xref: /openbmc/linux/mm/zsmalloc.c (revision 113094f7)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT	0
109 
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum zs_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180 
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *	n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *	ZS_ALMOST_FULL	when n > N / f
190  *	ZS_EMPTY	when n == 0
191  *	ZS_FULL		when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	spinlock_t lock;
200 	struct list_head fullness_list[NR_ZS_FULLNESS];
201 	/*
202 	 * Size of objects stored in this class. Must be multiple
203 	 * of ZS_ALIGN.
204 	 */
205 	int size;
206 	int objs_per_zspage;
207 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 	int pages_per_zspage;
209 
210 	unsigned int index;
211 	struct zs_size_stat stats;
212 };
213 
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
216 {
217 	SetPageOwnerPriv1(page);
218 }
219 
220 static void ClearPageHugeObject(struct page *page)
221 {
222 	ClearPageOwnerPriv1(page);
223 }
224 
225 static int PageHugeObject(struct page *page)
226 {
227 	return PageOwnerPriv1(page);
228 }
229 
230 /*
231  * Placed within free objects to form a singly linked list.
232  * For every zspage, zspage->freeobj gives head of this list.
233  *
234  * This must be power of 2 and less than or equal to ZS_ALIGN
235  */
236 struct link_free {
237 	union {
238 		/*
239 		 * Free object index;
240 		 * It's valid for non-allocated object
241 		 */
242 		unsigned long next;
243 		/*
244 		 * Handle of allocated object.
245 		 */
246 		unsigned long handle;
247 	};
248 };
249 
250 struct zs_pool {
251 	const char *name;
252 
253 	struct size_class *size_class[ZS_SIZE_CLASSES];
254 	struct kmem_cache *handle_cachep;
255 	struct kmem_cache *zspage_cachep;
256 
257 	atomic_long_t pages_allocated;
258 
259 	struct zs_pool_stats stats;
260 
261 	/* Compact classes */
262 	struct shrinker shrinker;
263 
264 #ifdef CONFIG_ZSMALLOC_STAT
265 	struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 	struct inode *inode;
269 	struct work_struct free_work;
270 #endif
271 };
272 
273 struct zspage {
274 	struct {
275 		unsigned int fullness:FULLNESS_BITS;
276 		unsigned int class:CLASS_BITS + 1;
277 		unsigned int isolated:ISOLATED_BITS;
278 		unsigned int magic:MAGIC_VAL_BITS;
279 	};
280 	unsigned int inuse;
281 	unsigned int freeobj;
282 	struct page *first_page;
283 	struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 	rwlock_t lock;
286 #endif
287 };
288 
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 	struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 	char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 	char *vm_addr; /* address of kmap_atomic()'ed pages */
296 	enum zs_mapmode vm_mm; /* mapping mode */
297 };
298 
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320 
321 static int create_cache(struct zs_pool *pool)
322 {
323 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 					0, 0, NULL);
325 	if (!pool->handle_cachep)
326 		return 1;
327 
328 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 					0, 0, NULL);
330 	if (!pool->zspage_cachep) {
331 		kmem_cache_destroy(pool->handle_cachep);
332 		pool->handle_cachep = NULL;
333 		return 1;
334 	}
335 
336 	return 0;
337 }
338 
339 static void destroy_cache(struct zs_pool *pool)
340 {
341 	kmem_cache_destroy(pool->handle_cachep);
342 	kmem_cache_destroy(pool->zspage_cachep);
343 }
344 
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350 
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353 	kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355 
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358 	return kmem_cache_alloc(pool->zspage_cachep,
359 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361 
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364 	kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366 
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369 	/*
370 	 * lsb of @obj represents handle lock while other bits
371 	 * represent object value the handle is pointing so
372 	 * updating shouldn't do store tearing.
373 	 */
374 	WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376 
377 /* zpool driver */
378 
379 #ifdef CONFIG_ZPOOL
380 
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 			     const struct zpool_ops *zpool_ops,
383 			     struct zpool *zpool)
384 {
385 	/*
386 	 * Ignore global gfp flags: zs_malloc() may be invoked from
387 	 * different contexts and its caller must provide a valid
388 	 * gfp mask.
389 	 */
390 	return zs_create_pool(name);
391 }
392 
393 static void zs_zpool_destroy(void *pool)
394 {
395 	zs_destroy_pool(pool);
396 }
397 
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 			unsigned long *handle)
400 {
401 	*handle = zs_malloc(pool, size, gfp);
402 	return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 	zs_free(pool, handle);
407 }
408 
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 			enum zpool_mapmode mm)
411 {
412 	enum zs_mapmode zs_mm;
413 
414 	switch (mm) {
415 	case ZPOOL_MM_RO:
416 		zs_mm = ZS_MM_RO;
417 		break;
418 	case ZPOOL_MM_WO:
419 		zs_mm = ZS_MM_WO;
420 		break;
421 	case ZPOOL_MM_RW: /* fall through */
422 	default:
423 		zs_mm = ZS_MM_RW;
424 		break;
425 	}
426 
427 	return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 	zs_unmap_object(pool, handle);
432 }
433 
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 	return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438 
439 static struct zpool_driver zs_zpool_driver = {
440 	.type =		"zsmalloc",
441 	.owner =	THIS_MODULE,
442 	.create =	zs_zpool_create,
443 	.destroy =	zs_zpool_destroy,
444 	.malloc =	zs_zpool_malloc,
445 	.free =		zs_zpool_free,
446 	.map =		zs_zpool_map,
447 	.unmap =	zs_zpool_unmap,
448 	.total_size =	zs_zpool_total_size,
449 };
450 
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
453 
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456 
457 static bool is_zspage_isolated(struct zspage *zspage)
458 {
459 	return zspage->isolated;
460 }
461 
462 static __maybe_unused int is_first_page(struct page *page)
463 {
464 	return PagePrivate(page);
465 }
466 
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
469 {
470 	return zspage->inuse;
471 }
472 
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
474 {
475 	zspage->inuse = val;
476 }
477 
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 {
480 	zspage->inuse += val;
481 }
482 
483 static inline struct page *get_first_page(struct zspage *zspage)
484 {
485 	struct page *first_page = zspage->first_page;
486 
487 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 	return first_page;
489 }
490 
491 static inline int get_first_obj_offset(struct page *page)
492 {
493 	return page->units;
494 }
495 
496 static inline void set_first_obj_offset(struct page *page, int offset)
497 {
498 	page->units = offset;
499 }
500 
501 static inline unsigned int get_freeobj(struct zspage *zspage)
502 {
503 	return zspage->freeobj;
504 }
505 
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 {
508 	zspage->freeobj = obj;
509 }
510 
511 static void get_zspage_mapping(struct zspage *zspage,
512 				unsigned int *class_idx,
513 				enum fullness_group *fullness)
514 {
515 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516 
517 	*fullness = zspage->fullness;
518 	*class_idx = zspage->class;
519 }
520 
521 static void set_zspage_mapping(struct zspage *zspage,
522 				unsigned int class_idx,
523 				enum fullness_group fullness)
524 {
525 	zspage->class = class_idx;
526 	zspage->fullness = fullness;
527 }
528 
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the give size.
535  */
536 static int get_size_class_index(int size)
537 {
538 	int idx = 0;
539 
540 	if (likely(size > ZS_MIN_ALLOC_SIZE))
541 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 				ZS_SIZE_CLASS_DELTA);
543 
544 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546 
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 				int type, unsigned long cnt)
550 {
551 	class->stats.objs[type] += cnt;
552 }
553 
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 				int type, unsigned long cnt)
557 {
558 	class->stats.objs[type] -= cnt;
559 }
560 
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 				int type)
564 {
565 	return class->stats.objs[type];
566 }
567 
568 #ifdef CONFIG_ZSMALLOC_STAT
569 
570 static void __init zs_stat_init(void)
571 {
572 	if (!debugfs_initialized()) {
573 		pr_warn("debugfs not available, stat dir not created\n");
574 		return;
575 	}
576 
577 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 }
579 
580 static void __exit zs_stat_exit(void)
581 {
582 	debugfs_remove_recursive(zs_stat_root);
583 }
584 
585 static unsigned long zs_can_compact(struct size_class *class);
586 
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589 	int i;
590 	struct zs_pool *pool = s->private;
591 	struct size_class *class;
592 	int objs_per_zspage;
593 	unsigned long class_almost_full, class_almost_empty;
594 	unsigned long obj_allocated, obj_used, pages_used, freeable;
595 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 	unsigned long total_freeable = 0;
598 
599 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 			"class", "size", "almost_full", "almost_empty",
601 			"obj_allocated", "obj_used", "pages_used",
602 			"pages_per_zspage", "freeable");
603 
604 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 		class = pool->size_class[i];
606 
607 		if (class->index != i)
608 			continue;
609 
610 		spin_lock(&class->lock);
611 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 		obj_used = zs_stat_get(class, OBJ_USED);
615 		freeable = zs_can_compact(class);
616 		spin_unlock(&class->lock);
617 
618 		objs_per_zspage = class->objs_per_zspage;
619 		pages_used = obj_allocated / objs_per_zspage *
620 				class->pages_per_zspage;
621 
622 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 				" %10lu %10lu %16d %8lu\n",
624 			i, class->size, class_almost_full, class_almost_empty,
625 			obj_allocated, obj_used, pages_used,
626 			class->pages_per_zspage, freeable);
627 
628 		total_class_almost_full += class_almost_full;
629 		total_class_almost_empty += class_almost_empty;
630 		total_objs += obj_allocated;
631 		total_used_objs += obj_used;
632 		total_pages += pages_used;
633 		total_freeable += freeable;
634 	}
635 
636 	seq_puts(s, "\n");
637 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 			"Total", "", total_class_almost_full,
639 			total_class_almost_empty, total_objs,
640 			total_used_objs, total_pages, "", total_freeable);
641 
642 	return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645 
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648 	if (!zs_stat_root) {
649 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
650 		return;
651 	}
652 
653 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654 
655 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 			    &zs_stats_size_fops);
657 }
658 
659 static void zs_pool_stat_destroy(struct zs_pool *pool)
660 {
661 	debugfs_remove_recursive(pool->stat_dentry);
662 }
663 
664 #else /* CONFIG_ZSMALLOC_STAT */
665 static void __init zs_stat_init(void)
666 {
667 }
668 
669 static void __exit zs_stat_exit(void)
670 {
671 }
672 
673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674 {
675 }
676 
677 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678 {
679 }
680 #endif
681 
682 
683 /*
684  * For each size class, zspages are divided into different groups
685  * depending on how "full" they are. This was done so that we could
686  * easily find empty or nearly empty zspages when we try to shrink
687  * the pool (not yet implemented). This function returns fullness
688  * status of the given page.
689  */
690 static enum fullness_group get_fullness_group(struct size_class *class,
691 						struct zspage *zspage)
692 {
693 	int inuse, objs_per_zspage;
694 	enum fullness_group fg;
695 
696 	inuse = get_zspage_inuse(zspage);
697 	objs_per_zspage = class->objs_per_zspage;
698 
699 	if (inuse == 0)
700 		fg = ZS_EMPTY;
701 	else if (inuse == objs_per_zspage)
702 		fg = ZS_FULL;
703 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704 		fg = ZS_ALMOST_EMPTY;
705 	else
706 		fg = ZS_ALMOST_FULL;
707 
708 	return fg;
709 }
710 
711 /*
712  * Each size class maintains various freelists and zspages are assigned
713  * to one of these freelists based on the number of live objects they
714  * have. This functions inserts the given zspage into the freelist
715  * identified by <class, fullness_group>.
716  */
717 static void insert_zspage(struct size_class *class,
718 				struct zspage *zspage,
719 				enum fullness_group fullness)
720 {
721 	struct zspage *head;
722 
723 	zs_stat_inc(class, fullness, 1);
724 	head = list_first_entry_or_null(&class->fullness_list[fullness],
725 					struct zspage, list);
726 	/*
727 	 * We want to see more ZS_FULL pages and less almost empty/full.
728 	 * Put pages with higher ->inuse first.
729 	 */
730 	if (head) {
731 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
732 			list_add(&zspage->list, &head->list);
733 			return;
734 		}
735 	}
736 	list_add(&zspage->list, &class->fullness_list[fullness]);
737 }
738 
739 /*
740  * This function removes the given zspage from the freelist identified
741  * by <class, fullness_group>.
742  */
743 static void remove_zspage(struct size_class *class,
744 				struct zspage *zspage,
745 				enum fullness_group fullness)
746 {
747 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
748 	VM_BUG_ON(is_zspage_isolated(zspage));
749 
750 	list_del_init(&zspage->list);
751 	zs_stat_dec(class, fullness, 1);
752 }
753 
754 /*
755  * Each size class maintains zspages in different fullness groups depending
756  * on the number of live objects they contain. When allocating or freeing
757  * objects, the fullness status of the page can change, say, from ALMOST_FULL
758  * to ALMOST_EMPTY when freeing an object. This function checks if such
759  * a status change has occurred for the given page and accordingly moves the
760  * page from the freelist of the old fullness group to that of the new
761  * fullness group.
762  */
763 static enum fullness_group fix_fullness_group(struct size_class *class,
764 						struct zspage *zspage)
765 {
766 	int class_idx;
767 	enum fullness_group currfg, newfg;
768 
769 	get_zspage_mapping(zspage, &class_idx, &currfg);
770 	newfg = get_fullness_group(class, zspage);
771 	if (newfg == currfg)
772 		goto out;
773 
774 	if (!is_zspage_isolated(zspage)) {
775 		remove_zspage(class, zspage, currfg);
776 		insert_zspage(class, zspage, newfg);
777 	}
778 
779 	set_zspage_mapping(zspage, class_idx, newfg);
780 
781 out:
782 	return newfg;
783 }
784 
785 /*
786  * We have to decide on how many pages to link together
787  * to form a zspage for each size class. This is important
788  * to reduce wastage due to unusable space left at end of
789  * each zspage which is given as:
790  *     wastage = Zp % class_size
791  *     usage = Zp - wastage
792  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
793  *
794  * For example, for size class of 3/8 * PAGE_SIZE, we should
795  * link together 3 PAGE_SIZE sized pages to form a zspage
796  * since then we can perfectly fit in 8 such objects.
797  */
798 static int get_pages_per_zspage(int class_size)
799 {
800 	int i, max_usedpc = 0;
801 	/* zspage order which gives maximum used size per KB */
802 	int max_usedpc_order = 1;
803 
804 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
805 		int zspage_size;
806 		int waste, usedpc;
807 
808 		zspage_size = i * PAGE_SIZE;
809 		waste = zspage_size % class_size;
810 		usedpc = (zspage_size - waste) * 100 / zspage_size;
811 
812 		if (usedpc > max_usedpc) {
813 			max_usedpc = usedpc;
814 			max_usedpc_order = i;
815 		}
816 	}
817 
818 	return max_usedpc_order;
819 }
820 
821 static struct zspage *get_zspage(struct page *page)
822 {
823 	struct zspage *zspage = (struct zspage *)page->private;
824 
825 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
826 	return zspage;
827 }
828 
829 static struct page *get_next_page(struct page *page)
830 {
831 	if (unlikely(PageHugeObject(page)))
832 		return NULL;
833 
834 	return page->freelist;
835 }
836 
837 /**
838  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
839  * @obj: the encoded object value
840  * @page: page object resides in zspage
841  * @obj_idx: object index
842  */
843 static void obj_to_location(unsigned long obj, struct page **page,
844 				unsigned int *obj_idx)
845 {
846 	obj >>= OBJ_TAG_BITS;
847 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
848 	*obj_idx = (obj & OBJ_INDEX_MASK);
849 }
850 
851 /**
852  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853  * @page: page object resides in zspage
854  * @obj_idx: object index
855  */
856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857 {
858 	unsigned long obj;
859 
860 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861 	obj |= obj_idx & OBJ_INDEX_MASK;
862 	obj <<= OBJ_TAG_BITS;
863 
864 	return obj;
865 }
866 
867 static unsigned long handle_to_obj(unsigned long handle)
868 {
869 	return *(unsigned long *)handle;
870 }
871 
872 static unsigned long obj_to_head(struct page *page, void *obj)
873 {
874 	if (unlikely(PageHugeObject(page))) {
875 		VM_BUG_ON_PAGE(!is_first_page(page), page);
876 		return page->index;
877 	} else
878 		return *(unsigned long *)obj;
879 }
880 
881 static inline int testpin_tag(unsigned long handle)
882 {
883 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
884 }
885 
886 static inline int trypin_tag(unsigned long handle)
887 {
888 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
889 }
890 
891 static void pin_tag(unsigned long handle)
892 {
893 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
894 }
895 
896 static void unpin_tag(unsigned long handle)
897 {
898 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
899 }
900 
901 static void reset_page(struct page *page)
902 {
903 	__ClearPageMovable(page);
904 	ClearPagePrivate(page);
905 	set_page_private(page, 0);
906 	page_mapcount_reset(page);
907 	ClearPageHugeObject(page);
908 	page->freelist = NULL;
909 }
910 
911 static int trylock_zspage(struct zspage *zspage)
912 {
913 	struct page *cursor, *fail;
914 
915 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
916 					get_next_page(cursor)) {
917 		if (!trylock_page(cursor)) {
918 			fail = cursor;
919 			goto unlock;
920 		}
921 	}
922 
923 	return 1;
924 unlock:
925 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
926 					get_next_page(cursor))
927 		unlock_page(cursor);
928 
929 	return 0;
930 }
931 
932 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
933 				struct zspage *zspage)
934 {
935 	struct page *page, *next;
936 	enum fullness_group fg;
937 	unsigned int class_idx;
938 
939 	get_zspage_mapping(zspage, &class_idx, &fg);
940 
941 	assert_spin_locked(&class->lock);
942 
943 	VM_BUG_ON(get_zspage_inuse(zspage));
944 	VM_BUG_ON(fg != ZS_EMPTY);
945 
946 	next = page = get_first_page(zspage);
947 	do {
948 		VM_BUG_ON_PAGE(!PageLocked(page), page);
949 		next = get_next_page(page);
950 		reset_page(page);
951 		unlock_page(page);
952 		dec_zone_page_state(page, NR_ZSPAGES);
953 		put_page(page);
954 		page = next;
955 	} while (page != NULL);
956 
957 	cache_free_zspage(pool, zspage);
958 
959 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
960 	atomic_long_sub(class->pages_per_zspage,
961 					&pool->pages_allocated);
962 }
963 
964 static void free_zspage(struct zs_pool *pool, struct size_class *class,
965 				struct zspage *zspage)
966 {
967 	VM_BUG_ON(get_zspage_inuse(zspage));
968 	VM_BUG_ON(list_empty(&zspage->list));
969 
970 	if (!trylock_zspage(zspage)) {
971 		kick_deferred_free(pool);
972 		return;
973 	}
974 
975 	remove_zspage(class, zspage, ZS_EMPTY);
976 	__free_zspage(pool, class, zspage);
977 }
978 
979 /* Initialize a newly allocated zspage */
980 static void init_zspage(struct size_class *class, struct zspage *zspage)
981 {
982 	unsigned int freeobj = 1;
983 	unsigned long off = 0;
984 	struct page *page = get_first_page(zspage);
985 
986 	while (page) {
987 		struct page *next_page;
988 		struct link_free *link;
989 		void *vaddr;
990 
991 		set_first_obj_offset(page, off);
992 
993 		vaddr = kmap_atomic(page);
994 		link = (struct link_free *)vaddr + off / sizeof(*link);
995 
996 		while ((off += class->size) < PAGE_SIZE) {
997 			link->next = freeobj++ << OBJ_TAG_BITS;
998 			link += class->size / sizeof(*link);
999 		}
1000 
1001 		/*
1002 		 * We now come to the last (full or partial) object on this
1003 		 * page, which must point to the first object on the next
1004 		 * page (if present)
1005 		 */
1006 		next_page = get_next_page(page);
1007 		if (next_page) {
1008 			link->next = freeobj++ << OBJ_TAG_BITS;
1009 		} else {
1010 			/*
1011 			 * Reset OBJ_TAG_BITS bit to last link to tell
1012 			 * whether it's allocated object or not.
1013 			 */
1014 			link->next = -1UL << OBJ_TAG_BITS;
1015 		}
1016 		kunmap_atomic(vaddr);
1017 		page = next_page;
1018 		off %= PAGE_SIZE;
1019 	}
1020 
1021 	set_freeobj(zspage, 0);
1022 }
1023 
1024 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1025 				struct page *pages[])
1026 {
1027 	int i;
1028 	struct page *page;
1029 	struct page *prev_page = NULL;
1030 	int nr_pages = class->pages_per_zspage;
1031 
1032 	/*
1033 	 * Allocate individual pages and link them together as:
1034 	 * 1. all pages are linked together using page->freelist
1035 	 * 2. each sub-page point to zspage using page->private
1036 	 *
1037 	 * we set PG_private to identify the first page (i.e. no other sub-page
1038 	 * has this flag set).
1039 	 */
1040 	for (i = 0; i < nr_pages; i++) {
1041 		page = pages[i];
1042 		set_page_private(page, (unsigned long)zspage);
1043 		page->freelist = NULL;
1044 		if (i == 0) {
1045 			zspage->first_page = page;
1046 			SetPagePrivate(page);
1047 			if (unlikely(class->objs_per_zspage == 1 &&
1048 					class->pages_per_zspage == 1))
1049 				SetPageHugeObject(page);
1050 		} else {
1051 			prev_page->freelist = page;
1052 		}
1053 		prev_page = page;
1054 	}
1055 }
1056 
1057 /*
1058  * Allocate a zspage for the given size class
1059  */
1060 static struct zspage *alloc_zspage(struct zs_pool *pool,
1061 					struct size_class *class,
1062 					gfp_t gfp)
1063 {
1064 	int i;
1065 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1066 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1067 
1068 	if (!zspage)
1069 		return NULL;
1070 
1071 	memset(zspage, 0, sizeof(struct zspage));
1072 	zspage->magic = ZSPAGE_MAGIC;
1073 	migrate_lock_init(zspage);
1074 
1075 	for (i = 0; i < class->pages_per_zspage; i++) {
1076 		struct page *page;
1077 
1078 		page = alloc_page(gfp);
1079 		if (!page) {
1080 			while (--i >= 0) {
1081 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1082 				__free_page(pages[i]);
1083 			}
1084 			cache_free_zspage(pool, zspage);
1085 			return NULL;
1086 		}
1087 
1088 		inc_zone_page_state(page, NR_ZSPAGES);
1089 		pages[i] = page;
1090 	}
1091 
1092 	create_page_chain(class, zspage, pages);
1093 	init_zspage(class, zspage);
1094 
1095 	return zspage;
1096 }
1097 
1098 static struct zspage *find_get_zspage(struct size_class *class)
1099 {
1100 	int i;
1101 	struct zspage *zspage;
1102 
1103 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1104 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1105 				struct zspage, list);
1106 		if (zspage)
1107 			break;
1108 	}
1109 
1110 	return zspage;
1111 }
1112 
1113 #ifdef CONFIG_PGTABLE_MAPPING
1114 static inline int __zs_cpu_up(struct mapping_area *area)
1115 {
1116 	/*
1117 	 * Make sure we don't leak memory if a cpu UP notification
1118 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1119 	 */
1120 	if (area->vm)
1121 		return 0;
1122 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1123 	if (!area->vm)
1124 		return -ENOMEM;
1125 	return 0;
1126 }
1127 
1128 static inline void __zs_cpu_down(struct mapping_area *area)
1129 {
1130 	if (area->vm)
1131 		free_vm_area(area->vm);
1132 	area->vm = NULL;
1133 }
1134 
1135 static inline void *__zs_map_object(struct mapping_area *area,
1136 				struct page *pages[2], int off, int size)
1137 {
1138 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1139 	area->vm_addr = area->vm->addr;
1140 	return area->vm_addr + off;
1141 }
1142 
1143 static inline void __zs_unmap_object(struct mapping_area *area,
1144 				struct page *pages[2], int off, int size)
1145 {
1146 	unsigned long addr = (unsigned long)area->vm_addr;
1147 
1148 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1149 }
1150 
1151 #else /* CONFIG_PGTABLE_MAPPING */
1152 
1153 static inline int __zs_cpu_up(struct mapping_area *area)
1154 {
1155 	/*
1156 	 * Make sure we don't leak memory if a cpu UP notification
1157 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1158 	 */
1159 	if (area->vm_buf)
1160 		return 0;
1161 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1162 	if (!area->vm_buf)
1163 		return -ENOMEM;
1164 	return 0;
1165 }
1166 
1167 static inline void __zs_cpu_down(struct mapping_area *area)
1168 {
1169 	kfree(area->vm_buf);
1170 	area->vm_buf = NULL;
1171 }
1172 
1173 static void *__zs_map_object(struct mapping_area *area,
1174 			struct page *pages[2], int off, int size)
1175 {
1176 	int sizes[2];
1177 	void *addr;
1178 	char *buf = area->vm_buf;
1179 
1180 	/* disable page faults to match kmap_atomic() return conditions */
1181 	pagefault_disable();
1182 
1183 	/* no read fastpath */
1184 	if (area->vm_mm == ZS_MM_WO)
1185 		goto out;
1186 
1187 	sizes[0] = PAGE_SIZE - off;
1188 	sizes[1] = size - sizes[0];
1189 
1190 	/* copy object to per-cpu buffer */
1191 	addr = kmap_atomic(pages[0]);
1192 	memcpy(buf, addr + off, sizes[0]);
1193 	kunmap_atomic(addr);
1194 	addr = kmap_atomic(pages[1]);
1195 	memcpy(buf + sizes[0], addr, sizes[1]);
1196 	kunmap_atomic(addr);
1197 out:
1198 	return area->vm_buf;
1199 }
1200 
1201 static void __zs_unmap_object(struct mapping_area *area,
1202 			struct page *pages[2], int off, int size)
1203 {
1204 	int sizes[2];
1205 	void *addr;
1206 	char *buf;
1207 
1208 	/* no write fastpath */
1209 	if (area->vm_mm == ZS_MM_RO)
1210 		goto out;
1211 
1212 	buf = area->vm_buf;
1213 	buf = buf + ZS_HANDLE_SIZE;
1214 	size -= ZS_HANDLE_SIZE;
1215 	off += ZS_HANDLE_SIZE;
1216 
1217 	sizes[0] = PAGE_SIZE - off;
1218 	sizes[1] = size - sizes[0];
1219 
1220 	/* copy per-cpu buffer to object */
1221 	addr = kmap_atomic(pages[0]);
1222 	memcpy(addr + off, buf, sizes[0]);
1223 	kunmap_atomic(addr);
1224 	addr = kmap_atomic(pages[1]);
1225 	memcpy(addr, buf + sizes[0], sizes[1]);
1226 	kunmap_atomic(addr);
1227 
1228 out:
1229 	/* enable page faults to match kunmap_atomic() return conditions */
1230 	pagefault_enable();
1231 }
1232 
1233 #endif /* CONFIG_PGTABLE_MAPPING */
1234 
1235 static int zs_cpu_prepare(unsigned int cpu)
1236 {
1237 	struct mapping_area *area;
1238 
1239 	area = &per_cpu(zs_map_area, cpu);
1240 	return __zs_cpu_up(area);
1241 }
1242 
1243 static int zs_cpu_dead(unsigned int cpu)
1244 {
1245 	struct mapping_area *area;
1246 
1247 	area = &per_cpu(zs_map_area, cpu);
1248 	__zs_cpu_down(area);
1249 	return 0;
1250 }
1251 
1252 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1253 					int objs_per_zspage)
1254 {
1255 	if (prev->pages_per_zspage == pages_per_zspage &&
1256 		prev->objs_per_zspage == objs_per_zspage)
1257 		return true;
1258 
1259 	return false;
1260 }
1261 
1262 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1263 {
1264 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1265 }
1266 
1267 unsigned long zs_get_total_pages(struct zs_pool *pool)
1268 {
1269 	return atomic_long_read(&pool->pages_allocated);
1270 }
1271 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1272 
1273 /**
1274  * zs_map_object - get address of allocated object from handle.
1275  * @pool: pool from which the object was allocated
1276  * @handle: handle returned from zs_malloc
1277  * @mm: maping mode to use
1278  *
1279  * Before using an object allocated from zs_malloc, it must be mapped using
1280  * this function. When done with the object, it must be unmapped using
1281  * zs_unmap_object.
1282  *
1283  * Only one object can be mapped per cpu at a time. There is no protection
1284  * against nested mappings.
1285  *
1286  * This function returns with preemption and page faults disabled.
1287  */
1288 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1289 			enum zs_mapmode mm)
1290 {
1291 	struct zspage *zspage;
1292 	struct page *page;
1293 	unsigned long obj, off;
1294 	unsigned int obj_idx;
1295 
1296 	unsigned int class_idx;
1297 	enum fullness_group fg;
1298 	struct size_class *class;
1299 	struct mapping_area *area;
1300 	struct page *pages[2];
1301 	void *ret;
1302 
1303 	/*
1304 	 * Because we use per-cpu mapping areas shared among the
1305 	 * pools/users, we can't allow mapping in interrupt context
1306 	 * because it can corrupt another users mappings.
1307 	 */
1308 	BUG_ON(in_interrupt());
1309 
1310 	/* From now on, migration cannot move the object */
1311 	pin_tag(handle);
1312 
1313 	obj = handle_to_obj(handle);
1314 	obj_to_location(obj, &page, &obj_idx);
1315 	zspage = get_zspage(page);
1316 
1317 	/* migration cannot move any subpage in this zspage */
1318 	migrate_read_lock(zspage);
1319 
1320 	get_zspage_mapping(zspage, &class_idx, &fg);
1321 	class = pool->size_class[class_idx];
1322 	off = (class->size * obj_idx) & ~PAGE_MASK;
1323 
1324 	area = &get_cpu_var(zs_map_area);
1325 	area->vm_mm = mm;
1326 	if (off + class->size <= PAGE_SIZE) {
1327 		/* this object is contained entirely within a page */
1328 		area->vm_addr = kmap_atomic(page);
1329 		ret = area->vm_addr + off;
1330 		goto out;
1331 	}
1332 
1333 	/* this object spans two pages */
1334 	pages[0] = page;
1335 	pages[1] = get_next_page(page);
1336 	BUG_ON(!pages[1]);
1337 
1338 	ret = __zs_map_object(area, pages, off, class->size);
1339 out:
1340 	if (likely(!PageHugeObject(page)))
1341 		ret += ZS_HANDLE_SIZE;
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(zs_map_object);
1346 
1347 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1348 {
1349 	struct zspage *zspage;
1350 	struct page *page;
1351 	unsigned long obj, off;
1352 	unsigned int obj_idx;
1353 
1354 	unsigned int class_idx;
1355 	enum fullness_group fg;
1356 	struct size_class *class;
1357 	struct mapping_area *area;
1358 
1359 	obj = handle_to_obj(handle);
1360 	obj_to_location(obj, &page, &obj_idx);
1361 	zspage = get_zspage(page);
1362 	get_zspage_mapping(zspage, &class_idx, &fg);
1363 	class = pool->size_class[class_idx];
1364 	off = (class->size * obj_idx) & ~PAGE_MASK;
1365 
1366 	area = this_cpu_ptr(&zs_map_area);
1367 	if (off + class->size <= PAGE_SIZE)
1368 		kunmap_atomic(area->vm_addr);
1369 	else {
1370 		struct page *pages[2];
1371 
1372 		pages[0] = page;
1373 		pages[1] = get_next_page(page);
1374 		BUG_ON(!pages[1]);
1375 
1376 		__zs_unmap_object(area, pages, off, class->size);
1377 	}
1378 	put_cpu_var(zs_map_area);
1379 
1380 	migrate_read_unlock(zspage);
1381 	unpin_tag(handle);
1382 }
1383 EXPORT_SYMBOL_GPL(zs_unmap_object);
1384 
1385 /**
1386  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1387  *                        zsmalloc &size_class.
1388  * @pool: zsmalloc pool to use
1389  *
1390  * The function returns the size of the first huge class - any object of equal
1391  * or bigger size will be stored in zspage consisting of a single physical
1392  * page.
1393  *
1394  * Context: Any context.
1395  *
1396  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1397  */
1398 size_t zs_huge_class_size(struct zs_pool *pool)
1399 {
1400 	return huge_class_size;
1401 }
1402 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1403 
1404 static unsigned long obj_malloc(struct size_class *class,
1405 				struct zspage *zspage, unsigned long handle)
1406 {
1407 	int i, nr_page, offset;
1408 	unsigned long obj;
1409 	struct link_free *link;
1410 
1411 	struct page *m_page;
1412 	unsigned long m_offset;
1413 	void *vaddr;
1414 
1415 	handle |= OBJ_ALLOCATED_TAG;
1416 	obj = get_freeobj(zspage);
1417 
1418 	offset = obj * class->size;
1419 	nr_page = offset >> PAGE_SHIFT;
1420 	m_offset = offset & ~PAGE_MASK;
1421 	m_page = get_first_page(zspage);
1422 
1423 	for (i = 0; i < nr_page; i++)
1424 		m_page = get_next_page(m_page);
1425 
1426 	vaddr = kmap_atomic(m_page);
1427 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1428 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1429 	if (likely(!PageHugeObject(m_page)))
1430 		/* record handle in the header of allocated chunk */
1431 		link->handle = handle;
1432 	else
1433 		/* record handle to page->index */
1434 		zspage->first_page->index = handle;
1435 
1436 	kunmap_atomic(vaddr);
1437 	mod_zspage_inuse(zspage, 1);
1438 	zs_stat_inc(class, OBJ_USED, 1);
1439 
1440 	obj = location_to_obj(m_page, obj);
1441 
1442 	return obj;
1443 }
1444 
1445 
1446 /**
1447  * zs_malloc - Allocate block of given size from pool.
1448  * @pool: pool to allocate from
1449  * @size: size of block to allocate
1450  * @gfp: gfp flags when allocating object
1451  *
1452  * On success, handle to the allocated object is returned,
1453  * otherwise 0.
1454  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1455  */
1456 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1457 {
1458 	unsigned long handle, obj;
1459 	struct size_class *class;
1460 	enum fullness_group newfg;
1461 	struct zspage *zspage;
1462 
1463 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1464 		return 0;
1465 
1466 	handle = cache_alloc_handle(pool, gfp);
1467 	if (!handle)
1468 		return 0;
1469 
1470 	/* extra space in chunk to keep the handle */
1471 	size += ZS_HANDLE_SIZE;
1472 	class = pool->size_class[get_size_class_index(size)];
1473 
1474 	spin_lock(&class->lock);
1475 	zspage = find_get_zspage(class);
1476 	if (likely(zspage)) {
1477 		obj = obj_malloc(class, zspage, handle);
1478 		/* Now move the zspage to another fullness group, if required */
1479 		fix_fullness_group(class, zspage);
1480 		record_obj(handle, obj);
1481 		spin_unlock(&class->lock);
1482 
1483 		return handle;
1484 	}
1485 
1486 	spin_unlock(&class->lock);
1487 
1488 	zspage = alloc_zspage(pool, class, gfp);
1489 	if (!zspage) {
1490 		cache_free_handle(pool, handle);
1491 		return 0;
1492 	}
1493 
1494 	spin_lock(&class->lock);
1495 	obj = obj_malloc(class, zspage, handle);
1496 	newfg = get_fullness_group(class, zspage);
1497 	insert_zspage(class, zspage, newfg);
1498 	set_zspage_mapping(zspage, class->index, newfg);
1499 	record_obj(handle, obj);
1500 	atomic_long_add(class->pages_per_zspage,
1501 				&pool->pages_allocated);
1502 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1503 
1504 	/* We completely set up zspage so mark them as movable */
1505 	SetZsPageMovable(pool, zspage);
1506 	spin_unlock(&class->lock);
1507 
1508 	return handle;
1509 }
1510 EXPORT_SYMBOL_GPL(zs_malloc);
1511 
1512 static void obj_free(struct size_class *class, unsigned long obj)
1513 {
1514 	struct link_free *link;
1515 	struct zspage *zspage;
1516 	struct page *f_page;
1517 	unsigned long f_offset;
1518 	unsigned int f_objidx;
1519 	void *vaddr;
1520 
1521 	obj &= ~OBJ_ALLOCATED_TAG;
1522 	obj_to_location(obj, &f_page, &f_objidx);
1523 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1524 	zspage = get_zspage(f_page);
1525 
1526 	vaddr = kmap_atomic(f_page);
1527 
1528 	/* Insert this object in containing zspage's freelist */
1529 	link = (struct link_free *)(vaddr + f_offset);
1530 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1531 	kunmap_atomic(vaddr);
1532 	set_freeobj(zspage, f_objidx);
1533 	mod_zspage_inuse(zspage, -1);
1534 	zs_stat_dec(class, OBJ_USED, 1);
1535 }
1536 
1537 void zs_free(struct zs_pool *pool, unsigned long handle)
1538 {
1539 	struct zspage *zspage;
1540 	struct page *f_page;
1541 	unsigned long obj;
1542 	unsigned int f_objidx;
1543 	int class_idx;
1544 	struct size_class *class;
1545 	enum fullness_group fullness;
1546 	bool isolated;
1547 
1548 	if (unlikely(!handle))
1549 		return;
1550 
1551 	pin_tag(handle);
1552 	obj = handle_to_obj(handle);
1553 	obj_to_location(obj, &f_page, &f_objidx);
1554 	zspage = get_zspage(f_page);
1555 
1556 	migrate_read_lock(zspage);
1557 
1558 	get_zspage_mapping(zspage, &class_idx, &fullness);
1559 	class = pool->size_class[class_idx];
1560 
1561 	spin_lock(&class->lock);
1562 	obj_free(class, obj);
1563 	fullness = fix_fullness_group(class, zspage);
1564 	if (fullness != ZS_EMPTY) {
1565 		migrate_read_unlock(zspage);
1566 		goto out;
1567 	}
1568 
1569 	isolated = is_zspage_isolated(zspage);
1570 	migrate_read_unlock(zspage);
1571 	/* If zspage is isolated, zs_page_putback will free the zspage */
1572 	if (likely(!isolated))
1573 		free_zspage(pool, class, zspage);
1574 out:
1575 
1576 	spin_unlock(&class->lock);
1577 	unpin_tag(handle);
1578 	cache_free_handle(pool, handle);
1579 }
1580 EXPORT_SYMBOL_GPL(zs_free);
1581 
1582 static void zs_object_copy(struct size_class *class, unsigned long dst,
1583 				unsigned long src)
1584 {
1585 	struct page *s_page, *d_page;
1586 	unsigned int s_objidx, d_objidx;
1587 	unsigned long s_off, d_off;
1588 	void *s_addr, *d_addr;
1589 	int s_size, d_size, size;
1590 	int written = 0;
1591 
1592 	s_size = d_size = class->size;
1593 
1594 	obj_to_location(src, &s_page, &s_objidx);
1595 	obj_to_location(dst, &d_page, &d_objidx);
1596 
1597 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1598 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1599 
1600 	if (s_off + class->size > PAGE_SIZE)
1601 		s_size = PAGE_SIZE - s_off;
1602 
1603 	if (d_off + class->size > PAGE_SIZE)
1604 		d_size = PAGE_SIZE - d_off;
1605 
1606 	s_addr = kmap_atomic(s_page);
1607 	d_addr = kmap_atomic(d_page);
1608 
1609 	while (1) {
1610 		size = min(s_size, d_size);
1611 		memcpy(d_addr + d_off, s_addr + s_off, size);
1612 		written += size;
1613 
1614 		if (written == class->size)
1615 			break;
1616 
1617 		s_off += size;
1618 		s_size -= size;
1619 		d_off += size;
1620 		d_size -= size;
1621 
1622 		if (s_off >= PAGE_SIZE) {
1623 			kunmap_atomic(d_addr);
1624 			kunmap_atomic(s_addr);
1625 			s_page = get_next_page(s_page);
1626 			s_addr = kmap_atomic(s_page);
1627 			d_addr = kmap_atomic(d_page);
1628 			s_size = class->size - written;
1629 			s_off = 0;
1630 		}
1631 
1632 		if (d_off >= PAGE_SIZE) {
1633 			kunmap_atomic(d_addr);
1634 			d_page = get_next_page(d_page);
1635 			d_addr = kmap_atomic(d_page);
1636 			d_size = class->size - written;
1637 			d_off = 0;
1638 		}
1639 	}
1640 
1641 	kunmap_atomic(d_addr);
1642 	kunmap_atomic(s_addr);
1643 }
1644 
1645 /*
1646  * Find alloced object in zspage from index object and
1647  * return handle.
1648  */
1649 static unsigned long find_alloced_obj(struct size_class *class,
1650 					struct page *page, int *obj_idx)
1651 {
1652 	unsigned long head;
1653 	int offset = 0;
1654 	int index = *obj_idx;
1655 	unsigned long handle = 0;
1656 	void *addr = kmap_atomic(page);
1657 
1658 	offset = get_first_obj_offset(page);
1659 	offset += class->size * index;
1660 
1661 	while (offset < PAGE_SIZE) {
1662 		head = obj_to_head(page, addr + offset);
1663 		if (head & OBJ_ALLOCATED_TAG) {
1664 			handle = head & ~OBJ_ALLOCATED_TAG;
1665 			if (trypin_tag(handle))
1666 				break;
1667 			handle = 0;
1668 		}
1669 
1670 		offset += class->size;
1671 		index++;
1672 	}
1673 
1674 	kunmap_atomic(addr);
1675 
1676 	*obj_idx = index;
1677 
1678 	return handle;
1679 }
1680 
1681 struct zs_compact_control {
1682 	/* Source spage for migration which could be a subpage of zspage */
1683 	struct page *s_page;
1684 	/* Destination page for migration which should be a first page
1685 	 * of zspage. */
1686 	struct page *d_page;
1687 	 /* Starting object index within @s_page which used for live object
1688 	  * in the subpage. */
1689 	int obj_idx;
1690 };
1691 
1692 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1693 				struct zs_compact_control *cc)
1694 {
1695 	unsigned long used_obj, free_obj;
1696 	unsigned long handle;
1697 	struct page *s_page = cc->s_page;
1698 	struct page *d_page = cc->d_page;
1699 	int obj_idx = cc->obj_idx;
1700 	int ret = 0;
1701 
1702 	while (1) {
1703 		handle = find_alloced_obj(class, s_page, &obj_idx);
1704 		if (!handle) {
1705 			s_page = get_next_page(s_page);
1706 			if (!s_page)
1707 				break;
1708 			obj_idx = 0;
1709 			continue;
1710 		}
1711 
1712 		/* Stop if there is no more space */
1713 		if (zspage_full(class, get_zspage(d_page))) {
1714 			unpin_tag(handle);
1715 			ret = -ENOMEM;
1716 			break;
1717 		}
1718 
1719 		used_obj = handle_to_obj(handle);
1720 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1721 		zs_object_copy(class, free_obj, used_obj);
1722 		obj_idx++;
1723 		/*
1724 		 * record_obj updates handle's value to free_obj and it will
1725 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1726 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1727 		 * let's keep the lock bit.
1728 		 */
1729 		free_obj |= BIT(HANDLE_PIN_BIT);
1730 		record_obj(handle, free_obj);
1731 		unpin_tag(handle);
1732 		obj_free(class, used_obj);
1733 	}
1734 
1735 	/* Remember last position in this iteration */
1736 	cc->s_page = s_page;
1737 	cc->obj_idx = obj_idx;
1738 
1739 	return ret;
1740 }
1741 
1742 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1743 {
1744 	int i;
1745 	struct zspage *zspage;
1746 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1747 
1748 	if (!source) {
1749 		fg[0] = ZS_ALMOST_FULL;
1750 		fg[1] = ZS_ALMOST_EMPTY;
1751 	}
1752 
1753 	for (i = 0; i < 2; i++) {
1754 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1755 							struct zspage, list);
1756 		if (zspage) {
1757 			VM_BUG_ON(is_zspage_isolated(zspage));
1758 			remove_zspage(class, zspage, fg[i]);
1759 			return zspage;
1760 		}
1761 	}
1762 
1763 	return zspage;
1764 }
1765 
1766 /*
1767  * putback_zspage - add @zspage into right class's fullness list
1768  * @class: destination class
1769  * @zspage: target page
1770  *
1771  * Return @zspage's fullness_group
1772  */
1773 static enum fullness_group putback_zspage(struct size_class *class,
1774 			struct zspage *zspage)
1775 {
1776 	enum fullness_group fullness;
1777 
1778 	VM_BUG_ON(is_zspage_isolated(zspage));
1779 
1780 	fullness = get_fullness_group(class, zspage);
1781 	insert_zspage(class, zspage, fullness);
1782 	set_zspage_mapping(zspage, class->index, fullness);
1783 
1784 	return fullness;
1785 }
1786 
1787 #ifdef CONFIG_COMPACTION
1788 /*
1789  * To prevent zspage destroy during migration, zspage freeing should
1790  * hold locks of all pages in the zspage.
1791  */
1792 static void lock_zspage(struct zspage *zspage)
1793 {
1794 	struct page *page = get_first_page(zspage);
1795 
1796 	do {
1797 		lock_page(page);
1798 	} while ((page = get_next_page(page)) != NULL);
1799 }
1800 
1801 static struct dentry *zs_mount(struct file_system_type *fs_type,
1802 				int flags, const char *dev_name, void *data)
1803 {
1804 	static const struct dentry_operations ops = {
1805 		.d_dname = simple_dname,
1806 	};
1807 
1808 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1809 }
1810 
1811 static struct file_system_type zsmalloc_fs = {
1812 	.name		= "zsmalloc",
1813 	.mount		= zs_mount,
1814 	.kill_sb	= kill_anon_super,
1815 };
1816 
1817 static int zsmalloc_mount(void)
1818 {
1819 	int ret = 0;
1820 
1821 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1822 	if (IS_ERR(zsmalloc_mnt))
1823 		ret = PTR_ERR(zsmalloc_mnt);
1824 
1825 	return ret;
1826 }
1827 
1828 static void zsmalloc_unmount(void)
1829 {
1830 	kern_unmount(zsmalloc_mnt);
1831 }
1832 
1833 static void migrate_lock_init(struct zspage *zspage)
1834 {
1835 	rwlock_init(&zspage->lock);
1836 }
1837 
1838 static void migrate_read_lock(struct zspage *zspage)
1839 {
1840 	read_lock(&zspage->lock);
1841 }
1842 
1843 static void migrate_read_unlock(struct zspage *zspage)
1844 {
1845 	read_unlock(&zspage->lock);
1846 }
1847 
1848 static void migrate_write_lock(struct zspage *zspage)
1849 {
1850 	write_lock(&zspage->lock);
1851 }
1852 
1853 static void migrate_write_unlock(struct zspage *zspage)
1854 {
1855 	write_unlock(&zspage->lock);
1856 }
1857 
1858 /* Number of isolated subpage for *page migration* in this zspage */
1859 static void inc_zspage_isolation(struct zspage *zspage)
1860 {
1861 	zspage->isolated++;
1862 }
1863 
1864 static void dec_zspage_isolation(struct zspage *zspage)
1865 {
1866 	zspage->isolated--;
1867 }
1868 
1869 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1870 				struct page *newpage, struct page *oldpage)
1871 {
1872 	struct page *page;
1873 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1874 	int idx = 0;
1875 
1876 	page = get_first_page(zspage);
1877 	do {
1878 		if (page == oldpage)
1879 			pages[idx] = newpage;
1880 		else
1881 			pages[idx] = page;
1882 		idx++;
1883 	} while ((page = get_next_page(page)) != NULL);
1884 
1885 	create_page_chain(class, zspage, pages);
1886 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1887 	if (unlikely(PageHugeObject(oldpage)))
1888 		newpage->index = oldpage->index;
1889 	__SetPageMovable(newpage, page_mapping(oldpage));
1890 }
1891 
1892 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1893 {
1894 	struct zs_pool *pool;
1895 	struct size_class *class;
1896 	int class_idx;
1897 	enum fullness_group fullness;
1898 	struct zspage *zspage;
1899 	struct address_space *mapping;
1900 
1901 	/*
1902 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1903 	 * lock_zspage in free_zspage.
1904 	 */
1905 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1906 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1907 
1908 	zspage = get_zspage(page);
1909 
1910 	/*
1911 	 * Without class lock, fullness could be stale while class_idx is okay
1912 	 * because class_idx is constant unless page is freed so we should get
1913 	 * fullness again under class lock.
1914 	 */
1915 	get_zspage_mapping(zspage, &class_idx, &fullness);
1916 	mapping = page_mapping(page);
1917 	pool = mapping->private_data;
1918 	class = pool->size_class[class_idx];
1919 
1920 	spin_lock(&class->lock);
1921 	if (get_zspage_inuse(zspage) == 0) {
1922 		spin_unlock(&class->lock);
1923 		return false;
1924 	}
1925 
1926 	/* zspage is isolated for object migration */
1927 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1928 		spin_unlock(&class->lock);
1929 		return false;
1930 	}
1931 
1932 	/*
1933 	 * If this is first time isolation for the zspage, isolate zspage from
1934 	 * size_class to prevent further object allocation from the zspage.
1935 	 */
1936 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1937 		get_zspage_mapping(zspage, &class_idx, &fullness);
1938 		remove_zspage(class, zspage, fullness);
1939 	}
1940 
1941 	inc_zspage_isolation(zspage);
1942 	spin_unlock(&class->lock);
1943 
1944 	return true;
1945 }
1946 
1947 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1948 		struct page *page, enum migrate_mode mode)
1949 {
1950 	struct zs_pool *pool;
1951 	struct size_class *class;
1952 	int class_idx;
1953 	enum fullness_group fullness;
1954 	struct zspage *zspage;
1955 	struct page *dummy;
1956 	void *s_addr, *d_addr, *addr;
1957 	int offset, pos;
1958 	unsigned long handle, head;
1959 	unsigned long old_obj, new_obj;
1960 	unsigned int obj_idx;
1961 	int ret = -EAGAIN;
1962 
1963 	/*
1964 	 * We cannot support the _NO_COPY case here, because copy needs to
1965 	 * happen under the zs lock, which does not work with
1966 	 * MIGRATE_SYNC_NO_COPY workflow.
1967 	 */
1968 	if (mode == MIGRATE_SYNC_NO_COPY)
1969 		return -EINVAL;
1970 
1971 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1972 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1973 
1974 	zspage = get_zspage(page);
1975 
1976 	/* Concurrent compactor cannot migrate any subpage in zspage */
1977 	migrate_write_lock(zspage);
1978 	get_zspage_mapping(zspage, &class_idx, &fullness);
1979 	pool = mapping->private_data;
1980 	class = pool->size_class[class_idx];
1981 	offset = get_first_obj_offset(page);
1982 
1983 	spin_lock(&class->lock);
1984 	if (!get_zspage_inuse(zspage)) {
1985 		/*
1986 		 * Set "offset" to end of the page so that every loops
1987 		 * skips unnecessary object scanning.
1988 		 */
1989 		offset = PAGE_SIZE;
1990 	}
1991 
1992 	pos = offset;
1993 	s_addr = kmap_atomic(page);
1994 	while (pos < PAGE_SIZE) {
1995 		head = obj_to_head(page, s_addr + pos);
1996 		if (head & OBJ_ALLOCATED_TAG) {
1997 			handle = head & ~OBJ_ALLOCATED_TAG;
1998 			if (!trypin_tag(handle))
1999 				goto unpin_objects;
2000 		}
2001 		pos += class->size;
2002 	}
2003 
2004 	/*
2005 	 * Here, any user cannot access all objects in the zspage so let's move.
2006 	 */
2007 	d_addr = kmap_atomic(newpage);
2008 	memcpy(d_addr, s_addr, PAGE_SIZE);
2009 	kunmap_atomic(d_addr);
2010 
2011 	for (addr = s_addr + offset; addr < s_addr + pos;
2012 					addr += class->size) {
2013 		head = obj_to_head(page, addr);
2014 		if (head & OBJ_ALLOCATED_TAG) {
2015 			handle = head & ~OBJ_ALLOCATED_TAG;
2016 			if (!testpin_tag(handle))
2017 				BUG();
2018 
2019 			old_obj = handle_to_obj(handle);
2020 			obj_to_location(old_obj, &dummy, &obj_idx);
2021 			new_obj = (unsigned long)location_to_obj(newpage,
2022 								obj_idx);
2023 			new_obj |= BIT(HANDLE_PIN_BIT);
2024 			record_obj(handle, new_obj);
2025 		}
2026 	}
2027 
2028 	replace_sub_page(class, zspage, newpage, page);
2029 	get_page(newpage);
2030 
2031 	dec_zspage_isolation(zspage);
2032 
2033 	/*
2034 	 * Page migration is done so let's putback isolated zspage to
2035 	 * the list if @page is final isolated subpage in the zspage.
2036 	 */
2037 	if (!is_zspage_isolated(zspage))
2038 		putback_zspage(class, zspage);
2039 
2040 	reset_page(page);
2041 	put_page(page);
2042 	page = newpage;
2043 
2044 	ret = MIGRATEPAGE_SUCCESS;
2045 unpin_objects:
2046 	for (addr = s_addr + offset; addr < s_addr + pos;
2047 						addr += class->size) {
2048 		head = obj_to_head(page, addr);
2049 		if (head & OBJ_ALLOCATED_TAG) {
2050 			handle = head & ~OBJ_ALLOCATED_TAG;
2051 			if (!testpin_tag(handle))
2052 				BUG();
2053 			unpin_tag(handle);
2054 		}
2055 	}
2056 	kunmap_atomic(s_addr);
2057 	spin_unlock(&class->lock);
2058 	migrate_write_unlock(zspage);
2059 
2060 	return ret;
2061 }
2062 
2063 static void zs_page_putback(struct page *page)
2064 {
2065 	struct zs_pool *pool;
2066 	struct size_class *class;
2067 	int class_idx;
2068 	enum fullness_group fg;
2069 	struct address_space *mapping;
2070 	struct zspage *zspage;
2071 
2072 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2073 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2074 
2075 	zspage = get_zspage(page);
2076 	get_zspage_mapping(zspage, &class_idx, &fg);
2077 	mapping = page_mapping(page);
2078 	pool = mapping->private_data;
2079 	class = pool->size_class[class_idx];
2080 
2081 	spin_lock(&class->lock);
2082 	dec_zspage_isolation(zspage);
2083 	if (!is_zspage_isolated(zspage)) {
2084 		fg = putback_zspage(class, zspage);
2085 		/*
2086 		 * Due to page_lock, we cannot free zspage immediately
2087 		 * so let's defer.
2088 		 */
2089 		if (fg == ZS_EMPTY)
2090 			schedule_work(&pool->free_work);
2091 	}
2092 	spin_unlock(&class->lock);
2093 }
2094 
2095 static const struct address_space_operations zsmalloc_aops = {
2096 	.isolate_page = zs_page_isolate,
2097 	.migratepage = zs_page_migrate,
2098 	.putback_page = zs_page_putback,
2099 };
2100 
2101 static int zs_register_migration(struct zs_pool *pool)
2102 {
2103 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2104 	if (IS_ERR(pool->inode)) {
2105 		pool->inode = NULL;
2106 		return 1;
2107 	}
2108 
2109 	pool->inode->i_mapping->private_data = pool;
2110 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2111 	return 0;
2112 }
2113 
2114 static void zs_unregister_migration(struct zs_pool *pool)
2115 {
2116 	flush_work(&pool->free_work);
2117 	iput(pool->inode);
2118 }
2119 
2120 /*
2121  * Caller should hold page_lock of all pages in the zspage
2122  * In here, we cannot use zspage meta data.
2123  */
2124 static void async_free_zspage(struct work_struct *work)
2125 {
2126 	int i;
2127 	struct size_class *class;
2128 	unsigned int class_idx;
2129 	enum fullness_group fullness;
2130 	struct zspage *zspage, *tmp;
2131 	LIST_HEAD(free_pages);
2132 	struct zs_pool *pool = container_of(work, struct zs_pool,
2133 					free_work);
2134 
2135 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2136 		class = pool->size_class[i];
2137 		if (class->index != i)
2138 			continue;
2139 
2140 		spin_lock(&class->lock);
2141 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2142 		spin_unlock(&class->lock);
2143 	}
2144 
2145 
2146 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2147 		list_del(&zspage->list);
2148 		lock_zspage(zspage);
2149 
2150 		get_zspage_mapping(zspage, &class_idx, &fullness);
2151 		VM_BUG_ON(fullness != ZS_EMPTY);
2152 		class = pool->size_class[class_idx];
2153 		spin_lock(&class->lock);
2154 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2155 		spin_unlock(&class->lock);
2156 	}
2157 };
2158 
2159 static void kick_deferred_free(struct zs_pool *pool)
2160 {
2161 	schedule_work(&pool->free_work);
2162 }
2163 
2164 static void init_deferred_free(struct zs_pool *pool)
2165 {
2166 	INIT_WORK(&pool->free_work, async_free_zspage);
2167 }
2168 
2169 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2170 {
2171 	struct page *page = get_first_page(zspage);
2172 
2173 	do {
2174 		WARN_ON(!trylock_page(page));
2175 		__SetPageMovable(page, pool->inode->i_mapping);
2176 		unlock_page(page);
2177 	} while ((page = get_next_page(page)) != NULL);
2178 }
2179 #endif
2180 
2181 /*
2182  *
2183  * Based on the number of unused allocated objects calculate
2184  * and return the number of pages that we can free.
2185  */
2186 static unsigned long zs_can_compact(struct size_class *class)
2187 {
2188 	unsigned long obj_wasted;
2189 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2190 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2191 
2192 	if (obj_allocated <= obj_used)
2193 		return 0;
2194 
2195 	obj_wasted = obj_allocated - obj_used;
2196 	obj_wasted /= class->objs_per_zspage;
2197 
2198 	return obj_wasted * class->pages_per_zspage;
2199 }
2200 
2201 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2202 {
2203 	struct zs_compact_control cc;
2204 	struct zspage *src_zspage;
2205 	struct zspage *dst_zspage = NULL;
2206 
2207 	spin_lock(&class->lock);
2208 	while ((src_zspage = isolate_zspage(class, true))) {
2209 
2210 		if (!zs_can_compact(class))
2211 			break;
2212 
2213 		cc.obj_idx = 0;
2214 		cc.s_page = get_first_page(src_zspage);
2215 
2216 		while ((dst_zspage = isolate_zspage(class, false))) {
2217 			cc.d_page = get_first_page(dst_zspage);
2218 			/*
2219 			 * If there is no more space in dst_page, resched
2220 			 * and see if anyone had allocated another zspage.
2221 			 */
2222 			if (!migrate_zspage(pool, class, &cc))
2223 				break;
2224 
2225 			putback_zspage(class, dst_zspage);
2226 		}
2227 
2228 		/* Stop if we couldn't find slot */
2229 		if (dst_zspage == NULL)
2230 			break;
2231 
2232 		putback_zspage(class, dst_zspage);
2233 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2234 			free_zspage(pool, class, src_zspage);
2235 			pool->stats.pages_compacted += class->pages_per_zspage;
2236 		}
2237 		spin_unlock(&class->lock);
2238 		cond_resched();
2239 		spin_lock(&class->lock);
2240 	}
2241 
2242 	if (src_zspage)
2243 		putback_zspage(class, src_zspage);
2244 
2245 	spin_unlock(&class->lock);
2246 }
2247 
2248 unsigned long zs_compact(struct zs_pool *pool)
2249 {
2250 	int i;
2251 	struct size_class *class;
2252 
2253 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2254 		class = pool->size_class[i];
2255 		if (!class)
2256 			continue;
2257 		if (class->index != i)
2258 			continue;
2259 		__zs_compact(pool, class);
2260 	}
2261 
2262 	return pool->stats.pages_compacted;
2263 }
2264 EXPORT_SYMBOL_GPL(zs_compact);
2265 
2266 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2267 {
2268 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2269 }
2270 EXPORT_SYMBOL_GPL(zs_pool_stats);
2271 
2272 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2273 		struct shrink_control *sc)
2274 {
2275 	unsigned long pages_freed;
2276 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2277 			shrinker);
2278 
2279 	pages_freed = pool->stats.pages_compacted;
2280 	/*
2281 	 * Compact classes and calculate compaction delta.
2282 	 * Can run concurrently with a manually triggered
2283 	 * (by user) compaction.
2284 	 */
2285 	pages_freed = zs_compact(pool) - pages_freed;
2286 
2287 	return pages_freed ? pages_freed : SHRINK_STOP;
2288 }
2289 
2290 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2291 		struct shrink_control *sc)
2292 {
2293 	int i;
2294 	struct size_class *class;
2295 	unsigned long pages_to_free = 0;
2296 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2297 			shrinker);
2298 
2299 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2300 		class = pool->size_class[i];
2301 		if (!class)
2302 			continue;
2303 		if (class->index != i)
2304 			continue;
2305 
2306 		pages_to_free += zs_can_compact(class);
2307 	}
2308 
2309 	return pages_to_free;
2310 }
2311 
2312 static void zs_unregister_shrinker(struct zs_pool *pool)
2313 {
2314 	unregister_shrinker(&pool->shrinker);
2315 }
2316 
2317 static int zs_register_shrinker(struct zs_pool *pool)
2318 {
2319 	pool->shrinker.scan_objects = zs_shrinker_scan;
2320 	pool->shrinker.count_objects = zs_shrinker_count;
2321 	pool->shrinker.batch = 0;
2322 	pool->shrinker.seeks = DEFAULT_SEEKS;
2323 
2324 	return register_shrinker(&pool->shrinker);
2325 }
2326 
2327 /**
2328  * zs_create_pool - Creates an allocation pool to work from.
2329  * @name: pool name to be created
2330  *
2331  * This function must be called before anything when using
2332  * the zsmalloc allocator.
2333  *
2334  * On success, a pointer to the newly created pool is returned,
2335  * otherwise NULL.
2336  */
2337 struct zs_pool *zs_create_pool(const char *name)
2338 {
2339 	int i;
2340 	struct zs_pool *pool;
2341 	struct size_class *prev_class = NULL;
2342 
2343 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2344 	if (!pool)
2345 		return NULL;
2346 
2347 	init_deferred_free(pool);
2348 
2349 	pool->name = kstrdup(name, GFP_KERNEL);
2350 	if (!pool->name)
2351 		goto err;
2352 
2353 	if (create_cache(pool))
2354 		goto err;
2355 
2356 	/*
2357 	 * Iterate reversely, because, size of size_class that we want to use
2358 	 * for merging should be larger or equal to current size.
2359 	 */
2360 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2361 		int size;
2362 		int pages_per_zspage;
2363 		int objs_per_zspage;
2364 		struct size_class *class;
2365 		int fullness = 0;
2366 
2367 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2368 		if (size > ZS_MAX_ALLOC_SIZE)
2369 			size = ZS_MAX_ALLOC_SIZE;
2370 		pages_per_zspage = get_pages_per_zspage(size);
2371 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2372 
2373 		/*
2374 		 * We iterate from biggest down to smallest classes,
2375 		 * so huge_class_size holds the size of the first huge
2376 		 * class. Any object bigger than or equal to that will
2377 		 * endup in the huge class.
2378 		 */
2379 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2380 				!huge_class_size) {
2381 			huge_class_size = size;
2382 			/*
2383 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2384 			 * handle. We need to subtract it, because zs_malloc()
2385 			 * unconditionally adds handle size before it performs
2386 			 * size class search - so object may be smaller than
2387 			 * huge class size, yet it still can end up in the huge
2388 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2389 			 * right before class lookup.
2390 			 */
2391 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2392 		}
2393 
2394 		/*
2395 		 * size_class is used for normal zsmalloc operation such
2396 		 * as alloc/free for that size. Although it is natural that we
2397 		 * have one size_class for each size, there is a chance that we
2398 		 * can get more memory utilization if we use one size_class for
2399 		 * many different sizes whose size_class have same
2400 		 * characteristics. So, we makes size_class point to
2401 		 * previous size_class if possible.
2402 		 */
2403 		if (prev_class) {
2404 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2405 				pool->size_class[i] = prev_class;
2406 				continue;
2407 			}
2408 		}
2409 
2410 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2411 		if (!class)
2412 			goto err;
2413 
2414 		class->size = size;
2415 		class->index = i;
2416 		class->pages_per_zspage = pages_per_zspage;
2417 		class->objs_per_zspage = objs_per_zspage;
2418 		spin_lock_init(&class->lock);
2419 		pool->size_class[i] = class;
2420 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2421 							fullness++)
2422 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2423 
2424 		prev_class = class;
2425 	}
2426 
2427 	/* debug only, don't abort if it fails */
2428 	zs_pool_stat_create(pool, name);
2429 
2430 	if (zs_register_migration(pool))
2431 		goto err;
2432 
2433 	/*
2434 	 * Not critical since shrinker is only used to trigger internal
2435 	 * defragmentation of the pool which is pretty optional thing.  If
2436 	 * registration fails we still can use the pool normally and user can
2437 	 * trigger compaction manually. Thus, ignore return code.
2438 	 */
2439 	zs_register_shrinker(pool);
2440 
2441 	return pool;
2442 
2443 err:
2444 	zs_destroy_pool(pool);
2445 	return NULL;
2446 }
2447 EXPORT_SYMBOL_GPL(zs_create_pool);
2448 
2449 void zs_destroy_pool(struct zs_pool *pool)
2450 {
2451 	int i;
2452 
2453 	zs_unregister_shrinker(pool);
2454 	zs_unregister_migration(pool);
2455 	zs_pool_stat_destroy(pool);
2456 
2457 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2458 		int fg;
2459 		struct size_class *class = pool->size_class[i];
2460 
2461 		if (!class)
2462 			continue;
2463 
2464 		if (class->index != i)
2465 			continue;
2466 
2467 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2468 			if (!list_empty(&class->fullness_list[fg])) {
2469 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2470 					class->size, fg);
2471 			}
2472 		}
2473 		kfree(class);
2474 	}
2475 
2476 	destroy_cache(pool);
2477 	kfree(pool->name);
2478 	kfree(pool);
2479 }
2480 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2481 
2482 static int __init zs_init(void)
2483 {
2484 	int ret;
2485 
2486 	ret = zsmalloc_mount();
2487 	if (ret)
2488 		goto out;
2489 
2490 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2491 				zs_cpu_prepare, zs_cpu_dead);
2492 	if (ret)
2493 		goto hp_setup_fail;
2494 
2495 #ifdef CONFIG_ZPOOL
2496 	zpool_register_driver(&zs_zpool_driver);
2497 #endif
2498 
2499 	zs_stat_init();
2500 
2501 	return 0;
2502 
2503 hp_setup_fail:
2504 	zsmalloc_unmount();
2505 out:
2506 	return ret;
2507 }
2508 
2509 static void __exit zs_exit(void)
2510 {
2511 #ifdef CONFIG_ZPOOL
2512 	zpool_unregister_driver(&zs_zpool_driver);
2513 #endif
2514 	zsmalloc_unmount();
2515 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2516 
2517 	zs_stat_exit();
2518 }
2519 
2520 module_init(zs_init);
2521 module_exit(zs_exit);
2522 
2523 MODULE_LICENSE("Dual BSD/GPL");
2524 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2525