xref: /openbmc/linux/mm/zsmalloc.c (revision 26dd3e4f)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_private2: identifies the last component page
28  *	PG_owner_priv_1: indentifies the huge component page
29  *
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56 
57 #define ZSPAGE_MAGIC	0x58
58 
59 /*
60  * This must be power of 2 and greater than of equal to sizeof(link_free).
61  * These two conditions ensure that any 'struct link_free' itself doesn't
62  * span more than 1 page which avoids complex case of mapping 2 pages simply
63  * to restore link_free pointer values.
64  */
65 #define ZS_ALIGN		8
66 
67 /*
68  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70  */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73 
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75 
76 /*
77  * Object location (<PFN>, <obj_idx>) is encoded as
78  * as single (unsigned long) handle value.
79  *
80  * Note that object index <obj_idx> starts from 0.
81  *
82  * This is made more complicated by various memory models and PAE.
83  */
84 
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91  * be PAGE_SHIFT
92  */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
97 
98 /*
99  * Memory for allocating for handle keeps object position by
100  * encoding <page, obj_idx> and the encoded value has a room
101  * in least bit(ie, look at obj_to_location).
102  * We use the bit to synchronize between object access by
103  * user and migration.
104  */
105 #define HANDLE_PIN_BIT	0
106 
107 /*
108  * Head in allocated object should have OBJ_ALLOCATED_TAG
109  * to identify the object was allocated or not.
110  * It's okay to add the status bit in the least bit because
111  * header keeps handle which is 4byte-aligned address so we
112  * have room for two bit at least.
113  */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118 
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
125 
126 /*
127  * On systems with 4K page size, this gives 255 size classes! There is a
128  * trader-off here:
129  *  - Large number of size classes is potentially wasteful as free page are
130  *    spread across these classes
131  *  - Small number of size classes causes large internal fragmentation
132  *  - Probably its better to use specific size classes (empirically
133  *    determined). NOTE: all those class sizes must be set as multiple of
134  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
135  *
136  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137  *  (reason above)
138  */
139 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
140 
141 enum fullness_group {
142 	ZS_EMPTY,
143 	ZS_ALMOST_EMPTY,
144 	ZS_ALMOST_FULL,
145 	ZS_FULL,
146 	NR_ZS_FULLNESS,
147 };
148 
149 enum zs_stat_type {
150 	CLASS_EMPTY,
151 	CLASS_ALMOST_EMPTY,
152 	CLASS_ALMOST_FULL,
153 	CLASS_FULL,
154 	OBJ_ALLOCATED,
155 	OBJ_USED,
156 	NR_ZS_STAT_TYPE,
157 };
158 
159 struct zs_size_stat {
160 	unsigned long objs[NR_ZS_STAT_TYPE];
161 };
162 
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
166 
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
170 
171 /*
172  * number of size_classes
173  */
174 static int zs_size_classes;
175 
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *	n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *	ZS_ALMOST_FULL	when n > N / f
185  *	ZS_EMPTY	when n == 0
186  *	ZS_FULL		when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 
192 struct size_class {
193 	spinlock_t lock;
194 	struct list_head fullness_list[NR_ZS_FULLNESS];
195 	/*
196 	 * Size of objects stored in this class. Must be multiple
197 	 * of ZS_ALIGN.
198 	 */
199 	int size;
200 	int objs_per_zspage;
201 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 	int pages_per_zspage;
203 
204 	unsigned int index;
205 	struct zs_size_stat stats;
206 };
207 
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
210 {
211 	SetPageOwnerPriv1(page);
212 }
213 
214 static void ClearPageHugeObject(struct page *page)
215 {
216 	ClearPageOwnerPriv1(page);
217 }
218 
219 static int PageHugeObject(struct page *page)
220 {
221 	return PageOwnerPriv1(page);
222 }
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Free object index;
234 		 * It's valid for non-allocated object
235 		 */
236 		unsigned long next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 	};
242 };
243 
244 struct zs_pool {
245 	const char *name;
246 
247 	struct size_class **size_class;
248 	struct kmem_cache *handle_cachep;
249 	struct kmem_cache *zspage_cachep;
250 
251 	atomic_long_t pages_allocated;
252 
253 	struct zs_pool_stats stats;
254 
255 	/* Compact classes */
256 	struct shrinker shrinker;
257 	/*
258 	 * To signify that register_shrinker() was successful
259 	 * and unregister_shrinker() will not Oops.
260 	 */
261 	bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 	struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 	struct inode *inode;
267 	struct work_struct free_work;
268 #endif
269 };
270 
271 /*
272  * A zspage's class index and fullness group
273  * are encoded in its (first)page->mapping
274  */
275 #define FULLNESS_BITS	2
276 #define CLASS_BITS	8
277 #define ISOLATED_BITS	3
278 #define MAGIC_VAL_BITS	8
279 
280 struct zspage {
281 	struct {
282 		unsigned int fullness:FULLNESS_BITS;
283 		unsigned int class:CLASS_BITS;
284 		unsigned int isolated:ISOLATED_BITS;
285 		unsigned int magic:MAGIC_VAL_BITS;
286 	};
287 	unsigned int inuse;
288 	unsigned int freeobj;
289 	struct page *first_page;
290 	struct list_head list; /* fullness list */
291 #ifdef CONFIG_COMPACTION
292 	rwlock_t lock;
293 #endif
294 };
295 
296 struct mapping_area {
297 #ifdef CONFIG_PGTABLE_MAPPING
298 	struct vm_struct *vm; /* vm area for mapping object that span pages */
299 #else
300 	char *vm_buf; /* copy buffer for objects that span pages */
301 #endif
302 	char *vm_addr; /* address of kmap_atomic()'ed pages */
303 	enum zs_mapmode vm_mm; /* mapping mode */
304 };
305 
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool *pool);
308 static void zs_unregister_migration(struct zs_pool *pool);
309 static void migrate_lock_init(struct zspage *zspage);
310 static void migrate_read_lock(struct zspage *zspage);
311 static void migrate_read_unlock(struct zspage *zspage);
312 static void kick_deferred_free(struct zs_pool *pool);
313 static void init_deferred_free(struct zs_pool *pool);
314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 #else
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool *pool) { return 0; }
319 static void zs_unregister_migration(struct zs_pool *pool) {}
320 static void migrate_lock_init(struct zspage *zspage) {}
321 static void migrate_read_lock(struct zspage *zspage) {}
322 static void migrate_read_unlock(struct zspage *zspage) {}
323 static void kick_deferred_free(struct zs_pool *pool) {}
324 static void init_deferred_free(struct zs_pool *pool) {}
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 #endif
327 
328 static int create_cache(struct zs_pool *pool)
329 {
330 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331 					0, 0, NULL);
332 	if (!pool->handle_cachep)
333 		return 1;
334 
335 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336 					0, 0, NULL);
337 	if (!pool->zspage_cachep) {
338 		kmem_cache_destroy(pool->handle_cachep);
339 		pool->handle_cachep = NULL;
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 static void destroy_cache(struct zs_pool *pool)
347 {
348 	kmem_cache_destroy(pool->handle_cachep);
349 	kmem_cache_destroy(pool->zspage_cachep);
350 }
351 
352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
353 {
354 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
355 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 }
357 
358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
359 {
360 	kmem_cache_free(pool->handle_cachep, (void *)handle);
361 }
362 
363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
364 {
365 	return kmem_cache_alloc(pool->zspage_cachep,
366 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 };
368 
369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
370 {
371 	kmem_cache_free(pool->zspage_cachep, zspage);
372 }
373 
374 static void record_obj(unsigned long handle, unsigned long obj)
375 {
376 	/*
377 	 * lsb of @obj represents handle lock while other bits
378 	 * represent object value the handle is pointing so
379 	 * updating shouldn't do store tearing.
380 	 */
381 	WRITE_ONCE(*(unsigned long *)handle, obj);
382 }
383 
384 /* zpool driver */
385 
386 #ifdef CONFIG_ZPOOL
387 
388 static void *zs_zpool_create(const char *name, gfp_t gfp,
389 			     const struct zpool_ops *zpool_ops,
390 			     struct zpool *zpool)
391 {
392 	/*
393 	 * Ignore global gfp flags: zs_malloc() may be invoked from
394 	 * different contexts and its caller must provide a valid
395 	 * gfp mask.
396 	 */
397 	return zs_create_pool(name);
398 }
399 
400 static void zs_zpool_destroy(void *pool)
401 {
402 	zs_destroy_pool(pool);
403 }
404 
405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
406 			unsigned long *handle)
407 {
408 	*handle = zs_malloc(pool, size, gfp);
409 	return *handle ? 0 : -1;
410 }
411 static void zs_zpool_free(void *pool, unsigned long handle)
412 {
413 	zs_free(pool, handle);
414 }
415 
416 static int zs_zpool_shrink(void *pool, unsigned int pages,
417 			unsigned int *reclaimed)
418 {
419 	return -EINVAL;
420 }
421 
422 static void *zs_zpool_map(void *pool, unsigned long handle,
423 			enum zpool_mapmode mm)
424 {
425 	enum zs_mapmode zs_mm;
426 
427 	switch (mm) {
428 	case ZPOOL_MM_RO:
429 		zs_mm = ZS_MM_RO;
430 		break;
431 	case ZPOOL_MM_WO:
432 		zs_mm = ZS_MM_WO;
433 		break;
434 	case ZPOOL_MM_RW: /* fallthru */
435 	default:
436 		zs_mm = ZS_MM_RW;
437 		break;
438 	}
439 
440 	return zs_map_object(pool, handle, zs_mm);
441 }
442 static void zs_zpool_unmap(void *pool, unsigned long handle)
443 {
444 	zs_unmap_object(pool, handle);
445 }
446 
447 static u64 zs_zpool_total_size(void *pool)
448 {
449 	return zs_get_total_pages(pool) << PAGE_SHIFT;
450 }
451 
452 static struct zpool_driver zs_zpool_driver = {
453 	.type =		"zsmalloc",
454 	.owner =	THIS_MODULE,
455 	.create =	zs_zpool_create,
456 	.destroy =	zs_zpool_destroy,
457 	.malloc =	zs_zpool_malloc,
458 	.free =		zs_zpool_free,
459 	.shrink =	zs_zpool_shrink,
460 	.map =		zs_zpool_map,
461 	.unmap =	zs_zpool_unmap,
462 	.total_size =	zs_zpool_total_size,
463 };
464 
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
467 
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
470 
471 static bool is_zspage_isolated(struct zspage *zspage)
472 {
473 	return zspage->isolated;
474 }
475 
476 static int is_first_page(struct page *page)
477 {
478 	return PagePrivate(page);
479 }
480 
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage *zspage)
483 {
484 	return zspage->inuse;
485 }
486 
487 static inline void set_zspage_inuse(struct zspage *zspage, int val)
488 {
489 	zspage->inuse = val;
490 }
491 
492 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
493 {
494 	zspage->inuse += val;
495 }
496 
497 static inline struct page *get_first_page(struct zspage *zspage)
498 {
499 	struct page *first_page = zspage->first_page;
500 
501 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
502 	return first_page;
503 }
504 
505 static inline int get_first_obj_offset(struct page *page)
506 {
507 	return page->units;
508 }
509 
510 static inline void set_first_obj_offset(struct page *page, int offset)
511 {
512 	page->units = offset;
513 }
514 
515 static inline unsigned int get_freeobj(struct zspage *zspage)
516 {
517 	return zspage->freeobj;
518 }
519 
520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
521 {
522 	zspage->freeobj = obj;
523 }
524 
525 static void get_zspage_mapping(struct zspage *zspage,
526 				unsigned int *class_idx,
527 				enum fullness_group *fullness)
528 {
529 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
530 
531 	*fullness = zspage->fullness;
532 	*class_idx = zspage->class;
533 }
534 
535 static void set_zspage_mapping(struct zspage *zspage,
536 				unsigned int class_idx,
537 				enum fullness_group fullness)
538 {
539 	zspage->class = class_idx;
540 	zspage->fullness = fullness;
541 }
542 
543 /*
544  * zsmalloc divides the pool into various size classes where each
545  * class maintains a list of zspages where each zspage is divided
546  * into equal sized chunks. Each allocation falls into one of these
547  * classes depending on its size. This function returns index of the
548  * size class which has chunk size big enough to hold the give size.
549  */
550 static int get_size_class_index(int size)
551 {
552 	int idx = 0;
553 
554 	if (likely(size > ZS_MIN_ALLOC_SIZE))
555 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
556 				ZS_SIZE_CLASS_DELTA);
557 
558 	return min(zs_size_classes - 1, idx);
559 }
560 
561 static inline void zs_stat_inc(struct size_class *class,
562 				enum zs_stat_type type, unsigned long cnt)
563 {
564 	class->stats.objs[type] += cnt;
565 }
566 
567 static inline void zs_stat_dec(struct size_class *class,
568 				enum zs_stat_type type, unsigned long cnt)
569 {
570 	class->stats.objs[type] -= cnt;
571 }
572 
573 static inline unsigned long zs_stat_get(struct size_class *class,
574 				enum zs_stat_type type)
575 {
576 	return class->stats.objs[type];
577 }
578 
579 #ifdef CONFIG_ZSMALLOC_STAT
580 
581 static void __init zs_stat_init(void)
582 {
583 	if (!debugfs_initialized()) {
584 		pr_warn("debugfs not available, stat dir not created\n");
585 		return;
586 	}
587 
588 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
589 	if (!zs_stat_root)
590 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
591 }
592 
593 static void __exit zs_stat_exit(void)
594 {
595 	debugfs_remove_recursive(zs_stat_root);
596 }
597 
598 static unsigned long zs_can_compact(struct size_class *class);
599 
600 static int zs_stats_size_show(struct seq_file *s, void *v)
601 {
602 	int i;
603 	struct zs_pool *pool = s->private;
604 	struct size_class *class;
605 	int objs_per_zspage;
606 	unsigned long class_almost_full, class_almost_empty;
607 	unsigned long obj_allocated, obj_used, pages_used, freeable;
608 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
609 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
610 	unsigned long total_freeable = 0;
611 
612 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
613 			"class", "size", "almost_full", "almost_empty",
614 			"obj_allocated", "obj_used", "pages_used",
615 			"pages_per_zspage", "freeable");
616 
617 	for (i = 0; i < zs_size_classes; i++) {
618 		class = pool->size_class[i];
619 
620 		if (class->index != i)
621 			continue;
622 
623 		spin_lock(&class->lock);
624 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
625 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
626 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
627 		obj_used = zs_stat_get(class, OBJ_USED);
628 		freeable = zs_can_compact(class);
629 		spin_unlock(&class->lock);
630 
631 		objs_per_zspage = class->objs_per_zspage;
632 		pages_used = obj_allocated / objs_per_zspage *
633 				class->pages_per_zspage;
634 
635 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
636 				" %10lu %10lu %16d %8lu\n",
637 			i, class->size, class_almost_full, class_almost_empty,
638 			obj_allocated, obj_used, pages_used,
639 			class->pages_per_zspage, freeable);
640 
641 		total_class_almost_full += class_almost_full;
642 		total_class_almost_empty += class_almost_empty;
643 		total_objs += obj_allocated;
644 		total_used_objs += obj_used;
645 		total_pages += pages_used;
646 		total_freeable += freeable;
647 	}
648 
649 	seq_puts(s, "\n");
650 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
651 			"Total", "", total_class_almost_full,
652 			total_class_almost_empty, total_objs,
653 			total_used_objs, total_pages, "", total_freeable);
654 
655 	return 0;
656 }
657 
658 static int zs_stats_size_open(struct inode *inode, struct file *file)
659 {
660 	return single_open(file, zs_stats_size_show, inode->i_private);
661 }
662 
663 static const struct file_operations zs_stat_size_ops = {
664 	.open           = zs_stats_size_open,
665 	.read           = seq_read,
666 	.llseek         = seq_lseek,
667 	.release        = single_release,
668 };
669 
670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
671 {
672 	struct dentry *entry;
673 
674 	if (!zs_stat_root) {
675 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
676 		return;
677 	}
678 
679 	entry = debugfs_create_dir(name, zs_stat_root);
680 	if (!entry) {
681 		pr_warn("debugfs dir <%s> creation failed\n", name);
682 		return;
683 	}
684 	pool->stat_dentry = entry;
685 
686 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
687 			pool->stat_dentry, pool, &zs_stat_size_ops);
688 	if (!entry) {
689 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
690 				name, "classes");
691 		debugfs_remove_recursive(pool->stat_dentry);
692 		pool->stat_dentry = NULL;
693 	}
694 }
695 
696 static void zs_pool_stat_destroy(struct zs_pool *pool)
697 {
698 	debugfs_remove_recursive(pool->stat_dentry);
699 }
700 
701 #else /* CONFIG_ZSMALLOC_STAT */
702 static void __init zs_stat_init(void)
703 {
704 }
705 
706 static void __exit zs_stat_exit(void)
707 {
708 }
709 
710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
711 {
712 }
713 
714 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
715 {
716 }
717 #endif
718 
719 
720 /*
721  * For each size class, zspages are divided into different groups
722  * depending on how "full" they are. This was done so that we could
723  * easily find empty or nearly empty zspages when we try to shrink
724  * the pool (not yet implemented). This function returns fullness
725  * status of the given page.
726  */
727 static enum fullness_group get_fullness_group(struct size_class *class,
728 						struct zspage *zspage)
729 {
730 	int inuse, objs_per_zspage;
731 	enum fullness_group fg;
732 
733 	inuse = get_zspage_inuse(zspage);
734 	objs_per_zspage = class->objs_per_zspage;
735 
736 	if (inuse == 0)
737 		fg = ZS_EMPTY;
738 	else if (inuse == objs_per_zspage)
739 		fg = ZS_FULL;
740 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
741 		fg = ZS_ALMOST_EMPTY;
742 	else
743 		fg = ZS_ALMOST_FULL;
744 
745 	return fg;
746 }
747 
748 /*
749  * Each size class maintains various freelists and zspages are assigned
750  * to one of these freelists based on the number of live objects they
751  * have. This functions inserts the given zspage into the freelist
752  * identified by <class, fullness_group>.
753  */
754 static void insert_zspage(struct size_class *class,
755 				struct zspage *zspage,
756 				enum fullness_group fullness)
757 {
758 	struct zspage *head;
759 
760 	zs_stat_inc(class, fullness, 1);
761 	head = list_first_entry_or_null(&class->fullness_list[fullness],
762 					struct zspage, list);
763 	/*
764 	 * We want to see more ZS_FULL pages and less almost empty/full.
765 	 * Put pages with higher ->inuse first.
766 	 */
767 	if (head) {
768 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
769 			list_add(&zspage->list, &head->list);
770 			return;
771 		}
772 	}
773 	list_add(&zspage->list, &class->fullness_list[fullness]);
774 }
775 
776 /*
777  * This function removes the given zspage from the freelist identified
778  * by <class, fullness_group>.
779  */
780 static void remove_zspage(struct size_class *class,
781 				struct zspage *zspage,
782 				enum fullness_group fullness)
783 {
784 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
785 	VM_BUG_ON(is_zspage_isolated(zspage));
786 
787 	list_del_init(&zspage->list);
788 	zs_stat_dec(class, fullness, 1);
789 }
790 
791 /*
792  * Each size class maintains zspages in different fullness groups depending
793  * on the number of live objects they contain. When allocating or freeing
794  * objects, the fullness status of the page can change, say, from ALMOST_FULL
795  * to ALMOST_EMPTY when freeing an object. This function checks if such
796  * a status change has occurred for the given page and accordingly moves the
797  * page from the freelist of the old fullness group to that of the new
798  * fullness group.
799  */
800 static enum fullness_group fix_fullness_group(struct size_class *class,
801 						struct zspage *zspage)
802 {
803 	int class_idx;
804 	enum fullness_group currfg, newfg;
805 
806 	get_zspage_mapping(zspage, &class_idx, &currfg);
807 	newfg = get_fullness_group(class, zspage);
808 	if (newfg == currfg)
809 		goto out;
810 
811 	if (!is_zspage_isolated(zspage)) {
812 		remove_zspage(class, zspage, currfg);
813 		insert_zspage(class, zspage, newfg);
814 	}
815 
816 	set_zspage_mapping(zspage, class_idx, newfg);
817 
818 out:
819 	return newfg;
820 }
821 
822 /*
823  * We have to decide on how many pages to link together
824  * to form a zspage for each size class. This is important
825  * to reduce wastage due to unusable space left at end of
826  * each zspage which is given as:
827  *     wastage = Zp % class_size
828  *     usage = Zp - wastage
829  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
830  *
831  * For example, for size class of 3/8 * PAGE_SIZE, we should
832  * link together 3 PAGE_SIZE sized pages to form a zspage
833  * since then we can perfectly fit in 8 such objects.
834  */
835 static int get_pages_per_zspage(int class_size)
836 {
837 	int i, max_usedpc = 0;
838 	/* zspage order which gives maximum used size per KB */
839 	int max_usedpc_order = 1;
840 
841 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
842 		int zspage_size;
843 		int waste, usedpc;
844 
845 		zspage_size = i * PAGE_SIZE;
846 		waste = zspage_size % class_size;
847 		usedpc = (zspage_size - waste) * 100 / zspage_size;
848 
849 		if (usedpc > max_usedpc) {
850 			max_usedpc = usedpc;
851 			max_usedpc_order = i;
852 		}
853 	}
854 
855 	return max_usedpc_order;
856 }
857 
858 static struct zspage *get_zspage(struct page *page)
859 {
860 	struct zspage *zspage = (struct zspage *)page->private;
861 
862 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
863 	return zspage;
864 }
865 
866 static struct page *get_next_page(struct page *page)
867 {
868 	if (unlikely(PageHugeObject(page)))
869 		return NULL;
870 
871 	return page->freelist;
872 }
873 
874 /**
875  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
876  * @page: page object resides in zspage
877  * @obj_idx: object index
878  */
879 static void obj_to_location(unsigned long obj, struct page **page,
880 				unsigned int *obj_idx)
881 {
882 	obj >>= OBJ_TAG_BITS;
883 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
884 	*obj_idx = (obj & OBJ_INDEX_MASK);
885 }
886 
887 /**
888  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
889  * @page: page object resides in zspage
890  * @obj_idx: object index
891  */
892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
893 {
894 	unsigned long obj;
895 
896 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
897 	obj |= obj_idx & OBJ_INDEX_MASK;
898 	obj <<= OBJ_TAG_BITS;
899 
900 	return obj;
901 }
902 
903 static unsigned long handle_to_obj(unsigned long handle)
904 {
905 	return *(unsigned long *)handle;
906 }
907 
908 static unsigned long obj_to_head(struct page *page, void *obj)
909 {
910 	if (unlikely(PageHugeObject(page))) {
911 		VM_BUG_ON_PAGE(!is_first_page(page), page);
912 		return page->index;
913 	} else
914 		return *(unsigned long *)obj;
915 }
916 
917 static inline int testpin_tag(unsigned long handle)
918 {
919 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921 
922 static inline int trypin_tag(unsigned long handle)
923 {
924 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926 
927 static void pin_tag(unsigned long handle)
928 {
929 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931 
932 static void unpin_tag(unsigned long handle)
933 {
934 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
935 }
936 
937 static void reset_page(struct page *page)
938 {
939 	__ClearPageMovable(page);
940 	ClearPagePrivate(page);
941 	ClearPagePrivate2(page);
942 	set_page_private(page, 0);
943 	page_mapcount_reset(page);
944 	ClearPageHugeObject(page);
945 	page->freelist = NULL;
946 }
947 
948 /*
949  * To prevent zspage destroy during migration, zspage freeing should
950  * hold locks of all pages in the zspage.
951  */
952 void lock_zspage(struct zspage *zspage)
953 {
954 	struct page *page = get_first_page(zspage);
955 
956 	do {
957 		lock_page(page);
958 	} while ((page = get_next_page(page)) != NULL);
959 }
960 
961 int trylock_zspage(struct zspage *zspage)
962 {
963 	struct page *cursor, *fail;
964 
965 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966 					get_next_page(cursor)) {
967 		if (!trylock_page(cursor)) {
968 			fail = cursor;
969 			goto unlock;
970 		}
971 	}
972 
973 	return 1;
974 unlock:
975 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
976 					get_next_page(cursor))
977 		unlock_page(cursor);
978 
979 	return 0;
980 }
981 
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983 				struct zspage *zspage)
984 {
985 	struct page *page, *next;
986 	enum fullness_group fg;
987 	unsigned int class_idx;
988 
989 	get_zspage_mapping(zspage, &class_idx, &fg);
990 
991 	assert_spin_locked(&class->lock);
992 
993 	VM_BUG_ON(get_zspage_inuse(zspage));
994 	VM_BUG_ON(fg != ZS_EMPTY);
995 
996 	next = page = get_first_page(zspage);
997 	do {
998 		VM_BUG_ON_PAGE(!PageLocked(page), page);
999 		next = get_next_page(page);
1000 		reset_page(page);
1001 		unlock_page(page);
1002 		dec_zone_page_state(page, NR_ZSPAGES);
1003 		put_page(page);
1004 		page = next;
1005 	} while (page != NULL);
1006 
1007 	cache_free_zspage(pool, zspage);
1008 
1009 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010 	atomic_long_sub(class->pages_per_zspage,
1011 					&pool->pages_allocated);
1012 }
1013 
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015 				struct zspage *zspage)
1016 {
1017 	VM_BUG_ON(get_zspage_inuse(zspage));
1018 	VM_BUG_ON(list_empty(&zspage->list));
1019 
1020 	if (!trylock_zspage(zspage)) {
1021 		kick_deferred_free(pool);
1022 		return;
1023 	}
1024 
1025 	remove_zspage(class, zspage, ZS_EMPTY);
1026 	__free_zspage(pool, class, zspage);
1027 }
1028 
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1031 {
1032 	unsigned int freeobj = 1;
1033 	unsigned long off = 0;
1034 	struct page *page = get_first_page(zspage);
1035 
1036 	while (page) {
1037 		struct page *next_page;
1038 		struct link_free *link;
1039 		void *vaddr;
1040 
1041 		set_first_obj_offset(page, off);
1042 
1043 		vaddr = kmap_atomic(page);
1044 		link = (struct link_free *)vaddr + off / sizeof(*link);
1045 
1046 		while ((off += class->size) < PAGE_SIZE) {
1047 			link->next = freeobj++ << OBJ_TAG_BITS;
1048 			link += class->size / sizeof(*link);
1049 		}
1050 
1051 		/*
1052 		 * We now come to the last (full or partial) object on this
1053 		 * page, which must point to the first object on the next
1054 		 * page (if present)
1055 		 */
1056 		next_page = get_next_page(page);
1057 		if (next_page) {
1058 			link->next = freeobj++ << OBJ_TAG_BITS;
1059 		} else {
1060 			/*
1061 			 * Reset OBJ_TAG_BITS bit to last link to tell
1062 			 * whether it's allocated object or not.
1063 			 */
1064 			link->next = -1 << OBJ_TAG_BITS;
1065 		}
1066 		kunmap_atomic(vaddr);
1067 		page = next_page;
1068 		off %= PAGE_SIZE;
1069 	}
1070 
1071 	set_freeobj(zspage, 0);
1072 }
1073 
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075 				struct page *pages[])
1076 {
1077 	int i;
1078 	struct page *page;
1079 	struct page *prev_page = NULL;
1080 	int nr_pages = class->pages_per_zspage;
1081 
1082 	/*
1083 	 * Allocate individual pages and link them together as:
1084 	 * 1. all pages are linked together using page->freelist
1085 	 * 2. each sub-page point to zspage using page->private
1086 	 *
1087 	 * we set PG_private to identify the first page (i.e. no other sub-page
1088 	 * has this flag set) and PG_private_2 to identify the last page.
1089 	 */
1090 	for (i = 0; i < nr_pages; i++) {
1091 		page = pages[i];
1092 		set_page_private(page, (unsigned long)zspage);
1093 		page->freelist = NULL;
1094 		if (i == 0) {
1095 			zspage->first_page = page;
1096 			SetPagePrivate(page);
1097 			if (unlikely(class->objs_per_zspage == 1 &&
1098 					class->pages_per_zspage == 1))
1099 				SetPageHugeObject(page);
1100 		} else {
1101 			prev_page->freelist = page;
1102 		}
1103 		if (i == nr_pages - 1)
1104 			SetPagePrivate2(page);
1105 		prev_page = page;
1106 	}
1107 }
1108 
1109 /*
1110  * Allocate a zspage for the given size class
1111  */
1112 static struct zspage *alloc_zspage(struct zs_pool *pool,
1113 					struct size_class *class,
1114 					gfp_t gfp)
1115 {
1116 	int i;
1117 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119 
1120 	if (!zspage)
1121 		return NULL;
1122 
1123 	memset(zspage, 0, sizeof(struct zspage));
1124 	zspage->magic = ZSPAGE_MAGIC;
1125 	migrate_lock_init(zspage);
1126 
1127 	for (i = 0; i < class->pages_per_zspage; i++) {
1128 		struct page *page;
1129 
1130 		page = alloc_page(gfp);
1131 		if (!page) {
1132 			while (--i >= 0) {
1133 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1134 				__free_page(pages[i]);
1135 			}
1136 			cache_free_zspage(pool, zspage);
1137 			return NULL;
1138 		}
1139 
1140 		inc_zone_page_state(page, NR_ZSPAGES);
1141 		pages[i] = page;
1142 	}
1143 
1144 	create_page_chain(class, zspage, pages);
1145 	init_zspage(class, zspage);
1146 
1147 	return zspage;
1148 }
1149 
1150 static struct zspage *find_get_zspage(struct size_class *class)
1151 {
1152 	int i;
1153 	struct zspage *zspage;
1154 
1155 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1157 				struct zspage, list);
1158 		if (zspage)
1159 			break;
1160 	}
1161 
1162 	return zspage;
1163 }
1164 
1165 #ifdef CONFIG_PGTABLE_MAPPING
1166 static inline int __zs_cpu_up(struct mapping_area *area)
1167 {
1168 	/*
1169 	 * Make sure we don't leak memory if a cpu UP notification
1170 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1171 	 */
1172 	if (area->vm)
1173 		return 0;
1174 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1175 	if (!area->vm)
1176 		return -ENOMEM;
1177 	return 0;
1178 }
1179 
1180 static inline void __zs_cpu_down(struct mapping_area *area)
1181 {
1182 	if (area->vm)
1183 		free_vm_area(area->vm);
1184 	area->vm = NULL;
1185 }
1186 
1187 static inline void *__zs_map_object(struct mapping_area *area,
1188 				struct page *pages[2], int off, int size)
1189 {
1190 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1191 	area->vm_addr = area->vm->addr;
1192 	return area->vm_addr + off;
1193 }
1194 
1195 static inline void __zs_unmap_object(struct mapping_area *area,
1196 				struct page *pages[2], int off, int size)
1197 {
1198 	unsigned long addr = (unsigned long)area->vm_addr;
1199 
1200 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1201 }
1202 
1203 #else /* CONFIG_PGTABLE_MAPPING */
1204 
1205 static inline int __zs_cpu_up(struct mapping_area *area)
1206 {
1207 	/*
1208 	 * Make sure we don't leak memory if a cpu UP notification
1209 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1210 	 */
1211 	if (area->vm_buf)
1212 		return 0;
1213 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1214 	if (!area->vm_buf)
1215 		return -ENOMEM;
1216 	return 0;
1217 }
1218 
1219 static inline void __zs_cpu_down(struct mapping_area *area)
1220 {
1221 	kfree(area->vm_buf);
1222 	area->vm_buf = NULL;
1223 }
1224 
1225 static void *__zs_map_object(struct mapping_area *area,
1226 			struct page *pages[2], int off, int size)
1227 {
1228 	int sizes[2];
1229 	void *addr;
1230 	char *buf = area->vm_buf;
1231 
1232 	/* disable page faults to match kmap_atomic() return conditions */
1233 	pagefault_disable();
1234 
1235 	/* no read fastpath */
1236 	if (area->vm_mm == ZS_MM_WO)
1237 		goto out;
1238 
1239 	sizes[0] = PAGE_SIZE - off;
1240 	sizes[1] = size - sizes[0];
1241 
1242 	/* copy object to per-cpu buffer */
1243 	addr = kmap_atomic(pages[0]);
1244 	memcpy(buf, addr + off, sizes[0]);
1245 	kunmap_atomic(addr);
1246 	addr = kmap_atomic(pages[1]);
1247 	memcpy(buf + sizes[0], addr, sizes[1]);
1248 	kunmap_atomic(addr);
1249 out:
1250 	return area->vm_buf;
1251 }
1252 
1253 static void __zs_unmap_object(struct mapping_area *area,
1254 			struct page *pages[2], int off, int size)
1255 {
1256 	int sizes[2];
1257 	void *addr;
1258 	char *buf;
1259 
1260 	/* no write fastpath */
1261 	if (area->vm_mm == ZS_MM_RO)
1262 		goto out;
1263 
1264 	buf = area->vm_buf;
1265 	buf = buf + ZS_HANDLE_SIZE;
1266 	size -= ZS_HANDLE_SIZE;
1267 	off += ZS_HANDLE_SIZE;
1268 
1269 	sizes[0] = PAGE_SIZE - off;
1270 	sizes[1] = size - sizes[0];
1271 
1272 	/* copy per-cpu buffer to object */
1273 	addr = kmap_atomic(pages[0]);
1274 	memcpy(addr + off, buf, sizes[0]);
1275 	kunmap_atomic(addr);
1276 	addr = kmap_atomic(pages[1]);
1277 	memcpy(addr, buf + sizes[0], sizes[1]);
1278 	kunmap_atomic(addr);
1279 
1280 out:
1281 	/* enable page faults to match kunmap_atomic() return conditions */
1282 	pagefault_enable();
1283 }
1284 
1285 #endif /* CONFIG_PGTABLE_MAPPING */
1286 
1287 static int zs_cpu_prepare(unsigned int cpu)
1288 {
1289 	struct mapping_area *area;
1290 
1291 	area = &per_cpu(zs_map_area, cpu);
1292 	return __zs_cpu_up(area);
1293 }
1294 
1295 static int zs_cpu_dead(unsigned int cpu)
1296 {
1297 	struct mapping_area *area;
1298 
1299 	area = &per_cpu(zs_map_area, cpu);
1300 	__zs_cpu_down(area);
1301 	return 0;
1302 }
1303 
1304 static void __init init_zs_size_classes(void)
1305 {
1306 	int nr;
1307 
1308 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1309 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1310 		nr += 1;
1311 
1312 	zs_size_classes = nr;
1313 }
1314 
1315 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1316 					int objs_per_zspage)
1317 {
1318 	if (prev->pages_per_zspage == pages_per_zspage &&
1319 		prev->objs_per_zspage == objs_per_zspage)
1320 		return true;
1321 
1322 	return false;
1323 }
1324 
1325 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1326 {
1327 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1328 }
1329 
1330 unsigned long zs_get_total_pages(struct zs_pool *pool)
1331 {
1332 	return atomic_long_read(&pool->pages_allocated);
1333 }
1334 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1335 
1336 /**
1337  * zs_map_object - get address of allocated object from handle.
1338  * @pool: pool from which the object was allocated
1339  * @handle: handle returned from zs_malloc
1340  *
1341  * Before using an object allocated from zs_malloc, it must be mapped using
1342  * this function. When done with the object, it must be unmapped using
1343  * zs_unmap_object.
1344  *
1345  * Only one object can be mapped per cpu at a time. There is no protection
1346  * against nested mappings.
1347  *
1348  * This function returns with preemption and page faults disabled.
1349  */
1350 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1351 			enum zs_mapmode mm)
1352 {
1353 	struct zspage *zspage;
1354 	struct page *page;
1355 	unsigned long obj, off;
1356 	unsigned int obj_idx;
1357 
1358 	unsigned int class_idx;
1359 	enum fullness_group fg;
1360 	struct size_class *class;
1361 	struct mapping_area *area;
1362 	struct page *pages[2];
1363 	void *ret;
1364 
1365 	/*
1366 	 * Because we use per-cpu mapping areas shared among the
1367 	 * pools/users, we can't allow mapping in interrupt context
1368 	 * because it can corrupt another users mappings.
1369 	 */
1370 	WARN_ON_ONCE(in_interrupt());
1371 
1372 	/* From now on, migration cannot move the object */
1373 	pin_tag(handle);
1374 
1375 	obj = handle_to_obj(handle);
1376 	obj_to_location(obj, &page, &obj_idx);
1377 	zspage = get_zspage(page);
1378 
1379 	/* migration cannot move any subpage in this zspage */
1380 	migrate_read_lock(zspage);
1381 
1382 	get_zspage_mapping(zspage, &class_idx, &fg);
1383 	class = pool->size_class[class_idx];
1384 	off = (class->size * obj_idx) & ~PAGE_MASK;
1385 
1386 	area = &get_cpu_var(zs_map_area);
1387 	area->vm_mm = mm;
1388 	if (off + class->size <= PAGE_SIZE) {
1389 		/* this object is contained entirely within a page */
1390 		area->vm_addr = kmap_atomic(page);
1391 		ret = area->vm_addr + off;
1392 		goto out;
1393 	}
1394 
1395 	/* this object spans two pages */
1396 	pages[0] = page;
1397 	pages[1] = get_next_page(page);
1398 	BUG_ON(!pages[1]);
1399 
1400 	ret = __zs_map_object(area, pages, off, class->size);
1401 out:
1402 	if (likely(!PageHugeObject(page)))
1403 		ret += ZS_HANDLE_SIZE;
1404 
1405 	return ret;
1406 }
1407 EXPORT_SYMBOL_GPL(zs_map_object);
1408 
1409 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1410 {
1411 	struct zspage *zspage;
1412 	struct page *page;
1413 	unsigned long obj, off;
1414 	unsigned int obj_idx;
1415 
1416 	unsigned int class_idx;
1417 	enum fullness_group fg;
1418 	struct size_class *class;
1419 	struct mapping_area *area;
1420 
1421 	obj = handle_to_obj(handle);
1422 	obj_to_location(obj, &page, &obj_idx);
1423 	zspage = get_zspage(page);
1424 	get_zspage_mapping(zspage, &class_idx, &fg);
1425 	class = pool->size_class[class_idx];
1426 	off = (class->size * obj_idx) & ~PAGE_MASK;
1427 
1428 	area = this_cpu_ptr(&zs_map_area);
1429 	if (off + class->size <= PAGE_SIZE)
1430 		kunmap_atomic(area->vm_addr);
1431 	else {
1432 		struct page *pages[2];
1433 
1434 		pages[0] = page;
1435 		pages[1] = get_next_page(page);
1436 		BUG_ON(!pages[1]);
1437 
1438 		__zs_unmap_object(area, pages, off, class->size);
1439 	}
1440 	put_cpu_var(zs_map_area);
1441 
1442 	migrate_read_unlock(zspage);
1443 	unpin_tag(handle);
1444 }
1445 EXPORT_SYMBOL_GPL(zs_unmap_object);
1446 
1447 static unsigned long obj_malloc(struct size_class *class,
1448 				struct zspage *zspage, unsigned long handle)
1449 {
1450 	int i, nr_page, offset;
1451 	unsigned long obj;
1452 	struct link_free *link;
1453 
1454 	struct page *m_page;
1455 	unsigned long m_offset;
1456 	void *vaddr;
1457 
1458 	handle |= OBJ_ALLOCATED_TAG;
1459 	obj = get_freeobj(zspage);
1460 
1461 	offset = obj * class->size;
1462 	nr_page = offset >> PAGE_SHIFT;
1463 	m_offset = offset & ~PAGE_MASK;
1464 	m_page = get_first_page(zspage);
1465 
1466 	for (i = 0; i < nr_page; i++)
1467 		m_page = get_next_page(m_page);
1468 
1469 	vaddr = kmap_atomic(m_page);
1470 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1471 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1472 	if (likely(!PageHugeObject(m_page)))
1473 		/* record handle in the header of allocated chunk */
1474 		link->handle = handle;
1475 	else
1476 		/* record handle to page->index */
1477 		zspage->first_page->index = handle;
1478 
1479 	kunmap_atomic(vaddr);
1480 	mod_zspage_inuse(zspage, 1);
1481 	zs_stat_inc(class, OBJ_USED, 1);
1482 
1483 	obj = location_to_obj(m_page, obj);
1484 
1485 	return obj;
1486 }
1487 
1488 
1489 /**
1490  * zs_malloc - Allocate block of given size from pool.
1491  * @pool: pool to allocate from
1492  * @size: size of block to allocate
1493  * @gfp: gfp flags when allocating object
1494  *
1495  * On success, handle to the allocated object is returned,
1496  * otherwise 0.
1497  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1498  */
1499 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1500 {
1501 	unsigned long handle, obj;
1502 	struct size_class *class;
1503 	enum fullness_group newfg;
1504 	struct zspage *zspage;
1505 
1506 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1507 		return 0;
1508 
1509 	handle = cache_alloc_handle(pool, gfp);
1510 	if (!handle)
1511 		return 0;
1512 
1513 	/* extra space in chunk to keep the handle */
1514 	size += ZS_HANDLE_SIZE;
1515 	class = pool->size_class[get_size_class_index(size)];
1516 
1517 	spin_lock(&class->lock);
1518 	zspage = find_get_zspage(class);
1519 	if (likely(zspage)) {
1520 		obj = obj_malloc(class, zspage, handle);
1521 		/* Now move the zspage to another fullness group, if required */
1522 		fix_fullness_group(class, zspage);
1523 		record_obj(handle, obj);
1524 		spin_unlock(&class->lock);
1525 
1526 		return handle;
1527 	}
1528 
1529 	spin_unlock(&class->lock);
1530 
1531 	zspage = alloc_zspage(pool, class, gfp);
1532 	if (!zspage) {
1533 		cache_free_handle(pool, handle);
1534 		return 0;
1535 	}
1536 
1537 	spin_lock(&class->lock);
1538 	obj = obj_malloc(class, zspage, handle);
1539 	newfg = get_fullness_group(class, zspage);
1540 	insert_zspage(class, zspage, newfg);
1541 	set_zspage_mapping(zspage, class->index, newfg);
1542 	record_obj(handle, obj);
1543 	atomic_long_add(class->pages_per_zspage,
1544 				&pool->pages_allocated);
1545 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1546 
1547 	/* We completely set up zspage so mark them as movable */
1548 	SetZsPageMovable(pool, zspage);
1549 	spin_unlock(&class->lock);
1550 
1551 	return handle;
1552 }
1553 EXPORT_SYMBOL_GPL(zs_malloc);
1554 
1555 static void obj_free(struct size_class *class, unsigned long obj)
1556 {
1557 	struct link_free *link;
1558 	struct zspage *zspage;
1559 	struct page *f_page;
1560 	unsigned long f_offset;
1561 	unsigned int f_objidx;
1562 	void *vaddr;
1563 
1564 	obj &= ~OBJ_ALLOCATED_TAG;
1565 	obj_to_location(obj, &f_page, &f_objidx);
1566 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1567 	zspage = get_zspage(f_page);
1568 
1569 	vaddr = kmap_atomic(f_page);
1570 
1571 	/* Insert this object in containing zspage's freelist */
1572 	link = (struct link_free *)(vaddr + f_offset);
1573 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1574 	kunmap_atomic(vaddr);
1575 	set_freeobj(zspage, f_objidx);
1576 	mod_zspage_inuse(zspage, -1);
1577 	zs_stat_dec(class, OBJ_USED, 1);
1578 }
1579 
1580 void zs_free(struct zs_pool *pool, unsigned long handle)
1581 {
1582 	struct zspage *zspage;
1583 	struct page *f_page;
1584 	unsigned long obj;
1585 	unsigned int f_objidx;
1586 	int class_idx;
1587 	struct size_class *class;
1588 	enum fullness_group fullness;
1589 	bool isolated;
1590 
1591 	if (unlikely(!handle))
1592 		return;
1593 
1594 	pin_tag(handle);
1595 	obj = handle_to_obj(handle);
1596 	obj_to_location(obj, &f_page, &f_objidx);
1597 	zspage = get_zspage(f_page);
1598 
1599 	migrate_read_lock(zspage);
1600 
1601 	get_zspage_mapping(zspage, &class_idx, &fullness);
1602 	class = pool->size_class[class_idx];
1603 
1604 	spin_lock(&class->lock);
1605 	obj_free(class, obj);
1606 	fullness = fix_fullness_group(class, zspage);
1607 	if (fullness != ZS_EMPTY) {
1608 		migrate_read_unlock(zspage);
1609 		goto out;
1610 	}
1611 
1612 	isolated = is_zspage_isolated(zspage);
1613 	migrate_read_unlock(zspage);
1614 	/* If zspage is isolated, zs_page_putback will free the zspage */
1615 	if (likely(!isolated))
1616 		free_zspage(pool, class, zspage);
1617 out:
1618 
1619 	spin_unlock(&class->lock);
1620 	unpin_tag(handle);
1621 	cache_free_handle(pool, handle);
1622 }
1623 EXPORT_SYMBOL_GPL(zs_free);
1624 
1625 static void zs_object_copy(struct size_class *class, unsigned long dst,
1626 				unsigned long src)
1627 {
1628 	struct page *s_page, *d_page;
1629 	unsigned int s_objidx, d_objidx;
1630 	unsigned long s_off, d_off;
1631 	void *s_addr, *d_addr;
1632 	int s_size, d_size, size;
1633 	int written = 0;
1634 
1635 	s_size = d_size = class->size;
1636 
1637 	obj_to_location(src, &s_page, &s_objidx);
1638 	obj_to_location(dst, &d_page, &d_objidx);
1639 
1640 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1641 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1642 
1643 	if (s_off + class->size > PAGE_SIZE)
1644 		s_size = PAGE_SIZE - s_off;
1645 
1646 	if (d_off + class->size > PAGE_SIZE)
1647 		d_size = PAGE_SIZE - d_off;
1648 
1649 	s_addr = kmap_atomic(s_page);
1650 	d_addr = kmap_atomic(d_page);
1651 
1652 	while (1) {
1653 		size = min(s_size, d_size);
1654 		memcpy(d_addr + d_off, s_addr + s_off, size);
1655 		written += size;
1656 
1657 		if (written == class->size)
1658 			break;
1659 
1660 		s_off += size;
1661 		s_size -= size;
1662 		d_off += size;
1663 		d_size -= size;
1664 
1665 		if (s_off >= PAGE_SIZE) {
1666 			kunmap_atomic(d_addr);
1667 			kunmap_atomic(s_addr);
1668 			s_page = get_next_page(s_page);
1669 			s_addr = kmap_atomic(s_page);
1670 			d_addr = kmap_atomic(d_page);
1671 			s_size = class->size - written;
1672 			s_off = 0;
1673 		}
1674 
1675 		if (d_off >= PAGE_SIZE) {
1676 			kunmap_atomic(d_addr);
1677 			d_page = get_next_page(d_page);
1678 			d_addr = kmap_atomic(d_page);
1679 			d_size = class->size - written;
1680 			d_off = 0;
1681 		}
1682 	}
1683 
1684 	kunmap_atomic(d_addr);
1685 	kunmap_atomic(s_addr);
1686 }
1687 
1688 /*
1689  * Find alloced object in zspage from index object and
1690  * return handle.
1691  */
1692 static unsigned long find_alloced_obj(struct size_class *class,
1693 					struct page *page, int *obj_idx)
1694 {
1695 	unsigned long head;
1696 	int offset = 0;
1697 	int index = *obj_idx;
1698 	unsigned long handle = 0;
1699 	void *addr = kmap_atomic(page);
1700 
1701 	offset = get_first_obj_offset(page);
1702 	offset += class->size * index;
1703 
1704 	while (offset < PAGE_SIZE) {
1705 		head = obj_to_head(page, addr + offset);
1706 		if (head & OBJ_ALLOCATED_TAG) {
1707 			handle = head & ~OBJ_ALLOCATED_TAG;
1708 			if (trypin_tag(handle))
1709 				break;
1710 			handle = 0;
1711 		}
1712 
1713 		offset += class->size;
1714 		index++;
1715 	}
1716 
1717 	kunmap_atomic(addr);
1718 
1719 	*obj_idx = index;
1720 
1721 	return handle;
1722 }
1723 
1724 struct zs_compact_control {
1725 	/* Source spage for migration which could be a subpage of zspage */
1726 	struct page *s_page;
1727 	/* Destination page for migration which should be a first page
1728 	 * of zspage. */
1729 	struct page *d_page;
1730 	 /* Starting object index within @s_page which used for live object
1731 	  * in the subpage. */
1732 	int obj_idx;
1733 };
1734 
1735 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1736 				struct zs_compact_control *cc)
1737 {
1738 	unsigned long used_obj, free_obj;
1739 	unsigned long handle;
1740 	struct page *s_page = cc->s_page;
1741 	struct page *d_page = cc->d_page;
1742 	int obj_idx = cc->obj_idx;
1743 	int ret = 0;
1744 
1745 	while (1) {
1746 		handle = find_alloced_obj(class, s_page, &obj_idx);
1747 		if (!handle) {
1748 			s_page = get_next_page(s_page);
1749 			if (!s_page)
1750 				break;
1751 			obj_idx = 0;
1752 			continue;
1753 		}
1754 
1755 		/* Stop if there is no more space */
1756 		if (zspage_full(class, get_zspage(d_page))) {
1757 			unpin_tag(handle);
1758 			ret = -ENOMEM;
1759 			break;
1760 		}
1761 
1762 		used_obj = handle_to_obj(handle);
1763 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1764 		zs_object_copy(class, free_obj, used_obj);
1765 		obj_idx++;
1766 		/*
1767 		 * record_obj updates handle's value to free_obj and it will
1768 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1769 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1770 		 * let's keep the lock bit.
1771 		 */
1772 		free_obj |= BIT(HANDLE_PIN_BIT);
1773 		record_obj(handle, free_obj);
1774 		unpin_tag(handle);
1775 		obj_free(class, used_obj);
1776 	}
1777 
1778 	/* Remember last position in this iteration */
1779 	cc->s_page = s_page;
1780 	cc->obj_idx = obj_idx;
1781 
1782 	return ret;
1783 }
1784 
1785 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1786 {
1787 	int i;
1788 	struct zspage *zspage;
1789 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1790 
1791 	if (!source) {
1792 		fg[0] = ZS_ALMOST_FULL;
1793 		fg[1] = ZS_ALMOST_EMPTY;
1794 	}
1795 
1796 	for (i = 0; i < 2; i++) {
1797 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1798 							struct zspage, list);
1799 		if (zspage) {
1800 			VM_BUG_ON(is_zspage_isolated(zspage));
1801 			remove_zspage(class, zspage, fg[i]);
1802 			return zspage;
1803 		}
1804 	}
1805 
1806 	return zspage;
1807 }
1808 
1809 /*
1810  * putback_zspage - add @zspage into right class's fullness list
1811  * @class: destination class
1812  * @zspage: target page
1813  *
1814  * Return @zspage's fullness_group
1815  */
1816 static enum fullness_group putback_zspage(struct size_class *class,
1817 			struct zspage *zspage)
1818 {
1819 	enum fullness_group fullness;
1820 
1821 	VM_BUG_ON(is_zspage_isolated(zspage));
1822 
1823 	fullness = get_fullness_group(class, zspage);
1824 	insert_zspage(class, zspage, fullness);
1825 	set_zspage_mapping(zspage, class->index, fullness);
1826 
1827 	return fullness;
1828 }
1829 
1830 #ifdef CONFIG_COMPACTION
1831 static struct dentry *zs_mount(struct file_system_type *fs_type,
1832 				int flags, const char *dev_name, void *data)
1833 {
1834 	static const struct dentry_operations ops = {
1835 		.d_dname = simple_dname,
1836 	};
1837 
1838 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1839 }
1840 
1841 static struct file_system_type zsmalloc_fs = {
1842 	.name		= "zsmalloc",
1843 	.mount		= zs_mount,
1844 	.kill_sb	= kill_anon_super,
1845 };
1846 
1847 static int zsmalloc_mount(void)
1848 {
1849 	int ret = 0;
1850 
1851 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1852 	if (IS_ERR(zsmalloc_mnt))
1853 		ret = PTR_ERR(zsmalloc_mnt);
1854 
1855 	return ret;
1856 }
1857 
1858 static void zsmalloc_unmount(void)
1859 {
1860 	kern_unmount(zsmalloc_mnt);
1861 }
1862 
1863 static void migrate_lock_init(struct zspage *zspage)
1864 {
1865 	rwlock_init(&zspage->lock);
1866 }
1867 
1868 static void migrate_read_lock(struct zspage *zspage)
1869 {
1870 	read_lock(&zspage->lock);
1871 }
1872 
1873 static void migrate_read_unlock(struct zspage *zspage)
1874 {
1875 	read_unlock(&zspage->lock);
1876 }
1877 
1878 static void migrate_write_lock(struct zspage *zspage)
1879 {
1880 	write_lock(&zspage->lock);
1881 }
1882 
1883 static void migrate_write_unlock(struct zspage *zspage)
1884 {
1885 	write_unlock(&zspage->lock);
1886 }
1887 
1888 /* Number of isolated subpage for *page migration* in this zspage */
1889 static void inc_zspage_isolation(struct zspage *zspage)
1890 {
1891 	zspage->isolated++;
1892 }
1893 
1894 static void dec_zspage_isolation(struct zspage *zspage)
1895 {
1896 	zspage->isolated--;
1897 }
1898 
1899 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1900 				struct page *newpage, struct page *oldpage)
1901 {
1902 	struct page *page;
1903 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1904 	int idx = 0;
1905 
1906 	page = get_first_page(zspage);
1907 	do {
1908 		if (page == oldpage)
1909 			pages[idx] = newpage;
1910 		else
1911 			pages[idx] = page;
1912 		idx++;
1913 	} while ((page = get_next_page(page)) != NULL);
1914 
1915 	create_page_chain(class, zspage, pages);
1916 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1917 	if (unlikely(PageHugeObject(oldpage)))
1918 		newpage->index = oldpage->index;
1919 	__SetPageMovable(newpage, page_mapping(oldpage));
1920 }
1921 
1922 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1923 {
1924 	struct zs_pool *pool;
1925 	struct size_class *class;
1926 	int class_idx;
1927 	enum fullness_group fullness;
1928 	struct zspage *zspage;
1929 	struct address_space *mapping;
1930 
1931 	/*
1932 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1933 	 * lock_zspage in free_zspage.
1934 	 */
1935 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1936 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1937 
1938 	zspage = get_zspage(page);
1939 
1940 	/*
1941 	 * Without class lock, fullness could be stale while class_idx is okay
1942 	 * because class_idx is constant unless page is freed so we should get
1943 	 * fullness again under class lock.
1944 	 */
1945 	get_zspage_mapping(zspage, &class_idx, &fullness);
1946 	mapping = page_mapping(page);
1947 	pool = mapping->private_data;
1948 	class = pool->size_class[class_idx];
1949 
1950 	spin_lock(&class->lock);
1951 	if (get_zspage_inuse(zspage) == 0) {
1952 		spin_unlock(&class->lock);
1953 		return false;
1954 	}
1955 
1956 	/* zspage is isolated for object migration */
1957 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1958 		spin_unlock(&class->lock);
1959 		return false;
1960 	}
1961 
1962 	/*
1963 	 * If this is first time isolation for the zspage, isolate zspage from
1964 	 * size_class to prevent further object allocation from the zspage.
1965 	 */
1966 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1967 		get_zspage_mapping(zspage, &class_idx, &fullness);
1968 		remove_zspage(class, zspage, fullness);
1969 	}
1970 
1971 	inc_zspage_isolation(zspage);
1972 	spin_unlock(&class->lock);
1973 
1974 	return true;
1975 }
1976 
1977 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1978 		struct page *page, enum migrate_mode mode)
1979 {
1980 	struct zs_pool *pool;
1981 	struct size_class *class;
1982 	int class_idx;
1983 	enum fullness_group fullness;
1984 	struct zspage *zspage;
1985 	struct page *dummy;
1986 	void *s_addr, *d_addr, *addr;
1987 	int offset, pos;
1988 	unsigned long handle, head;
1989 	unsigned long old_obj, new_obj;
1990 	unsigned int obj_idx;
1991 	int ret = -EAGAIN;
1992 
1993 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1994 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1995 
1996 	zspage = get_zspage(page);
1997 
1998 	/* Concurrent compactor cannot migrate any subpage in zspage */
1999 	migrate_write_lock(zspage);
2000 	get_zspage_mapping(zspage, &class_idx, &fullness);
2001 	pool = mapping->private_data;
2002 	class = pool->size_class[class_idx];
2003 	offset = get_first_obj_offset(page);
2004 
2005 	spin_lock(&class->lock);
2006 	if (!get_zspage_inuse(zspage)) {
2007 		ret = -EBUSY;
2008 		goto unlock_class;
2009 	}
2010 
2011 	pos = offset;
2012 	s_addr = kmap_atomic(page);
2013 	while (pos < PAGE_SIZE) {
2014 		head = obj_to_head(page, s_addr + pos);
2015 		if (head & OBJ_ALLOCATED_TAG) {
2016 			handle = head & ~OBJ_ALLOCATED_TAG;
2017 			if (!trypin_tag(handle))
2018 				goto unpin_objects;
2019 		}
2020 		pos += class->size;
2021 	}
2022 
2023 	/*
2024 	 * Here, any user cannot access all objects in the zspage so let's move.
2025 	 */
2026 	d_addr = kmap_atomic(newpage);
2027 	memcpy(d_addr, s_addr, PAGE_SIZE);
2028 	kunmap_atomic(d_addr);
2029 
2030 	for (addr = s_addr + offset; addr < s_addr + pos;
2031 					addr += class->size) {
2032 		head = obj_to_head(page, addr);
2033 		if (head & OBJ_ALLOCATED_TAG) {
2034 			handle = head & ~OBJ_ALLOCATED_TAG;
2035 			if (!testpin_tag(handle))
2036 				BUG();
2037 
2038 			old_obj = handle_to_obj(handle);
2039 			obj_to_location(old_obj, &dummy, &obj_idx);
2040 			new_obj = (unsigned long)location_to_obj(newpage,
2041 								obj_idx);
2042 			new_obj |= BIT(HANDLE_PIN_BIT);
2043 			record_obj(handle, new_obj);
2044 		}
2045 	}
2046 
2047 	replace_sub_page(class, zspage, newpage, page);
2048 	get_page(newpage);
2049 
2050 	dec_zspage_isolation(zspage);
2051 
2052 	/*
2053 	 * Page migration is done so let's putback isolated zspage to
2054 	 * the list if @page is final isolated subpage in the zspage.
2055 	 */
2056 	if (!is_zspage_isolated(zspage))
2057 		putback_zspage(class, zspage);
2058 
2059 	reset_page(page);
2060 	put_page(page);
2061 	page = newpage;
2062 
2063 	ret = MIGRATEPAGE_SUCCESS;
2064 unpin_objects:
2065 	for (addr = s_addr + offset; addr < s_addr + pos;
2066 						addr += class->size) {
2067 		head = obj_to_head(page, addr);
2068 		if (head & OBJ_ALLOCATED_TAG) {
2069 			handle = head & ~OBJ_ALLOCATED_TAG;
2070 			if (!testpin_tag(handle))
2071 				BUG();
2072 			unpin_tag(handle);
2073 		}
2074 	}
2075 	kunmap_atomic(s_addr);
2076 unlock_class:
2077 	spin_unlock(&class->lock);
2078 	migrate_write_unlock(zspage);
2079 
2080 	return ret;
2081 }
2082 
2083 void zs_page_putback(struct page *page)
2084 {
2085 	struct zs_pool *pool;
2086 	struct size_class *class;
2087 	int class_idx;
2088 	enum fullness_group fg;
2089 	struct address_space *mapping;
2090 	struct zspage *zspage;
2091 
2092 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2093 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2094 
2095 	zspage = get_zspage(page);
2096 	get_zspage_mapping(zspage, &class_idx, &fg);
2097 	mapping = page_mapping(page);
2098 	pool = mapping->private_data;
2099 	class = pool->size_class[class_idx];
2100 
2101 	spin_lock(&class->lock);
2102 	dec_zspage_isolation(zspage);
2103 	if (!is_zspage_isolated(zspage)) {
2104 		fg = putback_zspage(class, zspage);
2105 		/*
2106 		 * Due to page_lock, we cannot free zspage immediately
2107 		 * so let's defer.
2108 		 */
2109 		if (fg == ZS_EMPTY)
2110 			schedule_work(&pool->free_work);
2111 	}
2112 	spin_unlock(&class->lock);
2113 }
2114 
2115 const struct address_space_operations zsmalloc_aops = {
2116 	.isolate_page = zs_page_isolate,
2117 	.migratepage = zs_page_migrate,
2118 	.putback_page = zs_page_putback,
2119 };
2120 
2121 static int zs_register_migration(struct zs_pool *pool)
2122 {
2123 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2124 	if (IS_ERR(pool->inode)) {
2125 		pool->inode = NULL;
2126 		return 1;
2127 	}
2128 
2129 	pool->inode->i_mapping->private_data = pool;
2130 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2131 	return 0;
2132 }
2133 
2134 static void zs_unregister_migration(struct zs_pool *pool)
2135 {
2136 	flush_work(&pool->free_work);
2137 	iput(pool->inode);
2138 }
2139 
2140 /*
2141  * Caller should hold page_lock of all pages in the zspage
2142  * In here, we cannot use zspage meta data.
2143  */
2144 static void async_free_zspage(struct work_struct *work)
2145 {
2146 	int i;
2147 	struct size_class *class;
2148 	unsigned int class_idx;
2149 	enum fullness_group fullness;
2150 	struct zspage *zspage, *tmp;
2151 	LIST_HEAD(free_pages);
2152 	struct zs_pool *pool = container_of(work, struct zs_pool,
2153 					free_work);
2154 
2155 	for (i = 0; i < zs_size_classes; i++) {
2156 		class = pool->size_class[i];
2157 		if (class->index != i)
2158 			continue;
2159 
2160 		spin_lock(&class->lock);
2161 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2162 		spin_unlock(&class->lock);
2163 	}
2164 
2165 
2166 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2167 		list_del(&zspage->list);
2168 		lock_zspage(zspage);
2169 
2170 		get_zspage_mapping(zspage, &class_idx, &fullness);
2171 		VM_BUG_ON(fullness != ZS_EMPTY);
2172 		class = pool->size_class[class_idx];
2173 		spin_lock(&class->lock);
2174 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2175 		spin_unlock(&class->lock);
2176 	}
2177 };
2178 
2179 static void kick_deferred_free(struct zs_pool *pool)
2180 {
2181 	schedule_work(&pool->free_work);
2182 }
2183 
2184 static void init_deferred_free(struct zs_pool *pool)
2185 {
2186 	INIT_WORK(&pool->free_work, async_free_zspage);
2187 }
2188 
2189 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2190 {
2191 	struct page *page = get_first_page(zspage);
2192 
2193 	do {
2194 		WARN_ON(!trylock_page(page));
2195 		__SetPageMovable(page, pool->inode->i_mapping);
2196 		unlock_page(page);
2197 	} while ((page = get_next_page(page)) != NULL);
2198 }
2199 #endif
2200 
2201 /*
2202  *
2203  * Based on the number of unused allocated objects calculate
2204  * and return the number of pages that we can free.
2205  */
2206 static unsigned long zs_can_compact(struct size_class *class)
2207 {
2208 	unsigned long obj_wasted;
2209 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2210 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2211 
2212 	if (obj_allocated <= obj_used)
2213 		return 0;
2214 
2215 	obj_wasted = obj_allocated - obj_used;
2216 	obj_wasted /= class->objs_per_zspage;
2217 
2218 	return obj_wasted * class->pages_per_zspage;
2219 }
2220 
2221 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2222 {
2223 	struct zs_compact_control cc;
2224 	struct zspage *src_zspage;
2225 	struct zspage *dst_zspage = NULL;
2226 
2227 	spin_lock(&class->lock);
2228 	while ((src_zspage = isolate_zspage(class, true))) {
2229 
2230 		if (!zs_can_compact(class))
2231 			break;
2232 
2233 		cc.obj_idx = 0;
2234 		cc.s_page = get_first_page(src_zspage);
2235 
2236 		while ((dst_zspage = isolate_zspage(class, false))) {
2237 			cc.d_page = get_first_page(dst_zspage);
2238 			/*
2239 			 * If there is no more space in dst_page, resched
2240 			 * and see if anyone had allocated another zspage.
2241 			 */
2242 			if (!migrate_zspage(pool, class, &cc))
2243 				break;
2244 
2245 			putback_zspage(class, dst_zspage);
2246 		}
2247 
2248 		/* Stop if we couldn't find slot */
2249 		if (dst_zspage == NULL)
2250 			break;
2251 
2252 		putback_zspage(class, dst_zspage);
2253 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2254 			free_zspage(pool, class, src_zspage);
2255 			pool->stats.pages_compacted += class->pages_per_zspage;
2256 		}
2257 		spin_unlock(&class->lock);
2258 		cond_resched();
2259 		spin_lock(&class->lock);
2260 	}
2261 
2262 	if (src_zspage)
2263 		putback_zspage(class, src_zspage);
2264 
2265 	spin_unlock(&class->lock);
2266 }
2267 
2268 unsigned long zs_compact(struct zs_pool *pool)
2269 {
2270 	int i;
2271 	struct size_class *class;
2272 
2273 	for (i = zs_size_classes - 1; i >= 0; i--) {
2274 		class = pool->size_class[i];
2275 		if (!class)
2276 			continue;
2277 		if (class->index != i)
2278 			continue;
2279 		__zs_compact(pool, class);
2280 	}
2281 
2282 	return pool->stats.pages_compacted;
2283 }
2284 EXPORT_SYMBOL_GPL(zs_compact);
2285 
2286 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2287 {
2288 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2289 }
2290 EXPORT_SYMBOL_GPL(zs_pool_stats);
2291 
2292 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2293 		struct shrink_control *sc)
2294 {
2295 	unsigned long pages_freed;
2296 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2297 			shrinker);
2298 
2299 	pages_freed = pool->stats.pages_compacted;
2300 	/*
2301 	 * Compact classes and calculate compaction delta.
2302 	 * Can run concurrently with a manually triggered
2303 	 * (by user) compaction.
2304 	 */
2305 	pages_freed = zs_compact(pool) - pages_freed;
2306 
2307 	return pages_freed ? pages_freed : SHRINK_STOP;
2308 }
2309 
2310 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2311 		struct shrink_control *sc)
2312 {
2313 	int i;
2314 	struct size_class *class;
2315 	unsigned long pages_to_free = 0;
2316 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2317 			shrinker);
2318 
2319 	for (i = zs_size_classes - 1; i >= 0; i--) {
2320 		class = pool->size_class[i];
2321 		if (!class)
2322 			continue;
2323 		if (class->index != i)
2324 			continue;
2325 
2326 		pages_to_free += zs_can_compact(class);
2327 	}
2328 
2329 	return pages_to_free;
2330 }
2331 
2332 static void zs_unregister_shrinker(struct zs_pool *pool)
2333 {
2334 	if (pool->shrinker_enabled) {
2335 		unregister_shrinker(&pool->shrinker);
2336 		pool->shrinker_enabled = false;
2337 	}
2338 }
2339 
2340 static int zs_register_shrinker(struct zs_pool *pool)
2341 {
2342 	pool->shrinker.scan_objects = zs_shrinker_scan;
2343 	pool->shrinker.count_objects = zs_shrinker_count;
2344 	pool->shrinker.batch = 0;
2345 	pool->shrinker.seeks = DEFAULT_SEEKS;
2346 
2347 	return register_shrinker(&pool->shrinker);
2348 }
2349 
2350 /**
2351  * zs_create_pool - Creates an allocation pool to work from.
2352  * @name: pool name to be created
2353  *
2354  * This function must be called before anything when using
2355  * the zsmalloc allocator.
2356  *
2357  * On success, a pointer to the newly created pool is returned,
2358  * otherwise NULL.
2359  */
2360 struct zs_pool *zs_create_pool(const char *name)
2361 {
2362 	int i;
2363 	struct zs_pool *pool;
2364 	struct size_class *prev_class = NULL;
2365 
2366 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2367 	if (!pool)
2368 		return NULL;
2369 
2370 	init_deferred_free(pool);
2371 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2372 			GFP_KERNEL);
2373 	if (!pool->size_class) {
2374 		kfree(pool);
2375 		return NULL;
2376 	}
2377 
2378 	pool->name = kstrdup(name, GFP_KERNEL);
2379 	if (!pool->name)
2380 		goto err;
2381 
2382 	if (create_cache(pool))
2383 		goto err;
2384 
2385 	/*
2386 	 * Iterate reversly, because, size of size_class that we want to use
2387 	 * for merging should be larger or equal to current size.
2388 	 */
2389 	for (i = zs_size_classes - 1; i >= 0; i--) {
2390 		int size;
2391 		int pages_per_zspage;
2392 		int objs_per_zspage;
2393 		struct size_class *class;
2394 		int fullness = 0;
2395 
2396 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2397 		if (size > ZS_MAX_ALLOC_SIZE)
2398 			size = ZS_MAX_ALLOC_SIZE;
2399 		pages_per_zspage = get_pages_per_zspage(size);
2400 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2401 
2402 		/*
2403 		 * size_class is used for normal zsmalloc operation such
2404 		 * as alloc/free for that size. Although it is natural that we
2405 		 * have one size_class for each size, there is a chance that we
2406 		 * can get more memory utilization if we use one size_class for
2407 		 * many different sizes whose size_class have same
2408 		 * characteristics. So, we makes size_class point to
2409 		 * previous size_class if possible.
2410 		 */
2411 		if (prev_class) {
2412 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2413 				pool->size_class[i] = prev_class;
2414 				continue;
2415 			}
2416 		}
2417 
2418 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2419 		if (!class)
2420 			goto err;
2421 
2422 		class->size = size;
2423 		class->index = i;
2424 		class->pages_per_zspage = pages_per_zspage;
2425 		class->objs_per_zspage = objs_per_zspage;
2426 		spin_lock_init(&class->lock);
2427 		pool->size_class[i] = class;
2428 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2429 							fullness++)
2430 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2431 
2432 		prev_class = class;
2433 	}
2434 
2435 	/* debug only, don't abort if it fails */
2436 	zs_pool_stat_create(pool, name);
2437 
2438 	if (zs_register_migration(pool))
2439 		goto err;
2440 
2441 	/*
2442 	 * Not critical, we still can use the pool
2443 	 * and user can trigger compaction manually.
2444 	 */
2445 	if (zs_register_shrinker(pool) == 0)
2446 		pool->shrinker_enabled = true;
2447 	return pool;
2448 
2449 err:
2450 	zs_destroy_pool(pool);
2451 	return NULL;
2452 }
2453 EXPORT_SYMBOL_GPL(zs_create_pool);
2454 
2455 void zs_destroy_pool(struct zs_pool *pool)
2456 {
2457 	int i;
2458 
2459 	zs_unregister_shrinker(pool);
2460 	zs_unregister_migration(pool);
2461 	zs_pool_stat_destroy(pool);
2462 
2463 	for (i = 0; i < zs_size_classes; i++) {
2464 		int fg;
2465 		struct size_class *class = pool->size_class[i];
2466 
2467 		if (!class)
2468 			continue;
2469 
2470 		if (class->index != i)
2471 			continue;
2472 
2473 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2474 			if (!list_empty(&class->fullness_list[fg])) {
2475 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2476 					class->size, fg);
2477 			}
2478 		}
2479 		kfree(class);
2480 	}
2481 
2482 	destroy_cache(pool);
2483 	kfree(pool->size_class);
2484 	kfree(pool->name);
2485 	kfree(pool);
2486 }
2487 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2488 
2489 static int __init zs_init(void)
2490 {
2491 	int ret;
2492 
2493 	ret = zsmalloc_mount();
2494 	if (ret)
2495 		goto out;
2496 
2497 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2498 				zs_cpu_prepare, zs_cpu_dead);
2499 	if (ret)
2500 		goto hp_setup_fail;
2501 
2502 	init_zs_size_classes();
2503 
2504 #ifdef CONFIG_ZPOOL
2505 	zpool_register_driver(&zs_zpool_driver);
2506 #endif
2507 
2508 	zs_stat_init();
2509 
2510 	return 0;
2511 
2512 hp_setup_fail:
2513 	zsmalloc_unmount();
2514 out:
2515 	return ret;
2516 }
2517 
2518 static void __exit zs_exit(void)
2519 {
2520 #ifdef CONFIG_ZPOOL
2521 	zpool_unregister_driver(&zs_zpool_driver);
2522 #endif
2523 	zsmalloc_unmount();
2524 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2525 
2526 	zs_stat_exit();
2527 }
2528 
2529 module_init(zs_init);
2530 module_exit(zs_exit);
2531 
2532 MODULE_LICENSE("Dual BSD/GPL");
2533 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2534