free).
99  * These two conditions ensure that any 'struct link_free' itself doesn't
100  * span more than 1 page which avoids complex case of mapping 2 pages simply
101  * to restore link_free pointer values.
102  */
103 #define ZS_ALIGN		8
104 
105 /*
106  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108  */
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111 
112 /*
113  * Object location (<PFN>, <obj_idx>) is encoded as
114  * as single (unsigned long) handle value.
115  *
116  * Note that object index <obj_idx> is relative to system
117  * page <PFN> it is stored in, so for each sub-page belonging
118  * to a zspage, obj_idx starts with 0.
119  *
120  * This is made more complicated by various memory models and PAE.
121  */
122 
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
127 /*
128  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129  * be PAGE_SHIFT
130  */
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137 
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
143 
144 /*
145  * On systems with 4K page size, this gives 255 size classes! There is a
146  * trader-off here:
147  *  - Large number of size classes is potentially wasteful as free page are
148  *    spread across these classes
149  *  - Small number of size classes causes large internal fragmentation
150  *  - Probably its better to use specific size classes (empirically
151  *    determined). NOTE: all those class sizes must be set as multiple of
152  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153  *
154  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155  *  (reason above)
156  */
157 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 
159 /*
160  * We do not maintain any list for completely empty or full pages
161  */
162 enum fullness_group {
163 	ZS_ALMOST_FULL,
164 	ZS_ALMOST_EMPTY,
165 	_ZS_NR_FULLNESS_GROUPS,
166 
167 	ZS_EMPTY,
168 	ZS_FULL
169 };
170 
171 /*
172  * number of size_classes
173  */
174 static int zs_size_classes;
175 
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *	n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *	ZS_ALMOST_FULL	when n > N / f
185  *	ZS_EMPTY	when n == 0
186  *	ZS_FULL		when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 
192 struct size_class {
193 	/*
194 	 * Size of objects stored in this class. Must be multiple
195 	 * of ZS_ALIGN.
196 	 */
197 	int size;
198 	unsigned int index;
199 
200 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
201 	int pages_per_zspage;
202 
203 	spinlock_t lock;
204 
205 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206 };
207 
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, first_page->freelist gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215 	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 	void *next;
217 };
218 
219 struct zs_pool {
220 	struct size_class **size_class;
221 
222 	gfp_t flags;	/* allocation flags used when growing pool */
223 	atomic_long_t pages_allocated;
224 };
225 
226 /*
227  * A zspage's class index and fullness group
228  * are encoded in its (first)page->mapping
229  */
230 #define CLASS_IDX_BITS	28
231 #define FULLNESS_BITS	4
232 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
233 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
234 
235 struct mapping_area {
236 #ifdef CONFIG_PGTABLE_MAPPING
237 	struct vm_struct *vm; /* vm area for mapping object that span pages */
238 #else
239 	char *vm_buf; /* copy buffer for objects that span pages */
240 #endif
241 	char *vm_addr; /* address of kmap_atomic()'ed pages */
242 	enum zs_mapmode vm_mm; /* mapping mode */
243 };
244 
245 /* zpool driver */
246 
247 #ifdef CONFIG_ZPOOL
248 
249 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
250 {
251 	return zs_create_pool(gfp);
252 }
253 
254 static void zs_zpool_destroy(void *pool)
255 {
256 	zs_destroy_pool(pool);
257 }
258 
259 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
260 			unsigned long *handle)
261 {
262 	*handle = zs_malloc(pool, size);
263 	return *handle ? 0 : -1;
264 }
265 static void zs_zpool_free(void *pool, unsigned long handle)
266 {
267 	zs_free(pool, handle);
268 }
269 
270 static int zs_zpool_shrink(void *pool, unsigned int pages,
271 			unsigned int *reclaimed)
272 {
273 	return -EINVAL;
274 }
275 
276 static void *zs_zpool_map(void *pool, unsigned long handle,
277 			enum zpool_mapmode mm)
278 {
279 	enum zs_mapmode zs_mm;
280 
281 	switch (mm) {
282 	case ZPOOL_MM_RO:
283 		zs_mm = ZS_MM_RO;
284 		break;
285 	case ZPOOL_MM_WO:
286 		zs_mm = ZS_MM_WO;
287 		break;
288 	case ZPOOL_MM_RW: /* fallthru */
289 	default:
290 		zs_mm = ZS_MM_RW;
291 		break;
292 	}
293 
294 	return zs_map_object(pool, handle, zs_mm);
295 }
296 static void zs_zpool_unmap(void *pool, unsigned long handle)
297 {
298 	zs_unmap_object(pool, handle);
299 }
300 
301 static u64 zs_zpool_total_size(void *pool)
302 {
303 	return zs_get_total_pages(pool) << PAGE_SHIFT;
304 }
305 
306 static struct zpool_driver zs_zpool_driver = {
307 	.type =		"zsmalloc",
308 	.owner =	THIS_MODULE,
309 	.create =	zs_zpool_create,
310 	.destroy =	zs_zpool_destroy,
311 	.malloc =	zs_zpool_malloc,
312 	.free =		zs_zpool_free,
313 	.shrink =	zs_zpool_shrink,
314 	.map =		zs_zpool_map,
315 	.unmap =	zs_zpool_unmap,
316 	.total_size =	zs_zpool_total_size,
317 };
318 
319 MODULE_ALIAS("zpool-zsmalloc");
320 #endif /* CONFIG_ZPOOL */
321 
322 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
323 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
324 
325 static int is_first_page(struct page *page)
326 {
327 	return PagePrivate(page);
328 }
329 
330 static int is_last_page(struct page *page)
331 {
332 	return PagePrivate2(page);
333 }
334 
335 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
336 				enum fullness_group *fullness)
337 {
338 	unsigned long m;
339 	BUG_ON(!is_first_page(page));
340 
341 	m = (unsigned long)page->mapping;
342 	*fullness = m & FULLNESS_MASK;
343 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
344 }
345 
346 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
347 				enum fullness_group fullness)
348 {
349 	unsigned long m;
350 	BUG_ON(!is_first_page(page));
351 
352 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
353 			(fullness & FULLNESS_MASK);
354 	page->mapping = (struct address_space *)m;
355 }
356 
357 /*
358  * zsmalloc divides the pool into various size classes where each
359  * class maintains a list of zspages where each zspage is divided
360  * into equal sized chunks. Each allocation falls into one of these
361  * classes depending on its size. This function returns index of the
362  * size class which has chunk size big enough to hold the give size.
363  */
364 static int get_size_class_index(int size)
365 {
366 	int idx = 0;
367 
368 	if (likely(size > ZS_MIN_ALLOC_SIZE))
369 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
370 				ZS_SIZE_CLASS_DELTA);
371 
372 	return idx;
373 }
374 
375 /*
376  * For each size class, zspages are divided into different groups
377  * depending on how "full" they are. This was done so that we could
378  * easily find empty or nearly empty zspages when we try to shrink
379  * the pool (not yet implemented). This function returns fullness
380  * status of the given page.
381  */
382 static enum fullness_group get_fullness_group(struct page *page)
383 {
384 	int inuse, max_objects;
385 	enum fullness_group fg;
386 	BUG_ON(!is_first_page(page));
387 
388 	inuse = page->inuse;
389 	max_objects = page->objects;
390 
391 	if (inuse == 0)
392 		fg = ZS_EMPTY;
393 	else if (inuse == max_objects)
394 		fg = ZS_FULL;
395 	else if (inuse <= max_objects / fullness_threshold_frac)
396 		fg = ZS_ALMOST_EMPTY;
397 	else
398 		fg = ZS_ALMOST_FULL;
399 
400 	return fg;
401 }
402 
403 /*
404  * Each size class maintains various freelists and zspages are assigned
405  * to one of these freelists based on the number of live objects they
406  * have. This functions inserts the given zspage into the freelist
407  * identified by <class, fullness_group>.
408  */
409 static void insert_zspage(struct page *page, struct size_class *class,
410 				enum fullness_group fullness)
411 {
412 	struct page **head;
413 
414 	BUG_ON(!is_first_page(page));
415 
416 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
417 		return;
418 
419 	head = &class->fullness_list[fullness];
420 	if (*head)
421 		list_add_tail(&page->lru, &(*head)->lru);
422 
423 	*head = page;
424 }
425 
426 /*
427  * This function removes the given zspage from the freelist identified
428  * by <class, fullness_group>.
429  */
430 static void remove_zspage(struct page *page, struct size_class *class,
431 				enum fullness_group fullness)
432 {
433 	struct page **head;
434 
435 	BUG_ON(!is_first_page(page));
436 
437 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
438 		return;
439 
440 	head = &class->fullness_list[fullness];
441 	BUG_ON(!*head);
442 	if (list_empty(&(*head)->lru))
443 		*head = NULL;
444 	else if (*head == page)
445 		*head = (struct page *)list_entry((*head)->lru.next,
446 					struct page, lru);
447 
448 	list_del_init(&page->lru);
449 }
450 
451 /*
452  * Each size class maintains zspages in different fullness groups depending
453  * on the number of live objects they contain. When allocating or freeing
454  * objects, the fullness status of the page can change, say, from ALMOST_FULL
455  * to ALMOST_EMPTY when freeing an object. This function checks if such
456  * a status change has occurred for the given page and accordingly moves the
457  * page from the freelist of the old fullness group to that of the new
458  * fullness group.
459  */
460 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
461 						struct page *page)
462 {
463 	int class_idx;
464 	struct size_class *class;
465 	enum fullness_group currfg, newfg;
466 
467 	BUG_ON(!is_first_page(page));
468 
469 	get_zspage_mapping(page, &class_idx, &currfg);
470 	newfg = get_fullness_group(page);
471 	if (newfg == currfg)
472 		goto out;
473 
474 	class = pool->size_class[class_idx];
475 	remove_zspage(page, class, currfg);
476 	insert_zspage(page, class, newfg);
477 	set_zspage_mapping(page, class_idx, newfg);
478 
479 out:
480 	return newfg;
481 }
482 
483 /*
484  * We have to decide on how many pages to link together
485  * to form a zspage for each size class. This is important
486  * to reduce wastage due to unusable space left at end of
487  * each zspage which is given as:
488  *	wastage = Zp - Zp % size_class
489  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
490  *
491  * For example, for size class of 3/8 * PAGE_SIZE, we should
492  * link together 3 PAGE_SIZE sized pages to form a zspage
493  * since then we can perfectly fit in 8 such objects.
494  */
495 static int get_pages_per_zspage(int class_size)
496 {
497 	int i, max_usedpc = 0;
498 	/* zspage order which gives maximum used size per KB */
499 	int max_usedpc_order = 1;
500 
501 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
502 		int zspage_size;
503 		int waste, usedpc;
504 
505 		zspage_size = i * PAGE_SIZE;
506 		waste = zspage_size % class_size;
507 		usedpc = (zspage_size - waste) * 100 / zspage_size;
508 
509 		if (usedpc > max_usedpc) {
510 			max_usedpc = usedpc;
511 			max_usedpc_order = i;
512 		}
513 	}
514 
515 	return max_usedpc_order;
516 }
517 
518 /*
519  * A single 'zspage' is composed of many system pages which are
520  * linked together using fields in struct page. This function finds
521  * the first/head page, given any component page of a zspage.
522  */
523 static struct page *get_first_page(struct page *page)
524 {
525 	if (is_first_page(page))
526 		return page;
527 	else
528 		return page->first_page;
529 }
530 
531 static struct page *get_next_page(struct page *page)
532 {
533 	struct page *next;
534 
535 	if (is_last_page(page))
536 		next = NULL;
537 	else if (is_first_page(page))
538 		next = (struct page *)page_private(page);
539 	else
540 		next = list_entry(page->lru.next, struct page, lru);
541 
542 	return next;
543 }
544 
545 /*
546  * Encode <page, obj_idx> as a single handle value.
547  * On hardware platforms with physical memory starting at 0x0 the pfn
548  * could be 0 so we ensure that the handle will never be 0 by adjusting the
549  * encoded obj_idx value before encoding.
550  */
551 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
552 {
553 	unsigned long handle;
554 
555 	if (!page) {
556 		BUG_ON(obj_idx);
557 		return NULL;
558 	}
559 
560 	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
561 	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
562 
563 	return (void *)handle;
564 }
565 
566 /*
567  * Decode <page, obj_idx> pair from the given object handle. We adjust the
568  * decoded obj_idx back to its original value since it was adjusted in
569  * obj_location_to_handle().
570  */
571 static void obj_handle_to_location(unsigned long handle, struct page **page,
572 				unsigned long *obj_idx)
573 {
574 	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
575 	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
576 }
577 
578 static unsigned long obj_idx_to_offset(struct page *page,
579 				unsigned long obj_idx, int class_size)
580 {
581 	unsigned long off = 0;
582 
583 	if (!is_first_page(page))
584 		off = page->index;
585 
586 	return off + obj_idx * class_size;
587 }
588 
589 static void reset_page(struct page *page)
590 {
591 	clear_bit(PG_private, &page->flags);
592 	clear_bit(PG_private_2, &page->flags);
593 	set_page_private(page, 0);
594 	page->mapping = NULL;
595 	page->freelist = NULL;
596 	page_mapcount_reset(page);
597 }
598 
599 static void free_zspage(struct page *first_page)
600 {
601 	struct page *nextp, *tmp, *head_extra;
602 
603 	BUG_ON(!is_first_page(first_page));
604 	BUG_ON(first_page->inuse);
605 
606 	head_extra = (struct page *)page_private(first_page);
607 
608 	reset_page(first_page);
609 	__free_page(first_page);
610 
611 	/* zspage with only 1 system page */
612 	if (!head_extra)
613 		return;
614 
615 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
616 		list_del(&nextp->lru);
617 		reset_page(nextp);
618 		__free_page(nextp);
619 	}
620 	reset_page(head_extra);
621 	__free_page(head_extra);
622 }
623 
624 /* Initialize a newly allocated zspage */
625 static void init_zspage(struct page *first_page, struct size_class *class)
626 {
627 	unsigned long off = 0;
628 	struct page *page = first_page;
629 
630 	BUG_ON(!is_first_page(first_page));
631 	while (page) {
632 		struct page *next_page;
633 		struct link_free *link;
634 		unsigned int i = 1;
635 		void *vaddr;
636 
637 		/*
638 		 * page->index stores offset of first object starting
639 		 * in the page. For the first page, this is always 0,
640 		 * so we use first_page->index (aka ->freelist) to store
641 		 * head of corresponding zspage's freelist.
642 		 */
643 		if (page != first_page)
644 			page->index = off;
645 
646 		vaddr = kmap_atomic(page);
647 		link = (struct link_free *)vaddr + off / sizeof(*link);
648 
649 		while ((off += class->size) < PAGE_SIZE) {
650 			link->next = obj_location_to_handle(page, i++);
651 			link += class->size / sizeof(*link);
652 		}
653 
654 		/*
655 		 * We now come to the last (full or partial) object on this
656 		 * page, which must point to the first object on the next
657 		 * page (if present)
658 		 */
659 		next_page = get_next_page(page);
660 		link->next = obj_location_to_handle(next_page, 0);
661 		kunmap_atomic(vaddr);
662 		page = next_page;
663 		off %= PAGE_SIZE;
664 	}
665 }
666 
667 /*
668  * Allocate a zspage for the given size class
669  */
670 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
671 {
672 	int i, error;
673 	struct page *first_page = NULL, *uninitialized_var(prev_page);
674 
675 	/*
676 	 * Allocate individual pages and link them together as:
677 	 * 1. first page->private = first sub-page
678 	 * 2. all sub-pages are linked together using page->lru
679 	 * 3. each sub-page is linked to the first page using page->first_page
680 	 *
681 	 * For each size class, First/Head pages are linked together using
682 	 * page->lru. Also, we set PG_private to identify the first page
683 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
684 	 * identify the last page.
685 	 */
686 	error = -ENOMEM;
687 	for (i = 0; i < class->pages_per_zspage; i++) {
688 		struct page *page;
689 
690 		page = alloc_page(flags);
691 		if (!page)
692 			goto cleanup;
693 
694 		INIT_LIST_HEAD(&page->lru);
695 		if (i == 0) {	/* first page */
696 			SetPagePrivate(page);
697 			set_page_private(page, 0);
698 			first_page = page;
699 			first_page->inuse = 0;
700 		}
701 		if (i == 1)
702 			set_page_private(first_page, (unsigned long)page);
703 		if (i >= 1)
704 			page->first_page = first_page;
705 		if (i >= 2)
706 			list_add(&page->lru, &prev_page->lru);
707 		if (i == class->pages_per_zspage - 1)	/* last page */
708 			SetPagePrivate2(page);
709 		prev_page = page;
710 	}
711 
712 	init_zspage(first_page, class);
713 
714 	first_page->freelist = obj_location_to_handle(first_page, 0);
715 	/* Maximum number of objects we can store in this zspage */
716 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
717 
718 	error = 0; /* Success */
719 
720 cleanup:
721 	if (unlikely(error) && first_page) {
722 		free_zspage(first_page);
723 		first_page = NULL;
724 	}
725 
726 	return first_page;
727 }
728 
729 static struct page *find_get_zspage(struct size_class *class)
730 {
731 	int i;
732 	struct page *page;
733 
734 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
735 		page = class->fullness_list[i];
736 		if (page)
737 			break;
738 	}
739 
740 	return page;
741 }
742 
743 #ifdef CONFIG_PGTABLE_MAPPING
744 static inline int __zs_cpu_up(struct mapping_area *area)
745 {
746 	/*
747 	 * Make sure we don't leak memory if a cpu UP notification
748 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
749 	 */
750 	if (area->vm)
751 		return 0;
752 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
753 	if (!area->vm)
754 		return -ENOMEM;
755 	return 0;
756 }
757 
758 static inline void __zs_cpu_down(struct mapping_area *area)
759 {
760 	if (area->vm)
761 		free_vm_area(area->vm);
762 	area->vm = NULL;
763 }
764 
765 static inline void *__zs_map_object(struct mapping_area *area,
766 				struct page *pages[2], int off, int size)
767 {
768 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
769 	area->vm_addr = area->vm->addr;
770 	return area->vm_addr + off;
771 }
772 
773 static inline void __zs_unmap_object(struct mapping_area *area,
774 				struct page *pages[2], int off, int size)
775 {
776 	unsigned long addr = (unsigned long)area->vm_addr;
777 
778 	unmap_kernel_range(addr, PAGE_SIZE * 2);
779 }
780 
781 #else /* CONFIG_PGTABLE_MAPPING */
782 
783 static inline int __zs_cpu_up(struct mapping_area *area)
784 {
785 	/*
786 	 * Make sure we don't leak memory if a cpu UP notification
787 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
788 	 */
789 	if (area->vm_buf)
790 		return 0;
791 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
792 	if (!area->vm_buf)
793 		return -ENOMEM;
794 	return 0;
795 }
796 
797 static inline void __zs_cpu_down(struct mapping_area *area)
798 {
799 	kfree(area->vm_buf);
800 	area->vm_buf = NULL;
801 }
802 
803 static void *__zs_map_object(struct mapping_area *area,
804 			struct page *pages[2], int off, int size)
805 {
806 	int sizes[2];
807 	void *addr;
808 	char *buf = area->vm_buf;
809 
810 	/* disable page faults to match kmap_atomic() return conditions */
811 	pagefault_disable();
812 
813 	/* no read fastpath */
814 	if (area->vm_mm == ZS_MM_WO)
815 		goto out;
816 
817 	sizes[0] = PAGE_SIZE - off;
818 	sizes[1] = size - sizes[0];
819 
820 	/* copy object to per-cpu buffer */
821 	addr = kmap_atomic(pages[0]);
822 	memcpy(buf, addr + off, sizes[0]);
823 	kunmap_atomic(addr);
824 	addr = kmap_atomic(pages[1]);
825 	memcpy(buf + sizes[0], addr, sizes[1]);
826 	kunmap_atomic(addr);
827 out:
828 	return area->vm_buf;
829 }
830 
831 static void __zs_unmap_object(struct mapping_area *area,
832 			struct page *pages[2], int off, int size)
833 {
834 	int sizes[2];
835 	void *addr;
836 	char *buf = area->vm_buf;
837 
838 	/* no write fastpath */
839 	if (area->vm_mm == ZS_MM_RO)
840 		goto out;
841 
842 	sizes[0] = PAGE_SIZE - off;
843 	sizes[1] = size - sizes[0];
844 
845 	/* copy per-cpu buffer to object */
846 	addr = kmap_atomic(pages[0]);
847 	memcpy(addr + off, buf, sizes[0]);
848 	kunmap_atomic(addr);
849 	addr = kmap_atomic(pages[1]);
850 	memcpy(addr, buf + sizes[0], sizes[1]);
851 	kunmap_atomic(addr);
852 
853 out:
854 	/* enable page faults to match kunmap_atomic() return conditions */
855 	pagefault_enable();
856 }
857 
858 #endif /* CONFIG_PGTABLE_MAPPING */
859 
860 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
861 				void *pcpu)
862 {
863 	int ret, cpu = (long)pcpu;
864 	struct mapping_area *area;
865 
866 	switch (action) {
867 	case CPU_UP_PREPARE:
868 		area = &per_cpu(zs_map_area, cpu);
869 		ret = __zs_cpu_up(area);
870 		if (ret)
871 			return notifier_from_errno(ret);
872 		break;
873 	case CPU_DEAD:
874 	case CPU_UP_CANCELED:
875 		area = &per_cpu(zs_map_area, cpu);
876 		__zs_cpu_down(area);
877 		break;
878 	}
879 
880 	return NOTIFY_OK;
881 }
882 
883 static struct notifier_block zs_cpu_nb = {
884 	.notifier_call = zs_cpu_notifier
885 };
886 
887 static int zs_register_cpu_notifier(void)
888 {
889 	int cpu, uninitialized_var(ret);
890 
891 	cpu_notifier_register_begin();
892 
893 	__register_cpu_notifier(&zs_cpu_nb);
894 	for_each_online_cpu(cpu) {
895 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
896 		if (notifier_to_errno(ret))
897 			break;
898 	}
899 
900 	cpu_notifier_register_done();
901 	return notifier_to_errno(ret);
902 }
903 
904 static void zs_unregister_cpu_notifier(void)
905 {
906 	int cpu;
907 
908 	cpu_notifier_register_begin();
909 
910 	for_each_online_cpu(cpu)
911 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
912 	__unregister_cpu_notifier(&zs_cpu_nb);
913 
914 	cpu_notifier_register_done();
915 }
916 
917 static void init_zs_size_classes(void)
918 {
919 	int nr;
920 
921 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
922 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
923 		nr += 1;
924 
925 	zs_size_classes = nr;
926 }
927 
928 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
929 {
930 	return pages_per_zspage * PAGE_SIZE / size;
931 }
932 
933 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
934 {
935 	if (prev->pages_per_zspage != pages_per_zspage)
936 		return false;
937 
938 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
939 		!= get_maxobj_per_zspage(size, pages_per_zspage))
940 		return false;
941 
942 	return true;
943 }
944 
945 unsigned long zs_get_total_pages(struct zs_pool *pool)
946 {
947 	return atomic_long_read(&pool->pages_allocated);
948 }
949 EXPORT_SYMBOL_GPL(zs_get_total_pages);
950 
951 /**
952  * zs_map_object - get address of allocated object from handle.
953  * @pool: pool from which the object was allocated
954  * @handle: handle returned from zs_malloc
955  *
956  * Before using an object allocated from zs_malloc, it must be mapped using
957  * this function. When done with the object, it must be unmapped using
958  * zs_unmap_object.
959  *
960  * Only one object can be mapped per cpu at a time. There is no protection
961  * against nested mappings.
962  *
963  * This function returns with preemption and page faults disabled.
964  */
965 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
966 			enum zs_mapmode mm)
967 {
968 	struct page *page;
969 	unsigned long obj_idx, off;
970 
971 	unsigned int class_idx;
972 	enum fullness_group fg;
973 	struct size_class *class;
974 	struct mapping_area *area;
975 	struct page *pages[2];
976 
977 	BUG_ON(!handle);
978 
979 	/*
980 	 * Because we use per-cpu mapping areas shared among the
981 	 * pools/users, we can't allow mapping in interrupt context
982 	 * because it can corrupt another users mappings.
983 	 */
984 	BUG_ON(in_interrupt());
985 
986 	obj_handle_to_location(handle, &page, &obj_idx);
987 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
988 	class = pool->size_class[class_idx];
989 	off = obj_idx_to_offset(page, obj_idx, class->size);
990 
991 	area = &get_cpu_var(zs_map_area);
992 	area->vm_mm = mm;
993 	if (off + class->size <= PAGE_SIZE) {
994 		/* this object is contained entirely within a page */
995 		area->vm_addr = kmap_atomic(page);
996 		return area->vm_addr + off;
997 	}
998 
999 	/* this object spans two pages */
1000 	pages[0] = page;
1001 	pages[1] = get_next_page(page);
1002 	BUG_ON(!pages[1]);
1003 
1004 	return __zs_map_object(area, pages, off, class->size);
1005 }
1006 EXPORT_SYMBOL_GPL(zs_map_object);
1007 
1008 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1009 {
1010 	struct page *page;
1011 	unsigned long obj_idx, off;
1012 
1013 	unsigned int class_idx;
1014 	enum fullness_group fg;
1015 	struct size_class *class;
1016 	struct mapping_area *area;
1017 
1018 	BUG_ON(!handle);
1019 
1020 	obj_handle_to_location(handle, &page, &obj_idx);
1021 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1022 	class = pool->size_class[class_idx];
1023 	off = obj_idx_to_offset(page, obj_idx, class->size);
1024 
1025 	area = this_cpu_ptr(&zs_map_area);
1026 	if (off + class->size <= PAGE_SIZE)
1027 		kunmap_atomic(area->vm_addr);
1028 	else {
1029 		struct page *pages[2];
1030 
1031 		pages[0] = page;
1032 		pages[1] = get_next_page(page);
1033 		BUG_ON(!pages[1]);
1034 
1035 		__zs_unmap_object(area, pages, off, class->size);
1036 	}
1037 	put_cpu_var(zs_map_area);
1038 }
1039 EXPORT_SYMBOL_GPL(zs_unmap_object);
1040 
1041 /**
1042  * zs_malloc - Allocate block of given size from pool.
1043  * @pool: pool to allocate from
1044  * @size: size of block to allocate
1045  *
1046  * On success, handle to the allocated object is returned,
1047  * otherwise 0.
1048  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1049  */
1050 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1051 {
1052 	unsigned long obj;
1053 	struct link_free *link;
1054 	struct size_class *class;
1055 	void *vaddr;
1056 
1057 	struct page *first_page, *m_page;
1058 	unsigned long m_objidx, m_offset;
1059 
1060 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1061 		return 0;
1062 
1063 	class = pool->size_class[get_size_class_index(size)];
1064 
1065 	spin_lock(&class->lock);
1066 	first_page = find_get_zspage(class);
1067 
1068 	if (!first_page) {
1069 		spin_unlock(&class->lock);
1070 		first_page = alloc_zspage(class, pool->flags);
1071 		if (unlikely(!first_page))
1072 			return 0;
1073 
1074 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1075 		atomic_long_add(class->pages_per_zspage,
1076 					&pool->pages_allocated);
1077 		spin_lock(&class->lock);
1078 	}
1079 
1080 	obj = (unsigned long)first_page->freelist;
1081 	obj_handle_to_location(obj, &m_page, &m_objidx);
1082 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1083 
1084 	vaddr = kmap_atomic(m_page);
1085 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1086 	first_page->freelist = link->next;
1087 	memset(link, POISON_INUSE, sizeof(*link));
1088 	kunmap_atomic(vaddr);
1089 
1090 	first_page->inuse++;
1091 	/* Now move the zspage to another fullness group, if required */
1092 	fix_fullness_group(pool, first_page);
1093 	spin_unlock(&class->lock);
1094 
1095 	return obj;
1096 }
1097 EXPORT_SYMBOL_GPL(zs_malloc);
1098 
1099 void zs_free(struct zs_pool *pool, unsigned long obj)
1100 {
1101 	struct link_free *link;
1102 	struct page *first_page, *f_page;
1103 	unsigned long f_objidx, f_offset;
1104 	void *vaddr;
1105 
1106 	int class_idx;
1107 	struct size_class *class;
1108 	enum fullness_group fullness;
1109 
1110 	if (unlikely(!obj))
1111 		return;
1112 
1113 	obj_handle_to_location(obj, &f_page, &f_objidx);
1114 	first_page = get_first_page(f_page);
1115 
1116 	get_zspage_mapping(first_page, &class_idx, &fullness);
1117 	class = pool->size_class[class_idx];
1118 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1119 
1120 	spin_lock(&class->lock);
1121 
1122 	/* Insert this object in containing zspage's freelist */
1123 	vaddr = kmap_atomic(f_page);
1124 	link = (struct link_free *)(vaddr + f_offset);
1125 	link->next = first_page->freelist;
1126 	kunmap_atomic(vaddr);
1127 	first_page->freelist = (void *)obj;
1128 
1129 	first_page->inuse--;
1130 	fullness = fix_fullness_group(pool, first_page);
1131 	spin_unlock(&class->lock);
1132 
1133 	if (fullness == ZS_EMPTY) {
1134 		atomic_long_sub(class->pages_per_zspage,
1135 				&pool->pages_allocated);
1136 		free_zspage(first_page);
1137 	}
1138 }
1139 EXPORT_SYMBOL_GPL(zs_free);
1140 
1141 /**
1142  * zs_create_pool - Creates an allocation pool to work from.
1143  * @flags: allocation flags used to allocate pool metadata
1144  *
1145  * This function must be called before anything when using
1146  * the zsmalloc allocator.
1147  *
1148  * On success, a pointer to the newly created pool is returned,
1149  * otherwise NULL.
1150  */
1151 struct zs_pool *zs_create_pool(gfp_t flags)
1152 {
1153 	int i;
1154 	struct zs_pool *pool;
1155 	struct size_class *prev_class = NULL;
1156 
1157 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1158 	if (!pool)
1159 		return NULL;
1160 
1161 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1162 			GFP_KERNEL);
1163 	if (!pool->size_class) {
1164 		kfree(pool);
1165 		return NULL;
1166 	}
1167 
1168 	/*
1169 	 * Iterate reversly, because, size of size_class that we want to use
1170 	 * for merging should be larger or equal to current size.
1171 	 */
1172 	for (i = zs_size_classes - 1; i >= 0; i--) {
1173 		int size;
1174 		int pages_per_zspage;
1175 		struct size_class *class;
1176 
1177 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1178 		if (size > ZS_MAX_ALLOC_SIZE)
1179 			size = ZS_MAX_ALLOC_SIZE;
1180 		pages_per_zspage = get_pages_per_zspage(size);
1181 
1182 		/*
1183 		 * size_class is used for normal zsmalloc operation such
1184 		 * as alloc/free for that size. Although it is natural that we
1185 		 * have one size_class for each size, there is a chance that we
1186 		 * can get more memory utilization if we use one size_class for
1187 		 * many different sizes whose size_class have same
1188 		 * characteristics. So, we makes size_class point to
1189 		 * previous size_class if possible.
1190 		 */
1191 		if (prev_class) {
1192 			if (can_merge(prev_class, size, pages_per_zspage)) {
1193 				pool->size_class[i] = prev_class;
1194 				continue;
1195 			}
1196 		}
1197 
1198 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1199 		if (!class)
1200 			goto err;
1201 
1202 		class->size = size;
1203 		class->index = i;
1204 		class->pages_per_zspage = pages_per_zspage;
1205 		spin_lock_init(&class->lock);
1206 		pool->size_class[i] = class;
1207 
1208 		prev_class = class;
1209 	}
1210 
1211 	pool->flags = flags;
1212 
1213 	return pool;
1214 
1215 err:
1216 	zs_destroy_pool(pool);
1217 	return NULL;
1218 }
1219 EXPORT_SYMBOL_GPL(zs_create_pool);
1220 
1221 void zs_destroy_pool(struct zs_pool *pool)
1222 {
1223 	int i;
1224 
1225 	for (i = 0; i < zs_size_classes; i++) {
1226 		int fg;
1227 		struct size_class *class = pool->size_class[i];
1228 
1229 		if (!class)
1230 			continue;
1231 
1232 		if (class->index != i)
1233 			continue;
1234 
1235 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1236 			if (class->fullness_list[fg]) {
1237 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1238 					class->size, fg);
1239 			}
1240 		}
1241 		kfree(class);
1242 	}
1243 
1244 	kfree(pool->size_class);
1245 	kfree(pool);
1246 }
1247 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1248 
1249 static int __init zs_init(void)
1250 {
1251 	int ret = zs_register_cpu_notifier();
1252 
1253 	if (ret) {
1254 		zs_unregister_cpu_notifier();
1255 		return ret;
1256 	}
1257 
1258 	init_zs_size_classes();
1259 
1260 #ifdef CONFIG_ZPOOL
1261 	zpool_register_driver(&zs_zpool_driver);
1262 #endif
1263 	return 0;
1264 }
1265 
1266 static void __exit zs_exit(void)
1267 {
1268 #ifdef CONFIG_ZPOOL
1269 	zpool_unregister_driver(&zs_zpool_driver);
1270 #endif
1271 	zs_unregister_cpu_notifier();
1272 }
1273 
1274 module_init(zs_init);
1275 module_exit(zs_exit);
1276 
1277 MODULE_LICENSE("Dual BSD/GPL");
1278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1279