xref: /openbmc/linux/mm/zsmalloc.c (revision 228662b0)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->migrate_lock
37  *	class->lock
38  *	zspage->lock
39  */
40 
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/magic.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/mount.h>
63 #include <linux/pseudo_fs.h>
64 #include <linux/migrate.h>
65 #include <linux/wait.h>
66 #include <linux/pagemap.h>
67 #include <linux/fs.h>
68 #include <linux/local_lock.h>
69 
70 #define ZSPAGE_MAGIC	0x58
71 
72 /*
73  * This must be power of 2 and greater than or equal to sizeof(link_free).
74  * These two conditions ensure that any 'struct link_free' itself doesn't
75  * span more than 1 page which avoids complex case of mapping 2 pages simply
76  * to restore link_free pointer values.
77  */
78 #define ZS_ALIGN		8
79 
80 /*
81  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83  */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86 
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88 
89 /*
90  * Object location (<PFN>, <obj_idx>) is encoded as
91  * a single (unsigned long) handle value.
92  *
93  * Note that object index <obj_idx> starts from 0.
94  *
95  * This is made more complicated by various memory models and PAE.
96  */
97 
98 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
99 #ifdef MAX_PHYSMEM_BITS
100 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
101 #else
102 /*
103  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104  * be PAGE_SHIFT
105  */
106 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
107 #endif
108 #endif
109 
110 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
111 
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123 
124 #define HUGE_BITS	1
125 #define FULLNESS_BITS	2
126 #define CLASS_BITS	8
127 #define ISOLATED_BITS	3
128 #define MAGIC_VAL_BITS	8
129 
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
151 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 				      ZS_SIZE_CLASS_DELTA) + 1)
153 
154 enum fullness_group {
155 	ZS_EMPTY,
156 	ZS_ALMOST_EMPTY,
157 	ZS_ALMOST_FULL,
158 	ZS_FULL,
159 	NR_ZS_FULLNESS,
160 };
161 
162 enum class_stat_type {
163 	CLASS_EMPTY,
164 	CLASS_ALMOST_EMPTY,
165 	CLASS_ALMOST_FULL,
166 	CLASS_FULL,
167 	OBJ_ALLOCATED,
168 	OBJ_USED,
169 	NR_ZS_STAT_TYPE,
170 };
171 
172 struct zs_size_stat {
173 	unsigned long objs[NR_ZS_STAT_TYPE];
174 };
175 
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
178 #endif
179 
180 #ifdef CONFIG_COMPACTION
181 static struct vfsmount *zsmalloc_mnt;
182 #endif
183 
184 /*
185  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186  *	n <= N / f, where
187  * n = number of allocated objects
188  * N = total number of objects zspage can store
189  * f = fullness_threshold_frac
190  *
191  * Similarly, we assign zspage to:
192  *	ZS_ALMOST_FULL	when n > N / f
193  *	ZS_EMPTY	when n == 0
194  *	ZS_FULL		when n == N
195  *
196  * (see: fix_fullness_group())
197  */
198 static const int fullness_threshold_frac = 4;
199 static size_t huge_class_size;
200 
201 struct size_class {
202 	spinlock_t lock;
203 	struct list_head fullness_list[NR_ZS_FULLNESS];
204 	/*
205 	 * Size of objects stored in this class. Must be multiple
206 	 * of ZS_ALIGN.
207 	 */
208 	int size;
209 	int objs_per_zspage;
210 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211 	int pages_per_zspage;
212 
213 	unsigned int index;
214 	struct zs_size_stat stats;
215 };
216 
217 /*
218  * Placed within free objects to form a singly linked list.
219  * For every zspage, zspage->freeobj gives head of this list.
220  *
221  * This must be power of 2 and less than or equal to ZS_ALIGN
222  */
223 struct link_free {
224 	union {
225 		/*
226 		 * Free object index;
227 		 * It's valid for non-allocated object
228 		 */
229 		unsigned long next;
230 		/*
231 		 * Handle of allocated object.
232 		 */
233 		unsigned long handle;
234 	};
235 };
236 
237 struct zs_pool {
238 	const char *name;
239 
240 	struct size_class *size_class[ZS_SIZE_CLASSES];
241 	struct kmem_cache *handle_cachep;
242 	struct kmem_cache *zspage_cachep;
243 
244 	atomic_long_t pages_allocated;
245 
246 	struct zs_pool_stats stats;
247 
248 	/* Compact classes */
249 	struct shrinker shrinker;
250 
251 #ifdef CONFIG_ZSMALLOC_STAT
252 	struct dentry *stat_dentry;
253 #endif
254 #ifdef CONFIG_COMPACTION
255 	struct inode *inode;
256 	struct work_struct free_work;
257 #endif
258 	/* protect page/zspage migration */
259 	rwlock_t migrate_lock;
260 };
261 
262 struct zspage {
263 	struct {
264 		unsigned int huge:HUGE_BITS;
265 		unsigned int fullness:FULLNESS_BITS;
266 		unsigned int class:CLASS_BITS + 1;
267 		unsigned int isolated:ISOLATED_BITS;
268 		unsigned int magic:MAGIC_VAL_BITS;
269 	};
270 	unsigned int inuse;
271 	unsigned int freeobj;
272 	struct page *first_page;
273 	struct list_head list; /* fullness list */
274 #ifdef CONFIG_COMPACTION
275 	rwlock_t lock;
276 #endif
277 };
278 
279 struct mapping_area {
280 	local_lock_t lock;
281 	char *vm_buf; /* copy buffer for objects that span pages */
282 	char *vm_addr; /* address of kmap_atomic()'ed pages */
283 	enum zs_mapmode vm_mm; /* mapping mode */
284 };
285 
286 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
287 static void SetZsHugePage(struct zspage *zspage)
288 {
289 	zspage->huge = 1;
290 }
291 
292 static bool ZsHugePage(struct zspage *zspage)
293 {
294 	return zspage->huge;
295 }
296 
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void migrate_write_lock(struct zspage *zspage);
304 static void migrate_write_lock_nested(struct zspage *zspage);
305 static void migrate_write_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void migrate_write_lock(struct zspage *zspage) {}
318 static void migrate_write_lock_nested(struct zspage *zspage) {}
319 static void migrate_write_unlock(struct zspage *zspage) {}
320 static void kick_deferred_free(struct zs_pool *pool) {}
321 static void init_deferred_free(struct zs_pool *pool) {}
322 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
323 #endif
324 
325 static int create_cache(struct zs_pool *pool)
326 {
327 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
328 					0, 0, NULL);
329 	if (!pool->handle_cachep)
330 		return 1;
331 
332 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
333 					0, 0, NULL);
334 	if (!pool->zspage_cachep) {
335 		kmem_cache_destroy(pool->handle_cachep);
336 		pool->handle_cachep = NULL;
337 		return 1;
338 	}
339 
340 	return 0;
341 }
342 
343 static void destroy_cache(struct zs_pool *pool)
344 {
345 	kmem_cache_destroy(pool->handle_cachep);
346 	kmem_cache_destroy(pool->zspage_cachep);
347 }
348 
349 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
350 {
351 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
352 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
353 }
354 
355 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
356 {
357 	kmem_cache_free(pool->handle_cachep, (void *)handle);
358 }
359 
360 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361 {
362 	return kmem_cache_zalloc(pool->zspage_cachep,
363 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
364 }
365 
366 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367 {
368 	kmem_cache_free(pool->zspage_cachep, zspage);
369 }
370 
371 /* class->lock(which owns the handle) synchronizes races */
372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374 	*(unsigned long *)handle = obj;
375 }
376 
377 /* zpool driver */
378 
379 #ifdef CONFIG_ZPOOL
380 
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 			     const struct zpool_ops *zpool_ops,
383 			     struct zpool *zpool)
384 {
385 	/*
386 	 * Ignore global gfp flags: zs_malloc() may be invoked from
387 	 * different contexts and its caller must provide a valid
388 	 * gfp mask.
389 	 */
390 	return zs_create_pool(name);
391 }
392 
393 static void zs_zpool_destroy(void *pool)
394 {
395 	zs_destroy_pool(pool);
396 }
397 
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 			unsigned long *handle)
400 {
401 	*handle = zs_malloc(pool, size, gfp);
402 	return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 	zs_free(pool, handle);
407 }
408 
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 			enum zpool_mapmode mm)
411 {
412 	enum zs_mapmode zs_mm;
413 
414 	switch (mm) {
415 	case ZPOOL_MM_RO:
416 		zs_mm = ZS_MM_RO;
417 		break;
418 	case ZPOOL_MM_WO:
419 		zs_mm = ZS_MM_WO;
420 		break;
421 	case ZPOOL_MM_RW:
422 	default:
423 		zs_mm = ZS_MM_RW;
424 		break;
425 	}
426 
427 	return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 	zs_unmap_object(pool, handle);
432 }
433 
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 	return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438 
439 static struct zpool_driver zs_zpool_driver = {
440 	.type =			  "zsmalloc",
441 	.owner =		  THIS_MODULE,
442 	.create =		  zs_zpool_create,
443 	.destroy =		  zs_zpool_destroy,
444 	.malloc_support_movable = true,
445 	.malloc =		  zs_zpool_malloc,
446 	.free =			  zs_zpool_free,
447 	.map =			  zs_zpool_map,
448 	.unmap =		  zs_zpool_unmap,
449 	.total_size =		  zs_zpool_total_size,
450 };
451 
452 MODULE_ALIAS("zpool-zsmalloc");
453 #endif /* CONFIG_ZPOOL */
454 
455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457 	.lock	= INIT_LOCAL_LOCK(lock),
458 };
459 
460 static __maybe_unused int is_first_page(struct page *page)
461 {
462 	return PagePrivate(page);
463 }
464 
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
467 {
468 	return zspage->inuse;
469 }
470 
471 
472 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
473 {
474 	zspage->inuse += val;
475 }
476 
477 static inline struct page *get_first_page(struct zspage *zspage)
478 {
479 	struct page *first_page = zspage->first_page;
480 
481 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
482 	return first_page;
483 }
484 
485 static inline int get_first_obj_offset(struct page *page)
486 {
487 	return page->page_type;
488 }
489 
490 static inline void set_first_obj_offset(struct page *page, int offset)
491 {
492 	page->page_type = offset;
493 }
494 
495 static inline unsigned int get_freeobj(struct zspage *zspage)
496 {
497 	return zspage->freeobj;
498 }
499 
500 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
501 {
502 	zspage->freeobj = obj;
503 }
504 
505 static void get_zspage_mapping(struct zspage *zspage,
506 				unsigned int *class_idx,
507 				enum fullness_group *fullness)
508 {
509 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
510 
511 	*fullness = zspage->fullness;
512 	*class_idx = zspage->class;
513 }
514 
515 static struct size_class *zspage_class(struct zs_pool *pool,
516 					     struct zspage *zspage)
517 {
518 	return pool->size_class[zspage->class];
519 }
520 
521 static void set_zspage_mapping(struct zspage *zspage,
522 				unsigned int class_idx,
523 				enum fullness_group fullness)
524 {
525 	zspage->class = class_idx;
526 	zspage->fullness = fullness;
527 }
528 
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the given size.
535  */
536 static int get_size_class_index(int size)
537 {
538 	int idx = 0;
539 
540 	if (likely(size > ZS_MIN_ALLOC_SIZE))
541 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 				ZS_SIZE_CLASS_DELTA);
543 
544 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546 
547 /* type can be of enum type class_stat_type or fullness_group */
548 static inline void class_stat_inc(struct size_class *class,
549 				int type, unsigned long cnt)
550 {
551 	class->stats.objs[type] += cnt;
552 }
553 
554 /* type can be of enum type class_stat_type or fullness_group */
555 static inline void class_stat_dec(struct size_class *class,
556 				int type, unsigned long cnt)
557 {
558 	class->stats.objs[type] -= cnt;
559 }
560 
561 /* type can be of enum type class_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 				int type)
564 {
565 	return class->stats.objs[type];
566 }
567 
568 #ifdef CONFIG_ZSMALLOC_STAT
569 
570 static void __init zs_stat_init(void)
571 {
572 	if (!debugfs_initialized()) {
573 		pr_warn("debugfs not available, stat dir not created\n");
574 		return;
575 	}
576 
577 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 }
579 
580 static void __exit zs_stat_exit(void)
581 {
582 	debugfs_remove_recursive(zs_stat_root);
583 }
584 
585 static unsigned long zs_can_compact(struct size_class *class);
586 
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589 	int i;
590 	struct zs_pool *pool = s->private;
591 	struct size_class *class;
592 	int objs_per_zspage;
593 	unsigned long class_almost_full, class_almost_empty;
594 	unsigned long obj_allocated, obj_used, pages_used, freeable;
595 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 	unsigned long total_freeable = 0;
598 
599 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 			"class", "size", "almost_full", "almost_empty",
601 			"obj_allocated", "obj_used", "pages_used",
602 			"pages_per_zspage", "freeable");
603 
604 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 		class = pool->size_class[i];
606 
607 		if (class->index != i)
608 			continue;
609 
610 		spin_lock(&class->lock);
611 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 		obj_used = zs_stat_get(class, OBJ_USED);
615 		freeable = zs_can_compact(class);
616 		spin_unlock(&class->lock);
617 
618 		objs_per_zspage = class->objs_per_zspage;
619 		pages_used = obj_allocated / objs_per_zspage *
620 				class->pages_per_zspage;
621 
622 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 				" %10lu %10lu %16d %8lu\n",
624 			i, class->size, class_almost_full, class_almost_empty,
625 			obj_allocated, obj_used, pages_used,
626 			class->pages_per_zspage, freeable);
627 
628 		total_class_almost_full += class_almost_full;
629 		total_class_almost_empty += class_almost_empty;
630 		total_objs += obj_allocated;
631 		total_used_objs += obj_used;
632 		total_pages += pages_used;
633 		total_freeable += freeable;
634 	}
635 
636 	seq_puts(s, "\n");
637 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 			"Total", "", total_class_almost_full,
639 			total_class_almost_empty, total_objs,
640 			total_used_objs, total_pages, "", total_freeable);
641 
642 	return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645 
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648 	if (!zs_stat_root) {
649 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
650 		return;
651 	}
652 
653 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654 
655 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 			    &zs_stats_size_fops);
657 }
658 
659 static void zs_pool_stat_destroy(struct zs_pool *pool)
660 {
661 	debugfs_remove_recursive(pool->stat_dentry);
662 }
663 
664 #else /* CONFIG_ZSMALLOC_STAT */
665 static void __init zs_stat_init(void)
666 {
667 }
668 
669 static void __exit zs_stat_exit(void)
670 {
671 }
672 
673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674 {
675 }
676 
677 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678 {
679 }
680 #endif
681 
682 
683 /*
684  * For each size class, zspages are divided into different groups
685  * depending on how "full" they are. This was done so that we could
686  * easily find empty or nearly empty zspages when we try to shrink
687  * the pool (not yet implemented). This function returns fullness
688  * status of the given page.
689  */
690 static enum fullness_group get_fullness_group(struct size_class *class,
691 						struct zspage *zspage)
692 {
693 	int inuse, objs_per_zspage;
694 	enum fullness_group fg;
695 
696 	inuse = get_zspage_inuse(zspage);
697 	objs_per_zspage = class->objs_per_zspage;
698 
699 	if (inuse == 0)
700 		fg = ZS_EMPTY;
701 	else if (inuse == objs_per_zspage)
702 		fg = ZS_FULL;
703 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704 		fg = ZS_ALMOST_EMPTY;
705 	else
706 		fg = ZS_ALMOST_FULL;
707 
708 	return fg;
709 }
710 
711 /*
712  * Each size class maintains various freelists and zspages are assigned
713  * to one of these freelists based on the number of live objects they
714  * have. This functions inserts the given zspage into the freelist
715  * identified by <class, fullness_group>.
716  */
717 static void insert_zspage(struct size_class *class,
718 				struct zspage *zspage,
719 				enum fullness_group fullness)
720 {
721 	struct zspage *head;
722 
723 	class_stat_inc(class, fullness, 1);
724 	head = list_first_entry_or_null(&class->fullness_list[fullness],
725 					struct zspage, list);
726 	/*
727 	 * We want to see more ZS_FULL pages and less almost empty/full.
728 	 * Put pages with higher ->inuse first.
729 	 */
730 	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731 		list_add(&zspage->list, &head->list);
732 	else
733 		list_add(&zspage->list, &class->fullness_list[fullness]);
734 }
735 
736 /*
737  * This function removes the given zspage from the freelist identified
738  * by <class, fullness_group>.
739  */
740 static void remove_zspage(struct size_class *class,
741 				struct zspage *zspage,
742 				enum fullness_group fullness)
743 {
744 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
745 
746 	list_del_init(&zspage->list);
747 	class_stat_dec(class, fullness, 1);
748 }
749 
750 /*
751  * Each size class maintains zspages in different fullness groups depending
752  * on the number of live objects they contain. When allocating or freeing
753  * objects, the fullness status of the page can change, say, from ALMOST_FULL
754  * to ALMOST_EMPTY when freeing an object. This function checks if such
755  * a status change has occurred for the given page and accordingly moves the
756  * page from the freelist of the old fullness group to that of the new
757  * fullness group.
758  */
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760 						struct zspage *zspage)
761 {
762 	int class_idx;
763 	enum fullness_group currfg, newfg;
764 
765 	get_zspage_mapping(zspage, &class_idx, &currfg);
766 	newfg = get_fullness_group(class, zspage);
767 	if (newfg == currfg)
768 		goto out;
769 
770 	remove_zspage(class, zspage, currfg);
771 	insert_zspage(class, zspage, newfg);
772 	set_zspage_mapping(zspage, class_idx, newfg);
773 out:
774 	return newfg;
775 }
776 
777 /*
778  * We have to decide on how many pages to link together
779  * to form a zspage for each size class. This is important
780  * to reduce wastage due to unusable space left at end of
781  * each zspage which is given as:
782  *     wastage = Zp % class_size
783  *     usage = Zp - wastage
784  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
785  *
786  * For example, for size class of 3/8 * PAGE_SIZE, we should
787  * link together 3 PAGE_SIZE sized pages to form a zspage
788  * since then we can perfectly fit in 8 such objects.
789  */
790 static int get_pages_per_zspage(int class_size)
791 {
792 	int i, max_usedpc = 0;
793 	/* zspage order which gives maximum used size per KB */
794 	int max_usedpc_order = 1;
795 
796 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
797 		int zspage_size;
798 		int waste, usedpc;
799 
800 		zspage_size = i * PAGE_SIZE;
801 		waste = zspage_size % class_size;
802 		usedpc = (zspage_size - waste) * 100 / zspage_size;
803 
804 		if (usedpc > max_usedpc) {
805 			max_usedpc = usedpc;
806 			max_usedpc_order = i;
807 		}
808 	}
809 
810 	return max_usedpc_order;
811 }
812 
813 static struct zspage *get_zspage(struct page *page)
814 {
815 	struct zspage *zspage = (struct zspage *)page_private(page);
816 
817 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
818 	return zspage;
819 }
820 
821 static struct page *get_next_page(struct page *page)
822 {
823 	struct zspage *zspage = get_zspage(page);
824 
825 	if (unlikely(ZsHugePage(zspage)))
826 		return NULL;
827 
828 	return (struct page *)page->index;
829 }
830 
831 /**
832  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
833  * @obj: the encoded object value
834  * @page: page object resides in zspage
835  * @obj_idx: object index
836  */
837 static void obj_to_location(unsigned long obj, struct page **page,
838 				unsigned int *obj_idx)
839 {
840 	obj >>= OBJ_TAG_BITS;
841 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 	*obj_idx = (obj & OBJ_INDEX_MASK);
843 }
844 
845 static void obj_to_page(unsigned long obj, struct page **page)
846 {
847 	obj >>= OBJ_TAG_BITS;
848 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849 }
850 
851 /**
852  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853  * @page: page object resides in zspage
854  * @obj_idx: object index
855  */
856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857 {
858 	unsigned long obj;
859 
860 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861 	obj |= obj_idx & OBJ_INDEX_MASK;
862 	obj <<= OBJ_TAG_BITS;
863 
864 	return obj;
865 }
866 
867 static unsigned long handle_to_obj(unsigned long handle)
868 {
869 	return *(unsigned long *)handle;
870 }
871 
872 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
873 {
874 	unsigned long handle;
875 	struct zspage *zspage = get_zspage(page);
876 
877 	if (unlikely(ZsHugePage(zspage))) {
878 		VM_BUG_ON_PAGE(!is_first_page(page), page);
879 		handle = page->index;
880 	} else
881 		handle = *(unsigned long *)obj;
882 
883 	if (!(handle & OBJ_ALLOCATED_TAG))
884 		return false;
885 
886 	*phandle = handle & ~OBJ_ALLOCATED_TAG;
887 	return true;
888 }
889 
890 static void reset_page(struct page *page)
891 {
892 	__ClearPageMovable(page);
893 	ClearPagePrivate(page);
894 	set_page_private(page, 0);
895 	page_mapcount_reset(page);
896 	page->index = 0;
897 }
898 
899 static int trylock_zspage(struct zspage *zspage)
900 {
901 	struct page *cursor, *fail;
902 
903 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904 					get_next_page(cursor)) {
905 		if (!trylock_page(cursor)) {
906 			fail = cursor;
907 			goto unlock;
908 		}
909 	}
910 
911 	return 1;
912 unlock:
913 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
914 					get_next_page(cursor))
915 		unlock_page(cursor);
916 
917 	return 0;
918 }
919 
920 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921 				struct zspage *zspage)
922 {
923 	struct page *page, *next;
924 	enum fullness_group fg;
925 	unsigned int class_idx;
926 
927 	get_zspage_mapping(zspage, &class_idx, &fg);
928 
929 	assert_spin_locked(&class->lock);
930 
931 	VM_BUG_ON(get_zspage_inuse(zspage));
932 	VM_BUG_ON(fg != ZS_EMPTY);
933 
934 	next = page = get_first_page(zspage);
935 	do {
936 		VM_BUG_ON_PAGE(!PageLocked(page), page);
937 		next = get_next_page(page);
938 		reset_page(page);
939 		unlock_page(page);
940 		dec_zone_page_state(page, NR_ZSPAGES);
941 		put_page(page);
942 		page = next;
943 	} while (page != NULL);
944 
945 	cache_free_zspage(pool, zspage);
946 
947 	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
948 	atomic_long_sub(class->pages_per_zspage,
949 					&pool->pages_allocated);
950 }
951 
952 static void free_zspage(struct zs_pool *pool, struct size_class *class,
953 				struct zspage *zspage)
954 {
955 	VM_BUG_ON(get_zspage_inuse(zspage));
956 	VM_BUG_ON(list_empty(&zspage->list));
957 
958 	/*
959 	 * Since zs_free couldn't be sleepable, this function cannot call
960 	 * lock_page. The page locks trylock_zspage got will be released
961 	 * by __free_zspage.
962 	 */
963 	if (!trylock_zspage(zspage)) {
964 		kick_deferred_free(pool);
965 		return;
966 	}
967 
968 	remove_zspage(class, zspage, ZS_EMPTY);
969 	__free_zspage(pool, class, zspage);
970 }
971 
972 /* Initialize a newly allocated zspage */
973 static void init_zspage(struct size_class *class, struct zspage *zspage)
974 {
975 	unsigned int freeobj = 1;
976 	unsigned long off = 0;
977 	struct page *page = get_first_page(zspage);
978 
979 	while (page) {
980 		struct page *next_page;
981 		struct link_free *link;
982 		void *vaddr;
983 
984 		set_first_obj_offset(page, off);
985 
986 		vaddr = kmap_atomic(page);
987 		link = (struct link_free *)vaddr + off / sizeof(*link);
988 
989 		while ((off += class->size) < PAGE_SIZE) {
990 			link->next = freeobj++ << OBJ_TAG_BITS;
991 			link += class->size / sizeof(*link);
992 		}
993 
994 		/*
995 		 * We now come to the last (full or partial) object on this
996 		 * page, which must point to the first object on the next
997 		 * page (if present)
998 		 */
999 		next_page = get_next_page(page);
1000 		if (next_page) {
1001 			link->next = freeobj++ << OBJ_TAG_BITS;
1002 		} else {
1003 			/*
1004 			 * Reset OBJ_TAG_BITS bit to last link to tell
1005 			 * whether it's allocated object or not.
1006 			 */
1007 			link->next = -1UL << OBJ_TAG_BITS;
1008 		}
1009 		kunmap_atomic(vaddr);
1010 		page = next_page;
1011 		off %= PAGE_SIZE;
1012 	}
1013 
1014 	set_freeobj(zspage, 0);
1015 }
1016 
1017 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018 				struct page *pages[])
1019 {
1020 	int i;
1021 	struct page *page;
1022 	struct page *prev_page = NULL;
1023 	int nr_pages = class->pages_per_zspage;
1024 
1025 	/*
1026 	 * Allocate individual pages and link them together as:
1027 	 * 1. all pages are linked together using page->index
1028 	 * 2. each sub-page point to zspage using page->private
1029 	 *
1030 	 * we set PG_private to identify the first page (i.e. no other sub-page
1031 	 * has this flag set).
1032 	 */
1033 	for (i = 0; i < nr_pages; i++) {
1034 		page = pages[i];
1035 		set_page_private(page, (unsigned long)zspage);
1036 		page->index = 0;
1037 		if (i == 0) {
1038 			zspage->first_page = page;
1039 			SetPagePrivate(page);
1040 			if (unlikely(class->objs_per_zspage == 1 &&
1041 					class->pages_per_zspage == 1))
1042 				SetZsHugePage(zspage);
1043 		} else {
1044 			prev_page->index = (unsigned long)page;
1045 		}
1046 		prev_page = page;
1047 	}
1048 }
1049 
1050 /*
1051  * Allocate a zspage for the given size class
1052  */
1053 static struct zspage *alloc_zspage(struct zs_pool *pool,
1054 					struct size_class *class,
1055 					gfp_t gfp)
1056 {
1057 	int i;
1058 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060 
1061 	if (!zspage)
1062 		return NULL;
1063 
1064 	zspage->magic = ZSPAGE_MAGIC;
1065 	migrate_lock_init(zspage);
1066 
1067 	for (i = 0; i < class->pages_per_zspage; i++) {
1068 		struct page *page;
1069 
1070 		page = alloc_page(gfp);
1071 		if (!page) {
1072 			while (--i >= 0) {
1073 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1074 				__free_page(pages[i]);
1075 			}
1076 			cache_free_zspage(pool, zspage);
1077 			return NULL;
1078 		}
1079 
1080 		inc_zone_page_state(page, NR_ZSPAGES);
1081 		pages[i] = page;
1082 	}
1083 
1084 	create_page_chain(class, zspage, pages);
1085 	init_zspage(class, zspage);
1086 
1087 	return zspage;
1088 }
1089 
1090 static struct zspage *find_get_zspage(struct size_class *class)
1091 {
1092 	int i;
1093 	struct zspage *zspage;
1094 
1095 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1097 				struct zspage, list);
1098 		if (zspage)
1099 			break;
1100 	}
1101 
1102 	return zspage;
1103 }
1104 
1105 static inline int __zs_cpu_up(struct mapping_area *area)
1106 {
1107 	/*
1108 	 * Make sure we don't leak memory if a cpu UP notification
1109 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1110 	 */
1111 	if (area->vm_buf)
1112 		return 0;
1113 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1114 	if (!area->vm_buf)
1115 		return -ENOMEM;
1116 	return 0;
1117 }
1118 
1119 static inline void __zs_cpu_down(struct mapping_area *area)
1120 {
1121 	kfree(area->vm_buf);
1122 	area->vm_buf = NULL;
1123 }
1124 
1125 static void *__zs_map_object(struct mapping_area *area,
1126 			struct page *pages[2], int off, int size)
1127 {
1128 	int sizes[2];
1129 	void *addr;
1130 	char *buf = area->vm_buf;
1131 
1132 	/* disable page faults to match kmap_atomic() return conditions */
1133 	pagefault_disable();
1134 
1135 	/* no read fastpath */
1136 	if (area->vm_mm == ZS_MM_WO)
1137 		goto out;
1138 
1139 	sizes[0] = PAGE_SIZE - off;
1140 	sizes[1] = size - sizes[0];
1141 
1142 	/* copy object to per-cpu buffer */
1143 	addr = kmap_atomic(pages[0]);
1144 	memcpy(buf, addr + off, sizes[0]);
1145 	kunmap_atomic(addr);
1146 	addr = kmap_atomic(pages[1]);
1147 	memcpy(buf + sizes[0], addr, sizes[1]);
1148 	kunmap_atomic(addr);
1149 out:
1150 	return area->vm_buf;
1151 }
1152 
1153 static void __zs_unmap_object(struct mapping_area *area,
1154 			struct page *pages[2], int off, int size)
1155 {
1156 	int sizes[2];
1157 	void *addr;
1158 	char *buf;
1159 
1160 	/* no write fastpath */
1161 	if (area->vm_mm == ZS_MM_RO)
1162 		goto out;
1163 
1164 	buf = area->vm_buf;
1165 	buf = buf + ZS_HANDLE_SIZE;
1166 	size -= ZS_HANDLE_SIZE;
1167 	off += ZS_HANDLE_SIZE;
1168 
1169 	sizes[0] = PAGE_SIZE - off;
1170 	sizes[1] = size - sizes[0];
1171 
1172 	/* copy per-cpu buffer to object */
1173 	addr = kmap_atomic(pages[0]);
1174 	memcpy(addr + off, buf, sizes[0]);
1175 	kunmap_atomic(addr);
1176 	addr = kmap_atomic(pages[1]);
1177 	memcpy(addr, buf + sizes[0], sizes[1]);
1178 	kunmap_atomic(addr);
1179 
1180 out:
1181 	/* enable page faults to match kunmap_atomic() return conditions */
1182 	pagefault_enable();
1183 }
1184 
1185 static int zs_cpu_prepare(unsigned int cpu)
1186 {
1187 	struct mapping_area *area;
1188 
1189 	area = &per_cpu(zs_map_area, cpu);
1190 	return __zs_cpu_up(area);
1191 }
1192 
1193 static int zs_cpu_dead(unsigned int cpu)
1194 {
1195 	struct mapping_area *area;
1196 
1197 	area = &per_cpu(zs_map_area, cpu);
1198 	__zs_cpu_down(area);
1199 	return 0;
1200 }
1201 
1202 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203 					int objs_per_zspage)
1204 {
1205 	if (prev->pages_per_zspage == pages_per_zspage &&
1206 		prev->objs_per_zspage == objs_per_zspage)
1207 		return true;
1208 
1209 	return false;
1210 }
1211 
1212 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1213 {
1214 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1215 }
1216 
1217 unsigned long zs_get_total_pages(struct zs_pool *pool)
1218 {
1219 	return atomic_long_read(&pool->pages_allocated);
1220 }
1221 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222 
1223 /**
1224  * zs_map_object - get address of allocated object from handle.
1225  * @pool: pool from which the object was allocated
1226  * @handle: handle returned from zs_malloc
1227  * @mm: mapping mode to use
1228  *
1229  * Before using an object allocated from zs_malloc, it must be mapped using
1230  * this function. When done with the object, it must be unmapped using
1231  * zs_unmap_object.
1232  *
1233  * Only one object can be mapped per cpu at a time. There is no protection
1234  * against nested mappings.
1235  *
1236  * This function returns with preemption and page faults disabled.
1237  */
1238 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239 			enum zs_mapmode mm)
1240 {
1241 	struct zspage *zspage;
1242 	struct page *page;
1243 	unsigned long obj, off;
1244 	unsigned int obj_idx;
1245 
1246 	struct size_class *class;
1247 	struct mapping_area *area;
1248 	struct page *pages[2];
1249 	void *ret;
1250 
1251 	/*
1252 	 * Because we use per-cpu mapping areas shared among the
1253 	 * pools/users, we can't allow mapping in interrupt context
1254 	 * because it can corrupt another users mappings.
1255 	 */
1256 	BUG_ON(in_interrupt());
1257 
1258 	/* It guarantees it can get zspage from handle safely */
1259 	read_lock(&pool->migrate_lock);
1260 	obj = handle_to_obj(handle);
1261 	obj_to_location(obj, &page, &obj_idx);
1262 	zspage = get_zspage(page);
1263 
1264 	/*
1265 	 * migration cannot move any zpages in this zspage. Here, class->lock
1266 	 * is too heavy since callers would take some time until they calls
1267 	 * zs_unmap_object API so delegate the locking from class to zspage
1268 	 * which is smaller granularity.
1269 	 */
1270 	migrate_read_lock(zspage);
1271 	read_unlock(&pool->migrate_lock);
1272 
1273 	class = zspage_class(pool, zspage);
1274 	off = (class->size * obj_idx) & ~PAGE_MASK;
1275 
1276 	local_lock(&zs_map_area.lock);
1277 	area = this_cpu_ptr(&zs_map_area);
1278 	area->vm_mm = mm;
1279 	if (off + class->size <= PAGE_SIZE) {
1280 		/* this object is contained entirely within a page */
1281 		area->vm_addr = kmap_atomic(page);
1282 		ret = area->vm_addr + off;
1283 		goto out;
1284 	}
1285 
1286 	/* this object spans two pages */
1287 	pages[0] = page;
1288 	pages[1] = get_next_page(page);
1289 	BUG_ON(!pages[1]);
1290 
1291 	ret = __zs_map_object(area, pages, off, class->size);
1292 out:
1293 	if (likely(!ZsHugePage(zspage)))
1294 		ret += ZS_HANDLE_SIZE;
1295 
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(zs_map_object);
1299 
1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301 {
1302 	struct zspage *zspage;
1303 	struct page *page;
1304 	unsigned long obj, off;
1305 	unsigned int obj_idx;
1306 
1307 	struct size_class *class;
1308 	struct mapping_area *area;
1309 
1310 	obj = handle_to_obj(handle);
1311 	obj_to_location(obj, &page, &obj_idx);
1312 	zspage = get_zspage(page);
1313 	class = zspage_class(pool, zspage);
1314 	off = (class->size * obj_idx) & ~PAGE_MASK;
1315 
1316 	area = this_cpu_ptr(&zs_map_area);
1317 	if (off + class->size <= PAGE_SIZE)
1318 		kunmap_atomic(area->vm_addr);
1319 	else {
1320 		struct page *pages[2];
1321 
1322 		pages[0] = page;
1323 		pages[1] = get_next_page(page);
1324 		BUG_ON(!pages[1]);
1325 
1326 		__zs_unmap_object(area, pages, off, class->size);
1327 	}
1328 	local_unlock(&zs_map_area.lock);
1329 
1330 	migrate_read_unlock(zspage);
1331 }
1332 EXPORT_SYMBOL_GPL(zs_unmap_object);
1333 
1334 /**
1335  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336  *                        zsmalloc &size_class.
1337  * @pool: zsmalloc pool to use
1338  *
1339  * The function returns the size of the first huge class - any object of equal
1340  * or bigger size will be stored in zspage consisting of a single physical
1341  * page.
1342  *
1343  * Context: Any context.
1344  *
1345  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1346  */
1347 size_t zs_huge_class_size(struct zs_pool *pool)
1348 {
1349 	return huge_class_size;
1350 }
1351 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352 
1353 static unsigned long obj_malloc(struct zs_pool *pool,
1354 				struct zspage *zspage, unsigned long handle)
1355 {
1356 	int i, nr_page, offset;
1357 	unsigned long obj;
1358 	struct link_free *link;
1359 	struct size_class *class;
1360 
1361 	struct page *m_page;
1362 	unsigned long m_offset;
1363 	void *vaddr;
1364 
1365 	class = pool->size_class[zspage->class];
1366 	handle |= OBJ_ALLOCATED_TAG;
1367 	obj = get_freeobj(zspage);
1368 
1369 	offset = obj * class->size;
1370 	nr_page = offset >> PAGE_SHIFT;
1371 	m_offset = offset & ~PAGE_MASK;
1372 	m_page = get_first_page(zspage);
1373 
1374 	for (i = 0; i < nr_page; i++)
1375 		m_page = get_next_page(m_page);
1376 
1377 	vaddr = kmap_atomic(m_page);
1378 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380 	if (likely(!ZsHugePage(zspage)))
1381 		/* record handle in the header of allocated chunk */
1382 		link->handle = handle;
1383 	else
1384 		/* record handle to page->index */
1385 		zspage->first_page->index = handle;
1386 
1387 	kunmap_atomic(vaddr);
1388 	mod_zspage_inuse(zspage, 1);
1389 
1390 	obj = location_to_obj(m_page, obj);
1391 
1392 	return obj;
1393 }
1394 
1395 
1396 /**
1397  * zs_malloc - Allocate block of given size from pool.
1398  * @pool: pool to allocate from
1399  * @size: size of block to allocate
1400  * @gfp: gfp flags when allocating object
1401  *
1402  * On success, handle to the allocated object is returned,
1403  * otherwise 0.
1404  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1405  */
1406 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1407 {
1408 	unsigned long handle, obj;
1409 	struct size_class *class;
1410 	enum fullness_group newfg;
1411 	struct zspage *zspage;
1412 
1413 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1414 		return 0;
1415 
1416 	handle = cache_alloc_handle(pool, gfp);
1417 	if (!handle)
1418 		return 0;
1419 
1420 	/* extra space in chunk to keep the handle */
1421 	size += ZS_HANDLE_SIZE;
1422 	class = pool->size_class[get_size_class_index(size)];
1423 
1424 	/* class->lock effectively protects the zpage migration */
1425 	spin_lock(&class->lock);
1426 	zspage = find_get_zspage(class);
1427 	if (likely(zspage)) {
1428 		obj = obj_malloc(pool, zspage, handle);
1429 		/* Now move the zspage to another fullness group, if required */
1430 		fix_fullness_group(class, zspage);
1431 		record_obj(handle, obj);
1432 		class_stat_inc(class, OBJ_USED, 1);
1433 		spin_unlock(&class->lock);
1434 
1435 		return handle;
1436 	}
1437 
1438 	spin_unlock(&class->lock);
1439 
1440 	zspage = alloc_zspage(pool, class, gfp);
1441 	if (!zspage) {
1442 		cache_free_handle(pool, handle);
1443 		return 0;
1444 	}
1445 
1446 	spin_lock(&class->lock);
1447 	obj = obj_malloc(pool, zspage, handle);
1448 	newfg = get_fullness_group(class, zspage);
1449 	insert_zspage(class, zspage, newfg);
1450 	set_zspage_mapping(zspage, class->index, newfg);
1451 	record_obj(handle, obj);
1452 	atomic_long_add(class->pages_per_zspage,
1453 				&pool->pages_allocated);
1454 	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455 	class_stat_inc(class, OBJ_USED, 1);
1456 
1457 	/* We completely set up zspage so mark them as movable */
1458 	SetZsPageMovable(pool, zspage);
1459 	spin_unlock(&class->lock);
1460 
1461 	return handle;
1462 }
1463 EXPORT_SYMBOL_GPL(zs_malloc);
1464 
1465 static void obj_free(int class_size, unsigned long obj)
1466 {
1467 	struct link_free *link;
1468 	struct zspage *zspage;
1469 	struct page *f_page;
1470 	unsigned long f_offset;
1471 	unsigned int f_objidx;
1472 	void *vaddr;
1473 
1474 	obj_to_location(obj, &f_page, &f_objidx);
1475 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476 	zspage = get_zspage(f_page);
1477 
1478 	vaddr = kmap_atomic(f_page);
1479 
1480 	/* Insert this object in containing zspage's freelist */
1481 	link = (struct link_free *)(vaddr + f_offset);
1482 	if (likely(!ZsHugePage(zspage)))
1483 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484 	else
1485 		f_page->index = 0;
1486 	kunmap_atomic(vaddr);
1487 	set_freeobj(zspage, f_objidx);
1488 	mod_zspage_inuse(zspage, -1);
1489 }
1490 
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1492 {
1493 	struct zspage *zspage;
1494 	struct page *f_page;
1495 	unsigned long obj;
1496 	struct size_class *class;
1497 	enum fullness_group fullness;
1498 
1499 	if (unlikely(!handle))
1500 		return;
1501 
1502 	/*
1503 	 * The pool->migrate_lock protects the race with zpage's migration
1504 	 * so it's safe to get the page from handle.
1505 	 */
1506 	read_lock(&pool->migrate_lock);
1507 	obj = handle_to_obj(handle);
1508 	obj_to_page(obj, &f_page);
1509 	zspage = get_zspage(f_page);
1510 	class = zspage_class(pool, zspage);
1511 	spin_lock(&class->lock);
1512 	read_unlock(&pool->migrate_lock);
1513 
1514 	obj_free(class->size, obj);
1515 	class_stat_dec(class, OBJ_USED, 1);
1516 	fullness = fix_fullness_group(class, zspage);
1517 	if (fullness != ZS_EMPTY)
1518 		goto out;
1519 
1520 	free_zspage(pool, class, zspage);
1521 out:
1522 	spin_unlock(&class->lock);
1523 	cache_free_handle(pool, handle);
1524 }
1525 EXPORT_SYMBOL_GPL(zs_free);
1526 
1527 static void zs_object_copy(struct size_class *class, unsigned long dst,
1528 				unsigned long src)
1529 {
1530 	struct page *s_page, *d_page;
1531 	unsigned int s_objidx, d_objidx;
1532 	unsigned long s_off, d_off;
1533 	void *s_addr, *d_addr;
1534 	int s_size, d_size, size;
1535 	int written = 0;
1536 
1537 	s_size = d_size = class->size;
1538 
1539 	obj_to_location(src, &s_page, &s_objidx);
1540 	obj_to_location(dst, &d_page, &d_objidx);
1541 
1542 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1544 
1545 	if (s_off + class->size > PAGE_SIZE)
1546 		s_size = PAGE_SIZE - s_off;
1547 
1548 	if (d_off + class->size > PAGE_SIZE)
1549 		d_size = PAGE_SIZE - d_off;
1550 
1551 	s_addr = kmap_atomic(s_page);
1552 	d_addr = kmap_atomic(d_page);
1553 
1554 	while (1) {
1555 		size = min(s_size, d_size);
1556 		memcpy(d_addr + d_off, s_addr + s_off, size);
1557 		written += size;
1558 
1559 		if (written == class->size)
1560 			break;
1561 
1562 		s_off += size;
1563 		s_size -= size;
1564 		d_off += size;
1565 		d_size -= size;
1566 
1567 		if (s_off >= PAGE_SIZE) {
1568 			kunmap_atomic(d_addr);
1569 			kunmap_atomic(s_addr);
1570 			s_page = get_next_page(s_page);
1571 			s_addr = kmap_atomic(s_page);
1572 			d_addr = kmap_atomic(d_page);
1573 			s_size = class->size - written;
1574 			s_off = 0;
1575 		}
1576 
1577 		if (d_off >= PAGE_SIZE) {
1578 			kunmap_atomic(d_addr);
1579 			d_page = get_next_page(d_page);
1580 			d_addr = kmap_atomic(d_page);
1581 			d_size = class->size - written;
1582 			d_off = 0;
1583 		}
1584 	}
1585 
1586 	kunmap_atomic(d_addr);
1587 	kunmap_atomic(s_addr);
1588 }
1589 
1590 /*
1591  * Find alloced object in zspage from index object and
1592  * return handle.
1593  */
1594 static unsigned long find_alloced_obj(struct size_class *class,
1595 					struct page *page, int *obj_idx)
1596 {
1597 	int offset = 0;
1598 	int index = *obj_idx;
1599 	unsigned long handle = 0;
1600 	void *addr = kmap_atomic(page);
1601 
1602 	offset = get_first_obj_offset(page);
1603 	offset += class->size * index;
1604 
1605 	while (offset < PAGE_SIZE) {
1606 		if (obj_allocated(page, addr + offset, &handle))
1607 			break;
1608 
1609 		offset += class->size;
1610 		index++;
1611 	}
1612 
1613 	kunmap_atomic(addr);
1614 
1615 	*obj_idx = index;
1616 
1617 	return handle;
1618 }
1619 
1620 struct zs_compact_control {
1621 	/* Source spage for migration which could be a subpage of zspage */
1622 	struct page *s_page;
1623 	/* Destination page for migration which should be a first page
1624 	 * of zspage. */
1625 	struct page *d_page;
1626 	 /* Starting object index within @s_page which used for live object
1627 	  * in the subpage. */
1628 	int obj_idx;
1629 };
1630 
1631 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632 				struct zs_compact_control *cc)
1633 {
1634 	unsigned long used_obj, free_obj;
1635 	unsigned long handle;
1636 	struct page *s_page = cc->s_page;
1637 	struct page *d_page = cc->d_page;
1638 	int obj_idx = cc->obj_idx;
1639 	int ret = 0;
1640 
1641 	while (1) {
1642 		handle = find_alloced_obj(class, s_page, &obj_idx);
1643 		if (!handle) {
1644 			s_page = get_next_page(s_page);
1645 			if (!s_page)
1646 				break;
1647 			obj_idx = 0;
1648 			continue;
1649 		}
1650 
1651 		/* Stop if there is no more space */
1652 		if (zspage_full(class, get_zspage(d_page))) {
1653 			ret = -ENOMEM;
1654 			break;
1655 		}
1656 
1657 		used_obj = handle_to_obj(handle);
1658 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659 		zs_object_copy(class, free_obj, used_obj);
1660 		obj_idx++;
1661 		record_obj(handle, free_obj);
1662 		obj_free(class->size, used_obj);
1663 	}
1664 
1665 	/* Remember last position in this iteration */
1666 	cc->s_page = s_page;
1667 	cc->obj_idx = obj_idx;
1668 
1669 	return ret;
1670 }
1671 
1672 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1673 {
1674 	int i;
1675 	struct zspage *zspage;
1676 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1677 
1678 	if (!source) {
1679 		fg[0] = ZS_ALMOST_FULL;
1680 		fg[1] = ZS_ALMOST_EMPTY;
1681 	}
1682 
1683 	for (i = 0; i < 2; i++) {
1684 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685 							struct zspage, list);
1686 		if (zspage) {
1687 			remove_zspage(class, zspage, fg[i]);
1688 			return zspage;
1689 		}
1690 	}
1691 
1692 	return zspage;
1693 }
1694 
1695 /*
1696  * putback_zspage - add @zspage into right class's fullness list
1697  * @class: destination class
1698  * @zspage: target page
1699  *
1700  * Return @zspage's fullness_group
1701  */
1702 static enum fullness_group putback_zspage(struct size_class *class,
1703 			struct zspage *zspage)
1704 {
1705 	enum fullness_group fullness;
1706 
1707 	fullness = get_fullness_group(class, zspage);
1708 	insert_zspage(class, zspage, fullness);
1709 	set_zspage_mapping(zspage, class->index, fullness);
1710 
1711 	return fullness;
1712 }
1713 
1714 #ifdef CONFIG_COMPACTION
1715 /*
1716  * To prevent zspage destroy during migration, zspage freeing should
1717  * hold locks of all pages in the zspage.
1718  */
1719 static void lock_zspage(struct zspage *zspage)
1720 {
1721 	struct page *page = get_first_page(zspage);
1722 
1723 	do {
1724 		lock_page(page);
1725 	} while ((page = get_next_page(page)) != NULL);
1726 }
1727 
1728 static int zs_init_fs_context(struct fs_context *fc)
1729 {
1730 	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1731 }
1732 
1733 static struct file_system_type zsmalloc_fs = {
1734 	.name		= "zsmalloc",
1735 	.init_fs_context = zs_init_fs_context,
1736 	.kill_sb	= kill_anon_super,
1737 };
1738 
1739 static int zsmalloc_mount(void)
1740 {
1741 	int ret = 0;
1742 
1743 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1744 	if (IS_ERR(zsmalloc_mnt))
1745 		ret = PTR_ERR(zsmalloc_mnt);
1746 
1747 	return ret;
1748 }
1749 
1750 static void zsmalloc_unmount(void)
1751 {
1752 	kern_unmount(zsmalloc_mnt);
1753 }
1754 
1755 static void migrate_lock_init(struct zspage *zspage)
1756 {
1757 	rwlock_init(&zspage->lock);
1758 }
1759 
1760 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1761 {
1762 	read_lock(&zspage->lock);
1763 }
1764 
1765 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1766 {
1767 	read_unlock(&zspage->lock);
1768 }
1769 
1770 static void migrate_write_lock(struct zspage *zspage)
1771 {
1772 	write_lock(&zspage->lock);
1773 }
1774 
1775 static void migrate_write_lock_nested(struct zspage *zspage)
1776 {
1777 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1778 }
1779 
1780 static void migrate_write_unlock(struct zspage *zspage)
1781 {
1782 	write_unlock(&zspage->lock);
1783 }
1784 
1785 /* Number of isolated subpage for *page migration* in this zspage */
1786 static void inc_zspage_isolation(struct zspage *zspage)
1787 {
1788 	zspage->isolated++;
1789 }
1790 
1791 static void dec_zspage_isolation(struct zspage *zspage)
1792 {
1793 	VM_BUG_ON(zspage->isolated == 0);
1794 	zspage->isolated--;
1795 }
1796 
1797 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1798 				struct page *newpage, struct page *oldpage)
1799 {
1800 	struct page *page;
1801 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1802 	int idx = 0;
1803 
1804 	page = get_first_page(zspage);
1805 	do {
1806 		if (page == oldpage)
1807 			pages[idx] = newpage;
1808 		else
1809 			pages[idx] = page;
1810 		idx++;
1811 	} while ((page = get_next_page(page)) != NULL);
1812 
1813 	create_page_chain(class, zspage, pages);
1814 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1815 	if (unlikely(ZsHugePage(zspage)))
1816 		newpage->index = oldpage->index;
1817 	__SetPageMovable(newpage, page_mapping(oldpage));
1818 }
1819 
1820 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1821 {
1822 	struct zspage *zspage;
1823 
1824 	/*
1825 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1826 	 * lock_zspage in free_zspage.
1827 	 */
1828 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1829 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1830 
1831 	zspage = get_zspage(page);
1832 	migrate_write_lock(zspage);
1833 	inc_zspage_isolation(zspage);
1834 	migrate_write_unlock(zspage);
1835 
1836 	return true;
1837 }
1838 
1839 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1840 		struct page *page, enum migrate_mode mode)
1841 {
1842 	struct zs_pool *pool;
1843 	struct size_class *class;
1844 	struct zspage *zspage;
1845 	struct page *dummy;
1846 	void *s_addr, *d_addr, *addr;
1847 	int offset;
1848 	unsigned long handle;
1849 	unsigned long old_obj, new_obj;
1850 	unsigned int obj_idx;
1851 
1852 	/*
1853 	 * We cannot support the _NO_COPY case here, because copy needs to
1854 	 * happen under the zs lock, which does not work with
1855 	 * MIGRATE_SYNC_NO_COPY workflow.
1856 	 */
1857 	if (mode == MIGRATE_SYNC_NO_COPY)
1858 		return -EINVAL;
1859 
1860 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1861 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1862 
1863 	pool = mapping->private_data;
1864 
1865 	/*
1866 	 * The pool migrate_lock protects the race between zpage migration
1867 	 * and zs_free.
1868 	 */
1869 	write_lock(&pool->migrate_lock);
1870 	zspage = get_zspage(page);
1871 	class = zspage_class(pool, zspage);
1872 
1873 	/*
1874 	 * the class lock protects zpage alloc/free in the zspage.
1875 	 */
1876 	spin_lock(&class->lock);
1877 	/* the migrate_write_lock protects zpage access via zs_map_object */
1878 	migrate_write_lock(zspage);
1879 
1880 	offset = get_first_obj_offset(page);
1881 	s_addr = kmap_atomic(page);
1882 
1883 	/*
1884 	 * Here, any user cannot access all objects in the zspage so let's move.
1885 	 */
1886 	d_addr = kmap_atomic(newpage);
1887 	memcpy(d_addr, s_addr, PAGE_SIZE);
1888 	kunmap_atomic(d_addr);
1889 
1890 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1891 					addr += class->size) {
1892 		if (obj_allocated(page, addr, &handle)) {
1893 
1894 			old_obj = handle_to_obj(handle);
1895 			obj_to_location(old_obj, &dummy, &obj_idx);
1896 			new_obj = (unsigned long)location_to_obj(newpage,
1897 								obj_idx);
1898 			record_obj(handle, new_obj);
1899 		}
1900 	}
1901 	kunmap_atomic(s_addr);
1902 
1903 	replace_sub_page(class, zspage, newpage, page);
1904 	/*
1905 	 * Since we complete the data copy and set up new zspage structure,
1906 	 * it's okay to release migration_lock.
1907 	 */
1908 	write_unlock(&pool->migrate_lock);
1909 	spin_unlock(&class->lock);
1910 	dec_zspage_isolation(zspage);
1911 	migrate_write_unlock(zspage);
1912 
1913 	get_page(newpage);
1914 	if (page_zone(newpage) != page_zone(page)) {
1915 		dec_zone_page_state(page, NR_ZSPAGES);
1916 		inc_zone_page_state(newpage, NR_ZSPAGES);
1917 	}
1918 
1919 	reset_page(page);
1920 	put_page(page);
1921 
1922 	return MIGRATEPAGE_SUCCESS;
1923 }
1924 
1925 static void zs_page_putback(struct page *page)
1926 {
1927 	struct zspage *zspage;
1928 
1929 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1930 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1931 
1932 	zspage = get_zspage(page);
1933 	migrate_write_lock(zspage);
1934 	dec_zspage_isolation(zspage);
1935 	migrate_write_unlock(zspage);
1936 }
1937 
1938 static const struct address_space_operations zsmalloc_aops = {
1939 	.isolate_page = zs_page_isolate,
1940 	.migratepage = zs_page_migrate,
1941 	.putback_page = zs_page_putback,
1942 };
1943 
1944 static int zs_register_migration(struct zs_pool *pool)
1945 {
1946 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1947 	if (IS_ERR(pool->inode)) {
1948 		pool->inode = NULL;
1949 		return 1;
1950 	}
1951 
1952 	pool->inode->i_mapping->private_data = pool;
1953 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1954 	return 0;
1955 }
1956 
1957 static void zs_unregister_migration(struct zs_pool *pool)
1958 {
1959 	flush_work(&pool->free_work);
1960 	iput(pool->inode);
1961 }
1962 
1963 /*
1964  * Caller should hold page_lock of all pages in the zspage
1965  * In here, we cannot use zspage meta data.
1966  */
1967 static void async_free_zspage(struct work_struct *work)
1968 {
1969 	int i;
1970 	struct size_class *class;
1971 	unsigned int class_idx;
1972 	enum fullness_group fullness;
1973 	struct zspage *zspage, *tmp;
1974 	LIST_HEAD(free_pages);
1975 	struct zs_pool *pool = container_of(work, struct zs_pool,
1976 					free_work);
1977 
1978 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1979 		class = pool->size_class[i];
1980 		if (class->index != i)
1981 			continue;
1982 
1983 		spin_lock(&class->lock);
1984 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1985 		spin_unlock(&class->lock);
1986 	}
1987 
1988 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1989 		list_del(&zspage->list);
1990 		lock_zspage(zspage);
1991 
1992 		get_zspage_mapping(zspage, &class_idx, &fullness);
1993 		VM_BUG_ON(fullness != ZS_EMPTY);
1994 		class = pool->size_class[class_idx];
1995 		spin_lock(&class->lock);
1996 		__free_zspage(pool, class, zspage);
1997 		spin_unlock(&class->lock);
1998 	}
1999 };
2000 
2001 static void kick_deferred_free(struct zs_pool *pool)
2002 {
2003 	schedule_work(&pool->free_work);
2004 }
2005 
2006 static void init_deferred_free(struct zs_pool *pool)
2007 {
2008 	INIT_WORK(&pool->free_work, async_free_zspage);
2009 }
2010 
2011 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2012 {
2013 	struct page *page = get_first_page(zspage);
2014 
2015 	do {
2016 		WARN_ON(!trylock_page(page));
2017 		__SetPageMovable(page, pool->inode->i_mapping);
2018 		unlock_page(page);
2019 	} while ((page = get_next_page(page)) != NULL);
2020 }
2021 #endif
2022 
2023 /*
2024  *
2025  * Based on the number of unused allocated objects calculate
2026  * and return the number of pages that we can free.
2027  */
2028 static unsigned long zs_can_compact(struct size_class *class)
2029 {
2030 	unsigned long obj_wasted;
2031 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2032 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2033 
2034 	if (obj_allocated <= obj_used)
2035 		return 0;
2036 
2037 	obj_wasted = obj_allocated - obj_used;
2038 	obj_wasted /= class->objs_per_zspage;
2039 
2040 	return obj_wasted * class->pages_per_zspage;
2041 }
2042 
2043 static unsigned long __zs_compact(struct zs_pool *pool,
2044 				  struct size_class *class)
2045 {
2046 	struct zs_compact_control cc;
2047 	struct zspage *src_zspage;
2048 	struct zspage *dst_zspage = NULL;
2049 	unsigned long pages_freed = 0;
2050 
2051 	/* protect the race between zpage migration and zs_free */
2052 	write_lock(&pool->migrate_lock);
2053 	/* protect zpage allocation/free */
2054 	spin_lock(&class->lock);
2055 	while ((src_zspage = isolate_zspage(class, true))) {
2056 		/* protect someone accessing the zspage(i.e., zs_map_object) */
2057 		migrate_write_lock(src_zspage);
2058 
2059 		if (!zs_can_compact(class))
2060 			break;
2061 
2062 		cc.obj_idx = 0;
2063 		cc.s_page = get_first_page(src_zspage);
2064 
2065 		while ((dst_zspage = isolate_zspage(class, false))) {
2066 			migrate_write_lock_nested(dst_zspage);
2067 
2068 			cc.d_page = get_first_page(dst_zspage);
2069 			/*
2070 			 * If there is no more space in dst_page, resched
2071 			 * and see if anyone had allocated another zspage.
2072 			 */
2073 			if (!migrate_zspage(pool, class, &cc))
2074 				break;
2075 
2076 			putback_zspage(class, dst_zspage);
2077 			migrate_write_unlock(dst_zspage);
2078 			dst_zspage = NULL;
2079 			if (rwlock_is_contended(&pool->migrate_lock))
2080 				break;
2081 		}
2082 
2083 		/* Stop if we couldn't find slot */
2084 		if (dst_zspage == NULL)
2085 			break;
2086 
2087 		putback_zspage(class, dst_zspage);
2088 		migrate_write_unlock(dst_zspage);
2089 
2090 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2091 			migrate_write_unlock(src_zspage);
2092 			free_zspage(pool, class, src_zspage);
2093 			pages_freed += class->pages_per_zspage;
2094 		} else
2095 			migrate_write_unlock(src_zspage);
2096 		spin_unlock(&class->lock);
2097 		write_unlock(&pool->migrate_lock);
2098 		cond_resched();
2099 		write_lock(&pool->migrate_lock);
2100 		spin_lock(&class->lock);
2101 	}
2102 
2103 	if (src_zspage) {
2104 		putback_zspage(class, src_zspage);
2105 		migrate_write_unlock(src_zspage);
2106 	}
2107 
2108 	spin_unlock(&class->lock);
2109 	write_unlock(&pool->migrate_lock);
2110 
2111 	return pages_freed;
2112 }
2113 
2114 unsigned long zs_compact(struct zs_pool *pool)
2115 {
2116 	int i;
2117 	struct size_class *class;
2118 	unsigned long pages_freed = 0;
2119 
2120 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2121 		class = pool->size_class[i];
2122 		if (!class)
2123 			continue;
2124 		if (class->index != i)
2125 			continue;
2126 		pages_freed += __zs_compact(pool, class);
2127 	}
2128 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2129 
2130 	return pages_freed;
2131 }
2132 EXPORT_SYMBOL_GPL(zs_compact);
2133 
2134 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2135 {
2136 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2137 }
2138 EXPORT_SYMBOL_GPL(zs_pool_stats);
2139 
2140 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2141 		struct shrink_control *sc)
2142 {
2143 	unsigned long pages_freed;
2144 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2145 			shrinker);
2146 
2147 	/*
2148 	 * Compact classes and calculate compaction delta.
2149 	 * Can run concurrently with a manually triggered
2150 	 * (by user) compaction.
2151 	 */
2152 	pages_freed = zs_compact(pool);
2153 
2154 	return pages_freed ? pages_freed : SHRINK_STOP;
2155 }
2156 
2157 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2158 		struct shrink_control *sc)
2159 {
2160 	int i;
2161 	struct size_class *class;
2162 	unsigned long pages_to_free = 0;
2163 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2164 			shrinker);
2165 
2166 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2167 		class = pool->size_class[i];
2168 		if (!class)
2169 			continue;
2170 		if (class->index != i)
2171 			continue;
2172 
2173 		pages_to_free += zs_can_compact(class);
2174 	}
2175 
2176 	return pages_to_free;
2177 }
2178 
2179 static void zs_unregister_shrinker(struct zs_pool *pool)
2180 {
2181 	unregister_shrinker(&pool->shrinker);
2182 }
2183 
2184 static int zs_register_shrinker(struct zs_pool *pool)
2185 {
2186 	pool->shrinker.scan_objects = zs_shrinker_scan;
2187 	pool->shrinker.count_objects = zs_shrinker_count;
2188 	pool->shrinker.batch = 0;
2189 	pool->shrinker.seeks = DEFAULT_SEEKS;
2190 
2191 	return register_shrinker(&pool->shrinker);
2192 }
2193 
2194 /**
2195  * zs_create_pool - Creates an allocation pool to work from.
2196  * @name: pool name to be created
2197  *
2198  * This function must be called before anything when using
2199  * the zsmalloc allocator.
2200  *
2201  * On success, a pointer to the newly created pool is returned,
2202  * otherwise NULL.
2203  */
2204 struct zs_pool *zs_create_pool(const char *name)
2205 {
2206 	int i;
2207 	struct zs_pool *pool;
2208 	struct size_class *prev_class = NULL;
2209 
2210 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2211 	if (!pool)
2212 		return NULL;
2213 
2214 	init_deferred_free(pool);
2215 	rwlock_init(&pool->migrate_lock);
2216 
2217 	pool->name = kstrdup(name, GFP_KERNEL);
2218 	if (!pool->name)
2219 		goto err;
2220 
2221 	if (create_cache(pool))
2222 		goto err;
2223 
2224 	/*
2225 	 * Iterate reversely, because, size of size_class that we want to use
2226 	 * for merging should be larger or equal to current size.
2227 	 */
2228 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2229 		int size;
2230 		int pages_per_zspage;
2231 		int objs_per_zspage;
2232 		struct size_class *class;
2233 		int fullness = 0;
2234 
2235 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2236 		if (size > ZS_MAX_ALLOC_SIZE)
2237 			size = ZS_MAX_ALLOC_SIZE;
2238 		pages_per_zspage = get_pages_per_zspage(size);
2239 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2240 
2241 		/*
2242 		 * We iterate from biggest down to smallest classes,
2243 		 * so huge_class_size holds the size of the first huge
2244 		 * class. Any object bigger than or equal to that will
2245 		 * endup in the huge class.
2246 		 */
2247 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2248 				!huge_class_size) {
2249 			huge_class_size = size;
2250 			/*
2251 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2252 			 * handle. We need to subtract it, because zs_malloc()
2253 			 * unconditionally adds handle size before it performs
2254 			 * size class search - so object may be smaller than
2255 			 * huge class size, yet it still can end up in the huge
2256 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2257 			 * right before class lookup.
2258 			 */
2259 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2260 		}
2261 
2262 		/*
2263 		 * size_class is used for normal zsmalloc operation such
2264 		 * as alloc/free for that size. Although it is natural that we
2265 		 * have one size_class for each size, there is a chance that we
2266 		 * can get more memory utilization if we use one size_class for
2267 		 * many different sizes whose size_class have same
2268 		 * characteristics. So, we makes size_class point to
2269 		 * previous size_class if possible.
2270 		 */
2271 		if (prev_class) {
2272 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2273 				pool->size_class[i] = prev_class;
2274 				continue;
2275 			}
2276 		}
2277 
2278 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2279 		if (!class)
2280 			goto err;
2281 
2282 		class->size = size;
2283 		class->index = i;
2284 		class->pages_per_zspage = pages_per_zspage;
2285 		class->objs_per_zspage = objs_per_zspage;
2286 		spin_lock_init(&class->lock);
2287 		pool->size_class[i] = class;
2288 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2289 							fullness++)
2290 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2291 
2292 		prev_class = class;
2293 	}
2294 
2295 	/* debug only, don't abort if it fails */
2296 	zs_pool_stat_create(pool, name);
2297 
2298 	if (zs_register_migration(pool))
2299 		goto err;
2300 
2301 	/*
2302 	 * Not critical since shrinker is only used to trigger internal
2303 	 * defragmentation of the pool which is pretty optional thing.  If
2304 	 * registration fails we still can use the pool normally and user can
2305 	 * trigger compaction manually. Thus, ignore return code.
2306 	 */
2307 	zs_register_shrinker(pool);
2308 
2309 	return pool;
2310 
2311 err:
2312 	zs_destroy_pool(pool);
2313 	return NULL;
2314 }
2315 EXPORT_SYMBOL_GPL(zs_create_pool);
2316 
2317 void zs_destroy_pool(struct zs_pool *pool)
2318 {
2319 	int i;
2320 
2321 	zs_unregister_shrinker(pool);
2322 	zs_unregister_migration(pool);
2323 	zs_pool_stat_destroy(pool);
2324 
2325 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2326 		int fg;
2327 		struct size_class *class = pool->size_class[i];
2328 
2329 		if (!class)
2330 			continue;
2331 
2332 		if (class->index != i)
2333 			continue;
2334 
2335 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2336 			if (!list_empty(&class->fullness_list[fg])) {
2337 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2338 					class->size, fg);
2339 			}
2340 		}
2341 		kfree(class);
2342 	}
2343 
2344 	destroy_cache(pool);
2345 	kfree(pool->name);
2346 	kfree(pool);
2347 }
2348 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2349 
2350 static int __init zs_init(void)
2351 {
2352 	int ret;
2353 
2354 	ret = zsmalloc_mount();
2355 	if (ret)
2356 		goto out;
2357 
2358 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2359 				zs_cpu_prepare, zs_cpu_dead);
2360 	if (ret)
2361 		goto hp_setup_fail;
2362 
2363 #ifdef CONFIG_ZPOOL
2364 	zpool_register_driver(&zs_zpool_driver);
2365 #endif
2366 
2367 	zs_stat_init();
2368 
2369 	return 0;
2370 
2371 hp_setup_fail:
2372 	zsmalloc_unmount();
2373 out:
2374 	return ret;
2375 }
2376 
2377 static void __exit zs_exit(void)
2378 {
2379 #ifdef CONFIG_ZPOOL
2380 	zpool_unregister_driver(&zs_zpool_driver);
2381 #endif
2382 	zsmalloc_unmount();
2383 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2384 
2385 	zs_stat_exit();
2386 }
2387 
2388 module_init(zs_init);
2389 module_exit(zs_exit);
2390 
2391 MODULE_LICENSE("Dual BSD/GPL");
2392 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2393