xref: /openbmc/linux/mm/zsmalloc.c (revision 174cd4b1)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/migrate.h>
54 #include <linux/pagemap.h>
55 
56 #define ZSPAGE_MAGIC	0x58
57 
58 /*
59  * This must be power of 2 and greater than of equal to sizeof(link_free).
60  * These two conditions ensure that any 'struct link_free' itself doesn't
61  * span more than 1 page which avoids complex case of mapping 2 pages simply
62  * to restore link_free pointer values.
63  */
64 #define ZS_ALIGN		8
65 
66 /*
67  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69  */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72 
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74 
75 /*
76  * Object location (<PFN>, <obj_idx>) is encoded as
77  * as single (unsigned long) handle value.
78  *
79  * Note that object index <obj_idx> starts from 0.
80  *
81  * This is made more complicated by various memory models and PAE.
82  */
83 
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90  * be PAGE_SHIFT
91  */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
96 
97 /*
98  * Memory for allocating for handle keeps object position by
99  * encoding <page, obj_idx> and the encoded value has a room
100  * in least bit(ie, look at obj_to_location).
101  * We use the bit to synchronize between object access by
102  * user and migration.
103  */
104 #define HANDLE_PIN_BIT	0
105 
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117 
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
124 
125 /*
126  * On systems with 4K page size, this gives 255 size classes! There is a
127  * trader-off here:
128  *  - Large number of size classes is potentially wasteful as free page are
129  *    spread across these classes
130  *  - Small number of size classes causes large internal fragmentation
131  *  - Probably its better to use specific size classes (empirically
132  *    determined). NOTE: all those class sizes must be set as multiple of
133  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134  *
135  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136  *  (reason above)
137  */
138 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
139 
140 enum fullness_group {
141 	ZS_EMPTY,
142 	ZS_ALMOST_EMPTY,
143 	ZS_ALMOST_FULL,
144 	ZS_FULL,
145 	NR_ZS_FULLNESS,
146 };
147 
148 enum zs_stat_type {
149 	CLASS_EMPTY,
150 	CLASS_ALMOST_EMPTY,
151 	CLASS_ALMOST_FULL,
152 	CLASS_FULL,
153 	OBJ_ALLOCATED,
154 	OBJ_USED,
155 	NR_ZS_STAT_TYPE,
156 };
157 
158 struct zs_size_stat {
159 	unsigned long objs[NR_ZS_STAT_TYPE];
160 };
161 
162 #ifdef CONFIG_ZSMALLOC_STAT
163 static struct dentry *zs_stat_root;
164 #endif
165 
166 #ifdef CONFIG_COMPACTION
167 static struct vfsmount *zsmalloc_mnt;
168 #endif
169 
170 /*
171  * number of size_classes
172  */
173 static int zs_size_classes;
174 
175 /*
176  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
177  *	n <= N / f, where
178  * n = number of allocated objects
179  * N = total number of objects zspage can store
180  * f = fullness_threshold_frac
181  *
182  * Similarly, we assign zspage to:
183  *	ZS_ALMOST_FULL	when n > N / f
184  *	ZS_EMPTY	when n == 0
185  *	ZS_FULL		when n == N
186  *
187  * (see: fix_fullness_group())
188  */
189 static const int fullness_threshold_frac = 4;
190 
191 struct size_class {
192 	spinlock_t lock;
193 	struct list_head fullness_list[NR_ZS_FULLNESS];
194 	/*
195 	 * Size of objects stored in this class. Must be multiple
196 	 * of ZS_ALIGN.
197 	 */
198 	int size;
199 	int objs_per_zspage;
200 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
201 	int pages_per_zspage;
202 
203 	unsigned int index;
204 	struct zs_size_stat stats;
205 };
206 
207 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
208 static void SetPageHugeObject(struct page *page)
209 {
210 	SetPageOwnerPriv1(page);
211 }
212 
213 static void ClearPageHugeObject(struct page *page)
214 {
215 	ClearPageOwnerPriv1(page);
216 }
217 
218 static int PageHugeObject(struct page *page)
219 {
220 	return PageOwnerPriv1(page);
221 }
222 
223 /*
224  * Placed within free objects to form a singly linked list.
225  * For every zspage, zspage->freeobj gives head of this list.
226  *
227  * This must be power of 2 and less than or equal to ZS_ALIGN
228  */
229 struct link_free {
230 	union {
231 		/*
232 		 * Free object index;
233 		 * It's valid for non-allocated object
234 		 */
235 		unsigned long next;
236 		/*
237 		 * Handle of allocated object.
238 		 */
239 		unsigned long handle;
240 	};
241 };
242 
243 struct zs_pool {
244 	const char *name;
245 
246 	struct size_class **size_class;
247 	struct kmem_cache *handle_cachep;
248 	struct kmem_cache *zspage_cachep;
249 
250 	atomic_long_t pages_allocated;
251 
252 	struct zs_pool_stats stats;
253 
254 	/* Compact classes */
255 	struct shrinker shrinker;
256 	/*
257 	 * To signify that register_shrinker() was successful
258 	 * and unregister_shrinker() will not Oops.
259 	 */
260 	bool shrinker_enabled;
261 #ifdef CONFIG_ZSMALLOC_STAT
262 	struct dentry *stat_dentry;
263 #endif
264 #ifdef CONFIG_COMPACTION
265 	struct inode *inode;
266 	struct work_struct free_work;
267 #endif
268 };
269 
270 #define FULLNESS_BITS	2
271 #define CLASS_BITS	8
272 #define ISOLATED_BITS	3
273 #define MAGIC_VAL_BITS	8
274 
275 struct zspage {
276 	struct {
277 		unsigned int fullness:FULLNESS_BITS;
278 		unsigned int class:CLASS_BITS;
279 		unsigned int isolated:ISOLATED_BITS;
280 		unsigned int magic:MAGIC_VAL_BITS;
281 	};
282 	unsigned int inuse;
283 	unsigned int freeobj;
284 	struct page *first_page;
285 	struct list_head list; /* fullness list */
286 #ifdef CONFIG_COMPACTION
287 	rwlock_t lock;
288 #endif
289 };
290 
291 struct mapping_area {
292 #ifdef CONFIG_PGTABLE_MAPPING
293 	struct vm_struct *vm; /* vm area for mapping object that span pages */
294 #else
295 	char *vm_buf; /* copy buffer for objects that span pages */
296 #endif
297 	char *vm_addr; /* address of kmap_atomic()'ed pages */
298 	enum zs_mapmode vm_mm; /* mapping mode */
299 };
300 
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322 
323 static int create_cache(struct zs_pool *pool)
324 {
325 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 					0, 0, NULL);
327 	if (!pool->handle_cachep)
328 		return 1;
329 
330 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 					0, 0, NULL);
332 	if (!pool->zspage_cachep) {
333 		kmem_cache_destroy(pool->handle_cachep);
334 		pool->handle_cachep = NULL;
335 		return 1;
336 	}
337 
338 	return 0;
339 }
340 
341 static void destroy_cache(struct zs_pool *pool)
342 {
343 	kmem_cache_destroy(pool->handle_cachep);
344 	kmem_cache_destroy(pool->zspage_cachep);
345 }
346 
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352 
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 	kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357 
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 	return kmem_cache_alloc(pool->zspage_cachep,
361 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363 
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 	kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368 
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 	/*
372 	 * lsb of @obj represents handle lock while other bits
373 	 * represent object value the handle is pointing so
374 	 * updating shouldn't do store tearing.
375 	 */
376 	WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378 
379 /* zpool driver */
380 
381 #ifdef CONFIG_ZPOOL
382 
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 			     const struct zpool_ops *zpool_ops,
385 			     struct zpool *zpool)
386 {
387 	/*
388 	 * Ignore global gfp flags: zs_malloc() may be invoked from
389 	 * different contexts and its caller must provide a valid
390 	 * gfp mask.
391 	 */
392 	return zs_create_pool(name);
393 }
394 
395 static void zs_zpool_destroy(void *pool)
396 {
397 	zs_destroy_pool(pool);
398 }
399 
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 			unsigned long *handle)
402 {
403 	*handle = zs_malloc(pool, size, gfp);
404 	return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 	zs_free(pool, handle);
409 }
410 
411 static int zs_zpool_shrink(void *pool, unsigned int pages,
412 			unsigned int *reclaimed)
413 {
414 	return -EINVAL;
415 }
416 
417 static void *zs_zpool_map(void *pool, unsigned long handle,
418 			enum zpool_mapmode mm)
419 {
420 	enum zs_mapmode zs_mm;
421 
422 	switch (mm) {
423 	case ZPOOL_MM_RO:
424 		zs_mm = ZS_MM_RO;
425 		break;
426 	case ZPOOL_MM_WO:
427 		zs_mm = ZS_MM_WO;
428 		break;
429 	case ZPOOL_MM_RW: /* fallthru */
430 	default:
431 		zs_mm = ZS_MM_RW;
432 		break;
433 	}
434 
435 	return zs_map_object(pool, handle, zs_mm);
436 }
437 static void zs_zpool_unmap(void *pool, unsigned long handle)
438 {
439 	zs_unmap_object(pool, handle);
440 }
441 
442 static u64 zs_zpool_total_size(void *pool)
443 {
444 	return zs_get_total_pages(pool) << PAGE_SHIFT;
445 }
446 
447 static struct zpool_driver zs_zpool_driver = {
448 	.type =		"zsmalloc",
449 	.owner =	THIS_MODULE,
450 	.create =	zs_zpool_create,
451 	.destroy =	zs_zpool_destroy,
452 	.malloc =	zs_zpool_malloc,
453 	.free =		zs_zpool_free,
454 	.shrink =	zs_zpool_shrink,
455 	.map =		zs_zpool_map,
456 	.unmap =	zs_zpool_unmap,
457 	.total_size =	zs_zpool_total_size,
458 };
459 
460 MODULE_ALIAS("zpool-zsmalloc");
461 #endif /* CONFIG_ZPOOL */
462 
463 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
464 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
465 
466 static bool is_zspage_isolated(struct zspage *zspage)
467 {
468 	return zspage->isolated;
469 }
470 
471 static int is_first_page(struct page *page)
472 {
473 	return PagePrivate(page);
474 }
475 
476 /* Protected by class->lock */
477 static inline int get_zspage_inuse(struct zspage *zspage)
478 {
479 	return zspage->inuse;
480 }
481 
482 static inline void set_zspage_inuse(struct zspage *zspage, int val)
483 {
484 	zspage->inuse = val;
485 }
486 
487 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
488 {
489 	zspage->inuse += val;
490 }
491 
492 static inline struct page *get_first_page(struct zspage *zspage)
493 {
494 	struct page *first_page = zspage->first_page;
495 
496 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
497 	return first_page;
498 }
499 
500 static inline int get_first_obj_offset(struct page *page)
501 {
502 	return page->units;
503 }
504 
505 static inline void set_first_obj_offset(struct page *page, int offset)
506 {
507 	page->units = offset;
508 }
509 
510 static inline unsigned int get_freeobj(struct zspage *zspage)
511 {
512 	return zspage->freeobj;
513 }
514 
515 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
516 {
517 	zspage->freeobj = obj;
518 }
519 
520 static void get_zspage_mapping(struct zspage *zspage,
521 				unsigned int *class_idx,
522 				enum fullness_group *fullness)
523 {
524 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
525 
526 	*fullness = zspage->fullness;
527 	*class_idx = zspage->class;
528 }
529 
530 static void set_zspage_mapping(struct zspage *zspage,
531 				unsigned int class_idx,
532 				enum fullness_group fullness)
533 {
534 	zspage->class = class_idx;
535 	zspage->fullness = fullness;
536 }
537 
538 /*
539  * zsmalloc divides the pool into various size classes where each
540  * class maintains a list of zspages where each zspage is divided
541  * into equal sized chunks. Each allocation falls into one of these
542  * classes depending on its size. This function returns index of the
543  * size class which has chunk size big enough to hold the give size.
544  */
545 static int get_size_class_index(int size)
546 {
547 	int idx = 0;
548 
549 	if (likely(size > ZS_MIN_ALLOC_SIZE))
550 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
551 				ZS_SIZE_CLASS_DELTA);
552 
553 	return min(zs_size_classes - 1, idx);
554 }
555 
556 static inline void zs_stat_inc(struct size_class *class,
557 				enum zs_stat_type type, unsigned long cnt)
558 {
559 	class->stats.objs[type] += cnt;
560 }
561 
562 static inline void zs_stat_dec(struct size_class *class,
563 				enum zs_stat_type type, unsigned long cnt)
564 {
565 	class->stats.objs[type] -= cnt;
566 }
567 
568 static inline unsigned long zs_stat_get(struct size_class *class,
569 				enum zs_stat_type type)
570 {
571 	return class->stats.objs[type];
572 }
573 
574 #ifdef CONFIG_ZSMALLOC_STAT
575 
576 static void __init zs_stat_init(void)
577 {
578 	if (!debugfs_initialized()) {
579 		pr_warn("debugfs not available, stat dir not created\n");
580 		return;
581 	}
582 
583 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
584 	if (!zs_stat_root)
585 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
586 }
587 
588 static void __exit zs_stat_exit(void)
589 {
590 	debugfs_remove_recursive(zs_stat_root);
591 }
592 
593 static unsigned long zs_can_compact(struct size_class *class);
594 
595 static int zs_stats_size_show(struct seq_file *s, void *v)
596 {
597 	int i;
598 	struct zs_pool *pool = s->private;
599 	struct size_class *class;
600 	int objs_per_zspage;
601 	unsigned long class_almost_full, class_almost_empty;
602 	unsigned long obj_allocated, obj_used, pages_used, freeable;
603 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
604 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
605 	unsigned long total_freeable = 0;
606 
607 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
608 			"class", "size", "almost_full", "almost_empty",
609 			"obj_allocated", "obj_used", "pages_used",
610 			"pages_per_zspage", "freeable");
611 
612 	for (i = 0; i < zs_size_classes; i++) {
613 		class = pool->size_class[i];
614 
615 		if (class->index != i)
616 			continue;
617 
618 		spin_lock(&class->lock);
619 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
620 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
621 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
622 		obj_used = zs_stat_get(class, OBJ_USED);
623 		freeable = zs_can_compact(class);
624 		spin_unlock(&class->lock);
625 
626 		objs_per_zspage = class->objs_per_zspage;
627 		pages_used = obj_allocated / objs_per_zspage *
628 				class->pages_per_zspage;
629 
630 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
631 				" %10lu %10lu %16d %8lu\n",
632 			i, class->size, class_almost_full, class_almost_empty,
633 			obj_allocated, obj_used, pages_used,
634 			class->pages_per_zspage, freeable);
635 
636 		total_class_almost_full += class_almost_full;
637 		total_class_almost_empty += class_almost_empty;
638 		total_objs += obj_allocated;
639 		total_used_objs += obj_used;
640 		total_pages += pages_used;
641 		total_freeable += freeable;
642 	}
643 
644 	seq_puts(s, "\n");
645 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
646 			"Total", "", total_class_almost_full,
647 			total_class_almost_empty, total_objs,
648 			total_used_objs, total_pages, "", total_freeable);
649 
650 	return 0;
651 }
652 
653 static int zs_stats_size_open(struct inode *inode, struct file *file)
654 {
655 	return single_open(file, zs_stats_size_show, inode->i_private);
656 }
657 
658 static const struct file_operations zs_stat_size_ops = {
659 	.open           = zs_stats_size_open,
660 	.read           = seq_read,
661 	.llseek         = seq_lseek,
662 	.release        = single_release,
663 };
664 
665 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
666 {
667 	struct dentry *entry;
668 
669 	if (!zs_stat_root) {
670 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
671 		return;
672 	}
673 
674 	entry = debugfs_create_dir(name, zs_stat_root);
675 	if (!entry) {
676 		pr_warn("debugfs dir <%s> creation failed\n", name);
677 		return;
678 	}
679 	pool->stat_dentry = entry;
680 
681 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
682 			pool->stat_dentry, pool, &zs_stat_size_ops);
683 	if (!entry) {
684 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
685 				name, "classes");
686 		debugfs_remove_recursive(pool->stat_dentry);
687 		pool->stat_dentry = NULL;
688 	}
689 }
690 
691 static void zs_pool_stat_destroy(struct zs_pool *pool)
692 {
693 	debugfs_remove_recursive(pool->stat_dentry);
694 }
695 
696 #else /* CONFIG_ZSMALLOC_STAT */
697 static void __init zs_stat_init(void)
698 {
699 }
700 
701 static void __exit zs_stat_exit(void)
702 {
703 }
704 
705 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
706 {
707 }
708 
709 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
710 {
711 }
712 #endif
713 
714 
715 /*
716  * For each size class, zspages are divided into different groups
717  * depending on how "full" they are. This was done so that we could
718  * easily find empty or nearly empty zspages when we try to shrink
719  * the pool (not yet implemented). This function returns fullness
720  * status of the given page.
721  */
722 static enum fullness_group get_fullness_group(struct size_class *class,
723 						struct zspage *zspage)
724 {
725 	int inuse, objs_per_zspage;
726 	enum fullness_group fg;
727 
728 	inuse = get_zspage_inuse(zspage);
729 	objs_per_zspage = class->objs_per_zspage;
730 
731 	if (inuse == 0)
732 		fg = ZS_EMPTY;
733 	else if (inuse == objs_per_zspage)
734 		fg = ZS_FULL;
735 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
736 		fg = ZS_ALMOST_EMPTY;
737 	else
738 		fg = ZS_ALMOST_FULL;
739 
740 	return fg;
741 }
742 
743 /*
744  * Each size class maintains various freelists and zspages are assigned
745  * to one of these freelists based on the number of live objects they
746  * have. This functions inserts the given zspage into the freelist
747  * identified by <class, fullness_group>.
748  */
749 static void insert_zspage(struct size_class *class,
750 				struct zspage *zspage,
751 				enum fullness_group fullness)
752 {
753 	struct zspage *head;
754 
755 	zs_stat_inc(class, fullness, 1);
756 	head = list_first_entry_or_null(&class->fullness_list[fullness],
757 					struct zspage, list);
758 	/*
759 	 * We want to see more ZS_FULL pages and less almost empty/full.
760 	 * Put pages with higher ->inuse first.
761 	 */
762 	if (head) {
763 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
764 			list_add(&zspage->list, &head->list);
765 			return;
766 		}
767 	}
768 	list_add(&zspage->list, &class->fullness_list[fullness]);
769 }
770 
771 /*
772  * This function removes the given zspage from the freelist identified
773  * by <class, fullness_group>.
774  */
775 static void remove_zspage(struct size_class *class,
776 				struct zspage *zspage,
777 				enum fullness_group fullness)
778 {
779 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
780 	VM_BUG_ON(is_zspage_isolated(zspage));
781 
782 	list_del_init(&zspage->list);
783 	zs_stat_dec(class, fullness, 1);
784 }
785 
786 /*
787  * Each size class maintains zspages in different fullness groups depending
788  * on the number of live objects they contain. When allocating or freeing
789  * objects, the fullness status of the page can change, say, from ALMOST_FULL
790  * to ALMOST_EMPTY when freeing an object. This function checks if such
791  * a status change has occurred for the given page and accordingly moves the
792  * page from the freelist of the old fullness group to that of the new
793  * fullness group.
794  */
795 static enum fullness_group fix_fullness_group(struct size_class *class,
796 						struct zspage *zspage)
797 {
798 	int class_idx;
799 	enum fullness_group currfg, newfg;
800 
801 	get_zspage_mapping(zspage, &class_idx, &currfg);
802 	newfg = get_fullness_group(class, zspage);
803 	if (newfg == currfg)
804 		goto out;
805 
806 	if (!is_zspage_isolated(zspage)) {
807 		remove_zspage(class, zspage, currfg);
808 		insert_zspage(class, zspage, newfg);
809 	}
810 
811 	set_zspage_mapping(zspage, class_idx, newfg);
812 
813 out:
814 	return newfg;
815 }
816 
817 /*
818  * We have to decide on how many pages to link together
819  * to form a zspage for each size class. This is important
820  * to reduce wastage due to unusable space left at end of
821  * each zspage which is given as:
822  *     wastage = Zp % class_size
823  *     usage = Zp - wastage
824  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
825  *
826  * For example, for size class of 3/8 * PAGE_SIZE, we should
827  * link together 3 PAGE_SIZE sized pages to form a zspage
828  * since then we can perfectly fit in 8 such objects.
829  */
830 static int get_pages_per_zspage(int class_size)
831 {
832 	int i, max_usedpc = 0;
833 	/* zspage order which gives maximum used size per KB */
834 	int max_usedpc_order = 1;
835 
836 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
837 		int zspage_size;
838 		int waste, usedpc;
839 
840 		zspage_size = i * PAGE_SIZE;
841 		waste = zspage_size % class_size;
842 		usedpc = (zspage_size - waste) * 100 / zspage_size;
843 
844 		if (usedpc > max_usedpc) {
845 			max_usedpc = usedpc;
846 			max_usedpc_order = i;
847 		}
848 	}
849 
850 	return max_usedpc_order;
851 }
852 
853 static struct zspage *get_zspage(struct page *page)
854 {
855 	struct zspage *zspage = (struct zspage *)page->private;
856 
857 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
858 	return zspage;
859 }
860 
861 static struct page *get_next_page(struct page *page)
862 {
863 	if (unlikely(PageHugeObject(page)))
864 		return NULL;
865 
866 	return page->freelist;
867 }
868 
869 /**
870  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
871  * @page: page object resides in zspage
872  * @obj_idx: object index
873  */
874 static void obj_to_location(unsigned long obj, struct page **page,
875 				unsigned int *obj_idx)
876 {
877 	obj >>= OBJ_TAG_BITS;
878 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
879 	*obj_idx = (obj & OBJ_INDEX_MASK);
880 }
881 
882 /**
883  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
884  * @page: page object resides in zspage
885  * @obj_idx: object index
886  */
887 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
888 {
889 	unsigned long obj;
890 
891 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
892 	obj |= obj_idx & OBJ_INDEX_MASK;
893 	obj <<= OBJ_TAG_BITS;
894 
895 	return obj;
896 }
897 
898 static unsigned long handle_to_obj(unsigned long handle)
899 {
900 	return *(unsigned long *)handle;
901 }
902 
903 static unsigned long obj_to_head(struct page *page, void *obj)
904 {
905 	if (unlikely(PageHugeObject(page))) {
906 		VM_BUG_ON_PAGE(!is_first_page(page), page);
907 		return page->index;
908 	} else
909 		return *(unsigned long *)obj;
910 }
911 
912 static inline int testpin_tag(unsigned long handle)
913 {
914 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916 
917 static inline int trypin_tag(unsigned long handle)
918 {
919 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921 
922 static void pin_tag(unsigned long handle)
923 {
924 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926 
927 static void unpin_tag(unsigned long handle)
928 {
929 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931 
932 static void reset_page(struct page *page)
933 {
934 	__ClearPageMovable(page);
935 	ClearPagePrivate(page);
936 	set_page_private(page, 0);
937 	page_mapcount_reset(page);
938 	ClearPageHugeObject(page);
939 	page->freelist = NULL;
940 }
941 
942 /*
943  * To prevent zspage destroy during migration, zspage freeing should
944  * hold locks of all pages in the zspage.
945  */
946 void lock_zspage(struct zspage *zspage)
947 {
948 	struct page *page = get_first_page(zspage);
949 
950 	do {
951 		lock_page(page);
952 	} while ((page = get_next_page(page)) != NULL);
953 }
954 
955 int trylock_zspage(struct zspage *zspage)
956 {
957 	struct page *cursor, *fail;
958 
959 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
960 					get_next_page(cursor)) {
961 		if (!trylock_page(cursor)) {
962 			fail = cursor;
963 			goto unlock;
964 		}
965 	}
966 
967 	return 1;
968 unlock:
969 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
970 					get_next_page(cursor))
971 		unlock_page(cursor);
972 
973 	return 0;
974 }
975 
976 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
977 				struct zspage *zspage)
978 {
979 	struct page *page, *next;
980 	enum fullness_group fg;
981 	unsigned int class_idx;
982 
983 	get_zspage_mapping(zspage, &class_idx, &fg);
984 
985 	assert_spin_locked(&class->lock);
986 
987 	VM_BUG_ON(get_zspage_inuse(zspage));
988 	VM_BUG_ON(fg != ZS_EMPTY);
989 
990 	next = page = get_first_page(zspage);
991 	do {
992 		VM_BUG_ON_PAGE(!PageLocked(page), page);
993 		next = get_next_page(page);
994 		reset_page(page);
995 		unlock_page(page);
996 		dec_zone_page_state(page, NR_ZSPAGES);
997 		put_page(page);
998 		page = next;
999 	} while (page != NULL);
1000 
1001 	cache_free_zspage(pool, zspage);
1002 
1003 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1004 	atomic_long_sub(class->pages_per_zspage,
1005 					&pool->pages_allocated);
1006 }
1007 
1008 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1009 				struct zspage *zspage)
1010 {
1011 	VM_BUG_ON(get_zspage_inuse(zspage));
1012 	VM_BUG_ON(list_empty(&zspage->list));
1013 
1014 	if (!trylock_zspage(zspage)) {
1015 		kick_deferred_free(pool);
1016 		return;
1017 	}
1018 
1019 	remove_zspage(class, zspage, ZS_EMPTY);
1020 	__free_zspage(pool, class, zspage);
1021 }
1022 
1023 /* Initialize a newly allocated zspage */
1024 static void init_zspage(struct size_class *class, struct zspage *zspage)
1025 {
1026 	unsigned int freeobj = 1;
1027 	unsigned long off = 0;
1028 	struct page *page = get_first_page(zspage);
1029 
1030 	while (page) {
1031 		struct page *next_page;
1032 		struct link_free *link;
1033 		void *vaddr;
1034 
1035 		set_first_obj_offset(page, off);
1036 
1037 		vaddr = kmap_atomic(page);
1038 		link = (struct link_free *)vaddr + off / sizeof(*link);
1039 
1040 		while ((off += class->size) < PAGE_SIZE) {
1041 			link->next = freeobj++ << OBJ_TAG_BITS;
1042 			link += class->size / sizeof(*link);
1043 		}
1044 
1045 		/*
1046 		 * We now come to the last (full or partial) object on this
1047 		 * page, which must point to the first object on the next
1048 		 * page (if present)
1049 		 */
1050 		next_page = get_next_page(page);
1051 		if (next_page) {
1052 			link->next = freeobj++ << OBJ_TAG_BITS;
1053 		} else {
1054 			/*
1055 			 * Reset OBJ_TAG_BITS bit to last link to tell
1056 			 * whether it's allocated object or not.
1057 			 */
1058 			link->next = -1 << OBJ_TAG_BITS;
1059 		}
1060 		kunmap_atomic(vaddr);
1061 		page = next_page;
1062 		off %= PAGE_SIZE;
1063 	}
1064 
1065 	set_freeobj(zspage, 0);
1066 }
1067 
1068 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1069 				struct page *pages[])
1070 {
1071 	int i;
1072 	struct page *page;
1073 	struct page *prev_page = NULL;
1074 	int nr_pages = class->pages_per_zspage;
1075 
1076 	/*
1077 	 * Allocate individual pages and link them together as:
1078 	 * 1. all pages are linked together using page->freelist
1079 	 * 2. each sub-page point to zspage using page->private
1080 	 *
1081 	 * we set PG_private to identify the first page (i.e. no other sub-page
1082 	 * has this flag set).
1083 	 */
1084 	for (i = 0; i < nr_pages; i++) {
1085 		page = pages[i];
1086 		set_page_private(page, (unsigned long)zspage);
1087 		page->freelist = NULL;
1088 		if (i == 0) {
1089 			zspage->first_page = page;
1090 			SetPagePrivate(page);
1091 			if (unlikely(class->objs_per_zspage == 1 &&
1092 					class->pages_per_zspage == 1))
1093 				SetPageHugeObject(page);
1094 		} else {
1095 			prev_page->freelist = page;
1096 		}
1097 		prev_page = page;
1098 	}
1099 }
1100 
1101 /*
1102  * Allocate a zspage for the given size class
1103  */
1104 static struct zspage *alloc_zspage(struct zs_pool *pool,
1105 					struct size_class *class,
1106 					gfp_t gfp)
1107 {
1108 	int i;
1109 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1110 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1111 
1112 	if (!zspage)
1113 		return NULL;
1114 
1115 	memset(zspage, 0, sizeof(struct zspage));
1116 	zspage->magic = ZSPAGE_MAGIC;
1117 	migrate_lock_init(zspage);
1118 
1119 	for (i = 0; i < class->pages_per_zspage; i++) {
1120 		struct page *page;
1121 
1122 		page = alloc_page(gfp);
1123 		if (!page) {
1124 			while (--i >= 0) {
1125 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1126 				__free_page(pages[i]);
1127 			}
1128 			cache_free_zspage(pool, zspage);
1129 			return NULL;
1130 		}
1131 
1132 		inc_zone_page_state(page, NR_ZSPAGES);
1133 		pages[i] = page;
1134 	}
1135 
1136 	create_page_chain(class, zspage, pages);
1137 	init_zspage(class, zspage);
1138 
1139 	return zspage;
1140 }
1141 
1142 static struct zspage *find_get_zspage(struct size_class *class)
1143 {
1144 	int i;
1145 	struct zspage *zspage;
1146 
1147 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1148 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1149 				struct zspage, list);
1150 		if (zspage)
1151 			break;
1152 	}
1153 
1154 	return zspage;
1155 }
1156 
1157 #ifdef CONFIG_PGTABLE_MAPPING
1158 static inline int __zs_cpu_up(struct mapping_area *area)
1159 {
1160 	/*
1161 	 * Make sure we don't leak memory if a cpu UP notification
1162 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1163 	 */
1164 	if (area->vm)
1165 		return 0;
1166 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1167 	if (!area->vm)
1168 		return -ENOMEM;
1169 	return 0;
1170 }
1171 
1172 static inline void __zs_cpu_down(struct mapping_area *area)
1173 {
1174 	if (area->vm)
1175 		free_vm_area(area->vm);
1176 	area->vm = NULL;
1177 }
1178 
1179 static inline void *__zs_map_object(struct mapping_area *area,
1180 				struct page *pages[2], int off, int size)
1181 {
1182 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1183 	area->vm_addr = area->vm->addr;
1184 	return area->vm_addr + off;
1185 }
1186 
1187 static inline void __zs_unmap_object(struct mapping_area *area,
1188 				struct page *pages[2], int off, int size)
1189 {
1190 	unsigned long addr = (unsigned long)area->vm_addr;
1191 
1192 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1193 }
1194 
1195 #else /* CONFIG_PGTABLE_MAPPING */
1196 
1197 static inline int __zs_cpu_up(struct mapping_area *area)
1198 {
1199 	/*
1200 	 * Make sure we don't leak memory if a cpu UP notification
1201 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1202 	 */
1203 	if (area->vm_buf)
1204 		return 0;
1205 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1206 	if (!area->vm_buf)
1207 		return -ENOMEM;
1208 	return 0;
1209 }
1210 
1211 static inline void __zs_cpu_down(struct mapping_area *area)
1212 {
1213 	kfree(area->vm_buf);
1214 	area->vm_buf = NULL;
1215 }
1216 
1217 static void *__zs_map_object(struct mapping_area *area,
1218 			struct page *pages[2], int off, int size)
1219 {
1220 	int sizes[2];
1221 	void *addr;
1222 	char *buf = area->vm_buf;
1223 
1224 	/* disable page faults to match kmap_atomic() return conditions */
1225 	pagefault_disable();
1226 
1227 	/* no read fastpath */
1228 	if (area->vm_mm == ZS_MM_WO)
1229 		goto out;
1230 
1231 	sizes[0] = PAGE_SIZE - off;
1232 	sizes[1] = size - sizes[0];
1233 
1234 	/* copy object to per-cpu buffer */
1235 	addr = kmap_atomic(pages[0]);
1236 	memcpy(buf, addr + off, sizes[0]);
1237 	kunmap_atomic(addr);
1238 	addr = kmap_atomic(pages[1]);
1239 	memcpy(buf + sizes[0], addr, sizes[1]);
1240 	kunmap_atomic(addr);
1241 out:
1242 	return area->vm_buf;
1243 }
1244 
1245 static void __zs_unmap_object(struct mapping_area *area,
1246 			struct page *pages[2], int off, int size)
1247 {
1248 	int sizes[2];
1249 	void *addr;
1250 	char *buf;
1251 
1252 	/* no write fastpath */
1253 	if (area->vm_mm == ZS_MM_RO)
1254 		goto out;
1255 
1256 	buf = area->vm_buf;
1257 	buf = buf + ZS_HANDLE_SIZE;
1258 	size -= ZS_HANDLE_SIZE;
1259 	off += ZS_HANDLE_SIZE;
1260 
1261 	sizes[0] = PAGE_SIZE - off;
1262 	sizes[1] = size - sizes[0];
1263 
1264 	/* copy per-cpu buffer to object */
1265 	addr = kmap_atomic(pages[0]);
1266 	memcpy(addr + off, buf, sizes[0]);
1267 	kunmap_atomic(addr);
1268 	addr = kmap_atomic(pages[1]);
1269 	memcpy(addr, buf + sizes[0], sizes[1]);
1270 	kunmap_atomic(addr);
1271 
1272 out:
1273 	/* enable page faults to match kunmap_atomic() return conditions */
1274 	pagefault_enable();
1275 }
1276 
1277 #endif /* CONFIG_PGTABLE_MAPPING */
1278 
1279 static int zs_cpu_prepare(unsigned int cpu)
1280 {
1281 	struct mapping_area *area;
1282 
1283 	area = &per_cpu(zs_map_area, cpu);
1284 	return __zs_cpu_up(area);
1285 }
1286 
1287 static int zs_cpu_dead(unsigned int cpu)
1288 {
1289 	struct mapping_area *area;
1290 
1291 	area = &per_cpu(zs_map_area, cpu);
1292 	__zs_cpu_down(area);
1293 	return 0;
1294 }
1295 
1296 static void __init init_zs_size_classes(void)
1297 {
1298 	int nr;
1299 
1300 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1301 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1302 		nr += 1;
1303 
1304 	zs_size_classes = nr;
1305 }
1306 
1307 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1308 					int objs_per_zspage)
1309 {
1310 	if (prev->pages_per_zspage == pages_per_zspage &&
1311 		prev->objs_per_zspage == objs_per_zspage)
1312 		return true;
1313 
1314 	return false;
1315 }
1316 
1317 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1318 {
1319 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1320 }
1321 
1322 unsigned long zs_get_total_pages(struct zs_pool *pool)
1323 {
1324 	return atomic_long_read(&pool->pages_allocated);
1325 }
1326 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1327 
1328 /**
1329  * zs_map_object - get address of allocated object from handle.
1330  * @pool: pool from which the object was allocated
1331  * @handle: handle returned from zs_malloc
1332  *
1333  * Before using an object allocated from zs_malloc, it must be mapped using
1334  * this function. When done with the object, it must be unmapped using
1335  * zs_unmap_object.
1336  *
1337  * Only one object can be mapped per cpu at a time. There is no protection
1338  * against nested mappings.
1339  *
1340  * This function returns with preemption and page faults disabled.
1341  */
1342 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1343 			enum zs_mapmode mm)
1344 {
1345 	struct zspage *zspage;
1346 	struct page *page;
1347 	unsigned long obj, off;
1348 	unsigned int obj_idx;
1349 
1350 	unsigned int class_idx;
1351 	enum fullness_group fg;
1352 	struct size_class *class;
1353 	struct mapping_area *area;
1354 	struct page *pages[2];
1355 	void *ret;
1356 
1357 	/*
1358 	 * Because we use per-cpu mapping areas shared among the
1359 	 * pools/users, we can't allow mapping in interrupt context
1360 	 * because it can corrupt another users mappings.
1361 	 */
1362 	WARN_ON_ONCE(in_interrupt());
1363 
1364 	/* From now on, migration cannot move the object */
1365 	pin_tag(handle);
1366 
1367 	obj = handle_to_obj(handle);
1368 	obj_to_location(obj, &page, &obj_idx);
1369 	zspage = get_zspage(page);
1370 
1371 	/* migration cannot move any subpage in this zspage */
1372 	migrate_read_lock(zspage);
1373 
1374 	get_zspage_mapping(zspage, &class_idx, &fg);
1375 	class = pool->size_class[class_idx];
1376 	off = (class->size * obj_idx) & ~PAGE_MASK;
1377 
1378 	area = &get_cpu_var(zs_map_area);
1379 	area->vm_mm = mm;
1380 	if (off + class->size <= PAGE_SIZE) {
1381 		/* this object is contained entirely within a page */
1382 		area->vm_addr = kmap_atomic(page);
1383 		ret = area->vm_addr + off;
1384 		goto out;
1385 	}
1386 
1387 	/* this object spans two pages */
1388 	pages[0] = page;
1389 	pages[1] = get_next_page(page);
1390 	BUG_ON(!pages[1]);
1391 
1392 	ret = __zs_map_object(area, pages, off, class->size);
1393 out:
1394 	if (likely(!PageHugeObject(page)))
1395 		ret += ZS_HANDLE_SIZE;
1396 
1397 	return ret;
1398 }
1399 EXPORT_SYMBOL_GPL(zs_map_object);
1400 
1401 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1402 {
1403 	struct zspage *zspage;
1404 	struct page *page;
1405 	unsigned long obj, off;
1406 	unsigned int obj_idx;
1407 
1408 	unsigned int class_idx;
1409 	enum fullness_group fg;
1410 	struct size_class *class;
1411 	struct mapping_area *area;
1412 
1413 	obj = handle_to_obj(handle);
1414 	obj_to_location(obj, &page, &obj_idx);
1415 	zspage = get_zspage(page);
1416 	get_zspage_mapping(zspage, &class_idx, &fg);
1417 	class = pool->size_class[class_idx];
1418 	off = (class->size * obj_idx) & ~PAGE_MASK;
1419 
1420 	area = this_cpu_ptr(&zs_map_area);
1421 	if (off + class->size <= PAGE_SIZE)
1422 		kunmap_atomic(area->vm_addr);
1423 	else {
1424 		struct page *pages[2];
1425 
1426 		pages[0] = page;
1427 		pages[1] = get_next_page(page);
1428 		BUG_ON(!pages[1]);
1429 
1430 		__zs_unmap_object(area, pages, off, class->size);
1431 	}
1432 	put_cpu_var(zs_map_area);
1433 
1434 	migrate_read_unlock(zspage);
1435 	unpin_tag(handle);
1436 }
1437 EXPORT_SYMBOL_GPL(zs_unmap_object);
1438 
1439 static unsigned long obj_malloc(struct size_class *class,
1440 				struct zspage *zspage, unsigned long handle)
1441 {
1442 	int i, nr_page, offset;
1443 	unsigned long obj;
1444 	struct link_free *link;
1445 
1446 	struct page *m_page;
1447 	unsigned long m_offset;
1448 	void *vaddr;
1449 
1450 	handle |= OBJ_ALLOCATED_TAG;
1451 	obj = get_freeobj(zspage);
1452 
1453 	offset = obj * class->size;
1454 	nr_page = offset >> PAGE_SHIFT;
1455 	m_offset = offset & ~PAGE_MASK;
1456 	m_page = get_first_page(zspage);
1457 
1458 	for (i = 0; i < nr_page; i++)
1459 		m_page = get_next_page(m_page);
1460 
1461 	vaddr = kmap_atomic(m_page);
1462 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1463 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1464 	if (likely(!PageHugeObject(m_page)))
1465 		/* record handle in the header of allocated chunk */
1466 		link->handle = handle;
1467 	else
1468 		/* record handle to page->index */
1469 		zspage->first_page->index = handle;
1470 
1471 	kunmap_atomic(vaddr);
1472 	mod_zspage_inuse(zspage, 1);
1473 	zs_stat_inc(class, OBJ_USED, 1);
1474 
1475 	obj = location_to_obj(m_page, obj);
1476 
1477 	return obj;
1478 }
1479 
1480 
1481 /**
1482  * zs_malloc - Allocate block of given size from pool.
1483  * @pool: pool to allocate from
1484  * @size: size of block to allocate
1485  * @gfp: gfp flags when allocating object
1486  *
1487  * On success, handle to the allocated object is returned,
1488  * otherwise 0.
1489  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1490  */
1491 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1492 {
1493 	unsigned long handle, obj;
1494 	struct size_class *class;
1495 	enum fullness_group newfg;
1496 	struct zspage *zspage;
1497 
1498 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1499 		return 0;
1500 
1501 	handle = cache_alloc_handle(pool, gfp);
1502 	if (!handle)
1503 		return 0;
1504 
1505 	/* extra space in chunk to keep the handle */
1506 	size += ZS_HANDLE_SIZE;
1507 	class = pool->size_class[get_size_class_index(size)];
1508 
1509 	spin_lock(&class->lock);
1510 	zspage = find_get_zspage(class);
1511 	if (likely(zspage)) {
1512 		obj = obj_malloc(class, zspage, handle);
1513 		/* Now move the zspage to another fullness group, if required */
1514 		fix_fullness_group(class, zspage);
1515 		record_obj(handle, obj);
1516 		spin_unlock(&class->lock);
1517 
1518 		return handle;
1519 	}
1520 
1521 	spin_unlock(&class->lock);
1522 
1523 	zspage = alloc_zspage(pool, class, gfp);
1524 	if (!zspage) {
1525 		cache_free_handle(pool, handle);
1526 		return 0;
1527 	}
1528 
1529 	spin_lock(&class->lock);
1530 	obj = obj_malloc(class, zspage, handle);
1531 	newfg = get_fullness_group(class, zspage);
1532 	insert_zspage(class, zspage, newfg);
1533 	set_zspage_mapping(zspage, class->index, newfg);
1534 	record_obj(handle, obj);
1535 	atomic_long_add(class->pages_per_zspage,
1536 				&pool->pages_allocated);
1537 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1538 
1539 	/* We completely set up zspage so mark them as movable */
1540 	SetZsPageMovable(pool, zspage);
1541 	spin_unlock(&class->lock);
1542 
1543 	return handle;
1544 }
1545 EXPORT_SYMBOL_GPL(zs_malloc);
1546 
1547 static void obj_free(struct size_class *class, unsigned long obj)
1548 {
1549 	struct link_free *link;
1550 	struct zspage *zspage;
1551 	struct page *f_page;
1552 	unsigned long f_offset;
1553 	unsigned int f_objidx;
1554 	void *vaddr;
1555 
1556 	obj &= ~OBJ_ALLOCATED_TAG;
1557 	obj_to_location(obj, &f_page, &f_objidx);
1558 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1559 	zspage = get_zspage(f_page);
1560 
1561 	vaddr = kmap_atomic(f_page);
1562 
1563 	/* Insert this object in containing zspage's freelist */
1564 	link = (struct link_free *)(vaddr + f_offset);
1565 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1566 	kunmap_atomic(vaddr);
1567 	set_freeobj(zspage, f_objidx);
1568 	mod_zspage_inuse(zspage, -1);
1569 	zs_stat_dec(class, OBJ_USED, 1);
1570 }
1571 
1572 void zs_free(struct zs_pool *pool, unsigned long handle)
1573 {
1574 	struct zspage *zspage;
1575 	struct page *f_page;
1576 	unsigned long obj;
1577 	unsigned int f_objidx;
1578 	int class_idx;
1579 	struct size_class *class;
1580 	enum fullness_group fullness;
1581 	bool isolated;
1582 
1583 	if (unlikely(!handle))
1584 		return;
1585 
1586 	pin_tag(handle);
1587 	obj = handle_to_obj(handle);
1588 	obj_to_location(obj, &f_page, &f_objidx);
1589 	zspage = get_zspage(f_page);
1590 
1591 	migrate_read_lock(zspage);
1592 
1593 	get_zspage_mapping(zspage, &class_idx, &fullness);
1594 	class = pool->size_class[class_idx];
1595 
1596 	spin_lock(&class->lock);
1597 	obj_free(class, obj);
1598 	fullness = fix_fullness_group(class, zspage);
1599 	if (fullness != ZS_EMPTY) {
1600 		migrate_read_unlock(zspage);
1601 		goto out;
1602 	}
1603 
1604 	isolated = is_zspage_isolated(zspage);
1605 	migrate_read_unlock(zspage);
1606 	/* If zspage is isolated, zs_page_putback will free the zspage */
1607 	if (likely(!isolated))
1608 		free_zspage(pool, class, zspage);
1609 out:
1610 
1611 	spin_unlock(&class->lock);
1612 	unpin_tag(handle);
1613 	cache_free_handle(pool, handle);
1614 }
1615 EXPORT_SYMBOL_GPL(zs_free);
1616 
1617 static void zs_object_copy(struct size_class *class, unsigned long dst,
1618 				unsigned long src)
1619 {
1620 	struct page *s_page, *d_page;
1621 	unsigned int s_objidx, d_objidx;
1622 	unsigned long s_off, d_off;
1623 	void *s_addr, *d_addr;
1624 	int s_size, d_size, size;
1625 	int written = 0;
1626 
1627 	s_size = d_size = class->size;
1628 
1629 	obj_to_location(src, &s_page, &s_objidx);
1630 	obj_to_location(dst, &d_page, &d_objidx);
1631 
1632 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1633 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1634 
1635 	if (s_off + class->size > PAGE_SIZE)
1636 		s_size = PAGE_SIZE - s_off;
1637 
1638 	if (d_off + class->size > PAGE_SIZE)
1639 		d_size = PAGE_SIZE - d_off;
1640 
1641 	s_addr = kmap_atomic(s_page);
1642 	d_addr = kmap_atomic(d_page);
1643 
1644 	while (1) {
1645 		size = min(s_size, d_size);
1646 		memcpy(d_addr + d_off, s_addr + s_off, size);
1647 		written += size;
1648 
1649 		if (written == class->size)
1650 			break;
1651 
1652 		s_off += size;
1653 		s_size -= size;
1654 		d_off += size;
1655 		d_size -= size;
1656 
1657 		if (s_off >= PAGE_SIZE) {
1658 			kunmap_atomic(d_addr);
1659 			kunmap_atomic(s_addr);
1660 			s_page = get_next_page(s_page);
1661 			s_addr = kmap_atomic(s_page);
1662 			d_addr = kmap_atomic(d_page);
1663 			s_size = class->size - written;
1664 			s_off = 0;
1665 		}
1666 
1667 		if (d_off >= PAGE_SIZE) {
1668 			kunmap_atomic(d_addr);
1669 			d_page = get_next_page(d_page);
1670 			d_addr = kmap_atomic(d_page);
1671 			d_size = class->size - written;
1672 			d_off = 0;
1673 		}
1674 	}
1675 
1676 	kunmap_atomic(d_addr);
1677 	kunmap_atomic(s_addr);
1678 }
1679 
1680 /*
1681  * Find alloced object in zspage from index object and
1682  * return handle.
1683  */
1684 static unsigned long find_alloced_obj(struct size_class *class,
1685 					struct page *page, int *obj_idx)
1686 {
1687 	unsigned long head;
1688 	int offset = 0;
1689 	int index = *obj_idx;
1690 	unsigned long handle = 0;
1691 	void *addr = kmap_atomic(page);
1692 
1693 	offset = get_first_obj_offset(page);
1694 	offset += class->size * index;
1695 
1696 	while (offset < PAGE_SIZE) {
1697 		head = obj_to_head(page, addr + offset);
1698 		if (head & OBJ_ALLOCATED_TAG) {
1699 			handle = head & ~OBJ_ALLOCATED_TAG;
1700 			if (trypin_tag(handle))
1701 				break;
1702 			handle = 0;
1703 		}
1704 
1705 		offset += class->size;
1706 		index++;
1707 	}
1708 
1709 	kunmap_atomic(addr);
1710 
1711 	*obj_idx = index;
1712 
1713 	return handle;
1714 }
1715 
1716 struct zs_compact_control {
1717 	/* Source spage for migration which could be a subpage of zspage */
1718 	struct page *s_page;
1719 	/* Destination page for migration which should be a first page
1720 	 * of zspage. */
1721 	struct page *d_page;
1722 	 /* Starting object index within @s_page which used for live object
1723 	  * in the subpage. */
1724 	int obj_idx;
1725 };
1726 
1727 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1728 				struct zs_compact_control *cc)
1729 {
1730 	unsigned long used_obj, free_obj;
1731 	unsigned long handle;
1732 	struct page *s_page = cc->s_page;
1733 	struct page *d_page = cc->d_page;
1734 	int obj_idx = cc->obj_idx;
1735 	int ret = 0;
1736 
1737 	while (1) {
1738 		handle = find_alloced_obj(class, s_page, &obj_idx);
1739 		if (!handle) {
1740 			s_page = get_next_page(s_page);
1741 			if (!s_page)
1742 				break;
1743 			obj_idx = 0;
1744 			continue;
1745 		}
1746 
1747 		/* Stop if there is no more space */
1748 		if (zspage_full(class, get_zspage(d_page))) {
1749 			unpin_tag(handle);
1750 			ret = -ENOMEM;
1751 			break;
1752 		}
1753 
1754 		used_obj = handle_to_obj(handle);
1755 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1756 		zs_object_copy(class, free_obj, used_obj);
1757 		obj_idx++;
1758 		/*
1759 		 * record_obj updates handle's value to free_obj and it will
1760 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1761 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1762 		 * let's keep the lock bit.
1763 		 */
1764 		free_obj |= BIT(HANDLE_PIN_BIT);
1765 		record_obj(handle, free_obj);
1766 		unpin_tag(handle);
1767 		obj_free(class, used_obj);
1768 	}
1769 
1770 	/* Remember last position in this iteration */
1771 	cc->s_page = s_page;
1772 	cc->obj_idx = obj_idx;
1773 
1774 	return ret;
1775 }
1776 
1777 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1778 {
1779 	int i;
1780 	struct zspage *zspage;
1781 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1782 
1783 	if (!source) {
1784 		fg[0] = ZS_ALMOST_FULL;
1785 		fg[1] = ZS_ALMOST_EMPTY;
1786 	}
1787 
1788 	for (i = 0; i < 2; i++) {
1789 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1790 							struct zspage, list);
1791 		if (zspage) {
1792 			VM_BUG_ON(is_zspage_isolated(zspage));
1793 			remove_zspage(class, zspage, fg[i]);
1794 			return zspage;
1795 		}
1796 	}
1797 
1798 	return zspage;
1799 }
1800 
1801 /*
1802  * putback_zspage - add @zspage into right class's fullness list
1803  * @class: destination class
1804  * @zspage: target page
1805  *
1806  * Return @zspage's fullness_group
1807  */
1808 static enum fullness_group putback_zspage(struct size_class *class,
1809 			struct zspage *zspage)
1810 {
1811 	enum fullness_group fullness;
1812 
1813 	VM_BUG_ON(is_zspage_isolated(zspage));
1814 
1815 	fullness = get_fullness_group(class, zspage);
1816 	insert_zspage(class, zspage, fullness);
1817 	set_zspage_mapping(zspage, class->index, fullness);
1818 
1819 	return fullness;
1820 }
1821 
1822 #ifdef CONFIG_COMPACTION
1823 static struct dentry *zs_mount(struct file_system_type *fs_type,
1824 				int flags, const char *dev_name, void *data)
1825 {
1826 	static const struct dentry_operations ops = {
1827 		.d_dname = simple_dname,
1828 	};
1829 
1830 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1831 }
1832 
1833 static struct file_system_type zsmalloc_fs = {
1834 	.name		= "zsmalloc",
1835 	.mount		= zs_mount,
1836 	.kill_sb	= kill_anon_super,
1837 };
1838 
1839 static int zsmalloc_mount(void)
1840 {
1841 	int ret = 0;
1842 
1843 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1844 	if (IS_ERR(zsmalloc_mnt))
1845 		ret = PTR_ERR(zsmalloc_mnt);
1846 
1847 	return ret;
1848 }
1849 
1850 static void zsmalloc_unmount(void)
1851 {
1852 	kern_unmount(zsmalloc_mnt);
1853 }
1854 
1855 static void migrate_lock_init(struct zspage *zspage)
1856 {
1857 	rwlock_init(&zspage->lock);
1858 }
1859 
1860 static void migrate_read_lock(struct zspage *zspage)
1861 {
1862 	read_lock(&zspage->lock);
1863 }
1864 
1865 static void migrate_read_unlock(struct zspage *zspage)
1866 {
1867 	read_unlock(&zspage->lock);
1868 }
1869 
1870 static void migrate_write_lock(struct zspage *zspage)
1871 {
1872 	write_lock(&zspage->lock);
1873 }
1874 
1875 static void migrate_write_unlock(struct zspage *zspage)
1876 {
1877 	write_unlock(&zspage->lock);
1878 }
1879 
1880 /* Number of isolated subpage for *page migration* in this zspage */
1881 static void inc_zspage_isolation(struct zspage *zspage)
1882 {
1883 	zspage->isolated++;
1884 }
1885 
1886 static void dec_zspage_isolation(struct zspage *zspage)
1887 {
1888 	zspage->isolated--;
1889 }
1890 
1891 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1892 				struct page *newpage, struct page *oldpage)
1893 {
1894 	struct page *page;
1895 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1896 	int idx = 0;
1897 
1898 	page = get_first_page(zspage);
1899 	do {
1900 		if (page == oldpage)
1901 			pages[idx] = newpage;
1902 		else
1903 			pages[idx] = page;
1904 		idx++;
1905 	} while ((page = get_next_page(page)) != NULL);
1906 
1907 	create_page_chain(class, zspage, pages);
1908 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1909 	if (unlikely(PageHugeObject(oldpage)))
1910 		newpage->index = oldpage->index;
1911 	__SetPageMovable(newpage, page_mapping(oldpage));
1912 }
1913 
1914 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1915 {
1916 	struct zs_pool *pool;
1917 	struct size_class *class;
1918 	int class_idx;
1919 	enum fullness_group fullness;
1920 	struct zspage *zspage;
1921 	struct address_space *mapping;
1922 
1923 	/*
1924 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1925 	 * lock_zspage in free_zspage.
1926 	 */
1927 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1928 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1929 
1930 	zspage = get_zspage(page);
1931 
1932 	/*
1933 	 * Without class lock, fullness could be stale while class_idx is okay
1934 	 * because class_idx is constant unless page is freed so we should get
1935 	 * fullness again under class lock.
1936 	 */
1937 	get_zspage_mapping(zspage, &class_idx, &fullness);
1938 	mapping = page_mapping(page);
1939 	pool = mapping->private_data;
1940 	class = pool->size_class[class_idx];
1941 
1942 	spin_lock(&class->lock);
1943 	if (get_zspage_inuse(zspage) == 0) {
1944 		spin_unlock(&class->lock);
1945 		return false;
1946 	}
1947 
1948 	/* zspage is isolated for object migration */
1949 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 		spin_unlock(&class->lock);
1951 		return false;
1952 	}
1953 
1954 	/*
1955 	 * If this is first time isolation for the zspage, isolate zspage from
1956 	 * size_class to prevent further object allocation from the zspage.
1957 	 */
1958 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1959 		get_zspage_mapping(zspage, &class_idx, &fullness);
1960 		remove_zspage(class, zspage, fullness);
1961 	}
1962 
1963 	inc_zspage_isolation(zspage);
1964 	spin_unlock(&class->lock);
1965 
1966 	return true;
1967 }
1968 
1969 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1970 		struct page *page, enum migrate_mode mode)
1971 {
1972 	struct zs_pool *pool;
1973 	struct size_class *class;
1974 	int class_idx;
1975 	enum fullness_group fullness;
1976 	struct zspage *zspage;
1977 	struct page *dummy;
1978 	void *s_addr, *d_addr, *addr;
1979 	int offset, pos;
1980 	unsigned long handle, head;
1981 	unsigned long old_obj, new_obj;
1982 	unsigned int obj_idx;
1983 	int ret = -EAGAIN;
1984 
1985 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1986 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1987 
1988 	zspage = get_zspage(page);
1989 
1990 	/* Concurrent compactor cannot migrate any subpage in zspage */
1991 	migrate_write_lock(zspage);
1992 	get_zspage_mapping(zspage, &class_idx, &fullness);
1993 	pool = mapping->private_data;
1994 	class = pool->size_class[class_idx];
1995 	offset = get_first_obj_offset(page);
1996 
1997 	spin_lock(&class->lock);
1998 	if (!get_zspage_inuse(zspage)) {
1999 		ret = -EBUSY;
2000 		goto unlock_class;
2001 	}
2002 
2003 	pos = offset;
2004 	s_addr = kmap_atomic(page);
2005 	while (pos < PAGE_SIZE) {
2006 		head = obj_to_head(page, s_addr + pos);
2007 		if (head & OBJ_ALLOCATED_TAG) {
2008 			handle = head & ~OBJ_ALLOCATED_TAG;
2009 			if (!trypin_tag(handle))
2010 				goto unpin_objects;
2011 		}
2012 		pos += class->size;
2013 	}
2014 
2015 	/*
2016 	 * Here, any user cannot access all objects in the zspage so let's move.
2017 	 */
2018 	d_addr = kmap_atomic(newpage);
2019 	memcpy(d_addr, s_addr, PAGE_SIZE);
2020 	kunmap_atomic(d_addr);
2021 
2022 	for (addr = s_addr + offset; addr < s_addr + pos;
2023 					addr += class->size) {
2024 		head = obj_to_head(page, addr);
2025 		if (head & OBJ_ALLOCATED_TAG) {
2026 			handle = head & ~OBJ_ALLOCATED_TAG;
2027 			if (!testpin_tag(handle))
2028 				BUG();
2029 
2030 			old_obj = handle_to_obj(handle);
2031 			obj_to_location(old_obj, &dummy, &obj_idx);
2032 			new_obj = (unsigned long)location_to_obj(newpage,
2033 								obj_idx);
2034 			new_obj |= BIT(HANDLE_PIN_BIT);
2035 			record_obj(handle, new_obj);
2036 		}
2037 	}
2038 
2039 	replace_sub_page(class, zspage, newpage, page);
2040 	get_page(newpage);
2041 
2042 	dec_zspage_isolation(zspage);
2043 
2044 	/*
2045 	 * Page migration is done so let's putback isolated zspage to
2046 	 * the list if @page is final isolated subpage in the zspage.
2047 	 */
2048 	if (!is_zspage_isolated(zspage))
2049 		putback_zspage(class, zspage);
2050 
2051 	reset_page(page);
2052 	put_page(page);
2053 	page = newpage;
2054 
2055 	ret = MIGRATEPAGE_SUCCESS;
2056 unpin_objects:
2057 	for (addr = s_addr + offset; addr < s_addr + pos;
2058 						addr += class->size) {
2059 		head = obj_to_head(page, addr);
2060 		if (head & OBJ_ALLOCATED_TAG) {
2061 			handle = head & ~OBJ_ALLOCATED_TAG;
2062 			if (!testpin_tag(handle))
2063 				BUG();
2064 			unpin_tag(handle);
2065 		}
2066 	}
2067 	kunmap_atomic(s_addr);
2068 unlock_class:
2069 	spin_unlock(&class->lock);
2070 	migrate_write_unlock(zspage);
2071 
2072 	return ret;
2073 }
2074 
2075 void zs_page_putback(struct page *page)
2076 {
2077 	struct zs_pool *pool;
2078 	struct size_class *class;
2079 	int class_idx;
2080 	enum fullness_group fg;
2081 	struct address_space *mapping;
2082 	struct zspage *zspage;
2083 
2084 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2085 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2086 
2087 	zspage = get_zspage(page);
2088 	get_zspage_mapping(zspage, &class_idx, &fg);
2089 	mapping = page_mapping(page);
2090 	pool = mapping->private_data;
2091 	class = pool->size_class[class_idx];
2092 
2093 	spin_lock(&class->lock);
2094 	dec_zspage_isolation(zspage);
2095 	if (!is_zspage_isolated(zspage)) {
2096 		fg = putback_zspage(class, zspage);
2097 		/*
2098 		 * Due to page_lock, we cannot free zspage immediately
2099 		 * so let's defer.
2100 		 */
2101 		if (fg == ZS_EMPTY)
2102 			schedule_work(&pool->free_work);
2103 	}
2104 	spin_unlock(&class->lock);
2105 }
2106 
2107 const struct address_space_operations zsmalloc_aops = {
2108 	.isolate_page = zs_page_isolate,
2109 	.migratepage = zs_page_migrate,
2110 	.putback_page = zs_page_putback,
2111 };
2112 
2113 static int zs_register_migration(struct zs_pool *pool)
2114 {
2115 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2116 	if (IS_ERR(pool->inode)) {
2117 		pool->inode = NULL;
2118 		return 1;
2119 	}
2120 
2121 	pool->inode->i_mapping->private_data = pool;
2122 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2123 	return 0;
2124 }
2125 
2126 static void zs_unregister_migration(struct zs_pool *pool)
2127 {
2128 	flush_work(&pool->free_work);
2129 	iput(pool->inode);
2130 }
2131 
2132 /*
2133  * Caller should hold page_lock of all pages in the zspage
2134  * In here, we cannot use zspage meta data.
2135  */
2136 static void async_free_zspage(struct work_struct *work)
2137 {
2138 	int i;
2139 	struct size_class *class;
2140 	unsigned int class_idx;
2141 	enum fullness_group fullness;
2142 	struct zspage *zspage, *tmp;
2143 	LIST_HEAD(free_pages);
2144 	struct zs_pool *pool = container_of(work, struct zs_pool,
2145 					free_work);
2146 
2147 	for (i = 0; i < zs_size_classes; i++) {
2148 		class = pool->size_class[i];
2149 		if (class->index != i)
2150 			continue;
2151 
2152 		spin_lock(&class->lock);
2153 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2154 		spin_unlock(&class->lock);
2155 	}
2156 
2157 
2158 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2159 		list_del(&zspage->list);
2160 		lock_zspage(zspage);
2161 
2162 		get_zspage_mapping(zspage, &class_idx, &fullness);
2163 		VM_BUG_ON(fullness != ZS_EMPTY);
2164 		class = pool->size_class[class_idx];
2165 		spin_lock(&class->lock);
2166 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2167 		spin_unlock(&class->lock);
2168 	}
2169 };
2170 
2171 static void kick_deferred_free(struct zs_pool *pool)
2172 {
2173 	schedule_work(&pool->free_work);
2174 }
2175 
2176 static void init_deferred_free(struct zs_pool *pool)
2177 {
2178 	INIT_WORK(&pool->free_work, async_free_zspage);
2179 }
2180 
2181 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2182 {
2183 	struct page *page = get_first_page(zspage);
2184 
2185 	do {
2186 		WARN_ON(!trylock_page(page));
2187 		__SetPageMovable(page, pool->inode->i_mapping);
2188 		unlock_page(page);
2189 	} while ((page = get_next_page(page)) != NULL);
2190 }
2191 #endif
2192 
2193 /*
2194  *
2195  * Based on the number of unused allocated objects calculate
2196  * and return the number of pages that we can free.
2197  */
2198 static unsigned long zs_can_compact(struct size_class *class)
2199 {
2200 	unsigned long obj_wasted;
2201 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2202 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2203 
2204 	if (obj_allocated <= obj_used)
2205 		return 0;
2206 
2207 	obj_wasted = obj_allocated - obj_used;
2208 	obj_wasted /= class->objs_per_zspage;
2209 
2210 	return obj_wasted * class->pages_per_zspage;
2211 }
2212 
2213 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2214 {
2215 	struct zs_compact_control cc;
2216 	struct zspage *src_zspage;
2217 	struct zspage *dst_zspage = NULL;
2218 
2219 	spin_lock(&class->lock);
2220 	while ((src_zspage = isolate_zspage(class, true))) {
2221 
2222 		if (!zs_can_compact(class))
2223 			break;
2224 
2225 		cc.obj_idx = 0;
2226 		cc.s_page = get_first_page(src_zspage);
2227 
2228 		while ((dst_zspage = isolate_zspage(class, false))) {
2229 			cc.d_page = get_first_page(dst_zspage);
2230 			/*
2231 			 * If there is no more space in dst_page, resched
2232 			 * and see if anyone had allocated another zspage.
2233 			 */
2234 			if (!migrate_zspage(pool, class, &cc))
2235 				break;
2236 
2237 			putback_zspage(class, dst_zspage);
2238 		}
2239 
2240 		/* Stop if we couldn't find slot */
2241 		if (dst_zspage == NULL)
2242 			break;
2243 
2244 		putback_zspage(class, dst_zspage);
2245 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2246 			free_zspage(pool, class, src_zspage);
2247 			pool->stats.pages_compacted += class->pages_per_zspage;
2248 		}
2249 		spin_unlock(&class->lock);
2250 		cond_resched();
2251 		spin_lock(&class->lock);
2252 	}
2253 
2254 	if (src_zspage)
2255 		putback_zspage(class, src_zspage);
2256 
2257 	spin_unlock(&class->lock);
2258 }
2259 
2260 unsigned long zs_compact(struct zs_pool *pool)
2261 {
2262 	int i;
2263 	struct size_class *class;
2264 
2265 	for (i = zs_size_classes - 1; i >= 0; i--) {
2266 		class = pool->size_class[i];
2267 		if (!class)
2268 			continue;
2269 		if (class->index != i)
2270 			continue;
2271 		__zs_compact(pool, class);
2272 	}
2273 
2274 	return pool->stats.pages_compacted;
2275 }
2276 EXPORT_SYMBOL_GPL(zs_compact);
2277 
2278 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2279 {
2280 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2281 }
2282 EXPORT_SYMBOL_GPL(zs_pool_stats);
2283 
2284 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2285 		struct shrink_control *sc)
2286 {
2287 	unsigned long pages_freed;
2288 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2289 			shrinker);
2290 
2291 	pages_freed = pool->stats.pages_compacted;
2292 	/*
2293 	 * Compact classes and calculate compaction delta.
2294 	 * Can run concurrently with a manually triggered
2295 	 * (by user) compaction.
2296 	 */
2297 	pages_freed = zs_compact(pool) - pages_freed;
2298 
2299 	return pages_freed ? pages_freed : SHRINK_STOP;
2300 }
2301 
2302 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2303 		struct shrink_control *sc)
2304 {
2305 	int i;
2306 	struct size_class *class;
2307 	unsigned long pages_to_free = 0;
2308 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2309 			shrinker);
2310 
2311 	for (i = zs_size_classes - 1; i >= 0; i--) {
2312 		class = pool->size_class[i];
2313 		if (!class)
2314 			continue;
2315 		if (class->index != i)
2316 			continue;
2317 
2318 		pages_to_free += zs_can_compact(class);
2319 	}
2320 
2321 	return pages_to_free;
2322 }
2323 
2324 static void zs_unregister_shrinker(struct zs_pool *pool)
2325 {
2326 	if (pool->shrinker_enabled) {
2327 		unregister_shrinker(&pool->shrinker);
2328 		pool->shrinker_enabled = false;
2329 	}
2330 }
2331 
2332 static int zs_register_shrinker(struct zs_pool *pool)
2333 {
2334 	pool->shrinker.scan_objects = zs_shrinker_scan;
2335 	pool->shrinker.count_objects = zs_shrinker_count;
2336 	pool->shrinker.batch = 0;
2337 	pool->shrinker.seeks = DEFAULT_SEEKS;
2338 
2339 	return register_shrinker(&pool->shrinker);
2340 }
2341 
2342 /**
2343  * zs_create_pool - Creates an allocation pool to work from.
2344  * @name: pool name to be created
2345  *
2346  * This function must be called before anything when using
2347  * the zsmalloc allocator.
2348  *
2349  * On success, a pointer to the newly created pool is returned,
2350  * otherwise NULL.
2351  */
2352 struct zs_pool *zs_create_pool(const char *name)
2353 {
2354 	int i;
2355 	struct zs_pool *pool;
2356 	struct size_class *prev_class = NULL;
2357 
2358 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359 	if (!pool)
2360 		return NULL;
2361 
2362 	init_deferred_free(pool);
2363 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2364 			GFP_KERNEL);
2365 	if (!pool->size_class) {
2366 		kfree(pool);
2367 		return NULL;
2368 	}
2369 
2370 	pool->name = kstrdup(name, GFP_KERNEL);
2371 	if (!pool->name)
2372 		goto err;
2373 
2374 	if (create_cache(pool))
2375 		goto err;
2376 
2377 	/*
2378 	 * Iterate reversely, because, size of size_class that we want to use
2379 	 * for merging should be larger or equal to current size.
2380 	 */
2381 	for (i = zs_size_classes - 1; i >= 0; i--) {
2382 		int size;
2383 		int pages_per_zspage;
2384 		int objs_per_zspage;
2385 		struct size_class *class;
2386 		int fullness = 0;
2387 
2388 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2389 		if (size > ZS_MAX_ALLOC_SIZE)
2390 			size = ZS_MAX_ALLOC_SIZE;
2391 		pages_per_zspage = get_pages_per_zspage(size);
2392 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2393 
2394 		/*
2395 		 * size_class is used for normal zsmalloc operation such
2396 		 * as alloc/free for that size. Although it is natural that we
2397 		 * have one size_class for each size, there is a chance that we
2398 		 * can get more memory utilization if we use one size_class for
2399 		 * many different sizes whose size_class have same
2400 		 * characteristics. So, we makes size_class point to
2401 		 * previous size_class if possible.
2402 		 */
2403 		if (prev_class) {
2404 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2405 				pool->size_class[i] = prev_class;
2406 				continue;
2407 			}
2408 		}
2409 
2410 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2411 		if (!class)
2412 			goto err;
2413 
2414 		class->size = size;
2415 		class->index = i;
2416 		class->pages_per_zspage = pages_per_zspage;
2417 		class->objs_per_zspage = objs_per_zspage;
2418 		spin_lock_init(&class->lock);
2419 		pool->size_class[i] = class;
2420 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2421 							fullness++)
2422 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2423 
2424 		prev_class = class;
2425 	}
2426 
2427 	/* debug only, don't abort if it fails */
2428 	zs_pool_stat_create(pool, name);
2429 
2430 	if (zs_register_migration(pool))
2431 		goto err;
2432 
2433 	/*
2434 	 * Not critical, we still can use the pool
2435 	 * and user can trigger compaction manually.
2436 	 */
2437 	if (zs_register_shrinker(pool) == 0)
2438 		pool->shrinker_enabled = true;
2439 	return pool;
2440 
2441 err:
2442 	zs_destroy_pool(pool);
2443 	return NULL;
2444 }
2445 EXPORT_SYMBOL_GPL(zs_create_pool);
2446 
2447 void zs_destroy_pool(struct zs_pool *pool)
2448 {
2449 	int i;
2450 
2451 	zs_unregister_shrinker(pool);
2452 	zs_unregister_migration(pool);
2453 	zs_pool_stat_destroy(pool);
2454 
2455 	for (i = 0; i < zs_size_classes; i++) {
2456 		int fg;
2457 		struct size_class *class = pool->size_class[i];
2458 
2459 		if (!class)
2460 			continue;
2461 
2462 		if (class->index != i)
2463 			continue;
2464 
2465 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2466 			if (!list_empty(&class->fullness_list[fg])) {
2467 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2468 					class->size, fg);
2469 			}
2470 		}
2471 		kfree(class);
2472 	}
2473 
2474 	destroy_cache(pool);
2475 	kfree(pool->size_class);
2476 	kfree(pool->name);
2477 	kfree(pool);
2478 }
2479 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2480 
2481 static int __init zs_init(void)
2482 {
2483 	int ret;
2484 
2485 	ret = zsmalloc_mount();
2486 	if (ret)
2487 		goto out;
2488 
2489 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2490 				zs_cpu_prepare, zs_cpu_dead);
2491 	if (ret)
2492 		goto hp_setup_fail;
2493 
2494 	init_zs_size_classes();
2495 
2496 #ifdef CONFIG_ZPOOL
2497 	zpool_register_driver(&zs_zpool_driver);
2498 #endif
2499 
2500 	zs_stat_init();
2501 
2502 	return 0;
2503 
2504 hp_setup_fail:
2505 	zsmalloc_unmount();
2506 out:
2507 	return ret;
2508 }
2509 
2510 static void __exit zs_exit(void)
2511 {
2512 #ifdef CONFIG_ZPOOL
2513 	zpool_unregister_driver(&zs_zpool_driver);
2514 #endif
2515 	zsmalloc_unmount();
2516 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2517 
2518 	zs_stat_exit();
2519 }
2520 
2521 module_init(zs_init);
2522 module_exit(zs_exit);
2523 
2524 MODULE_LICENSE("Dual BSD/GPL");
2525 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2526