1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/bitops.h> 37 #include <linux/errno.h> 38 #include <linux/highmem.h> 39 #include <linux/string.h> 40 #include <linux/slab.h> 41 #include <asm/tlbflush.h> 42 #include <asm/pgtable.h> 43 #include <linux/cpumask.h> 44 #include <linux/cpu.h> 45 #include <linux/vmalloc.h> 46 #include <linux/preempt.h> 47 #include <linux/spinlock.h> 48 #include <linux/types.h> 49 #include <linux/debugfs.h> 50 #include <linux/zsmalloc.h> 51 #include <linux/zpool.h> 52 #include <linux/mount.h> 53 #include <linux/migrate.h> 54 #include <linux/pagemap.h> 55 56 #define ZSPAGE_MAGIC 0x58 57 58 /* 59 * This must be power of 2 and greater than of equal to sizeof(link_free). 60 * These two conditions ensure that any 'struct link_free' itself doesn't 61 * span more than 1 page which avoids complex case of mapping 2 pages simply 62 * to restore link_free pointer values. 63 */ 64 #define ZS_ALIGN 8 65 66 /* 67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 69 */ 70 #define ZS_MAX_ZSPAGE_ORDER 2 71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 72 73 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 74 75 /* 76 * Object location (<PFN>, <obj_idx>) is encoded as 77 * as single (unsigned long) handle value. 78 * 79 * Note that object index <obj_idx> starts from 0. 80 * 81 * This is made more complicated by various memory models and PAE. 82 */ 83 84 #ifndef MAX_PHYSMEM_BITS 85 #ifdef CONFIG_HIGHMEM64G 86 #define MAX_PHYSMEM_BITS 36 87 #else /* !CONFIG_HIGHMEM64G */ 88 /* 89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 90 * be PAGE_SHIFT 91 */ 92 #define MAX_PHYSMEM_BITS BITS_PER_LONG 93 #endif 94 #endif 95 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) 96 97 /* 98 * Memory for allocating for handle keeps object position by 99 * encoding <page, obj_idx> and the encoded value has a room 100 * in least bit(ie, look at obj_to_location). 101 * We use the bit to synchronize between object access by 102 * user and migration. 103 */ 104 #define HANDLE_PIN_BIT 0 105 106 /* 107 * Head in allocated object should have OBJ_ALLOCATED_TAG 108 * to identify the object was allocated or not. 109 * It's okay to add the status bit in the least bit because 110 * header keeps handle which is 4byte-aligned address so we 111 * have room for two bit at least. 112 */ 113 #define OBJ_ALLOCATED_TAG 1 114 #define OBJ_TAG_BITS 1 115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 117 118 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 120 #define ZS_MIN_ALLOC_SIZE \ 121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 122 /* each chunk includes extra space to keep handle */ 123 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 124 125 /* 126 * On systems with 4K page size, this gives 255 size classes! There is a 127 * trader-off here: 128 * - Large number of size classes is potentially wasteful as free page are 129 * spread across these classes 130 * - Small number of size classes causes large internal fragmentation 131 * - Probably its better to use specific size classes (empirically 132 * determined). NOTE: all those class sizes must be set as multiple of 133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 134 * 135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 136 * (reason above) 137 */ 138 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 139 140 enum fullness_group { 141 ZS_EMPTY, 142 ZS_ALMOST_EMPTY, 143 ZS_ALMOST_FULL, 144 ZS_FULL, 145 NR_ZS_FULLNESS, 146 }; 147 148 enum zs_stat_type { 149 CLASS_EMPTY, 150 CLASS_ALMOST_EMPTY, 151 CLASS_ALMOST_FULL, 152 CLASS_FULL, 153 OBJ_ALLOCATED, 154 OBJ_USED, 155 NR_ZS_STAT_TYPE, 156 }; 157 158 struct zs_size_stat { 159 unsigned long objs[NR_ZS_STAT_TYPE]; 160 }; 161 162 #ifdef CONFIG_ZSMALLOC_STAT 163 static struct dentry *zs_stat_root; 164 #endif 165 166 #ifdef CONFIG_COMPACTION 167 static struct vfsmount *zsmalloc_mnt; 168 #endif 169 170 /* 171 * number of size_classes 172 */ 173 static int zs_size_classes; 174 175 /* 176 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 177 * n <= N / f, where 178 * n = number of allocated objects 179 * N = total number of objects zspage can store 180 * f = fullness_threshold_frac 181 * 182 * Similarly, we assign zspage to: 183 * ZS_ALMOST_FULL when n > N / f 184 * ZS_EMPTY when n == 0 185 * ZS_FULL when n == N 186 * 187 * (see: fix_fullness_group()) 188 */ 189 static const int fullness_threshold_frac = 4; 190 191 struct size_class { 192 spinlock_t lock; 193 struct list_head fullness_list[NR_ZS_FULLNESS]; 194 /* 195 * Size of objects stored in this class. Must be multiple 196 * of ZS_ALIGN. 197 */ 198 int size; 199 int objs_per_zspage; 200 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 201 int pages_per_zspage; 202 203 unsigned int index; 204 struct zs_size_stat stats; 205 }; 206 207 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 208 static void SetPageHugeObject(struct page *page) 209 { 210 SetPageOwnerPriv1(page); 211 } 212 213 static void ClearPageHugeObject(struct page *page) 214 { 215 ClearPageOwnerPriv1(page); 216 } 217 218 static int PageHugeObject(struct page *page) 219 { 220 return PageOwnerPriv1(page); 221 } 222 223 /* 224 * Placed within free objects to form a singly linked list. 225 * For every zspage, zspage->freeobj gives head of this list. 226 * 227 * This must be power of 2 and less than or equal to ZS_ALIGN 228 */ 229 struct link_free { 230 union { 231 /* 232 * Free object index; 233 * It's valid for non-allocated object 234 */ 235 unsigned long next; 236 /* 237 * Handle of allocated object. 238 */ 239 unsigned long handle; 240 }; 241 }; 242 243 struct zs_pool { 244 const char *name; 245 246 struct size_class **size_class; 247 struct kmem_cache *handle_cachep; 248 struct kmem_cache *zspage_cachep; 249 250 atomic_long_t pages_allocated; 251 252 struct zs_pool_stats stats; 253 254 /* Compact classes */ 255 struct shrinker shrinker; 256 /* 257 * To signify that register_shrinker() was successful 258 * and unregister_shrinker() will not Oops. 259 */ 260 bool shrinker_enabled; 261 #ifdef CONFIG_ZSMALLOC_STAT 262 struct dentry *stat_dentry; 263 #endif 264 #ifdef CONFIG_COMPACTION 265 struct inode *inode; 266 struct work_struct free_work; 267 #endif 268 }; 269 270 #define FULLNESS_BITS 2 271 #define CLASS_BITS 8 272 #define ISOLATED_BITS 3 273 #define MAGIC_VAL_BITS 8 274 275 struct zspage { 276 struct { 277 unsigned int fullness:FULLNESS_BITS; 278 unsigned int class:CLASS_BITS; 279 unsigned int isolated:ISOLATED_BITS; 280 unsigned int magic:MAGIC_VAL_BITS; 281 }; 282 unsigned int inuse; 283 unsigned int freeobj; 284 struct page *first_page; 285 struct list_head list; /* fullness list */ 286 #ifdef CONFIG_COMPACTION 287 rwlock_t lock; 288 #endif 289 }; 290 291 struct mapping_area { 292 #ifdef CONFIG_PGTABLE_MAPPING 293 struct vm_struct *vm; /* vm area for mapping object that span pages */ 294 #else 295 char *vm_buf; /* copy buffer for objects that span pages */ 296 #endif 297 char *vm_addr; /* address of kmap_atomic()'ed pages */ 298 enum zs_mapmode vm_mm; /* mapping mode */ 299 }; 300 301 #ifdef CONFIG_COMPACTION 302 static int zs_register_migration(struct zs_pool *pool); 303 static void zs_unregister_migration(struct zs_pool *pool); 304 static void migrate_lock_init(struct zspage *zspage); 305 static void migrate_read_lock(struct zspage *zspage); 306 static void migrate_read_unlock(struct zspage *zspage); 307 static void kick_deferred_free(struct zs_pool *pool); 308 static void init_deferred_free(struct zs_pool *pool); 309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 310 #else 311 static int zsmalloc_mount(void) { return 0; } 312 static void zsmalloc_unmount(void) {} 313 static int zs_register_migration(struct zs_pool *pool) { return 0; } 314 static void zs_unregister_migration(struct zs_pool *pool) {} 315 static void migrate_lock_init(struct zspage *zspage) {} 316 static void migrate_read_lock(struct zspage *zspage) {} 317 static void migrate_read_unlock(struct zspage *zspage) {} 318 static void kick_deferred_free(struct zs_pool *pool) {} 319 static void init_deferred_free(struct zs_pool *pool) {} 320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 321 #endif 322 323 static int create_cache(struct zs_pool *pool) 324 { 325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 326 0, 0, NULL); 327 if (!pool->handle_cachep) 328 return 1; 329 330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 331 0, 0, NULL); 332 if (!pool->zspage_cachep) { 333 kmem_cache_destroy(pool->handle_cachep); 334 pool->handle_cachep = NULL; 335 return 1; 336 } 337 338 return 0; 339 } 340 341 static void destroy_cache(struct zs_pool *pool) 342 { 343 kmem_cache_destroy(pool->handle_cachep); 344 kmem_cache_destroy(pool->zspage_cachep); 345 } 346 347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 348 { 349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 351 } 352 353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 354 { 355 kmem_cache_free(pool->handle_cachep, (void *)handle); 356 } 357 358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 359 { 360 return kmem_cache_alloc(pool->zspage_cachep, 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 362 } 363 364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 365 { 366 kmem_cache_free(pool->zspage_cachep, zspage); 367 } 368 369 static void record_obj(unsigned long handle, unsigned long obj) 370 { 371 /* 372 * lsb of @obj represents handle lock while other bits 373 * represent object value the handle is pointing so 374 * updating shouldn't do store tearing. 375 */ 376 WRITE_ONCE(*(unsigned long *)handle, obj); 377 } 378 379 /* zpool driver */ 380 381 #ifdef CONFIG_ZPOOL 382 383 static void *zs_zpool_create(const char *name, gfp_t gfp, 384 const struct zpool_ops *zpool_ops, 385 struct zpool *zpool) 386 { 387 /* 388 * Ignore global gfp flags: zs_malloc() may be invoked from 389 * different contexts and its caller must provide a valid 390 * gfp mask. 391 */ 392 return zs_create_pool(name); 393 } 394 395 static void zs_zpool_destroy(void *pool) 396 { 397 zs_destroy_pool(pool); 398 } 399 400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 401 unsigned long *handle) 402 { 403 *handle = zs_malloc(pool, size, gfp); 404 return *handle ? 0 : -1; 405 } 406 static void zs_zpool_free(void *pool, unsigned long handle) 407 { 408 zs_free(pool, handle); 409 } 410 411 static int zs_zpool_shrink(void *pool, unsigned int pages, 412 unsigned int *reclaimed) 413 { 414 return -EINVAL; 415 } 416 417 static void *zs_zpool_map(void *pool, unsigned long handle, 418 enum zpool_mapmode mm) 419 { 420 enum zs_mapmode zs_mm; 421 422 switch (mm) { 423 case ZPOOL_MM_RO: 424 zs_mm = ZS_MM_RO; 425 break; 426 case ZPOOL_MM_WO: 427 zs_mm = ZS_MM_WO; 428 break; 429 case ZPOOL_MM_RW: /* fallthru */ 430 default: 431 zs_mm = ZS_MM_RW; 432 break; 433 } 434 435 return zs_map_object(pool, handle, zs_mm); 436 } 437 static void zs_zpool_unmap(void *pool, unsigned long handle) 438 { 439 zs_unmap_object(pool, handle); 440 } 441 442 static u64 zs_zpool_total_size(void *pool) 443 { 444 return zs_get_total_pages(pool) << PAGE_SHIFT; 445 } 446 447 static struct zpool_driver zs_zpool_driver = { 448 .type = "zsmalloc", 449 .owner = THIS_MODULE, 450 .create = zs_zpool_create, 451 .destroy = zs_zpool_destroy, 452 .malloc = zs_zpool_malloc, 453 .free = zs_zpool_free, 454 .shrink = zs_zpool_shrink, 455 .map = zs_zpool_map, 456 .unmap = zs_zpool_unmap, 457 .total_size = zs_zpool_total_size, 458 }; 459 460 MODULE_ALIAS("zpool-zsmalloc"); 461 #endif /* CONFIG_ZPOOL */ 462 463 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 464 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 465 466 static bool is_zspage_isolated(struct zspage *zspage) 467 { 468 return zspage->isolated; 469 } 470 471 static int is_first_page(struct page *page) 472 { 473 return PagePrivate(page); 474 } 475 476 /* Protected by class->lock */ 477 static inline int get_zspage_inuse(struct zspage *zspage) 478 { 479 return zspage->inuse; 480 } 481 482 static inline void set_zspage_inuse(struct zspage *zspage, int val) 483 { 484 zspage->inuse = val; 485 } 486 487 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 488 { 489 zspage->inuse += val; 490 } 491 492 static inline struct page *get_first_page(struct zspage *zspage) 493 { 494 struct page *first_page = zspage->first_page; 495 496 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 497 return first_page; 498 } 499 500 static inline int get_first_obj_offset(struct page *page) 501 { 502 return page->units; 503 } 504 505 static inline void set_first_obj_offset(struct page *page, int offset) 506 { 507 page->units = offset; 508 } 509 510 static inline unsigned int get_freeobj(struct zspage *zspage) 511 { 512 return zspage->freeobj; 513 } 514 515 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 516 { 517 zspage->freeobj = obj; 518 } 519 520 static void get_zspage_mapping(struct zspage *zspage, 521 unsigned int *class_idx, 522 enum fullness_group *fullness) 523 { 524 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 525 526 *fullness = zspage->fullness; 527 *class_idx = zspage->class; 528 } 529 530 static void set_zspage_mapping(struct zspage *zspage, 531 unsigned int class_idx, 532 enum fullness_group fullness) 533 { 534 zspage->class = class_idx; 535 zspage->fullness = fullness; 536 } 537 538 /* 539 * zsmalloc divides the pool into various size classes where each 540 * class maintains a list of zspages where each zspage is divided 541 * into equal sized chunks. Each allocation falls into one of these 542 * classes depending on its size. This function returns index of the 543 * size class which has chunk size big enough to hold the give size. 544 */ 545 static int get_size_class_index(int size) 546 { 547 int idx = 0; 548 549 if (likely(size > ZS_MIN_ALLOC_SIZE)) 550 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 551 ZS_SIZE_CLASS_DELTA); 552 553 return min(zs_size_classes - 1, idx); 554 } 555 556 static inline void zs_stat_inc(struct size_class *class, 557 enum zs_stat_type type, unsigned long cnt) 558 { 559 class->stats.objs[type] += cnt; 560 } 561 562 static inline void zs_stat_dec(struct size_class *class, 563 enum zs_stat_type type, unsigned long cnt) 564 { 565 class->stats.objs[type] -= cnt; 566 } 567 568 static inline unsigned long zs_stat_get(struct size_class *class, 569 enum zs_stat_type type) 570 { 571 return class->stats.objs[type]; 572 } 573 574 #ifdef CONFIG_ZSMALLOC_STAT 575 576 static void __init zs_stat_init(void) 577 { 578 if (!debugfs_initialized()) { 579 pr_warn("debugfs not available, stat dir not created\n"); 580 return; 581 } 582 583 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 584 if (!zs_stat_root) 585 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 586 } 587 588 static void __exit zs_stat_exit(void) 589 { 590 debugfs_remove_recursive(zs_stat_root); 591 } 592 593 static unsigned long zs_can_compact(struct size_class *class); 594 595 static int zs_stats_size_show(struct seq_file *s, void *v) 596 { 597 int i; 598 struct zs_pool *pool = s->private; 599 struct size_class *class; 600 int objs_per_zspage; 601 unsigned long class_almost_full, class_almost_empty; 602 unsigned long obj_allocated, obj_used, pages_used, freeable; 603 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 604 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 605 unsigned long total_freeable = 0; 606 607 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 608 "class", "size", "almost_full", "almost_empty", 609 "obj_allocated", "obj_used", "pages_used", 610 "pages_per_zspage", "freeable"); 611 612 for (i = 0; i < zs_size_classes; i++) { 613 class = pool->size_class[i]; 614 615 if (class->index != i) 616 continue; 617 618 spin_lock(&class->lock); 619 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 620 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 621 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 622 obj_used = zs_stat_get(class, OBJ_USED); 623 freeable = zs_can_compact(class); 624 spin_unlock(&class->lock); 625 626 objs_per_zspage = class->objs_per_zspage; 627 pages_used = obj_allocated / objs_per_zspage * 628 class->pages_per_zspage; 629 630 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 631 " %10lu %10lu %16d %8lu\n", 632 i, class->size, class_almost_full, class_almost_empty, 633 obj_allocated, obj_used, pages_used, 634 class->pages_per_zspage, freeable); 635 636 total_class_almost_full += class_almost_full; 637 total_class_almost_empty += class_almost_empty; 638 total_objs += obj_allocated; 639 total_used_objs += obj_used; 640 total_pages += pages_used; 641 total_freeable += freeable; 642 } 643 644 seq_puts(s, "\n"); 645 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 646 "Total", "", total_class_almost_full, 647 total_class_almost_empty, total_objs, 648 total_used_objs, total_pages, "", total_freeable); 649 650 return 0; 651 } 652 653 static int zs_stats_size_open(struct inode *inode, struct file *file) 654 { 655 return single_open(file, zs_stats_size_show, inode->i_private); 656 } 657 658 static const struct file_operations zs_stat_size_ops = { 659 .open = zs_stats_size_open, 660 .read = seq_read, 661 .llseek = seq_lseek, 662 .release = single_release, 663 }; 664 665 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 666 { 667 struct dentry *entry; 668 669 if (!zs_stat_root) { 670 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 671 return; 672 } 673 674 entry = debugfs_create_dir(name, zs_stat_root); 675 if (!entry) { 676 pr_warn("debugfs dir <%s> creation failed\n", name); 677 return; 678 } 679 pool->stat_dentry = entry; 680 681 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 682 pool->stat_dentry, pool, &zs_stat_size_ops); 683 if (!entry) { 684 pr_warn("%s: debugfs file entry <%s> creation failed\n", 685 name, "classes"); 686 debugfs_remove_recursive(pool->stat_dentry); 687 pool->stat_dentry = NULL; 688 } 689 } 690 691 static void zs_pool_stat_destroy(struct zs_pool *pool) 692 { 693 debugfs_remove_recursive(pool->stat_dentry); 694 } 695 696 #else /* CONFIG_ZSMALLOC_STAT */ 697 static void __init zs_stat_init(void) 698 { 699 } 700 701 static void __exit zs_stat_exit(void) 702 { 703 } 704 705 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 706 { 707 } 708 709 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 710 { 711 } 712 #endif 713 714 715 /* 716 * For each size class, zspages are divided into different groups 717 * depending on how "full" they are. This was done so that we could 718 * easily find empty or nearly empty zspages when we try to shrink 719 * the pool (not yet implemented). This function returns fullness 720 * status of the given page. 721 */ 722 static enum fullness_group get_fullness_group(struct size_class *class, 723 struct zspage *zspage) 724 { 725 int inuse, objs_per_zspage; 726 enum fullness_group fg; 727 728 inuse = get_zspage_inuse(zspage); 729 objs_per_zspage = class->objs_per_zspage; 730 731 if (inuse == 0) 732 fg = ZS_EMPTY; 733 else if (inuse == objs_per_zspage) 734 fg = ZS_FULL; 735 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 736 fg = ZS_ALMOST_EMPTY; 737 else 738 fg = ZS_ALMOST_FULL; 739 740 return fg; 741 } 742 743 /* 744 * Each size class maintains various freelists and zspages are assigned 745 * to one of these freelists based on the number of live objects they 746 * have. This functions inserts the given zspage into the freelist 747 * identified by <class, fullness_group>. 748 */ 749 static void insert_zspage(struct size_class *class, 750 struct zspage *zspage, 751 enum fullness_group fullness) 752 { 753 struct zspage *head; 754 755 zs_stat_inc(class, fullness, 1); 756 head = list_first_entry_or_null(&class->fullness_list[fullness], 757 struct zspage, list); 758 /* 759 * We want to see more ZS_FULL pages and less almost empty/full. 760 * Put pages with higher ->inuse first. 761 */ 762 if (head) { 763 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 764 list_add(&zspage->list, &head->list); 765 return; 766 } 767 } 768 list_add(&zspage->list, &class->fullness_list[fullness]); 769 } 770 771 /* 772 * This function removes the given zspage from the freelist identified 773 * by <class, fullness_group>. 774 */ 775 static void remove_zspage(struct size_class *class, 776 struct zspage *zspage, 777 enum fullness_group fullness) 778 { 779 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 780 VM_BUG_ON(is_zspage_isolated(zspage)); 781 782 list_del_init(&zspage->list); 783 zs_stat_dec(class, fullness, 1); 784 } 785 786 /* 787 * Each size class maintains zspages in different fullness groups depending 788 * on the number of live objects they contain. When allocating or freeing 789 * objects, the fullness status of the page can change, say, from ALMOST_FULL 790 * to ALMOST_EMPTY when freeing an object. This function checks if such 791 * a status change has occurred for the given page and accordingly moves the 792 * page from the freelist of the old fullness group to that of the new 793 * fullness group. 794 */ 795 static enum fullness_group fix_fullness_group(struct size_class *class, 796 struct zspage *zspage) 797 { 798 int class_idx; 799 enum fullness_group currfg, newfg; 800 801 get_zspage_mapping(zspage, &class_idx, &currfg); 802 newfg = get_fullness_group(class, zspage); 803 if (newfg == currfg) 804 goto out; 805 806 if (!is_zspage_isolated(zspage)) { 807 remove_zspage(class, zspage, currfg); 808 insert_zspage(class, zspage, newfg); 809 } 810 811 set_zspage_mapping(zspage, class_idx, newfg); 812 813 out: 814 return newfg; 815 } 816 817 /* 818 * We have to decide on how many pages to link together 819 * to form a zspage for each size class. This is important 820 * to reduce wastage due to unusable space left at end of 821 * each zspage which is given as: 822 * wastage = Zp % class_size 823 * usage = Zp - wastage 824 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 825 * 826 * For example, for size class of 3/8 * PAGE_SIZE, we should 827 * link together 3 PAGE_SIZE sized pages to form a zspage 828 * since then we can perfectly fit in 8 such objects. 829 */ 830 static int get_pages_per_zspage(int class_size) 831 { 832 int i, max_usedpc = 0; 833 /* zspage order which gives maximum used size per KB */ 834 int max_usedpc_order = 1; 835 836 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 837 int zspage_size; 838 int waste, usedpc; 839 840 zspage_size = i * PAGE_SIZE; 841 waste = zspage_size % class_size; 842 usedpc = (zspage_size - waste) * 100 / zspage_size; 843 844 if (usedpc > max_usedpc) { 845 max_usedpc = usedpc; 846 max_usedpc_order = i; 847 } 848 } 849 850 return max_usedpc_order; 851 } 852 853 static struct zspage *get_zspage(struct page *page) 854 { 855 struct zspage *zspage = (struct zspage *)page->private; 856 857 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 858 return zspage; 859 } 860 861 static struct page *get_next_page(struct page *page) 862 { 863 if (unlikely(PageHugeObject(page))) 864 return NULL; 865 866 return page->freelist; 867 } 868 869 /** 870 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 871 * @page: page object resides in zspage 872 * @obj_idx: object index 873 */ 874 static void obj_to_location(unsigned long obj, struct page **page, 875 unsigned int *obj_idx) 876 { 877 obj >>= OBJ_TAG_BITS; 878 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 879 *obj_idx = (obj & OBJ_INDEX_MASK); 880 } 881 882 /** 883 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 884 * @page: page object resides in zspage 885 * @obj_idx: object index 886 */ 887 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 888 { 889 unsigned long obj; 890 891 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 892 obj |= obj_idx & OBJ_INDEX_MASK; 893 obj <<= OBJ_TAG_BITS; 894 895 return obj; 896 } 897 898 static unsigned long handle_to_obj(unsigned long handle) 899 { 900 return *(unsigned long *)handle; 901 } 902 903 static unsigned long obj_to_head(struct page *page, void *obj) 904 { 905 if (unlikely(PageHugeObject(page))) { 906 VM_BUG_ON_PAGE(!is_first_page(page), page); 907 return page->index; 908 } else 909 return *(unsigned long *)obj; 910 } 911 912 static inline int testpin_tag(unsigned long handle) 913 { 914 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 915 } 916 917 static inline int trypin_tag(unsigned long handle) 918 { 919 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 920 } 921 922 static void pin_tag(unsigned long handle) 923 { 924 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 925 } 926 927 static void unpin_tag(unsigned long handle) 928 { 929 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 930 } 931 932 static void reset_page(struct page *page) 933 { 934 __ClearPageMovable(page); 935 ClearPagePrivate(page); 936 set_page_private(page, 0); 937 page_mapcount_reset(page); 938 ClearPageHugeObject(page); 939 page->freelist = NULL; 940 } 941 942 /* 943 * To prevent zspage destroy during migration, zspage freeing should 944 * hold locks of all pages in the zspage. 945 */ 946 void lock_zspage(struct zspage *zspage) 947 { 948 struct page *page = get_first_page(zspage); 949 950 do { 951 lock_page(page); 952 } while ((page = get_next_page(page)) != NULL); 953 } 954 955 int trylock_zspage(struct zspage *zspage) 956 { 957 struct page *cursor, *fail; 958 959 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 960 get_next_page(cursor)) { 961 if (!trylock_page(cursor)) { 962 fail = cursor; 963 goto unlock; 964 } 965 } 966 967 return 1; 968 unlock: 969 for (cursor = get_first_page(zspage); cursor != fail; cursor = 970 get_next_page(cursor)) 971 unlock_page(cursor); 972 973 return 0; 974 } 975 976 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 977 struct zspage *zspage) 978 { 979 struct page *page, *next; 980 enum fullness_group fg; 981 unsigned int class_idx; 982 983 get_zspage_mapping(zspage, &class_idx, &fg); 984 985 assert_spin_locked(&class->lock); 986 987 VM_BUG_ON(get_zspage_inuse(zspage)); 988 VM_BUG_ON(fg != ZS_EMPTY); 989 990 next = page = get_first_page(zspage); 991 do { 992 VM_BUG_ON_PAGE(!PageLocked(page), page); 993 next = get_next_page(page); 994 reset_page(page); 995 unlock_page(page); 996 dec_zone_page_state(page, NR_ZSPAGES); 997 put_page(page); 998 page = next; 999 } while (page != NULL); 1000 1001 cache_free_zspage(pool, zspage); 1002 1003 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1004 atomic_long_sub(class->pages_per_zspage, 1005 &pool->pages_allocated); 1006 } 1007 1008 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1009 struct zspage *zspage) 1010 { 1011 VM_BUG_ON(get_zspage_inuse(zspage)); 1012 VM_BUG_ON(list_empty(&zspage->list)); 1013 1014 if (!trylock_zspage(zspage)) { 1015 kick_deferred_free(pool); 1016 return; 1017 } 1018 1019 remove_zspage(class, zspage, ZS_EMPTY); 1020 __free_zspage(pool, class, zspage); 1021 } 1022 1023 /* Initialize a newly allocated zspage */ 1024 static void init_zspage(struct size_class *class, struct zspage *zspage) 1025 { 1026 unsigned int freeobj = 1; 1027 unsigned long off = 0; 1028 struct page *page = get_first_page(zspage); 1029 1030 while (page) { 1031 struct page *next_page; 1032 struct link_free *link; 1033 void *vaddr; 1034 1035 set_first_obj_offset(page, off); 1036 1037 vaddr = kmap_atomic(page); 1038 link = (struct link_free *)vaddr + off / sizeof(*link); 1039 1040 while ((off += class->size) < PAGE_SIZE) { 1041 link->next = freeobj++ << OBJ_TAG_BITS; 1042 link += class->size / sizeof(*link); 1043 } 1044 1045 /* 1046 * We now come to the last (full or partial) object on this 1047 * page, which must point to the first object on the next 1048 * page (if present) 1049 */ 1050 next_page = get_next_page(page); 1051 if (next_page) { 1052 link->next = freeobj++ << OBJ_TAG_BITS; 1053 } else { 1054 /* 1055 * Reset OBJ_TAG_BITS bit to last link to tell 1056 * whether it's allocated object or not. 1057 */ 1058 link->next = -1 << OBJ_TAG_BITS; 1059 } 1060 kunmap_atomic(vaddr); 1061 page = next_page; 1062 off %= PAGE_SIZE; 1063 } 1064 1065 set_freeobj(zspage, 0); 1066 } 1067 1068 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1069 struct page *pages[]) 1070 { 1071 int i; 1072 struct page *page; 1073 struct page *prev_page = NULL; 1074 int nr_pages = class->pages_per_zspage; 1075 1076 /* 1077 * Allocate individual pages and link them together as: 1078 * 1. all pages are linked together using page->freelist 1079 * 2. each sub-page point to zspage using page->private 1080 * 1081 * we set PG_private to identify the first page (i.e. no other sub-page 1082 * has this flag set). 1083 */ 1084 for (i = 0; i < nr_pages; i++) { 1085 page = pages[i]; 1086 set_page_private(page, (unsigned long)zspage); 1087 page->freelist = NULL; 1088 if (i == 0) { 1089 zspage->first_page = page; 1090 SetPagePrivate(page); 1091 if (unlikely(class->objs_per_zspage == 1 && 1092 class->pages_per_zspage == 1)) 1093 SetPageHugeObject(page); 1094 } else { 1095 prev_page->freelist = page; 1096 } 1097 prev_page = page; 1098 } 1099 } 1100 1101 /* 1102 * Allocate a zspage for the given size class 1103 */ 1104 static struct zspage *alloc_zspage(struct zs_pool *pool, 1105 struct size_class *class, 1106 gfp_t gfp) 1107 { 1108 int i; 1109 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1110 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1111 1112 if (!zspage) 1113 return NULL; 1114 1115 memset(zspage, 0, sizeof(struct zspage)); 1116 zspage->magic = ZSPAGE_MAGIC; 1117 migrate_lock_init(zspage); 1118 1119 for (i = 0; i < class->pages_per_zspage; i++) { 1120 struct page *page; 1121 1122 page = alloc_page(gfp); 1123 if (!page) { 1124 while (--i >= 0) { 1125 dec_zone_page_state(pages[i], NR_ZSPAGES); 1126 __free_page(pages[i]); 1127 } 1128 cache_free_zspage(pool, zspage); 1129 return NULL; 1130 } 1131 1132 inc_zone_page_state(page, NR_ZSPAGES); 1133 pages[i] = page; 1134 } 1135 1136 create_page_chain(class, zspage, pages); 1137 init_zspage(class, zspage); 1138 1139 return zspage; 1140 } 1141 1142 static struct zspage *find_get_zspage(struct size_class *class) 1143 { 1144 int i; 1145 struct zspage *zspage; 1146 1147 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1148 zspage = list_first_entry_or_null(&class->fullness_list[i], 1149 struct zspage, list); 1150 if (zspage) 1151 break; 1152 } 1153 1154 return zspage; 1155 } 1156 1157 #ifdef CONFIG_PGTABLE_MAPPING 1158 static inline int __zs_cpu_up(struct mapping_area *area) 1159 { 1160 /* 1161 * Make sure we don't leak memory if a cpu UP notification 1162 * and zs_init() race and both call zs_cpu_up() on the same cpu 1163 */ 1164 if (area->vm) 1165 return 0; 1166 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1167 if (!area->vm) 1168 return -ENOMEM; 1169 return 0; 1170 } 1171 1172 static inline void __zs_cpu_down(struct mapping_area *area) 1173 { 1174 if (area->vm) 1175 free_vm_area(area->vm); 1176 area->vm = NULL; 1177 } 1178 1179 static inline void *__zs_map_object(struct mapping_area *area, 1180 struct page *pages[2], int off, int size) 1181 { 1182 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1183 area->vm_addr = area->vm->addr; 1184 return area->vm_addr + off; 1185 } 1186 1187 static inline void __zs_unmap_object(struct mapping_area *area, 1188 struct page *pages[2], int off, int size) 1189 { 1190 unsigned long addr = (unsigned long)area->vm_addr; 1191 1192 unmap_kernel_range(addr, PAGE_SIZE * 2); 1193 } 1194 1195 #else /* CONFIG_PGTABLE_MAPPING */ 1196 1197 static inline int __zs_cpu_up(struct mapping_area *area) 1198 { 1199 /* 1200 * Make sure we don't leak memory if a cpu UP notification 1201 * and zs_init() race and both call zs_cpu_up() on the same cpu 1202 */ 1203 if (area->vm_buf) 1204 return 0; 1205 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1206 if (!area->vm_buf) 1207 return -ENOMEM; 1208 return 0; 1209 } 1210 1211 static inline void __zs_cpu_down(struct mapping_area *area) 1212 { 1213 kfree(area->vm_buf); 1214 area->vm_buf = NULL; 1215 } 1216 1217 static void *__zs_map_object(struct mapping_area *area, 1218 struct page *pages[2], int off, int size) 1219 { 1220 int sizes[2]; 1221 void *addr; 1222 char *buf = area->vm_buf; 1223 1224 /* disable page faults to match kmap_atomic() return conditions */ 1225 pagefault_disable(); 1226 1227 /* no read fastpath */ 1228 if (area->vm_mm == ZS_MM_WO) 1229 goto out; 1230 1231 sizes[0] = PAGE_SIZE - off; 1232 sizes[1] = size - sizes[0]; 1233 1234 /* copy object to per-cpu buffer */ 1235 addr = kmap_atomic(pages[0]); 1236 memcpy(buf, addr + off, sizes[0]); 1237 kunmap_atomic(addr); 1238 addr = kmap_atomic(pages[1]); 1239 memcpy(buf + sizes[0], addr, sizes[1]); 1240 kunmap_atomic(addr); 1241 out: 1242 return area->vm_buf; 1243 } 1244 1245 static void __zs_unmap_object(struct mapping_area *area, 1246 struct page *pages[2], int off, int size) 1247 { 1248 int sizes[2]; 1249 void *addr; 1250 char *buf; 1251 1252 /* no write fastpath */ 1253 if (area->vm_mm == ZS_MM_RO) 1254 goto out; 1255 1256 buf = area->vm_buf; 1257 buf = buf + ZS_HANDLE_SIZE; 1258 size -= ZS_HANDLE_SIZE; 1259 off += ZS_HANDLE_SIZE; 1260 1261 sizes[0] = PAGE_SIZE - off; 1262 sizes[1] = size - sizes[0]; 1263 1264 /* copy per-cpu buffer to object */ 1265 addr = kmap_atomic(pages[0]); 1266 memcpy(addr + off, buf, sizes[0]); 1267 kunmap_atomic(addr); 1268 addr = kmap_atomic(pages[1]); 1269 memcpy(addr, buf + sizes[0], sizes[1]); 1270 kunmap_atomic(addr); 1271 1272 out: 1273 /* enable page faults to match kunmap_atomic() return conditions */ 1274 pagefault_enable(); 1275 } 1276 1277 #endif /* CONFIG_PGTABLE_MAPPING */ 1278 1279 static int zs_cpu_prepare(unsigned int cpu) 1280 { 1281 struct mapping_area *area; 1282 1283 area = &per_cpu(zs_map_area, cpu); 1284 return __zs_cpu_up(area); 1285 } 1286 1287 static int zs_cpu_dead(unsigned int cpu) 1288 { 1289 struct mapping_area *area; 1290 1291 area = &per_cpu(zs_map_area, cpu); 1292 __zs_cpu_down(area); 1293 return 0; 1294 } 1295 1296 static void __init init_zs_size_classes(void) 1297 { 1298 int nr; 1299 1300 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; 1301 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) 1302 nr += 1; 1303 1304 zs_size_classes = nr; 1305 } 1306 1307 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1308 int objs_per_zspage) 1309 { 1310 if (prev->pages_per_zspage == pages_per_zspage && 1311 prev->objs_per_zspage == objs_per_zspage) 1312 return true; 1313 1314 return false; 1315 } 1316 1317 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1318 { 1319 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1320 } 1321 1322 unsigned long zs_get_total_pages(struct zs_pool *pool) 1323 { 1324 return atomic_long_read(&pool->pages_allocated); 1325 } 1326 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1327 1328 /** 1329 * zs_map_object - get address of allocated object from handle. 1330 * @pool: pool from which the object was allocated 1331 * @handle: handle returned from zs_malloc 1332 * 1333 * Before using an object allocated from zs_malloc, it must be mapped using 1334 * this function. When done with the object, it must be unmapped using 1335 * zs_unmap_object. 1336 * 1337 * Only one object can be mapped per cpu at a time. There is no protection 1338 * against nested mappings. 1339 * 1340 * This function returns with preemption and page faults disabled. 1341 */ 1342 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1343 enum zs_mapmode mm) 1344 { 1345 struct zspage *zspage; 1346 struct page *page; 1347 unsigned long obj, off; 1348 unsigned int obj_idx; 1349 1350 unsigned int class_idx; 1351 enum fullness_group fg; 1352 struct size_class *class; 1353 struct mapping_area *area; 1354 struct page *pages[2]; 1355 void *ret; 1356 1357 /* 1358 * Because we use per-cpu mapping areas shared among the 1359 * pools/users, we can't allow mapping in interrupt context 1360 * because it can corrupt another users mappings. 1361 */ 1362 WARN_ON_ONCE(in_interrupt()); 1363 1364 /* From now on, migration cannot move the object */ 1365 pin_tag(handle); 1366 1367 obj = handle_to_obj(handle); 1368 obj_to_location(obj, &page, &obj_idx); 1369 zspage = get_zspage(page); 1370 1371 /* migration cannot move any subpage in this zspage */ 1372 migrate_read_lock(zspage); 1373 1374 get_zspage_mapping(zspage, &class_idx, &fg); 1375 class = pool->size_class[class_idx]; 1376 off = (class->size * obj_idx) & ~PAGE_MASK; 1377 1378 area = &get_cpu_var(zs_map_area); 1379 area->vm_mm = mm; 1380 if (off + class->size <= PAGE_SIZE) { 1381 /* this object is contained entirely within a page */ 1382 area->vm_addr = kmap_atomic(page); 1383 ret = area->vm_addr + off; 1384 goto out; 1385 } 1386 1387 /* this object spans two pages */ 1388 pages[0] = page; 1389 pages[1] = get_next_page(page); 1390 BUG_ON(!pages[1]); 1391 1392 ret = __zs_map_object(area, pages, off, class->size); 1393 out: 1394 if (likely(!PageHugeObject(page))) 1395 ret += ZS_HANDLE_SIZE; 1396 1397 return ret; 1398 } 1399 EXPORT_SYMBOL_GPL(zs_map_object); 1400 1401 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1402 { 1403 struct zspage *zspage; 1404 struct page *page; 1405 unsigned long obj, off; 1406 unsigned int obj_idx; 1407 1408 unsigned int class_idx; 1409 enum fullness_group fg; 1410 struct size_class *class; 1411 struct mapping_area *area; 1412 1413 obj = handle_to_obj(handle); 1414 obj_to_location(obj, &page, &obj_idx); 1415 zspage = get_zspage(page); 1416 get_zspage_mapping(zspage, &class_idx, &fg); 1417 class = pool->size_class[class_idx]; 1418 off = (class->size * obj_idx) & ~PAGE_MASK; 1419 1420 area = this_cpu_ptr(&zs_map_area); 1421 if (off + class->size <= PAGE_SIZE) 1422 kunmap_atomic(area->vm_addr); 1423 else { 1424 struct page *pages[2]; 1425 1426 pages[0] = page; 1427 pages[1] = get_next_page(page); 1428 BUG_ON(!pages[1]); 1429 1430 __zs_unmap_object(area, pages, off, class->size); 1431 } 1432 put_cpu_var(zs_map_area); 1433 1434 migrate_read_unlock(zspage); 1435 unpin_tag(handle); 1436 } 1437 EXPORT_SYMBOL_GPL(zs_unmap_object); 1438 1439 static unsigned long obj_malloc(struct size_class *class, 1440 struct zspage *zspage, unsigned long handle) 1441 { 1442 int i, nr_page, offset; 1443 unsigned long obj; 1444 struct link_free *link; 1445 1446 struct page *m_page; 1447 unsigned long m_offset; 1448 void *vaddr; 1449 1450 handle |= OBJ_ALLOCATED_TAG; 1451 obj = get_freeobj(zspage); 1452 1453 offset = obj * class->size; 1454 nr_page = offset >> PAGE_SHIFT; 1455 m_offset = offset & ~PAGE_MASK; 1456 m_page = get_first_page(zspage); 1457 1458 for (i = 0; i < nr_page; i++) 1459 m_page = get_next_page(m_page); 1460 1461 vaddr = kmap_atomic(m_page); 1462 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1463 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1464 if (likely(!PageHugeObject(m_page))) 1465 /* record handle in the header of allocated chunk */ 1466 link->handle = handle; 1467 else 1468 /* record handle to page->index */ 1469 zspage->first_page->index = handle; 1470 1471 kunmap_atomic(vaddr); 1472 mod_zspage_inuse(zspage, 1); 1473 zs_stat_inc(class, OBJ_USED, 1); 1474 1475 obj = location_to_obj(m_page, obj); 1476 1477 return obj; 1478 } 1479 1480 1481 /** 1482 * zs_malloc - Allocate block of given size from pool. 1483 * @pool: pool to allocate from 1484 * @size: size of block to allocate 1485 * @gfp: gfp flags when allocating object 1486 * 1487 * On success, handle to the allocated object is returned, 1488 * otherwise 0. 1489 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1490 */ 1491 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1492 { 1493 unsigned long handle, obj; 1494 struct size_class *class; 1495 enum fullness_group newfg; 1496 struct zspage *zspage; 1497 1498 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1499 return 0; 1500 1501 handle = cache_alloc_handle(pool, gfp); 1502 if (!handle) 1503 return 0; 1504 1505 /* extra space in chunk to keep the handle */ 1506 size += ZS_HANDLE_SIZE; 1507 class = pool->size_class[get_size_class_index(size)]; 1508 1509 spin_lock(&class->lock); 1510 zspage = find_get_zspage(class); 1511 if (likely(zspage)) { 1512 obj = obj_malloc(class, zspage, handle); 1513 /* Now move the zspage to another fullness group, if required */ 1514 fix_fullness_group(class, zspage); 1515 record_obj(handle, obj); 1516 spin_unlock(&class->lock); 1517 1518 return handle; 1519 } 1520 1521 spin_unlock(&class->lock); 1522 1523 zspage = alloc_zspage(pool, class, gfp); 1524 if (!zspage) { 1525 cache_free_handle(pool, handle); 1526 return 0; 1527 } 1528 1529 spin_lock(&class->lock); 1530 obj = obj_malloc(class, zspage, handle); 1531 newfg = get_fullness_group(class, zspage); 1532 insert_zspage(class, zspage, newfg); 1533 set_zspage_mapping(zspage, class->index, newfg); 1534 record_obj(handle, obj); 1535 atomic_long_add(class->pages_per_zspage, 1536 &pool->pages_allocated); 1537 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1538 1539 /* We completely set up zspage so mark them as movable */ 1540 SetZsPageMovable(pool, zspage); 1541 spin_unlock(&class->lock); 1542 1543 return handle; 1544 } 1545 EXPORT_SYMBOL_GPL(zs_malloc); 1546 1547 static void obj_free(struct size_class *class, unsigned long obj) 1548 { 1549 struct link_free *link; 1550 struct zspage *zspage; 1551 struct page *f_page; 1552 unsigned long f_offset; 1553 unsigned int f_objidx; 1554 void *vaddr; 1555 1556 obj &= ~OBJ_ALLOCATED_TAG; 1557 obj_to_location(obj, &f_page, &f_objidx); 1558 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1559 zspage = get_zspage(f_page); 1560 1561 vaddr = kmap_atomic(f_page); 1562 1563 /* Insert this object in containing zspage's freelist */ 1564 link = (struct link_free *)(vaddr + f_offset); 1565 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1566 kunmap_atomic(vaddr); 1567 set_freeobj(zspage, f_objidx); 1568 mod_zspage_inuse(zspage, -1); 1569 zs_stat_dec(class, OBJ_USED, 1); 1570 } 1571 1572 void zs_free(struct zs_pool *pool, unsigned long handle) 1573 { 1574 struct zspage *zspage; 1575 struct page *f_page; 1576 unsigned long obj; 1577 unsigned int f_objidx; 1578 int class_idx; 1579 struct size_class *class; 1580 enum fullness_group fullness; 1581 bool isolated; 1582 1583 if (unlikely(!handle)) 1584 return; 1585 1586 pin_tag(handle); 1587 obj = handle_to_obj(handle); 1588 obj_to_location(obj, &f_page, &f_objidx); 1589 zspage = get_zspage(f_page); 1590 1591 migrate_read_lock(zspage); 1592 1593 get_zspage_mapping(zspage, &class_idx, &fullness); 1594 class = pool->size_class[class_idx]; 1595 1596 spin_lock(&class->lock); 1597 obj_free(class, obj); 1598 fullness = fix_fullness_group(class, zspage); 1599 if (fullness != ZS_EMPTY) { 1600 migrate_read_unlock(zspage); 1601 goto out; 1602 } 1603 1604 isolated = is_zspage_isolated(zspage); 1605 migrate_read_unlock(zspage); 1606 /* If zspage is isolated, zs_page_putback will free the zspage */ 1607 if (likely(!isolated)) 1608 free_zspage(pool, class, zspage); 1609 out: 1610 1611 spin_unlock(&class->lock); 1612 unpin_tag(handle); 1613 cache_free_handle(pool, handle); 1614 } 1615 EXPORT_SYMBOL_GPL(zs_free); 1616 1617 static void zs_object_copy(struct size_class *class, unsigned long dst, 1618 unsigned long src) 1619 { 1620 struct page *s_page, *d_page; 1621 unsigned int s_objidx, d_objidx; 1622 unsigned long s_off, d_off; 1623 void *s_addr, *d_addr; 1624 int s_size, d_size, size; 1625 int written = 0; 1626 1627 s_size = d_size = class->size; 1628 1629 obj_to_location(src, &s_page, &s_objidx); 1630 obj_to_location(dst, &d_page, &d_objidx); 1631 1632 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1633 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1634 1635 if (s_off + class->size > PAGE_SIZE) 1636 s_size = PAGE_SIZE - s_off; 1637 1638 if (d_off + class->size > PAGE_SIZE) 1639 d_size = PAGE_SIZE - d_off; 1640 1641 s_addr = kmap_atomic(s_page); 1642 d_addr = kmap_atomic(d_page); 1643 1644 while (1) { 1645 size = min(s_size, d_size); 1646 memcpy(d_addr + d_off, s_addr + s_off, size); 1647 written += size; 1648 1649 if (written == class->size) 1650 break; 1651 1652 s_off += size; 1653 s_size -= size; 1654 d_off += size; 1655 d_size -= size; 1656 1657 if (s_off >= PAGE_SIZE) { 1658 kunmap_atomic(d_addr); 1659 kunmap_atomic(s_addr); 1660 s_page = get_next_page(s_page); 1661 s_addr = kmap_atomic(s_page); 1662 d_addr = kmap_atomic(d_page); 1663 s_size = class->size - written; 1664 s_off = 0; 1665 } 1666 1667 if (d_off >= PAGE_SIZE) { 1668 kunmap_atomic(d_addr); 1669 d_page = get_next_page(d_page); 1670 d_addr = kmap_atomic(d_page); 1671 d_size = class->size - written; 1672 d_off = 0; 1673 } 1674 } 1675 1676 kunmap_atomic(d_addr); 1677 kunmap_atomic(s_addr); 1678 } 1679 1680 /* 1681 * Find alloced object in zspage from index object and 1682 * return handle. 1683 */ 1684 static unsigned long find_alloced_obj(struct size_class *class, 1685 struct page *page, int *obj_idx) 1686 { 1687 unsigned long head; 1688 int offset = 0; 1689 int index = *obj_idx; 1690 unsigned long handle = 0; 1691 void *addr = kmap_atomic(page); 1692 1693 offset = get_first_obj_offset(page); 1694 offset += class->size * index; 1695 1696 while (offset < PAGE_SIZE) { 1697 head = obj_to_head(page, addr + offset); 1698 if (head & OBJ_ALLOCATED_TAG) { 1699 handle = head & ~OBJ_ALLOCATED_TAG; 1700 if (trypin_tag(handle)) 1701 break; 1702 handle = 0; 1703 } 1704 1705 offset += class->size; 1706 index++; 1707 } 1708 1709 kunmap_atomic(addr); 1710 1711 *obj_idx = index; 1712 1713 return handle; 1714 } 1715 1716 struct zs_compact_control { 1717 /* Source spage for migration which could be a subpage of zspage */ 1718 struct page *s_page; 1719 /* Destination page for migration which should be a first page 1720 * of zspage. */ 1721 struct page *d_page; 1722 /* Starting object index within @s_page which used for live object 1723 * in the subpage. */ 1724 int obj_idx; 1725 }; 1726 1727 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1728 struct zs_compact_control *cc) 1729 { 1730 unsigned long used_obj, free_obj; 1731 unsigned long handle; 1732 struct page *s_page = cc->s_page; 1733 struct page *d_page = cc->d_page; 1734 int obj_idx = cc->obj_idx; 1735 int ret = 0; 1736 1737 while (1) { 1738 handle = find_alloced_obj(class, s_page, &obj_idx); 1739 if (!handle) { 1740 s_page = get_next_page(s_page); 1741 if (!s_page) 1742 break; 1743 obj_idx = 0; 1744 continue; 1745 } 1746 1747 /* Stop if there is no more space */ 1748 if (zspage_full(class, get_zspage(d_page))) { 1749 unpin_tag(handle); 1750 ret = -ENOMEM; 1751 break; 1752 } 1753 1754 used_obj = handle_to_obj(handle); 1755 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1756 zs_object_copy(class, free_obj, used_obj); 1757 obj_idx++; 1758 /* 1759 * record_obj updates handle's value to free_obj and it will 1760 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1761 * breaks synchronization using pin_tag(e,g, zs_free) so 1762 * let's keep the lock bit. 1763 */ 1764 free_obj |= BIT(HANDLE_PIN_BIT); 1765 record_obj(handle, free_obj); 1766 unpin_tag(handle); 1767 obj_free(class, used_obj); 1768 } 1769 1770 /* Remember last position in this iteration */ 1771 cc->s_page = s_page; 1772 cc->obj_idx = obj_idx; 1773 1774 return ret; 1775 } 1776 1777 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1778 { 1779 int i; 1780 struct zspage *zspage; 1781 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1782 1783 if (!source) { 1784 fg[0] = ZS_ALMOST_FULL; 1785 fg[1] = ZS_ALMOST_EMPTY; 1786 } 1787 1788 for (i = 0; i < 2; i++) { 1789 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1790 struct zspage, list); 1791 if (zspage) { 1792 VM_BUG_ON(is_zspage_isolated(zspage)); 1793 remove_zspage(class, zspage, fg[i]); 1794 return zspage; 1795 } 1796 } 1797 1798 return zspage; 1799 } 1800 1801 /* 1802 * putback_zspage - add @zspage into right class's fullness list 1803 * @class: destination class 1804 * @zspage: target page 1805 * 1806 * Return @zspage's fullness_group 1807 */ 1808 static enum fullness_group putback_zspage(struct size_class *class, 1809 struct zspage *zspage) 1810 { 1811 enum fullness_group fullness; 1812 1813 VM_BUG_ON(is_zspage_isolated(zspage)); 1814 1815 fullness = get_fullness_group(class, zspage); 1816 insert_zspage(class, zspage, fullness); 1817 set_zspage_mapping(zspage, class->index, fullness); 1818 1819 return fullness; 1820 } 1821 1822 #ifdef CONFIG_COMPACTION 1823 static struct dentry *zs_mount(struct file_system_type *fs_type, 1824 int flags, const char *dev_name, void *data) 1825 { 1826 static const struct dentry_operations ops = { 1827 .d_dname = simple_dname, 1828 }; 1829 1830 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1831 } 1832 1833 static struct file_system_type zsmalloc_fs = { 1834 .name = "zsmalloc", 1835 .mount = zs_mount, 1836 .kill_sb = kill_anon_super, 1837 }; 1838 1839 static int zsmalloc_mount(void) 1840 { 1841 int ret = 0; 1842 1843 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1844 if (IS_ERR(zsmalloc_mnt)) 1845 ret = PTR_ERR(zsmalloc_mnt); 1846 1847 return ret; 1848 } 1849 1850 static void zsmalloc_unmount(void) 1851 { 1852 kern_unmount(zsmalloc_mnt); 1853 } 1854 1855 static void migrate_lock_init(struct zspage *zspage) 1856 { 1857 rwlock_init(&zspage->lock); 1858 } 1859 1860 static void migrate_read_lock(struct zspage *zspage) 1861 { 1862 read_lock(&zspage->lock); 1863 } 1864 1865 static void migrate_read_unlock(struct zspage *zspage) 1866 { 1867 read_unlock(&zspage->lock); 1868 } 1869 1870 static void migrate_write_lock(struct zspage *zspage) 1871 { 1872 write_lock(&zspage->lock); 1873 } 1874 1875 static void migrate_write_unlock(struct zspage *zspage) 1876 { 1877 write_unlock(&zspage->lock); 1878 } 1879 1880 /* Number of isolated subpage for *page migration* in this zspage */ 1881 static void inc_zspage_isolation(struct zspage *zspage) 1882 { 1883 zspage->isolated++; 1884 } 1885 1886 static void dec_zspage_isolation(struct zspage *zspage) 1887 { 1888 zspage->isolated--; 1889 } 1890 1891 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1892 struct page *newpage, struct page *oldpage) 1893 { 1894 struct page *page; 1895 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1896 int idx = 0; 1897 1898 page = get_first_page(zspage); 1899 do { 1900 if (page == oldpage) 1901 pages[idx] = newpage; 1902 else 1903 pages[idx] = page; 1904 idx++; 1905 } while ((page = get_next_page(page)) != NULL); 1906 1907 create_page_chain(class, zspage, pages); 1908 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1909 if (unlikely(PageHugeObject(oldpage))) 1910 newpage->index = oldpage->index; 1911 __SetPageMovable(newpage, page_mapping(oldpage)); 1912 } 1913 1914 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1915 { 1916 struct zs_pool *pool; 1917 struct size_class *class; 1918 int class_idx; 1919 enum fullness_group fullness; 1920 struct zspage *zspage; 1921 struct address_space *mapping; 1922 1923 /* 1924 * Page is locked so zspage couldn't be destroyed. For detail, look at 1925 * lock_zspage in free_zspage. 1926 */ 1927 VM_BUG_ON_PAGE(!PageMovable(page), page); 1928 VM_BUG_ON_PAGE(PageIsolated(page), page); 1929 1930 zspage = get_zspage(page); 1931 1932 /* 1933 * Without class lock, fullness could be stale while class_idx is okay 1934 * because class_idx is constant unless page is freed so we should get 1935 * fullness again under class lock. 1936 */ 1937 get_zspage_mapping(zspage, &class_idx, &fullness); 1938 mapping = page_mapping(page); 1939 pool = mapping->private_data; 1940 class = pool->size_class[class_idx]; 1941 1942 spin_lock(&class->lock); 1943 if (get_zspage_inuse(zspage) == 0) { 1944 spin_unlock(&class->lock); 1945 return false; 1946 } 1947 1948 /* zspage is isolated for object migration */ 1949 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1950 spin_unlock(&class->lock); 1951 return false; 1952 } 1953 1954 /* 1955 * If this is first time isolation for the zspage, isolate zspage from 1956 * size_class to prevent further object allocation from the zspage. 1957 */ 1958 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1959 get_zspage_mapping(zspage, &class_idx, &fullness); 1960 remove_zspage(class, zspage, fullness); 1961 } 1962 1963 inc_zspage_isolation(zspage); 1964 spin_unlock(&class->lock); 1965 1966 return true; 1967 } 1968 1969 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1970 struct page *page, enum migrate_mode mode) 1971 { 1972 struct zs_pool *pool; 1973 struct size_class *class; 1974 int class_idx; 1975 enum fullness_group fullness; 1976 struct zspage *zspage; 1977 struct page *dummy; 1978 void *s_addr, *d_addr, *addr; 1979 int offset, pos; 1980 unsigned long handle, head; 1981 unsigned long old_obj, new_obj; 1982 unsigned int obj_idx; 1983 int ret = -EAGAIN; 1984 1985 VM_BUG_ON_PAGE(!PageMovable(page), page); 1986 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1987 1988 zspage = get_zspage(page); 1989 1990 /* Concurrent compactor cannot migrate any subpage in zspage */ 1991 migrate_write_lock(zspage); 1992 get_zspage_mapping(zspage, &class_idx, &fullness); 1993 pool = mapping->private_data; 1994 class = pool->size_class[class_idx]; 1995 offset = get_first_obj_offset(page); 1996 1997 spin_lock(&class->lock); 1998 if (!get_zspage_inuse(zspage)) { 1999 ret = -EBUSY; 2000 goto unlock_class; 2001 } 2002 2003 pos = offset; 2004 s_addr = kmap_atomic(page); 2005 while (pos < PAGE_SIZE) { 2006 head = obj_to_head(page, s_addr + pos); 2007 if (head & OBJ_ALLOCATED_TAG) { 2008 handle = head & ~OBJ_ALLOCATED_TAG; 2009 if (!trypin_tag(handle)) 2010 goto unpin_objects; 2011 } 2012 pos += class->size; 2013 } 2014 2015 /* 2016 * Here, any user cannot access all objects in the zspage so let's move. 2017 */ 2018 d_addr = kmap_atomic(newpage); 2019 memcpy(d_addr, s_addr, PAGE_SIZE); 2020 kunmap_atomic(d_addr); 2021 2022 for (addr = s_addr + offset; addr < s_addr + pos; 2023 addr += class->size) { 2024 head = obj_to_head(page, addr); 2025 if (head & OBJ_ALLOCATED_TAG) { 2026 handle = head & ~OBJ_ALLOCATED_TAG; 2027 if (!testpin_tag(handle)) 2028 BUG(); 2029 2030 old_obj = handle_to_obj(handle); 2031 obj_to_location(old_obj, &dummy, &obj_idx); 2032 new_obj = (unsigned long)location_to_obj(newpage, 2033 obj_idx); 2034 new_obj |= BIT(HANDLE_PIN_BIT); 2035 record_obj(handle, new_obj); 2036 } 2037 } 2038 2039 replace_sub_page(class, zspage, newpage, page); 2040 get_page(newpage); 2041 2042 dec_zspage_isolation(zspage); 2043 2044 /* 2045 * Page migration is done so let's putback isolated zspage to 2046 * the list if @page is final isolated subpage in the zspage. 2047 */ 2048 if (!is_zspage_isolated(zspage)) 2049 putback_zspage(class, zspage); 2050 2051 reset_page(page); 2052 put_page(page); 2053 page = newpage; 2054 2055 ret = MIGRATEPAGE_SUCCESS; 2056 unpin_objects: 2057 for (addr = s_addr + offset; addr < s_addr + pos; 2058 addr += class->size) { 2059 head = obj_to_head(page, addr); 2060 if (head & OBJ_ALLOCATED_TAG) { 2061 handle = head & ~OBJ_ALLOCATED_TAG; 2062 if (!testpin_tag(handle)) 2063 BUG(); 2064 unpin_tag(handle); 2065 } 2066 } 2067 kunmap_atomic(s_addr); 2068 unlock_class: 2069 spin_unlock(&class->lock); 2070 migrate_write_unlock(zspage); 2071 2072 return ret; 2073 } 2074 2075 void zs_page_putback(struct page *page) 2076 { 2077 struct zs_pool *pool; 2078 struct size_class *class; 2079 int class_idx; 2080 enum fullness_group fg; 2081 struct address_space *mapping; 2082 struct zspage *zspage; 2083 2084 VM_BUG_ON_PAGE(!PageMovable(page), page); 2085 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2086 2087 zspage = get_zspage(page); 2088 get_zspage_mapping(zspage, &class_idx, &fg); 2089 mapping = page_mapping(page); 2090 pool = mapping->private_data; 2091 class = pool->size_class[class_idx]; 2092 2093 spin_lock(&class->lock); 2094 dec_zspage_isolation(zspage); 2095 if (!is_zspage_isolated(zspage)) { 2096 fg = putback_zspage(class, zspage); 2097 /* 2098 * Due to page_lock, we cannot free zspage immediately 2099 * so let's defer. 2100 */ 2101 if (fg == ZS_EMPTY) 2102 schedule_work(&pool->free_work); 2103 } 2104 spin_unlock(&class->lock); 2105 } 2106 2107 const struct address_space_operations zsmalloc_aops = { 2108 .isolate_page = zs_page_isolate, 2109 .migratepage = zs_page_migrate, 2110 .putback_page = zs_page_putback, 2111 }; 2112 2113 static int zs_register_migration(struct zs_pool *pool) 2114 { 2115 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2116 if (IS_ERR(pool->inode)) { 2117 pool->inode = NULL; 2118 return 1; 2119 } 2120 2121 pool->inode->i_mapping->private_data = pool; 2122 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2123 return 0; 2124 } 2125 2126 static void zs_unregister_migration(struct zs_pool *pool) 2127 { 2128 flush_work(&pool->free_work); 2129 iput(pool->inode); 2130 } 2131 2132 /* 2133 * Caller should hold page_lock of all pages in the zspage 2134 * In here, we cannot use zspage meta data. 2135 */ 2136 static void async_free_zspage(struct work_struct *work) 2137 { 2138 int i; 2139 struct size_class *class; 2140 unsigned int class_idx; 2141 enum fullness_group fullness; 2142 struct zspage *zspage, *tmp; 2143 LIST_HEAD(free_pages); 2144 struct zs_pool *pool = container_of(work, struct zs_pool, 2145 free_work); 2146 2147 for (i = 0; i < zs_size_classes; i++) { 2148 class = pool->size_class[i]; 2149 if (class->index != i) 2150 continue; 2151 2152 spin_lock(&class->lock); 2153 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2154 spin_unlock(&class->lock); 2155 } 2156 2157 2158 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2159 list_del(&zspage->list); 2160 lock_zspage(zspage); 2161 2162 get_zspage_mapping(zspage, &class_idx, &fullness); 2163 VM_BUG_ON(fullness != ZS_EMPTY); 2164 class = pool->size_class[class_idx]; 2165 spin_lock(&class->lock); 2166 __free_zspage(pool, pool->size_class[class_idx], zspage); 2167 spin_unlock(&class->lock); 2168 } 2169 }; 2170 2171 static void kick_deferred_free(struct zs_pool *pool) 2172 { 2173 schedule_work(&pool->free_work); 2174 } 2175 2176 static void init_deferred_free(struct zs_pool *pool) 2177 { 2178 INIT_WORK(&pool->free_work, async_free_zspage); 2179 } 2180 2181 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2182 { 2183 struct page *page = get_first_page(zspage); 2184 2185 do { 2186 WARN_ON(!trylock_page(page)); 2187 __SetPageMovable(page, pool->inode->i_mapping); 2188 unlock_page(page); 2189 } while ((page = get_next_page(page)) != NULL); 2190 } 2191 #endif 2192 2193 /* 2194 * 2195 * Based on the number of unused allocated objects calculate 2196 * and return the number of pages that we can free. 2197 */ 2198 static unsigned long zs_can_compact(struct size_class *class) 2199 { 2200 unsigned long obj_wasted; 2201 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2202 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2203 2204 if (obj_allocated <= obj_used) 2205 return 0; 2206 2207 obj_wasted = obj_allocated - obj_used; 2208 obj_wasted /= class->objs_per_zspage; 2209 2210 return obj_wasted * class->pages_per_zspage; 2211 } 2212 2213 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2214 { 2215 struct zs_compact_control cc; 2216 struct zspage *src_zspage; 2217 struct zspage *dst_zspage = NULL; 2218 2219 spin_lock(&class->lock); 2220 while ((src_zspage = isolate_zspage(class, true))) { 2221 2222 if (!zs_can_compact(class)) 2223 break; 2224 2225 cc.obj_idx = 0; 2226 cc.s_page = get_first_page(src_zspage); 2227 2228 while ((dst_zspage = isolate_zspage(class, false))) { 2229 cc.d_page = get_first_page(dst_zspage); 2230 /* 2231 * If there is no more space in dst_page, resched 2232 * and see if anyone had allocated another zspage. 2233 */ 2234 if (!migrate_zspage(pool, class, &cc)) 2235 break; 2236 2237 putback_zspage(class, dst_zspage); 2238 } 2239 2240 /* Stop if we couldn't find slot */ 2241 if (dst_zspage == NULL) 2242 break; 2243 2244 putback_zspage(class, dst_zspage); 2245 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2246 free_zspage(pool, class, src_zspage); 2247 pool->stats.pages_compacted += class->pages_per_zspage; 2248 } 2249 spin_unlock(&class->lock); 2250 cond_resched(); 2251 spin_lock(&class->lock); 2252 } 2253 2254 if (src_zspage) 2255 putback_zspage(class, src_zspage); 2256 2257 spin_unlock(&class->lock); 2258 } 2259 2260 unsigned long zs_compact(struct zs_pool *pool) 2261 { 2262 int i; 2263 struct size_class *class; 2264 2265 for (i = zs_size_classes - 1; i >= 0; i--) { 2266 class = pool->size_class[i]; 2267 if (!class) 2268 continue; 2269 if (class->index != i) 2270 continue; 2271 __zs_compact(pool, class); 2272 } 2273 2274 return pool->stats.pages_compacted; 2275 } 2276 EXPORT_SYMBOL_GPL(zs_compact); 2277 2278 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2279 { 2280 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2281 } 2282 EXPORT_SYMBOL_GPL(zs_pool_stats); 2283 2284 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2285 struct shrink_control *sc) 2286 { 2287 unsigned long pages_freed; 2288 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2289 shrinker); 2290 2291 pages_freed = pool->stats.pages_compacted; 2292 /* 2293 * Compact classes and calculate compaction delta. 2294 * Can run concurrently with a manually triggered 2295 * (by user) compaction. 2296 */ 2297 pages_freed = zs_compact(pool) - pages_freed; 2298 2299 return pages_freed ? pages_freed : SHRINK_STOP; 2300 } 2301 2302 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2303 struct shrink_control *sc) 2304 { 2305 int i; 2306 struct size_class *class; 2307 unsigned long pages_to_free = 0; 2308 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2309 shrinker); 2310 2311 for (i = zs_size_classes - 1; i >= 0; i--) { 2312 class = pool->size_class[i]; 2313 if (!class) 2314 continue; 2315 if (class->index != i) 2316 continue; 2317 2318 pages_to_free += zs_can_compact(class); 2319 } 2320 2321 return pages_to_free; 2322 } 2323 2324 static void zs_unregister_shrinker(struct zs_pool *pool) 2325 { 2326 if (pool->shrinker_enabled) { 2327 unregister_shrinker(&pool->shrinker); 2328 pool->shrinker_enabled = false; 2329 } 2330 } 2331 2332 static int zs_register_shrinker(struct zs_pool *pool) 2333 { 2334 pool->shrinker.scan_objects = zs_shrinker_scan; 2335 pool->shrinker.count_objects = zs_shrinker_count; 2336 pool->shrinker.batch = 0; 2337 pool->shrinker.seeks = DEFAULT_SEEKS; 2338 2339 return register_shrinker(&pool->shrinker); 2340 } 2341 2342 /** 2343 * zs_create_pool - Creates an allocation pool to work from. 2344 * @name: pool name to be created 2345 * 2346 * This function must be called before anything when using 2347 * the zsmalloc allocator. 2348 * 2349 * On success, a pointer to the newly created pool is returned, 2350 * otherwise NULL. 2351 */ 2352 struct zs_pool *zs_create_pool(const char *name) 2353 { 2354 int i; 2355 struct zs_pool *pool; 2356 struct size_class *prev_class = NULL; 2357 2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2359 if (!pool) 2360 return NULL; 2361 2362 init_deferred_free(pool); 2363 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), 2364 GFP_KERNEL); 2365 if (!pool->size_class) { 2366 kfree(pool); 2367 return NULL; 2368 } 2369 2370 pool->name = kstrdup(name, GFP_KERNEL); 2371 if (!pool->name) 2372 goto err; 2373 2374 if (create_cache(pool)) 2375 goto err; 2376 2377 /* 2378 * Iterate reversely, because, size of size_class that we want to use 2379 * for merging should be larger or equal to current size. 2380 */ 2381 for (i = zs_size_classes - 1; i >= 0; i--) { 2382 int size; 2383 int pages_per_zspage; 2384 int objs_per_zspage; 2385 struct size_class *class; 2386 int fullness = 0; 2387 2388 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2389 if (size > ZS_MAX_ALLOC_SIZE) 2390 size = ZS_MAX_ALLOC_SIZE; 2391 pages_per_zspage = get_pages_per_zspage(size); 2392 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2393 2394 /* 2395 * size_class is used for normal zsmalloc operation such 2396 * as alloc/free for that size. Although it is natural that we 2397 * have one size_class for each size, there is a chance that we 2398 * can get more memory utilization if we use one size_class for 2399 * many different sizes whose size_class have same 2400 * characteristics. So, we makes size_class point to 2401 * previous size_class if possible. 2402 */ 2403 if (prev_class) { 2404 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2405 pool->size_class[i] = prev_class; 2406 continue; 2407 } 2408 } 2409 2410 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2411 if (!class) 2412 goto err; 2413 2414 class->size = size; 2415 class->index = i; 2416 class->pages_per_zspage = pages_per_zspage; 2417 class->objs_per_zspage = objs_per_zspage; 2418 spin_lock_init(&class->lock); 2419 pool->size_class[i] = class; 2420 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2421 fullness++) 2422 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2423 2424 prev_class = class; 2425 } 2426 2427 /* debug only, don't abort if it fails */ 2428 zs_pool_stat_create(pool, name); 2429 2430 if (zs_register_migration(pool)) 2431 goto err; 2432 2433 /* 2434 * Not critical, we still can use the pool 2435 * and user can trigger compaction manually. 2436 */ 2437 if (zs_register_shrinker(pool) == 0) 2438 pool->shrinker_enabled = true; 2439 return pool; 2440 2441 err: 2442 zs_destroy_pool(pool); 2443 return NULL; 2444 } 2445 EXPORT_SYMBOL_GPL(zs_create_pool); 2446 2447 void zs_destroy_pool(struct zs_pool *pool) 2448 { 2449 int i; 2450 2451 zs_unregister_shrinker(pool); 2452 zs_unregister_migration(pool); 2453 zs_pool_stat_destroy(pool); 2454 2455 for (i = 0; i < zs_size_classes; i++) { 2456 int fg; 2457 struct size_class *class = pool->size_class[i]; 2458 2459 if (!class) 2460 continue; 2461 2462 if (class->index != i) 2463 continue; 2464 2465 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2466 if (!list_empty(&class->fullness_list[fg])) { 2467 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2468 class->size, fg); 2469 } 2470 } 2471 kfree(class); 2472 } 2473 2474 destroy_cache(pool); 2475 kfree(pool->size_class); 2476 kfree(pool->name); 2477 kfree(pool); 2478 } 2479 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2480 2481 static int __init zs_init(void) 2482 { 2483 int ret; 2484 2485 ret = zsmalloc_mount(); 2486 if (ret) 2487 goto out; 2488 2489 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2490 zs_cpu_prepare, zs_cpu_dead); 2491 if (ret) 2492 goto hp_setup_fail; 2493 2494 init_zs_size_classes(); 2495 2496 #ifdef CONFIG_ZPOOL 2497 zpool_register_driver(&zs_zpool_driver); 2498 #endif 2499 2500 zs_stat_init(); 2501 2502 return 0; 2503 2504 hp_setup_fail: 2505 zsmalloc_unmount(); 2506 out: 2507 return ret; 2508 } 2509 2510 static void __exit zs_exit(void) 2511 { 2512 #ifdef CONFIG_ZPOOL 2513 zpool_unregister_driver(&zs_zpool_driver); 2514 #endif 2515 zsmalloc_unmount(); 2516 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2517 2518 zs_stat_exit(); 2519 } 2520 2521 module_init(zs_init); 2522 module_exit(zs_exit); 2523 2524 MODULE_LICENSE("Dual BSD/GPL"); 2525 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2526