1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #ifdef CONFIG_ZPOOL 111 /* 112 * The second least-significant bit in the object's header identifies if the 113 * value stored at the header is a deferred handle from the last reclaim 114 * attempt. 115 * 116 * As noted above, this is valid because we have room for two bits. 117 */ 118 #define OBJ_DEFERRED_HANDLE_TAG 2 119 #define OBJ_TAG_BITS 2 120 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG) 121 #else 122 #define OBJ_TAG_BITS 1 123 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 124 #endif /* CONFIG_ZPOOL */ 125 126 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 127 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 128 129 #define HUGE_BITS 1 130 #define FULLNESS_BITS 2 131 #define CLASS_BITS 8 132 #define ISOLATED_BITS 5 133 #define MAGIC_VAL_BITS 8 134 135 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 136 137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 138 139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 140 #define ZS_MIN_ALLOC_SIZE \ 141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 142 /* each chunk includes extra space to keep handle */ 143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 144 145 /* 146 * On systems with 4K page size, this gives 255 size classes! There is a 147 * trader-off here: 148 * - Large number of size classes is potentially wasteful as free page are 149 * spread across these classes 150 * - Small number of size classes causes large internal fragmentation 151 * - Probably its better to use specific size classes (empirically 152 * determined). NOTE: all those class sizes must be set as multiple of 153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 154 * 155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 156 * (reason above) 157 */ 158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 160 ZS_SIZE_CLASS_DELTA) + 1) 161 162 enum fullness_group { 163 ZS_EMPTY, 164 ZS_ALMOST_EMPTY, 165 ZS_ALMOST_FULL, 166 ZS_FULL, 167 NR_ZS_FULLNESS, 168 }; 169 170 enum class_stat_type { 171 CLASS_EMPTY, 172 CLASS_ALMOST_EMPTY, 173 CLASS_ALMOST_FULL, 174 CLASS_FULL, 175 OBJ_ALLOCATED, 176 OBJ_USED, 177 NR_ZS_STAT_TYPE, 178 }; 179 180 struct zs_size_stat { 181 unsigned long objs[NR_ZS_STAT_TYPE]; 182 }; 183 184 #ifdef CONFIG_ZSMALLOC_STAT 185 static struct dentry *zs_stat_root; 186 #endif 187 188 /* 189 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 190 * n <= N / f, where 191 * n = number of allocated objects 192 * N = total number of objects zspage can store 193 * f = fullness_threshold_frac 194 * 195 * Similarly, we assign zspage to: 196 * ZS_ALMOST_FULL when n > N / f 197 * ZS_EMPTY when n == 0 198 * ZS_FULL when n == N 199 * 200 * (see: fix_fullness_group()) 201 */ 202 static const int fullness_threshold_frac = 4; 203 static size_t huge_class_size; 204 205 struct size_class { 206 struct list_head fullness_list[NR_ZS_FULLNESS]; 207 /* 208 * Size of objects stored in this class. Must be multiple 209 * of ZS_ALIGN. 210 */ 211 int size; 212 int objs_per_zspage; 213 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 214 int pages_per_zspage; 215 216 unsigned int index; 217 struct zs_size_stat stats; 218 }; 219 220 /* 221 * Placed within free objects to form a singly linked list. 222 * For every zspage, zspage->freeobj gives head of this list. 223 * 224 * This must be power of 2 and less than or equal to ZS_ALIGN 225 */ 226 struct link_free { 227 union { 228 /* 229 * Free object index; 230 * It's valid for non-allocated object 231 */ 232 unsigned long next; 233 /* 234 * Handle of allocated object. 235 */ 236 unsigned long handle; 237 #ifdef CONFIG_ZPOOL 238 /* 239 * Deferred handle of a reclaimed object. 240 */ 241 unsigned long deferred_handle; 242 #endif 243 }; 244 }; 245 246 struct zs_pool { 247 const char *name; 248 249 struct size_class *size_class[ZS_SIZE_CLASSES]; 250 struct kmem_cache *handle_cachep; 251 struct kmem_cache *zspage_cachep; 252 253 atomic_long_t pages_allocated; 254 255 struct zs_pool_stats stats; 256 257 /* Compact classes */ 258 struct shrinker shrinker; 259 260 #ifdef CONFIG_ZPOOL 261 /* List tracking the zspages in LRU order by most recently added object */ 262 struct list_head lru; 263 struct zpool *zpool; 264 const struct zpool_ops *zpool_ops; 265 #endif 266 267 #ifdef CONFIG_ZSMALLOC_STAT 268 struct dentry *stat_dentry; 269 #endif 270 #ifdef CONFIG_COMPACTION 271 struct work_struct free_work; 272 #endif 273 spinlock_t lock; 274 }; 275 276 struct zspage { 277 struct { 278 unsigned int huge:HUGE_BITS; 279 unsigned int fullness:FULLNESS_BITS; 280 unsigned int class:CLASS_BITS + 1; 281 unsigned int isolated:ISOLATED_BITS; 282 unsigned int magic:MAGIC_VAL_BITS; 283 }; 284 unsigned int inuse; 285 unsigned int freeobj; 286 struct page *first_page; 287 struct list_head list; /* fullness list */ 288 289 #ifdef CONFIG_ZPOOL 290 /* links the zspage to the lru list in the pool */ 291 struct list_head lru; 292 bool under_reclaim; 293 #endif 294 295 struct zs_pool *pool; 296 rwlock_t lock; 297 }; 298 299 struct mapping_area { 300 local_lock_t lock; 301 char *vm_buf; /* copy buffer for objects that span pages */ 302 char *vm_addr; /* address of kmap_atomic()'ed pages */ 303 enum zs_mapmode vm_mm; /* mapping mode */ 304 }; 305 306 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 307 static void SetZsHugePage(struct zspage *zspage) 308 { 309 zspage->huge = 1; 310 } 311 312 static bool ZsHugePage(struct zspage *zspage) 313 { 314 return zspage->huge; 315 } 316 317 static void migrate_lock_init(struct zspage *zspage); 318 static void migrate_read_lock(struct zspage *zspage); 319 static void migrate_read_unlock(struct zspage *zspage); 320 321 #ifdef CONFIG_COMPACTION 322 static void migrate_write_lock(struct zspage *zspage); 323 static void migrate_write_lock_nested(struct zspage *zspage); 324 static void migrate_write_unlock(struct zspage *zspage); 325 static void kick_deferred_free(struct zs_pool *pool); 326 static void init_deferred_free(struct zs_pool *pool); 327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 328 #else 329 static void migrate_write_lock(struct zspage *zspage) {} 330 static void migrate_write_lock_nested(struct zspage *zspage) {} 331 static void migrate_write_unlock(struct zspage *zspage) {} 332 static void kick_deferred_free(struct zs_pool *pool) {} 333 static void init_deferred_free(struct zs_pool *pool) {} 334 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 335 #endif 336 337 static int create_cache(struct zs_pool *pool) 338 { 339 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 340 0, 0, NULL); 341 if (!pool->handle_cachep) 342 return 1; 343 344 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 345 0, 0, NULL); 346 if (!pool->zspage_cachep) { 347 kmem_cache_destroy(pool->handle_cachep); 348 pool->handle_cachep = NULL; 349 return 1; 350 } 351 352 return 0; 353 } 354 355 static void destroy_cache(struct zs_pool *pool) 356 { 357 kmem_cache_destroy(pool->handle_cachep); 358 kmem_cache_destroy(pool->zspage_cachep); 359 } 360 361 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 362 { 363 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 364 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 365 } 366 367 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 368 { 369 kmem_cache_free(pool->handle_cachep, (void *)handle); 370 } 371 372 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 373 { 374 return kmem_cache_zalloc(pool->zspage_cachep, 375 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 376 } 377 378 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 379 { 380 kmem_cache_free(pool->zspage_cachep, zspage); 381 } 382 383 /* pool->lock(which owns the handle) synchronizes races */ 384 static void record_obj(unsigned long handle, unsigned long obj) 385 { 386 *(unsigned long *)handle = obj; 387 } 388 389 /* zpool driver */ 390 391 #ifdef CONFIG_ZPOOL 392 393 static void *zs_zpool_create(const char *name, gfp_t gfp, 394 const struct zpool_ops *zpool_ops, 395 struct zpool *zpool) 396 { 397 /* 398 * Ignore global gfp flags: zs_malloc() may be invoked from 399 * different contexts and its caller must provide a valid 400 * gfp mask. 401 */ 402 struct zs_pool *pool = zs_create_pool(name); 403 404 if (pool) { 405 pool->zpool = zpool; 406 pool->zpool_ops = zpool_ops; 407 } 408 409 return pool; 410 } 411 412 static void zs_zpool_destroy(void *pool) 413 { 414 zs_destroy_pool(pool); 415 } 416 417 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 418 unsigned long *handle) 419 { 420 *handle = zs_malloc(pool, size, gfp); 421 422 if (IS_ERR_VALUE(*handle)) 423 return PTR_ERR((void *)*handle); 424 return 0; 425 } 426 static void zs_zpool_free(void *pool, unsigned long handle) 427 { 428 zs_free(pool, handle); 429 } 430 431 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 432 433 static int zs_zpool_shrink(void *pool, unsigned int pages, 434 unsigned int *reclaimed) 435 { 436 unsigned int total = 0; 437 int ret = -EINVAL; 438 439 while (total < pages) { 440 ret = zs_reclaim_page(pool, 8); 441 if (ret < 0) 442 break; 443 total++; 444 } 445 446 if (reclaimed) 447 *reclaimed = total; 448 449 return ret; 450 } 451 452 static void *zs_zpool_map(void *pool, unsigned long handle, 453 enum zpool_mapmode mm) 454 { 455 enum zs_mapmode zs_mm; 456 457 switch (mm) { 458 case ZPOOL_MM_RO: 459 zs_mm = ZS_MM_RO; 460 break; 461 case ZPOOL_MM_WO: 462 zs_mm = ZS_MM_WO; 463 break; 464 case ZPOOL_MM_RW: 465 default: 466 zs_mm = ZS_MM_RW; 467 break; 468 } 469 470 return zs_map_object(pool, handle, zs_mm); 471 } 472 static void zs_zpool_unmap(void *pool, unsigned long handle) 473 { 474 zs_unmap_object(pool, handle); 475 } 476 477 static u64 zs_zpool_total_size(void *pool) 478 { 479 return zs_get_total_pages(pool) << PAGE_SHIFT; 480 } 481 482 static struct zpool_driver zs_zpool_driver = { 483 .type = "zsmalloc", 484 .owner = THIS_MODULE, 485 .create = zs_zpool_create, 486 .destroy = zs_zpool_destroy, 487 .malloc_support_movable = true, 488 .malloc = zs_zpool_malloc, 489 .free = zs_zpool_free, 490 .shrink = zs_zpool_shrink, 491 .map = zs_zpool_map, 492 .unmap = zs_zpool_unmap, 493 .total_size = zs_zpool_total_size, 494 }; 495 496 MODULE_ALIAS("zpool-zsmalloc"); 497 #endif /* CONFIG_ZPOOL */ 498 499 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 500 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 501 .lock = INIT_LOCAL_LOCK(lock), 502 }; 503 504 static __maybe_unused int is_first_page(struct page *page) 505 { 506 return PagePrivate(page); 507 } 508 509 /* Protected by pool->lock */ 510 static inline int get_zspage_inuse(struct zspage *zspage) 511 { 512 return zspage->inuse; 513 } 514 515 516 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 517 { 518 zspage->inuse += val; 519 } 520 521 static inline struct page *get_first_page(struct zspage *zspage) 522 { 523 struct page *first_page = zspage->first_page; 524 525 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 526 return first_page; 527 } 528 529 static inline unsigned int get_first_obj_offset(struct page *page) 530 { 531 return page->page_type; 532 } 533 534 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 535 { 536 page->page_type = offset; 537 } 538 539 static inline unsigned int get_freeobj(struct zspage *zspage) 540 { 541 return zspage->freeobj; 542 } 543 544 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 545 { 546 zspage->freeobj = obj; 547 } 548 549 static void get_zspage_mapping(struct zspage *zspage, 550 unsigned int *class_idx, 551 enum fullness_group *fullness) 552 { 553 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 554 555 *fullness = zspage->fullness; 556 *class_idx = zspage->class; 557 } 558 559 static struct size_class *zspage_class(struct zs_pool *pool, 560 struct zspage *zspage) 561 { 562 return pool->size_class[zspage->class]; 563 } 564 565 static void set_zspage_mapping(struct zspage *zspage, 566 unsigned int class_idx, 567 enum fullness_group fullness) 568 { 569 zspage->class = class_idx; 570 zspage->fullness = fullness; 571 } 572 573 /* 574 * zsmalloc divides the pool into various size classes where each 575 * class maintains a list of zspages where each zspage is divided 576 * into equal sized chunks. Each allocation falls into one of these 577 * classes depending on its size. This function returns index of the 578 * size class which has chunk size big enough to hold the given size. 579 */ 580 static int get_size_class_index(int size) 581 { 582 int idx = 0; 583 584 if (likely(size > ZS_MIN_ALLOC_SIZE)) 585 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 586 ZS_SIZE_CLASS_DELTA); 587 588 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 589 } 590 591 /* type can be of enum type class_stat_type or fullness_group */ 592 static inline void class_stat_inc(struct size_class *class, 593 int type, unsigned long cnt) 594 { 595 class->stats.objs[type] += cnt; 596 } 597 598 /* type can be of enum type class_stat_type or fullness_group */ 599 static inline void class_stat_dec(struct size_class *class, 600 int type, unsigned long cnt) 601 { 602 class->stats.objs[type] -= cnt; 603 } 604 605 /* type can be of enum type class_stat_type or fullness_group */ 606 static inline unsigned long zs_stat_get(struct size_class *class, 607 int type) 608 { 609 return class->stats.objs[type]; 610 } 611 612 #ifdef CONFIG_ZSMALLOC_STAT 613 614 static void __init zs_stat_init(void) 615 { 616 if (!debugfs_initialized()) { 617 pr_warn("debugfs not available, stat dir not created\n"); 618 return; 619 } 620 621 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 622 } 623 624 static void __exit zs_stat_exit(void) 625 { 626 debugfs_remove_recursive(zs_stat_root); 627 } 628 629 static unsigned long zs_can_compact(struct size_class *class); 630 631 static int zs_stats_size_show(struct seq_file *s, void *v) 632 { 633 int i; 634 struct zs_pool *pool = s->private; 635 struct size_class *class; 636 int objs_per_zspage; 637 unsigned long class_almost_full, class_almost_empty; 638 unsigned long obj_allocated, obj_used, pages_used, freeable; 639 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 640 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 641 unsigned long total_freeable = 0; 642 643 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 644 "class", "size", "almost_full", "almost_empty", 645 "obj_allocated", "obj_used", "pages_used", 646 "pages_per_zspage", "freeable"); 647 648 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 649 class = pool->size_class[i]; 650 651 if (class->index != i) 652 continue; 653 654 spin_lock(&pool->lock); 655 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 656 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 657 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 658 obj_used = zs_stat_get(class, OBJ_USED); 659 freeable = zs_can_compact(class); 660 spin_unlock(&pool->lock); 661 662 objs_per_zspage = class->objs_per_zspage; 663 pages_used = obj_allocated / objs_per_zspage * 664 class->pages_per_zspage; 665 666 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 667 " %10lu %10lu %16d %8lu\n", 668 i, class->size, class_almost_full, class_almost_empty, 669 obj_allocated, obj_used, pages_used, 670 class->pages_per_zspage, freeable); 671 672 total_class_almost_full += class_almost_full; 673 total_class_almost_empty += class_almost_empty; 674 total_objs += obj_allocated; 675 total_used_objs += obj_used; 676 total_pages += pages_used; 677 total_freeable += freeable; 678 } 679 680 seq_puts(s, "\n"); 681 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 682 "Total", "", total_class_almost_full, 683 total_class_almost_empty, total_objs, 684 total_used_objs, total_pages, "", total_freeable); 685 686 return 0; 687 } 688 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 689 690 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 691 { 692 if (!zs_stat_root) { 693 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 694 return; 695 } 696 697 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 698 699 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 700 &zs_stats_size_fops); 701 } 702 703 static void zs_pool_stat_destroy(struct zs_pool *pool) 704 { 705 debugfs_remove_recursive(pool->stat_dentry); 706 } 707 708 #else /* CONFIG_ZSMALLOC_STAT */ 709 static void __init zs_stat_init(void) 710 { 711 } 712 713 static void __exit zs_stat_exit(void) 714 { 715 } 716 717 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 718 { 719 } 720 721 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 722 { 723 } 724 #endif 725 726 727 /* 728 * For each size class, zspages are divided into different groups 729 * depending on how "full" they are. This was done so that we could 730 * easily find empty or nearly empty zspages when we try to shrink 731 * the pool (not yet implemented). This function returns fullness 732 * status of the given page. 733 */ 734 static enum fullness_group get_fullness_group(struct size_class *class, 735 struct zspage *zspage) 736 { 737 int inuse, objs_per_zspage; 738 enum fullness_group fg; 739 740 inuse = get_zspage_inuse(zspage); 741 objs_per_zspage = class->objs_per_zspage; 742 743 if (inuse == 0) 744 fg = ZS_EMPTY; 745 else if (inuse == objs_per_zspage) 746 fg = ZS_FULL; 747 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 748 fg = ZS_ALMOST_EMPTY; 749 else 750 fg = ZS_ALMOST_FULL; 751 752 return fg; 753 } 754 755 /* 756 * Each size class maintains various freelists and zspages are assigned 757 * to one of these freelists based on the number of live objects they 758 * have. This functions inserts the given zspage into the freelist 759 * identified by <class, fullness_group>. 760 */ 761 static void insert_zspage(struct size_class *class, 762 struct zspage *zspage, 763 enum fullness_group fullness) 764 { 765 struct zspage *head; 766 767 class_stat_inc(class, fullness, 1); 768 head = list_first_entry_or_null(&class->fullness_list[fullness], 769 struct zspage, list); 770 /* 771 * We want to see more ZS_FULL pages and less almost empty/full. 772 * Put pages with higher ->inuse first. 773 */ 774 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 775 list_add(&zspage->list, &head->list); 776 else 777 list_add(&zspage->list, &class->fullness_list[fullness]); 778 } 779 780 /* 781 * This function removes the given zspage from the freelist identified 782 * by <class, fullness_group>. 783 */ 784 static void remove_zspage(struct size_class *class, 785 struct zspage *zspage, 786 enum fullness_group fullness) 787 { 788 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 789 790 list_del_init(&zspage->list); 791 class_stat_dec(class, fullness, 1); 792 } 793 794 /* 795 * Each size class maintains zspages in different fullness groups depending 796 * on the number of live objects they contain. When allocating or freeing 797 * objects, the fullness status of the page can change, say, from ALMOST_FULL 798 * to ALMOST_EMPTY when freeing an object. This function checks if such 799 * a status change has occurred for the given page and accordingly moves the 800 * page from the freelist of the old fullness group to that of the new 801 * fullness group. 802 */ 803 static enum fullness_group fix_fullness_group(struct size_class *class, 804 struct zspage *zspage) 805 { 806 int class_idx; 807 enum fullness_group currfg, newfg; 808 809 get_zspage_mapping(zspage, &class_idx, &currfg); 810 newfg = get_fullness_group(class, zspage); 811 if (newfg == currfg) 812 goto out; 813 814 remove_zspage(class, zspage, currfg); 815 insert_zspage(class, zspage, newfg); 816 set_zspage_mapping(zspage, class_idx, newfg); 817 out: 818 return newfg; 819 } 820 821 static struct zspage *get_zspage(struct page *page) 822 { 823 struct zspage *zspage = (struct zspage *)page_private(page); 824 825 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 826 return zspage; 827 } 828 829 static struct page *get_next_page(struct page *page) 830 { 831 struct zspage *zspage = get_zspage(page); 832 833 if (unlikely(ZsHugePage(zspage))) 834 return NULL; 835 836 return (struct page *)page->index; 837 } 838 839 /** 840 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 841 * @obj: the encoded object value 842 * @page: page object resides in zspage 843 * @obj_idx: object index 844 */ 845 static void obj_to_location(unsigned long obj, struct page **page, 846 unsigned int *obj_idx) 847 { 848 obj >>= OBJ_TAG_BITS; 849 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 850 *obj_idx = (obj & OBJ_INDEX_MASK); 851 } 852 853 static void obj_to_page(unsigned long obj, struct page **page) 854 { 855 obj >>= OBJ_TAG_BITS; 856 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 857 } 858 859 /** 860 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 861 * @page: page object resides in zspage 862 * @obj_idx: object index 863 */ 864 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 865 { 866 unsigned long obj; 867 868 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 869 obj |= obj_idx & OBJ_INDEX_MASK; 870 obj <<= OBJ_TAG_BITS; 871 872 return obj; 873 } 874 875 static unsigned long handle_to_obj(unsigned long handle) 876 { 877 return *(unsigned long *)handle; 878 } 879 880 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, 881 int tag) 882 { 883 unsigned long handle; 884 struct zspage *zspage = get_zspage(page); 885 886 if (unlikely(ZsHugePage(zspage))) { 887 VM_BUG_ON_PAGE(!is_first_page(page), page); 888 handle = page->index; 889 } else 890 handle = *(unsigned long *)obj; 891 892 if (!(handle & tag)) 893 return false; 894 895 /* Clear all tags before returning the handle */ 896 *phandle = handle & ~OBJ_TAG_MASK; 897 return true; 898 } 899 900 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 901 { 902 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); 903 } 904 905 #ifdef CONFIG_ZPOOL 906 static bool obj_stores_deferred_handle(struct page *page, void *obj, 907 unsigned long *phandle) 908 { 909 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG); 910 } 911 #endif 912 913 static void reset_page(struct page *page) 914 { 915 __ClearPageMovable(page); 916 ClearPagePrivate(page); 917 set_page_private(page, 0); 918 page_mapcount_reset(page); 919 page->index = 0; 920 } 921 922 static int trylock_zspage(struct zspage *zspage) 923 { 924 struct page *cursor, *fail; 925 926 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 927 get_next_page(cursor)) { 928 if (!trylock_page(cursor)) { 929 fail = cursor; 930 goto unlock; 931 } 932 } 933 934 return 1; 935 unlock: 936 for (cursor = get_first_page(zspage); cursor != fail; cursor = 937 get_next_page(cursor)) 938 unlock_page(cursor); 939 940 return 0; 941 } 942 943 #ifdef CONFIG_ZPOOL 944 static unsigned long find_deferred_handle_obj(struct size_class *class, 945 struct page *page, int *obj_idx); 946 947 /* 948 * Free all the deferred handles whose objects are freed in zs_free. 949 */ 950 static void free_handles(struct zs_pool *pool, struct size_class *class, 951 struct zspage *zspage) 952 { 953 int obj_idx = 0; 954 struct page *page = get_first_page(zspage); 955 unsigned long handle; 956 957 while (1) { 958 handle = find_deferred_handle_obj(class, page, &obj_idx); 959 if (!handle) { 960 page = get_next_page(page); 961 if (!page) 962 break; 963 obj_idx = 0; 964 continue; 965 } 966 967 cache_free_handle(pool, handle); 968 obj_idx++; 969 } 970 } 971 #else 972 static inline void free_handles(struct zs_pool *pool, struct size_class *class, 973 struct zspage *zspage) {} 974 #endif 975 976 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 977 struct zspage *zspage) 978 { 979 struct page *page, *next; 980 enum fullness_group fg; 981 unsigned int class_idx; 982 983 get_zspage_mapping(zspage, &class_idx, &fg); 984 985 assert_spin_locked(&pool->lock); 986 987 VM_BUG_ON(get_zspage_inuse(zspage)); 988 VM_BUG_ON(fg != ZS_EMPTY); 989 990 /* Free all deferred handles from zs_free */ 991 free_handles(pool, class, zspage); 992 993 next = page = get_first_page(zspage); 994 do { 995 VM_BUG_ON_PAGE(!PageLocked(page), page); 996 next = get_next_page(page); 997 reset_page(page); 998 unlock_page(page); 999 dec_zone_page_state(page, NR_ZSPAGES); 1000 put_page(page); 1001 page = next; 1002 } while (page != NULL); 1003 1004 cache_free_zspage(pool, zspage); 1005 1006 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1007 atomic_long_sub(class->pages_per_zspage, 1008 &pool->pages_allocated); 1009 } 1010 1011 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1012 struct zspage *zspage) 1013 { 1014 VM_BUG_ON(get_zspage_inuse(zspage)); 1015 VM_BUG_ON(list_empty(&zspage->list)); 1016 1017 /* 1018 * Since zs_free couldn't be sleepable, this function cannot call 1019 * lock_page. The page locks trylock_zspage got will be released 1020 * by __free_zspage. 1021 */ 1022 if (!trylock_zspage(zspage)) { 1023 kick_deferred_free(pool); 1024 return; 1025 } 1026 1027 remove_zspage(class, zspage, ZS_EMPTY); 1028 #ifdef CONFIG_ZPOOL 1029 list_del(&zspage->lru); 1030 #endif 1031 __free_zspage(pool, class, zspage); 1032 } 1033 1034 /* Initialize a newly allocated zspage */ 1035 static void init_zspage(struct size_class *class, struct zspage *zspage) 1036 { 1037 unsigned int freeobj = 1; 1038 unsigned long off = 0; 1039 struct page *page = get_first_page(zspage); 1040 1041 while (page) { 1042 struct page *next_page; 1043 struct link_free *link; 1044 void *vaddr; 1045 1046 set_first_obj_offset(page, off); 1047 1048 vaddr = kmap_atomic(page); 1049 link = (struct link_free *)vaddr + off / sizeof(*link); 1050 1051 while ((off += class->size) < PAGE_SIZE) { 1052 link->next = freeobj++ << OBJ_TAG_BITS; 1053 link += class->size / sizeof(*link); 1054 } 1055 1056 /* 1057 * We now come to the last (full or partial) object on this 1058 * page, which must point to the first object on the next 1059 * page (if present) 1060 */ 1061 next_page = get_next_page(page); 1062 if (next_page) { 1063 link->next = freeobj++ << OBJ_TAG_BITS; 1064 } else { 1065 /* 1066 * Reset OBJ_TAG_BITS bit to last link to tell 1067 * whether it's allocated object or not. 1068 */ 1069 link->next = -1UL << OBJ_TAG_BITS; 1070 } 1071 kunmap_atomic(vaddr); 1072 page = next_page; 1073 off %= PAGE_SIZE; 1074 } 1075 1076 #ifdef CONFIG_ZPOOL 1077 INIT_LIST_HEAD(&zspage->lru); 1078 zspage->under_reclaim = false; 1079 #endif 1080 1081 set_freeobj(zspage, 0); 1082 } 1083 1084 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1085 struct page *pages[]) 1086 { 1087 int i; 1088 struct page *page; 1089 struct page *prev_page = NULL; 1090 int nr_pages = class->pages_per_zspage; 1091 1092 /* 1093 * Allocate individual pages and link them together as: 1094 * 1. all pages are linked together using page->index 1095 * 2. each sub-page point to zspage using page->private 1096 * 1097 * we set PG_private to identify the first page (i.e. no other sub-page 1098 * has this flag set). 1099 */ 1100 for (i = 0; i < nr_pages; i++) { 1101 page = pages[i]; 1102 set_page_private(page, (unsigned long)zspage); 1103 page->index = 0; 1104 if (i == 0) { 1105 zspage->first_page = page; 1106 SetPagePrivate(page); 1107 if (unlikely(class->objs_per_zspage == 1 && 1108 class->pages_per_zspage == 1)) 1109 SetZsHugePage(zspage); 1110 } else { 1111 prev_page->index = (unsigned long)page; 1112 } 1113 prev_page = page; 1114 } 1115 } 1116 1117 /* 1118 * Allocate a zspage for the given size class 1119 */ 1120 static struct zspage *alloc_zspage(struct zs_pool *pool, 1121 struct size_class *class, 1122 gfp_t gfp) 1123 { 1124 int i; 1125 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1126 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1127 1128 if (!zspage) 1129 return NULL; 1130 1131 zspage->magic = ZSPAGE_MAGIC; 1132 migrate_lock_init(zspage); 1133 1134 for (i = 0; i < class->pages_per_zspage; i++) { 1135 struct page *page; 1136 1137 page = alloc_page(gfp); 1138 if (!page) { 1139 while (--i >= 0) { 1140 dec_zone_page_state(pages[i], NR_ZSPAGES); 1141 __free_page(pages[i]); 1142 } 1143 cache_free_zspage(pool, zspage); 1144 return NULL; 1145 } 1146 1147 inc_zone_page_state(page, NR_ZSPAGES); 1148 pages[i] = page; 1149 } 1150 1151 create_page_chain(class, zspage, pages); 1152 init_zspage(class, zspage); 1153 zspage->pool = pool; 1154 1155 return zspage; 1156 } 1157 1158 static struct zspage *find_get_zspage(struct size_class *class) 1159 { 1160 int i; 1161 struct zspage *zspage; 1162 1163 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1164 zspage = list_first_entry_or_null(&class->fullness_list[i], 1165 struct zspage, list); 1166 if (zspage) 1167 break; 1168 } 1169 1170 return zspage; 1171 } 1172 1173 static inline int __zs_cpu_up(struct mapping_area *area) 1174 { 1175 /* 1176 * Make sure we don't leak memory if a cpu UP notification 1177 * and zs_init() race and both call zs_cpu_up() on the same cpu 1178 */ 1179 if (area->vm_buf) 1180 return 0; 1181 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1182 if (!area->vm_buf) 1183 return -ENOMEM; 1184 return 0; 1185 } 1186 1187 static inline void __zs_cpu_down(struct mapping_area *area) 1188 { 1189 kfree(area->vm_buf); 1190 area->vm_buf = NULL; 1191 } 1192 1193 static void *__zs_map_object(struct mapping_area *area, 1194 struct page *pages[2], int off, int size) 1195 { 1196 int sizes[2]; 1197 void *addr; 1198 char *buf = area->vm_buf; 1199 1200 /* disable page faults to match kmap_atomic() return conditions */ 1201 pagefault_disable(); 1202 1203 /* no read fastpath */ 1204 if (area->vm_mm == ZS_MM_WO) 1205 goto out; 1206 1207 sizes[0] = PAGE_SIZE - off; 1208 sizes[1] = size - sizes[0]; 1209 1210 /* copy object to per-cpu buffer */ 1211 addr = kmap_atomic(pages[0]); 1212 memcpy(buf, addr + off, sizes[0]); 1213 kunmap_atomic(addr); 1214 addr = kmap_atomic(pages[1]); 1215 memcpy(buf + sizes[0], addr, sizes[1]); 1216 kunmap_atomic(addr); 1217 out: 1218 return area->vm_buf; 1219 } 1220 1221 static void __zs_unmap_object(struct mapping_area *area, 1222 struct page *pages[2], int off, int size) 1223 { 1224 int sizes[2]; 1225 void *addr; 1226 char *buf; 1227 1228 /* no write fastpath */ 1229 if (area->vm_mm == ZS_MM_RO) 1230 goto out; 1231 1232 buf = area->vm_buf; 1233 buf = buf + ZS_HANDLE_SIZE; 1234 size -= ZS_HANDLE_SIZE; 1235 off += ZS_HANDLE_SIZE; 1236 1237 sizes[0] = PAGE_SIZE - off; 1238 sizes[1] = size - sizes[0]; 1239 1240 /* copy per-cpu buffer to object */ 1241 addr = kmap_atomic(pages[0]); 1242 memcpy(addr + off, buf, sizes[0]); 1243 kunmap_atomic(addr); 1244 addr = kmap_atomic(pages[1]); 1245 memcpy(addr, buf + sizes[0], sizes[1]); 1246 kunmap_atomic(addr); 1247 1248 out: 1249 /* enable page faults to match kunmap_atomic() return conditions */ 1250 pagefault_enable(); 1251 } 1252 1253 static int zs_cpu_prepare(unsigned int cpu) 1254 { 1255 struct mapping_area *area; 1256 1257 area = &per_cpu(zs_map_area, cpu); 1258 return __zs_cpu_up(area); 1259 } 1260 1261 static int zs_cpu_dead(unsigned int cpu) 1262 { 1263 struct mapping_area *area; 1264 1265 area = &per_cpu(zs_map_area, cpu); 1266 __zs_cpu_down(area); 1267 return 0; 1268 } 1269 1270 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1271 int objs_per_zspage) 1272 { 1273 if (prev->pages_per_zspage == pages_per_zspage && 1274 prev->objs_per_zspage == objs_per_zspage) 1275 return true; 1276 1277 return false; 1278 } 1279 1280 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1281 { 1282 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1283 } 1284 1285 /** 1286 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1287 * that hold objects of the provided size. 1288 * @pool: zsmalloc pool to use 1289 * @size: object size 1290 * 1291 * Context: Any context. 1292 * 1293 * Return: the index of the zsmalloc &size_class that hold objects of the 1294 * provided size. 1295 */ 1296 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1297 { 1298 struct size_class *class; 1299 1300 class = pool->size_class[get_size_class_index(size)]; 1301 1302 return class->index; 1303 } 1304 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1305 1306 unsigned long zs_get_total_pages(struct zs_pool *pool) 1307 { 1308 return atomic_long_read(&pool->pages_allocated); 1309 } 1310 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1311 1312 /** 1313 * zs_map_object - get address of allocated object from handle. 1314 * @pool: pool from which the object was allocated 1315 * @handle: handle returned from zs_malloc 1316 * @mm: mapping mode to use 1317 * 1318 * Before using an object allocated from zs_malloc, it must be mapped using 1319 * this function. When done with the object, it must be unmapped using 1320 * zs_unmap_object. 1321 * 1322 * Only one object can be mapped per cpu at a time. There is no protection 1323 * against nested mappings. 1324 * 1325 * This function returns with preemption and page faults disabled. 1326 */ 1327 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1328 enum zs_mapmode mm) 1329 { 1330 struct zspage *zspage; 1331 struct page *page; 1332 unsigned long obj, off; 1333 unsigned int obj_idx; 1334 1335 struct size_class *class; 1336 struct mapping_area *area; 1337 struct page *pages[2]; 1338 void *ret; 1339 1340 /* 1341 * Because we use per-cpu mapping areas shared among the 1342 * pools/users, we can't allow mapping in interrupt context 1343 * because it can corrupt another users mappings. 1344 */ 1345 BUG_ON(in_interrupt()); 1346 1347 /* It guarantees it can get zspage from handle safely */ 1348 spin_lock(&pool->lock); 1349 obj = handle_to_obj(handle); 1350 obj_to_location(obj, &page, &obj_idx); 1351 zspage = get_zspage(page); 1352 1353 #ifdef CONFIG_ZPOOL 1354 /* 1355 * Move the zspage to front of pool's LRU. 1356 * 1357 * Note that this is swap-specific, so by definition there are no ongoing 1358 * accesses to the memory while the page is swapped out that would make 1359 * it "hot". A new entry is hot, then ages to the tail until it gets either 1360 * written back or swaps back in. 1361 * 1362 * Furthermore, map is also called during writeback. We must not put an 1363 * isolated page on the LRU mid-reclaim. 1364 * 1365 * As a result, only update the LRU when the page is mapped for write 1366 * when it's first instantiated. 1367 * 1368 * This is a deviation from the other backends, which perform this update 1369 * in the allocation function (zbud_alloc, z3fold_alloc). 1370 */ 1371 if (mm == ZS_MM_WO) { 1372 if (!list_empty(&zspage->lru)) 1373 list_del(&zspage->lru); 1374 list_add(&zspage->lru, &pool->lru); 1375 } 1376 #endif 1377 1378 /* 1379 * migration cannot move any zpages in this zspage. Here, pool->lock 1380 * is too heavy since callers would take some time until they calls 1381 * zs_unmap_object API so delegate the locking from class to zspage 1382 * which is smaller granularity. 1383 */ 1384 migrate_read_lock(zspage); 1385 spin_unlock(&pool->lock); 1386 1387 class = zspage_class(pool, zspage); 1388 off = (class->size * obj_idx) & ~PAGE_MASK; 1389 1390 local_lock(&zs_map_area.lock); 1391 area = this_cpu_ptr(&zs_map_area); 1392 area->vm_mm = mm; 1393 if (off + class->size <= PAGE_SIZE) { 1394 /* this object is contained entirely within a page */ 1395 area->vm_addr = kmap_atomic(page); 1396 ret = area->vm_addr + off; 1397 goto out; 1398 } 1399 1400 /* this object spans two pages */ 1401 pages[0] = page; 1402 pages[1] = get_next_page(page); 1403 BUG_ON(!pages[1]); 1404 1405 ret = __zs_map_object(area, pages, off, class->size); 1406 out: 1407 if (likely(!ZsHugePage(zspage))) 1408 ret += ZS_HANDLE_SIZE; 1409 1410 return ret; 1411 } 1412 EXPORT_SYMBOL_GPL(zs_map_object); 1413 1414 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1415 { 1416 struct zspage *zspage; 1417 struct page *page; 1418 unsigned long obj, off; 1419 unsigned int obj_idx; 1420 1421 struct size_class *class; 1422 struct mapping_area *area; 1423 1424 obj = handle_to_obj(handle); 1425 obj_to_location(obj, &page, &obj_idx); 1426 zspage = get_zspage(page); 1427 class = zspage_class(pool, zspage); 1428 off = (class->size * obj_idx) & ~PAGE_MASK; 1429 1430 area = this_cpu_ptr(&zs_map_area); 1431 if (off + class->size <= PAGE_SIZE) 1432 kunmap_atomic(area->vm_addr); 1433 else { 1434 struct page *pages[2]; 1435 1436 pages[0] = page; 1437 pages[1] = get_next_page(page); 1438 BUG_ON(!pages[1]); 1439 1440 __zs_unmap_object(area, pages, off, class->size); 1441 } 1442 local_unlock(&zs_map_area.lock); 1443 1444 migrate_read_unlock(zspage); 1445 } 1446 EXPORT_SYMBOL_GPL(zs_unmap_object); 1447 1448 /** 1449 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1450 * zsmalloc &size_class. 1451 * @pool: zsmalloc pool to use 1452 * 1453 * The function returns the size of the first huge class - any object of equal 1454 * or bigger size will be stored in zspage consisting of a single physical 1455 * page. 1456 * 1457 * Context: Any context. 1458 * 1459 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1460 */ 1461 size_t zs_huge_class_size(struct zs_pool *pool) 1462 { 1463 return huge_class_size; 1464 } 1465 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1466 1467 static unsigned long obj_malloc(struct zs_pool *pool, 1468 struct zspage *zspage, unsigned long handle) 1469 { 1470 int i, nr_page, offset; 1471 unsigned long obj; 1472 struct link_free *link; 1473 struct size_class *class; 1474 1475 struct page *m_page; 1476 unsigned long m_offset; 1477 void *vaddr; 1478 1479 class = pool->size_class[zspage->class]; 1480 handle |= OBJ_ALLOCATED_TAG; 1481 obj = get_freeobj(zspage); 1482 1483 offset = obj * class->size; 1484 nr_page = offset >> PAGE_SHIFT; 1485 m_offset = offset & ~PAGE_MASK; 1486 m_page = get_first_page(zspage); 1487 1488 for (i = 0; i < nr_page; i++) 1489 m_page = get_next_page(m_page); 1490 1491 vaddr = kmap_atomic(m_page); 1492 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1493 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1494 if (likely(!ZsHugePage(zspage))) 1495 /* record handle in the header of allocated chunk */ 1496 link->handle = handle; 1497 else 1498 /* record handle to page->index */ 1499 zspage->first_page->index = handle; 1500 1501 kunmap_atomic(vaddr); 1502 mod_zspage_inuse(zspage, 1); 1503 1504 obj = location_to_obj(m_page, obj); 1505 1506 return obj; 1507 } 1508 1509 1510 /** 1511 * zs_malloc - Allocate block of given size from pool. 1512 * @pool: pool to allocate from 1513 * @size: size of block to allocate 1514 * @gfp: gfp flags when allocating object 1515 * 1516 * On success, handle to the allocated object is returned, 1517 * otherwise an ERR_PTR(). 1518 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1519 */ 1520 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1521 { 1522 unsigned long handle, obj; 1523 struct size_class *class; 1524 enum fullness_group newfg; 1525 struct zspage *zspage; 1526 1527 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1528 return (unsigned long)ERR_PTR(-EINVAL); 1529 1530 handle = cache_alloc_handle(pool, gfp); 1531 if (!handle) 1532 return (unsigned long)ERR_PTR(-ENOMEM); 1533 1534 /* extra space in chunk to keep the handle */ 1535 size += ZS_HANDLE_SIZE; 1536 class = pool->size_class[get_size_class_index(size)]; 1537 1538 /* pool->lock effectively protects the zpage migration */ 1539 spin_lock(&pool->lock); 1540 zspage = find_get_zspage(class); 1541 if (likely(zspage)) { 1542 obj = obj_malloc(pool, zspage, handle); 1543 /* Now move the zspage to another fullness group, if required */ 1544 fix_fullness_group(class, zspage); 1545 record_obj(handle, obj); 1546 class_stat_inc(class, OBJ_USED, 1); 1547 spin_unlock(&pool->lock); 1548 1549 return handle; 1550 } 1551 1552 spin_unlock(&pool->lock); 1553 1554 zspage = alloc_zspage(pool, class, gfp); 1555 if (!zspage) { 1556 cache_free_handle(pool, handle); 1557 return (unsigned long)ERR_PTR(-ENOMEM); 1558 } 1559 1560 spin_lock(&pool->lock); 1561 obj = obj_malloc(pool, zspage, handle); 1562 newfg = get_fullness_group(class, zspage); 1563 insert_zspage(class, zspage, newfg); 1564 set_zspage_mapping(zspage, class->index, newfg); 1565 record_obj(handle, obj); 1566 atomic_long_add(class->pages_per_zspage, 1567 &pool->pages_allocated); 1568 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1569 class_stat_inc(class, OBJ_USED, 1); 1570 1571 /* We completely set up zspage so mark them as movable */ 1572 SetZsPageMovable(pool, zspage); 1573 spin_unlock(&pool->lock); 1574 1575 return handle; 1576 } 1577 EXPORT_SYMBOL_GPL(zs_malloc); 1578 1579 static void obj_free(int class_size, unsigned long obj, unsigned long *handle) 1580 { 1581 struct link_free *link; 1582 struct zspage *zspage; 1583 struct page *f_page; 1584 unsigned long f_offset; 1585 unsigned int f_objidx; 1586 void *vaddr; 1587 1588 obj_to_location(obj, &f_page, &f_objidx); 1589 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1590 zspage = get_zspage(f_page); 1591 1592 vaddr = kmap_atomic(f_page); 1593 link = (struct link_free *)(vaddr + f_offset); 1594 1595 if (handle) { 1596 #ifdef CONFIG_ZPOOL 1597 /* Stores the (deferred) handle in the object's header */ 1598 *handle |= OBJ_DEFERRED_HANDLE_TAG; 1599 *handle &= ~OBJ_ALLOCATED_TAG; 1600 1601 if (likely(!ZsHugePage(zspage))) 1602 link->deferred_handle = *handle; 1603 else 1604 f_page->index = *handle; 1605 #endif 1606 } else { 1607 /* Insert this object in containing zspage's freelist */ 1608 if (likely(!ZsHugePage(zspage))) 1609 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1610 else 1611 f_page->index = 0; 1612 set_freeobj(zspage, f_objidx); 1613 } 1614 1615 kunmap_atomic(vaddr); 1616 mod_zspage_inuse(zspage, -1); 1617 } 1618 1619 void zs_free(struct zs_pool *pool, unsigned long handle) 1620 { 1621 struct zspage *zspage; 1622 struct page *f_page; 1623 unsigned long obj; 1624 struct size_class *class; 1625 enum fullness_group fullness; 1626 1627 if (IS_ERR_OR_NULL((void *)handle)) 1628 return; 1629 1630 /* 1631 * The pool->lock protects the race with zpage's migration 1632 * so it's safe to get the page from handle. 1633 */ 1634 spin_lock(&pool->lock); 1635 obj = handle_to_obj(handle); 1636 obj_to_page(obj, &f_page); 1637 zspage = get_zspage(f_page); 1638 class = zspage_class(pool, zspage); 1639 1640 class_stat_dec(class, OBJ_USED, 1); 1641 1642 #ifdef CONFIG_ZPOOL 1643 if (zspage->under_reclaim) { 1644 /* 1645 * Reclaim needs the handles during writeback. It'll free 1646 * them along with the zspage when it's done with them. 1647 * 1648 * Record current deferred handle in the object's header. 1649 */ 1650 obj_free(class->size, obj, &handle); 1651 spin_unlock(&pool->lock); 1652 return; 1653 } 1654 #endif 1655 obj_free(class->size, obj, NULL); 1656 1657 fullness = fix_fullness_group(class, zspage); 1658 if (fullness == ZS_EMPTY) 1659 free_zspage(pool, class, zspage); 1660 1661 spin_unlock(&pool->lock); 1662 cache_free_handle(pool, handle); 1663 } 1664 EXPORT_SYMBOL_GPL(zs_free); 1665 1666 static void zs_object_copy(struct size_class *class, unsigned long dst, 1667 unsigned long src) 1668 { 1669 struct page *s_page, *d_page; 1670 unsigned int s_objidx, d_objidx; 1671 unsigned long s_off, d_off; 1672 void *s_addr, *d_addr; 1673 int s_size, d_size, size; 1674 int written = 0; 1675 1676 s_size = d_size = class->size; 1677 1678 obj_to_location(src, &s_page, &s_objidx); 1679 obj_to_location(dst, &d_page, &d_objidx); 1680 1681 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1682 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1683 1684 if (s_off + class->size > PAGE_SIZE) 1685 s_size = PAGE_SIZE - s_off; 1686 1687 if (d_off + class->size > PAGE_SIZE) 1688 d_size = PAGE_SIZE - d_off; 1689 1690 s_addr = kmap_atomic(s_page); 1691 d_addr = kmap_atomic(d_page); 1692 1693 while (1) { 1694 size = min(s_size, d_size); 1695 memcpy(d_addr + d_off, s_addr + s_off, size); 1696 written += size; 1697 1698 if (written == class->size) 1699 break; 1700 1701 s_off += size; 1702 s_size -= size; 1703 d_off += size; 1704 d_size -= size; 1705 1706 /* 1707 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1708 * calls must occurs in reverse order of calls to kmap_atomic(). 1709 * So, to call kunmap_atomic(s_addr) we should first call 1710 * kunmap_atomic(d_addr). For more details see 1711 * Documentation/mm/highmem.rst. 1712 */ 1713 if (s_off >= PAGE_SIZE) { 1714 kunmap_atomic(d_addr); 1715 kunmap_atomic(s_addr); 1716 s_page = get_next_page(s_page); 1717 s_addr = kmap_atomic(s_page); 1718 d_addr = kmap_atomic(d_page); 1719 s_size = class->size - written; 1720 s_off = 0; 1721 } 1722 1723 if (d_off >= PAGE_SIZE) { 1724 kunmap_atomic(d_addr); 1725 d_page = get_next_page(d_page); 1726 d_addr = kmap_atomic(d_page); 1727 d_size = class->size - written; 1728 d_off = 0; 1729 } 1730 } 1731 1732 kunmap_atomic(d_addr); 1733 kunmap_atomic(s_addr); 1734 } 1735 1736 /* 1737 * Find object with a certain tag in zspage from index object and 1738 * return handle. 1739 */ 1740 static unsigned long find_tagged_obj(struct size_class *class, 1741 struct page *page, int *obj_idx, int tag) 1742 { 1743 unsigned int offset; 1744 int index = *obj_idx; 1745 unsigned long handle = 0; 1746 void *addr = kmap_atomic(page); 1747 1748 offset = get_first_obj_offset(page); 1749 offset += class->size * index; 1750 1751 while (offset < PAGE_SIZE) { 1752 if (obj_tagged(page, addr + offset, &handle, tag)) 1753 break; 1754 1755 offset += class->size; 1756 index++; 1757 } 1758 1759 kunmap_atomic(addr); 1760 1761 *obj_idx = index; 1762 1763 return handle; 1764 } 1765 1766 /* 1767 * Find alloced object in zspage from index object and 1768 * return handle. 1769 */ 1770 static unsigned long find_alloced_obj(struct size_class *class, 1771 struct page *page, int *obj_idx) 1772 { 1773 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); 1774 } 1775 1776 #ifdef CONFIG_ZPOOL 1777 /* 1778 * Find object storing a deferred handle in header in zspage from index object 1779 * and return handle. 1780 */ 1781 static unsigned long find_deferred_handle_obj(struct size_class *class, 1782 struct page *page, int *obj_idx) 1783 { 1784 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG); 1785 } 1786 #endif 1787 1788 struct zs_compact_control { 1789 /* Source spage for migration which could be a subpage of zspage */ 1790 struct page *s_page; 1791 /* Destination page for migration which should be a first page 1792 * of zspage. */ 1793 struct page *d_page; 1794 /* Starting object index within @s_page which used for live object 1795 * in the subpage. */ 1796 int obj_idx; 1797 }; 1798 1799 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1800 struct zs_compact_control *cc) 1801 { 1802 unsigned long used_obj, free_obj; 1803 unsigned long handle; 1804 struct page *s_page = cc->s_page; 1805 struct page *d_page = cc->d_page; 1806 int obj_idx = cc->obj_idx; 1807 int ret = 0; 1808 1809 while (1) { 1810 handle = find_alloced_obj(class, s_page, &obj_idx); 1811 if (!handle) { 1812 s_page = get_next_page(s_page); 1813 if (!s_page) 1814 break; 1815 obj_idx = 0; 1816 continue; 1817 } 1818 1819 /* Stop if there is no more space */ 1820 if (zspage_full(class, get_zspage(d_page))) { 1821 ret = -ENOMEM; 1822 break; 1823 } 1824 1825 used_obj = handle_to_obj(handle); 1826 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1827 zs_object_copy(class, free_obj, used_obj); 1828 obj_idx++; 1829 record_obj(handle, free_obj); 1830 obj_free(class->size, used_obj, NULL); 1831 } 1832 1833 /* Remember last position in this iteration */ 1834 cc->s_page = s_page; 1835 cc->obj_idx = obj_idx; 1836 1837 return ret; 1838 } 1839 1840 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1841 { 1842 int i; 1843 struct zspage *zspage; 1844 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1845 1846 if (!source) { 1847 fg[0] = ZS_ALMOST_FULL; 1848 fg[1] = ZS_ALMOST_EMPTY; 1849 } 1850 1851 for (i = 0; i < 2; i++) { 1852 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1853 struct zspage, list); 1854 if (zspage) { 1855 remove_zspage(class, zspage, fg[i]); 1856 return zspage; 1857 } 1858 } 1859 1860 return zspage; 1861 } 1862 1863 /* 1864 * putback_zspage - add @zspage into right class's fullness list 1865 * @class: destination class 1866 * @zspage: target page 1867 * 1868 * Return @zspage's fullness_group 1869 */ 1870 static enum fullness_group putback_zspage(struct size_class *class, 1871 struct zspage *zspage) 1872 { 1873 enum fullness_group fullness; 1874 1875 fullness = get_fullness_group(class, zspage); 1876 insert_zspage(class, zspage, fullness); 1877 set_zspage_mapping(zspage, class->index, fullness); 1878 1879 return fullness; 1880 } 1881 1882 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1883 /* 1884 * To prevent zspage destroy during migration, zspage freeing should 1885 * hold locks of all pages in the zspage. 1886 */ 1887 static void lock_zspage(struct zspage *zspage) 1888 { 1889 struct page *curr_page, *page; 1890 1891 /* 1892 * Pages we haven't locked yet can be migrated off the list while we're 1893 * trying to lock them, so we need to be careful and only attempt to 1894 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1895 * may no longer belong to the zspage. This means that we may wait for 1896 * the wrong page to unlock, so we must take a reference to the page 1897 * prior to waiting for it to unlock outside migrate_read_lock(). 1898 */ 1899 while (1) { 1900 migrate_read_lock(zspage); 1901 page = get_first_page(zspage); 1902 if (trylock_page(page)) 1903 break; 1904 get_page(page); 1905 migrate_read_unlock(zspage); 1906 wait_on_page_locked(page); 1907 put_page(page); 1908 } 1909 1910 curr_page = page; 1911 while ((page = get_next_page(curr_page))) { 1912 if (trylock_page(page)) { 1913 curr_page = page; 1914 } else { 1915 get_page(page); 1916 migrate_read_unlock(zspage); 1917 wait_on_page_locked(page); 1918 put_page(page); 1919 migrate_read_lock(zspage); 1920 } 1921 } 1922 migrate_read_unlock(zspage); 1923 } 1924 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1925 1926 #ifdef CONFIG_ZPOOL 1927 /* 1928 * Unlocks all the pages of the zspage. 1929 * 1930 * pool->lock must be held before this function is called 1931 * to prevent the underlying pages from migrating. 1932 */ 1933 static void unlock_zspage(struct zspage *zspage) 1934 { 1935 struct page *page = get_first_page(zspage); 1936 1937 do { 1938 unlock_page(page); 1939 } while ((page = get_next_page(page)) != NULL); 1940 } 1941 #endif /* CONFIG_ZPOOL */ 1942 1943 static void migrate_lock_init(struct zspage *zspage) 1944 { 1945 rwlock_init(&zspage->lock); 1946 } 1947 1948 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1949 { 1950 read_lock(&zspage->lock); 1951 } 1952 1953 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1954 { 1955 read_unlock(&zspage->lock); 1956 } 1957 1958 #ifdef CONFIG_COMPACTION 1959 static void migrate_write_lock(struct zspage *zspage) 1960 { 1961 write_lock(&zspage->lock); 1962 } 1963 1964 static void migrate_write_lock_nested(struct zspage *zspage) 1965 { 1966 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1967 } 1968 1969 static void migrate_write_unlock(struct zspage *zspage) 1970 { 1971 write_unlock(&zspage->lock); 1972 } 1973 1974 /* Number of isolated subpage for *page migration* in this zspage */ 1975 static void inc_zspage_isolation(struct zspage *zspage) 1976 { 1977 zspage->isolated++; 1978 } 1979 1980 static void dec_zspage_isolation(struct zspage *zspage) 1981 { 1982 VM_BUG_ON(zspage->isolated == 0); 1983 zspage->isolated--; 1984 } 1985 1986 static const struct movable_operations zsmalloc_mops; 1987 1988 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1989 struct page *newpage, struct page *oldpage) 1990 { 1991 struct page *page; 1992 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1993 int idx = 0; 1994 1995 page = get_first_page(zspage); 1996 do { 1997 if (page == oldpage) 1998 pages[idx] = newpage; 1999 else 2000 pages[idx] = page; 2001 idx++; 2002 } while ((page = get_next_page(page)) != NULL); 2003 2004 create_page_chain(class, zspage, pages); 2005 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 2006 if (unlikely(ZsHugePage(zspage))) 2007 newpage->index = oldpage->index; 2008 __SetPageMovable(newpage, &zsmalloc_mops); 2009 } 2010 2011 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 2012 { 2013 struct zspage *zspage; 2014 2015 /* 2016 * Page is locked so zspage couldn't be destroyed. For detail, look at 2017 * lock_zspage in free_zspage. 2018 */ 2019 VM_BUG_ON_PAGE(PageIsolated(page), page); 2020 2021 zspage = get_zspage(page); 2022 migrate_write_lock(zspage); 2023 inc_zspage_isolation(zspage); 2024 migrate_write_unlock(zspage); 2025 2026 return true; 2027 } 2028 2029 static int zs_page_migrate(struct page *newpage, struct page *page, 2030 enum migrate_mode mode) 2031 { 2032 struct zs_pool *pool; 2033 struct size_class *class; 2034 struct zspage *zspage; 2035 struct page *dummy; 2036 void *s_addr, *d_addr, *addr; 2037 unsigned int offset; 2038 unsigned long handle; 2039 unsigned long old_obj, new_obj; 2040 unsigned int obj_idx; 2041 2042 /* 2043 * We cannot support the _NO_COPY case here, because copy needs to 2044 * happen under the zs lock, which does not work with 2045 * MIGRATE_SYNC_NO_COPY workflow. 2046 */ 2047 if (mode == MIGRATE_SYNC_NO_COPY) 2048 return -EINVAL; 2049 2050 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2051 2052 /* The page is locked, so this pointer must remain valid */ 2053 zspage = get_zspage(page); 2054 pool = zspage->pool; 2055 2056 /* 2057 * The pool's lock protects the race between zpage migration 2058 * and zs_free. 2059 */ 2060 spin_lock(&pool->lock); 2061 class = zspage_class(pool, zspage); 2062 2063 /* the migrate_write_lock protects zpage access via zs_map_object */ 2064 migrate_write_lock(zspage); 2065 2066 offset = get_first_obj_offset(page); 2067 s_addr = kmap_atomic(page); 2068 2069 /* 2070 * Here, any user cannot access all objects in the zspage so let's move. 2071 */ 2072 d_addr = kmap_atomic(newpage); 2073 memcpy(d_addr, s_addr, PAGE_SIZE); 2074 kunmap_atomic(d_addr); 2075 2076 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2077 addr += class->size) { 2078 if (obj_allocated(page, addr, &handle)) { 2079 2080 old_obj = handle_to_obj(handle); 2081 obj_to_location(old_obj, &dummy, &obj_idx); 2082 new_obj = (unsigned long)location_to_obj(newpage, 2083 obj_idx); 2084 record_obj(handle, new_obj); 2085 } 2086 } 2087 kunmap_atomic(s_addr); 2088 2089 replace_sub_page(class, zspage, newpage, page); 2090 /* 2091 * Since we complete the data copy and set up new zspage structure, 2092 * it's okay to release the pool's lock. 2093 */ 2094 spin_unlock(&pool->lock); 2095 dec_zspage_isolation(zspage); 2096 migrate_write_unlock(zspage); 2097 2098 get_page(newpage); 2099 if (page_zone(newpage) != page_zone(page)) { 2100 dec_zone_page_state(page, NR_ZSPAGES); 2101 inc_zone_page_state(newpage, NR_ZSPAGES); 2102 } 2103 2104 reset_page(page); 2105 put_page(page); 2106 2107 return MIGRATEPAGE_SUCCESS; 2108 } 2109 2110 static void zs_page_putback(struct page *page) 2111 { 2112 struct zspage *zspage; 2113 2114 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2115 2116 zspage = get_zspage(page); 2117 migrate_write_lock(zspage); 2118 dec_zspage_isolation(zspage); 2119 migrate_write_unlock(zspage); 2120 } 2121 2122 static const struct movable_operations zsmalloc_mops = { 2123 .isolate_page = zs_page_isolate, 2124 .migrate_page = zs_page_migrate, 2125 .putback_page = zs_page_putback, 2126 }; 2127 2128 /* 2129 * Caller should hold page_lock of all pages in the zspage 2130 * In here, we cannot use zspage meta data. 2131 */ 2132 static void async_free_zspage(struct work_struct *work) 2133 { 2134 int i; 2135 struct size_class *class; 2136 unsigned int class_idx; 2137 enum fullness_group fullness; 2138 struct zspage *zspage, *tmp; 2139 LIST_HEAD(free_pages); 2140 struct zs_pool *pool = container_of(work, struct zs_pool, 2141 free_work); 2142 2143 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2144 class = pool->size_class[i]; 2145 if (class->index != i) 2146 continue; 2147 2148 spin_lock(&pool->lock); 2149 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2150 spin_unlock(&pool->lock); 2151 } 2152 2153 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2154 list_del(&zspage->list); 2155 lock_zspage(zspage); 2156 2157 get_zspage_mapping(zspage, &class_idx, &fullness); 2158 VM_BUG_ON(fullness != ZS_EMPTY); 2159 class = pool->size_class[class_idx]; 2160 spin_lock(&pool->lock); 2161 #ifdef CONFIG_ZPOOL 2162 list_del(&zspage->lru); 2163 #endif 2164 __free_zspage(pool, class, zspage); 2165 spin_unlock(&pool->lock); 2166 } 2167 }; 2168 2169 static void kick_deferred_free(struct zs_pool *pool) 2170 { 2171 schedule_work(&pool->free_work); 2172 } 2173 2174 static void zs_flush_migration(struct zs_pool *pool) 2175 { 2176 flush_work(&pool->free_work); 2177 } 2178 2179 static void init_deferred_free(struct zs_pool *pool) 2180 { 2181 INIT_WORK(&pool->free_work, async_free_zspage); 2182 } 2183 2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2185 { 2186 struct page *page = get_first_page(zspage); 2187 2188 do { 2189 WARN_ON(!trylock_page(page)); 2190 __SetPageMovable(page, &zsmalloc_mops); 2191 unlock_page(page); 2192 } while ((page = get_next_page(page)) != NULL); 2193 } 2194 #else 2195 static inline void zs_flush_migration(struct zs_pool *pool) { } 2196 #endif 2197 2198 /* 2199 * 2200 * Based on the number of unused allocated objects calculate 2201 * and return the number of pages that we can free. 2202 */ 2203 static unsigned long zs_can_compact(struct size_class *class) 2204 { 2205 unsigned long obj_wasted; 2206 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2207 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2208 2209 if (obj_allocated <= obj_used) 2210 return 0; 2211 2212 obj_wasted = obj_allocated - obj_used; 2213 obj_wasted /= class->objs_per_zspage; 2214 2215 return obj_wasted * class->pages_per_zspage; 2216 } 2217 2218 static unsigned long __zs_compact(struct zs_pool *pool, 2219 struct size_class *class) 2220 { 2221 struct zs_compact_control cc; 2222 struct zspage *src_zspage; 2223 struct zspage *dst_zspage = NULL; 2224 unsigned long pages_freed = 0; 2225 2226 /* 2227 * protect the race between zpage migration and zs_free 2228 * as well as zpage allocation/free 2229 */ 2230 spin_lock(&pool->lock); 2231 while ((src_zspage = isolate_zspage(class, true))) { 2232 /* protect someone accessing the zspage(i.e., zs_map_object) */ 2233 migrate_write_lock(src_zspage); 2234 2235 if (!zs_can_compact(class)) 2236 break; 2237 2238 cc.obj_idx = 0; 2239 cc.s_page = get_first_page(src_zspage); 2240 2241 while ((dst_zspage = isolate_zspage(class, false))) { 2242 migrate_write_lock_nested(dst_zspage); 2243 2244 cc.d_page = get_first_page(dst_zspage); 2245 /* 2246 * If there is no more space in dst_page, resched 2247 * and see if anyone had allocated another zspage. 2248 */ 2249 if (!migrate_zspage(pool, class, &cc)) 2250 break; 2251 2252 putback_zspage(class, dst_zspage); 2253 migrate_write_unlock(dst_zspage); 2254 dst_zspage = NULL; 2255 if (spin_is_contended(&pool->lock)) 2256 break; 2257 } 2258 2259 /* Stop if we couldn't find slot */ 2260 if (dst_zspage == NULL) 2261 break; 2262 2263 putback_zspage(class, dst_zspage); 2264 migrate_write_unlock(dst_zspage); 2265 2266 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2267 migrate_write_unlock(src_zspage); 2268 free_zspage(pool, class, src_zspage); 2269 pages_freed += class->pages_per_zspage; 2270 } else 2271 migrate_write_unlock(src_zspage); 2272 spin_unlock(&pool->lock); 2273 cond_resched(); 2274 spin_lock(&pool->lock); 2275 } 2276 2277 if (src_zspage) { 2278 putback_zspage(class, src_zspage); 2279 migrate_write_unlock(src_zspage); 2280 } 2281 2282 spin_unlock(&pool->lock); 2283 2284 return pages_freed; 2285 } 2286 2287 unsigned long zs_compact(struct zs_pool *pool) 2288 { 2289 int i; 2290 struct size_class *class; 2291 unsigned long pages_freed = 0; 2292 2293 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2294 class = pool->size_class[i]; 2295 if (class->index != i) 2296 continue; 2297 pages_freed += __zs_compact(pool, class); 2298 } 2299 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2300 2301 return pages_freed; 2302 } 2303 EXPORT_SYMBOL_GPL(zs_compact); 2304 2305 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2306 { 2307 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2308 } 2309 EXPORT_SYMBOL_GPL(zs_pool_stats); 2310 2311 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2312 struct shrink_control *sc) 2313 { 2314 unsigned long pages_freed; 2315 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2316 shrinker); 2317 2318 /* 2319 * Compact classes and calculate compaction delta. 2320 * Can run concurrently with a manually triggered 2321 * (by user) compaction. 2322 */ 2323 pages_freed = zs_compact(pool); 2324 2325 return pages_freed ? pages_freed : SHRINK_STOP; 2326 } 2327 2328 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2329 struct shrink_control *sc) 2330 { 2331 int i; 2332 struct size_class *class; 2333 unsigned long pages_to_free = 0; 2334 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2335 shrinker); 2336 2337 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2338 class = pool->size_class[i]; 2339 if (class->index != i) 2340 continue; 2341 2342 pages_to_free += zs_can_compact(class); 2343 } 2344 2345 return pages_to_free; 2346 } 2347 2348 static void zs_unregister_shrinker(struct zs_pool *pool) 2349 { 2350 unregister_shrinker(&pool->shrinker); 2351 } 2352 2353 static int zs_register_shrinker(struct zs_pool *pool) 2354 { 2355 pool->shrinker.scan_objects = zs_shrinker_scan; 2356 pool->shrinker.count_objects = zs_shrinker_count; 2357 pool->shrinker.batch = 0; 2358 pool->shrinker.seeks = DEFAULT_SEEKS; 2359 2360 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2361 pool->name); 2362 } 2363 2364 static int calculate_zspage_chain_size(int class_size) 2365 { 2366 int i, min_waste = INT_MAX; 2367 int chain_size = 1; 2368 2369 if (is_power_of_2(class_size)) 2370 return chain_size; 2371 2372 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2373 int waste; 2374 2375 waste = (i * PAGE_SIZE) % class_size; 2376 if (waste < min_waste) { 2377 min_waste = waste; 2378 chain_size = i; 2379 } 2380 } 2381 2382 return chain_size; 2383 } 2384 2385 /** 2386 * zs_create_pool - Creates an allocation pool to work from. 2387 * @name: pool name to be created 2388 * 2389 * This function must be called before anything when using 2390 * the zsmalloc allocator. 2391 * 2392 * On success, a pointer to the newly created pool is returned, 2393 * otherwise NULL. 2394 */ 2395 struct zs_pool *zs_create_pool(const char *name) 2396 { 2397 int i; 2398 struct zs_pool *pool; 2399 struct size_class *prev_class = NULL; 2400 2401 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2402 if (!pool) 2403 return NULL; 2404 2405 init_deferred_free(pool); 2406 spin_lock_init(&pool->lock); 2407 2408 pool->name = kstrdup(name, GFP_KERNEL); 2409 if (!pool->name) 2410 goto err; 2411 2412 if (create_cache(pool)) 2413 goto err; 2414 2415 /* 2416 * Iterate reversely, because, size of size_class that we want to use 2417 * for merging should be larger or equal to current size. 2418 */ 2419 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2420 int size; 2421 int pages_per_zspage; 2422 int objs_per_zspage; 2423 struct size_class *class; 2424 int fullness = 0; 2425 2426 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2427 if (size > ZS_MAX_ALLOC_SIZE) 2428 size = ZS_MAX_ALLOC_SIZE; 2429 pages_per_zspage = calculate_zspage_chain_size(size); 2430 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2431 2432 /* 2433 * We iterate from biggest down to smallest classes, 2434 * so huge_class_size holds the size of the first huge 2435 * class. Any object bigger than or equal to that will 2436 * endup in the huge class. 2437 */ 2438 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2439 !huge_class_size) { 2440 huge_class_size = size; 2441 /* 2442 * The object uses ZS_HANDLE_SIZE bytes to store the 2443 * handle. We need to subtract it, because zs_malloc() 2444 * unconditionally adds handle size before it performs 2445 * size class search - so object may be smaller than 2446 * huge class size, yet it still can end up in the huge 2447 * class because it grows by ZS_HANDLE_SIZE extra bytes 2448 * right before class lookup. 2449 */ 2450 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2451 } 2452 2453 /* 2454 * size_class is used for normal zsmalloc operation such 2455 * as alloc/free for that size. Although it is natural that we 2456 * have one size_class for each size, there is a chance that we 2457 * can get more memory utilization if we use one size_class for 2458 * many different sizes whose size_class have same 2459 * characteristics. So, we makes size_class point to 2460 * previous size_class if possible. 2461 */ 2462 if (prev_class) { 2463 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2464 pool->size_class[i] = prev_class; 2465 continue; 2466 } 2467 } 2468 2469 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2470 if (!class) 2471 goto err; 2472 2473 class->size = size; 2474 class->index = i; 2475 class->pages_per_zspage = pages_per_zspage; 2476 class->objs_per_zspage = objs_per_zspage; 2477 pool->size_class[i] = class; 2478 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2479 fullness++) 2480 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2481 2482 prev_class = class; 2483 } 2484 2485 /* debug only, don't abort if it fails */ 2486 zs_pool_stat_create(pool, name); 2487 2488 /* 2489 * Not critical since shrinker is only used to trigger internal 2490 * defragmentation of the pool which is pretty optional thing. If 2491 * registration fails we still can use the pool normally and user can 2492 * trigger compaction manually. Thus, ignore return code. 2493 */ 2494 zs_register_shrinker(pool); 2495 2496 #ifdef CONFIG_ZPOOL 2497 INIT_LIST_HEAD(&pool->lru); 2498 #endif 2499 2500 return pool; 2501 2502 err: 2503 zs_destroy_pool(pool); 2504 return NULL; 2505 } 2506 EXPORT_SYMBOL_GPL(zs_create_pool); 2507 2508 void zs_destroy_pool(struct zs_pool *pool) 2509 { 2510 int i; 2511 2512 zs_unregister_shrinker(pool); 2513 zs_flush_migration(pool); 2514 zs_pool_stat_destroy(pool); 2515 2516 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2517 int fg; 2518 struct size_class *class = pool->size_class[i]; 2519 2520 if (!class) 2521 continue; 2522 2523 if (class->index != i) 2524 continue; 2525 2526 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2527 if (!list_empty(&class->fullness_list[fg])) { 2528 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2529 class->size, fg); 2530 } 2531 } 2532 kfree(class); 2533 } 2534 2535 destroy_cache(pool); 2536 kfree(pool->name); 2537 kfree(pool); 2538 } 2539 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2540 2541 #ifdef CONFIG_ZPOOL 2542 static void restore_freelist(struct zs_pool *pool, struct size_class *class, 2543 struct zspage *zspage) 2544 { 2545 unsigned int obj_idx = 0; 2546 unsigned long handle, off = 0; /* off is within-page offset */ 2547 struct page *page = get_first_page(zspage); 2548 struct link_free *prev_free = NULL; 2549 void *prev_page_vaddr = NULL; 2550 2551 /* in case no free object found */ 2552 set_freeobj(zspage, (unsigned int)(-1UL)); 2553 2554 while (page) { 2555 void *vaddr = kmap_atomic(page); 2556 struct page *next_page; 2557 2558 while (off < PAGE_SIZE) { 2559 void *obj_addr = vaddr + off; 2560 2561 /* skip allocated object */ 2562 if (obj_allocated(page, obj_addr, &handle)) { 2563 obj_idx++; 2564 off += class->size; 2565 continue; 2566 } 2567 2568 /* free deferred handle from reclaim attempt */ 2569 if (obj_stores_deferred_handle(page, obj_addr, &handle)) 2570 cache_free_handle(pool, handle); 2571 2572 if (prev_free) 2573 prev_free->next = obj_idx << OBJ_TAG_BITS; 2574 else /* first free object found */ 2575 set_freeobj(zspage, obj_idx); 2576 2577 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free); 2578 /* if last free object in a previous page, need to unmap */ 2579 if (prev_page_vaddr) { 2580 kunmap_atomic(prev_page_vaddr); 2581 prev_page_vaddr = NULL; 2582 } 2583 2584 obj_idx++; 2585 off += class->size; 2586 } 2587 2588 /* 2589 * Handle the last (full or partial) object on this page. 2590 */ 2591 next_page = get_next_page(page); 2592 if (next_page) { 2593 if (!prev_free || prev_page_vaddr) { 2594 /* 2595 * There is no free object in this page, so we can safely 2596 * unmap it. 2597 */ 2598 kunmap_atomic(vaddr); 2599 } else { 2600 /* update prev_page_vaddr since prev_free is on this page */ 2601 prev_page_vaddr = vaddr; 2602 } 2603 } else { /* this is the last page */ 2604 if (prev_free) { 2605 /* 2606 * Reset OBJ_TAG_BITS bit to last link to tell 2607 * whether it's allocated object or not. 2608 */ 2609 prev_free->next = -1UL << OBJ_TAG_BITS; 2610 } 2611 2612 /* unmap previous page (if not done yet) */ 2613 if (prev_page_vaddr) { 2614 kunmap_atomic(prev_page_vaddr); 2615 prev_page_vaddr = NULL; 2616 } 2617 2618 kunmap_atomic(vaddr); 2619 } 2620 2621 page = next_page; 2622 off %= PAGE_SIZE; 2623 } 2624 } 2625 2626 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2627 { 2628 int i, obj_idx, ret = 0; 2629 unsigned long handle; 2630 struct zspage *zspage; 2631 struct page *page; 2632 enum fullness_group fullness; 2633 2634 /* Lock LRU and fullness list */ 2635 spin_lock(&pool->lock); 2636 if (list_empty(&pool->lru)) { 2637 spin_unlock(&pool->lock); 2638 return -EINVAL; 2639 } 2640 2641 for (i = 0; i < retries; i++) { 2642 struct size_class *class; 2643 2644 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2645 list_del(&zspage->lru); 2646 2647 /* zs_free may free objects, but not the zspage and handles */ 2648 zspage->under_reclaim = true; 2649 2650 class = zspage_class(pool, zspage); 2651 fullness = get_fullness_group(class, zspage); 2652 2653 /* Lock out object allocations and object compaction */ 2654 remove_zspage(class, zspage, fullness); 2655 2656 spin_unlock(&pool->lock); 2657 cond_resched(); 2658 2659 /* Lock backing pages into place */ 2660 lock_zspage(zspage); 2661 2662 obj_idx = 0; 2663 page = get_first_page(zspage); 2664 while (1) { 2665 handle = find_alloced_obj(class, page, &obj_idx); 2666 if (!handle) { 2667 page = get_next_page(page); 2668 if (!page) 2669 break; 2670 obj_idx = 0; 2671 continue; 2672 } 2673 2674 /* 2675 * This will write the object and call zs_free. 2676 * 2677 * zs_free will free the object, but the 2678 * under_reclaim flag prevents it from freeing 2679 * the zspage altogether. This is necessary so 2680 * that we can continue working with the 2681 * zspage potentially after the last object 2682 * has been freed. 2683 */ 2684 ret = pool->zpool_ops->evict(pool->zpool, handle); 2685 if (ret) 2686 goto next; 2687 2688 obj_idx++; 2689 } 2690 2691 next: 2692 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2693 spin_lock(&pool->lock); 2694 zspage->under_reclaim = false; 2695 2696 if (!get_zspage_inuse(zspage)) { 2697 /* 2698 * Fullness went stale as zs_free() won't touch it 2699 * while the page is removed from the pool. Fix it 2700 * up for the check in __free_zspage(). 2701 */ 2702 zspage->fullness = ZS_EMPTY; 2703 2704 __free_zspage(pool, class, zspage); 2705 spin_unlock(&pool->lock); 2706 return 0; 2707 } 2708 2709 /* 2710 * Eviction fails on one of the handles, so we need to restore zspage. 2711 * We need to rebuild its freelist (and free stored deferred handles), 2712 * put it back to the correct size class, and add it to the LRU list. 2713 */ 2714 restore_freelist(pool, class, zspage); 2715 putback_zspage(class, zspage); 2716 list_add(&zspage->lru, &pool->lru); 2717 unlock_zspage(zspage); 2718 } 2719 2720 spin_unlock(&pool->lock); 2721 return -EAGAIN; 2722 } 2723 #endif /* CONFIG_ZPOOL */ 2724 2725 static int __init zs_init(void) 2726 { 2727 int ret; 2728 2729 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2730 zs_cpu_prepare, zs_cpu_dead); 2731 if (ret) 2732 goto out; 2733 2734 #ifdef CONFIG_ZPOOL 2735 zpool_register_driver(&zs_zpool_driver); 2736 #endif 2737 2738 zs_stat_init(); 2739 2740 return 0; 2741 2742 out: 2743 return ret; 2744 } 2745 2746 static void __exit zs_exit(void) 2747 { 2748 #ifdef CONFIG_ZPOOL 2749 zpool_unregister_driver(&zs_zpool_driver); 2750 #endif 2751 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2752 2753 zs_stat_exit(); 2754 } 2755 2756 module_init(zs_init); 2757 module_exit(zs_exit); 2758 2759 MODULE_LICENSE("Dual BSD/GPL"); 2760 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2761