1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 static size_t huge_class_size; 197 198 struct size_class { 199 spinlock_t lock; 200 struct list_head fullness_list[NR_ZS_FULLNESS]; 201 /* 202 * Size of objects stored in this class. Must be multiple 203 * of ZS_ALIGN. 204 */ 205 int size; 206 int objs_per_zspage; 207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 208 int pages_per_zspage; 209 210 unsigned int index; 211 struct zs_size_stat stats; 212 }; 213 214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 215 static void SetPageHugeObject(struct page *page) 216 { 217 SetPageOwnerPriv1(page); 218 } 219 220 static void ClearPageHugeObject(struct page *page) 221 { 222 ClearPageOwnerPriv1(page); 223 } 224 225 static int PageHugeObject(struct page *page) 226 { 227 return PageOwnerPriv1(page); 228 } 229 230 /* 231 * Placed within free objects to form a singly linked list. 232 * For every zspage, zspage->freeobj gives head of this list. 233 * 234 * This must be power of 2 and less than or equal to ZS_ALIGN 235 */ 236 struct link_free { 237 union { 238 /* 239 * Free object index; 240 * It's valid for non-allocated object 241 */ 242 unsigned long next; 243 /* 244 * Handle of allocated object. 245 */ 246 unsigned long handle; 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: /* fall through */ 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc = zs_zpool_malloc, 445 .free = zs_zpool_free, 446 .map = zs_zpool_map, 447 .unmap = zs_zpool_unmap, 448 .total_size = zs_zpool_total_size, 449 }; 450 451 MODULE_ALIAS("zpool-zsmalloc"); 452 #endif /* CONFIG_ZPOOL */ 453 454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 456 457 static bool is_zspage_isolated(struct zspage *zspage) 458 { 459 return zspage->isolated; 460 } 461 462 static __maybe_unused int is_first_page(struct page *page) 463 { 464 return PagePrivate(page); 465 } 466 467 /* Protected by class->lock */ 468 static inline int get_zspage_inuse(struct zspage *zspage) 469 { 470 return zspage->inuse; 471 } 472 473 static inline void set_zspage_inuse(struct zspage *zspage, int val) 474 { 475 zspage->inuse = val; 476 } 477 478 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 479 { 480 zspage->inuse += val; 481 } 482 483 static inline struct page *get_first_page(struct zspage *zspage) 484 { 485 struct page *first_page = zspage->first_page; 486 487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 488 return first_page; 489 } 490 491 static inline int get_first_obj_offset(struct page *page) 492 { 493 return page->units; 494 } 495 496 static inline void set_first_obj_offset(struct page *page, int offset) 497 { 498 page->units = offset; 499 } 500 501 static inline unsigned int get_freeobj(struct zspage *zspage) 502 { 503 return zspage->freeobj; 504 } 505 506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 507 { 508 zspage->freeobj = obj; 509 } 510 511 static void get_zspage_mapping(struct zspage *zspage, 512 unsigned int *class_idx, 513 enum fullness_group *fullness) 514 { 515 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 516 517 *fullness = zspage->fullness; 518 *class_idx = zspage->class; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the give size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type zs_stat_type or fullness_group */ 548 static inline void zs_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 } 579 580 static void __exit zs_stat_exit(void) 581 { 582 debugfs_remove_recursive(zs_stat_root); 583 } 584 585 static unsigned long zs_can_compact(struct size_class *class); 586 587 static int zs_stats_size_show(struct seq_file *s, void *v) 588 { 589 int i; 590 struct zs_pool *pool = s->private; 591 struct size_class *class; 592 int objs_per_zspage; 593 unsigned long class_almost_full, class_almost_empty; 594 unsigned long obj_allocated, obj_used, pages_used, freeable; 595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 597 unsigned long total_freeable = 0; 598 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 600 "class", "size", "almost_full", "almost_empty", 601 "obj_allocated", "obj_used", "pages_used", 602 "pages_per_zspage", "freeable"); 603 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 605 class = pool->size_class[i]; 606 607 if (class->index != i) 608 continue; 609 610 spin_lock(&class->lock); 611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 614 obj_used = zs_stat_get(class, OBJ_USED); 615 freeable = zs_can_compact(class); 616 spin_unlock(&class->lock); 617 618 objs_per_zspage = class->objs_per_zspage; 619 pages_used = obj_allocated / objs_per_zspage * 620 class->pages_per_zspage; 621 622 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 623 " %10lu %10lu %16d %8lu\n", 624 i, class->size, class_almost_full, class_almost_empty, 625 obj_allocated, obj_used, pages_used, 626 class->pages_per_zspage, freeable); 627 628 total_class_almost_full += class_almost_full; 629 total_class_almost_empty += class_almost_empty; 630 total_objs += obj_allocated; 631 total_used_objs += obj_used; 632 total_pages += pages_used; 633 total_freeable += freeable; 634 } 635 636 seq_puts(s, "\n"); 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 638 "Total", "", total_class_almost_full, 639 total_class_almost_empty, total_objs, 640 total_used_objs, total_pages, "", total_freeable); 641 642 return 0; 643 } 644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 645 646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 647 { 648 if (!zs_stat_root) { 649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 650 return; 651 } 652 653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 654 655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 656 &zs_stats_size_fops); 657 } 658 659 static void zs_pool_stat_destroy(struct zs_pool *pool) 660 { 661 debugfs_remove_recursive(pool->stat_dentry); 662 } 663 664 #else /* CONFIG_ZSMALLOC_STAT */ 665 static void __init zs_stat_init(void) 666 { 667 } 668 669 static void __exit zs_stat_exit(void) 670 { 671 } 672 673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 674 { 675 } 676 677 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 678 { 679 } 680 #endif 681 682 683 /* 684 * For each size class, zspages are divided into different groups 685 * depending on how "full" they are. This was done so that we could 686 * easily find empty or nearly empty zspages when we try to shrink 687 * the pool (not yet implemented). This function returns fullness 688 * status of the given page. 689 */ 690 static enum fullness_group get_fullness_group(struct size_class *class, 691 struct zspage *zspage) 692 { 693 int inuse, objs_per_zspage; 694 enum fullness_group fg; 695 696 inuse = get_zspage_inuse(zspage); 697 objs_per_zspage = class->objs_per_zspage; 698 699 if (inuse == 0) 700 fg = ZS_EMPTY; 701 else if (inuse == objs_per_zspage) 702 fg = ZS_FULL; 703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 704 fg = ZS_ALMOST_EMPTY; 705 else 706 fg = ZS_ALMOST_FULL; 707 708 return fg; 709 } 710 711 /* 712 * Each size class maintains various freelists and zspages are assigned 713 * to one of these freelists based on the number of live objects they 714 * have. This functions inserts the given zspage into the freelist 715 * identified by <class, fullness_group>. 716 */ 717 static void insert_zspage(struct size_class *class, 718 struct zspage *zspage, 719 enum fullness_group fullness) 720 { 721 struct zspage *head; 722 723 zs_stat_inc(class, fullness, 1); 724 head = list_first_entry_or_null(&class->fullness_list[fullness], 725 struct zspage, list); 726 /* 727 * We want to see more ZS_FULL pages and less almost empty/full. 728 * Put pages with higher ->inuse first. 729 */ 730 if (head) { 731 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 732 list_add(&zspage->list, &head->list); 733 return; 734 } 735 } 736 list_add(&zspage->list, &class->fullness_list[fullness]); 737 } 738 739 /* 740 * This function removes the given zspage from the freelist identified 741 * by <class, fullness_group>. 742 */ 743 static void remove_zspage(struct size_class *class, 744 struct zspage *zspage, 745 enum fullness_group fullness) 746 { 747 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 748 VM_BUG_ON(is_zspage_isolated(zspage)); 749 750 list_del_init(&zspage->list); 751 zs_stat_dec(class, fullness, 1); 752 } 753 754 /* 755 * Each size class maintains zspages in different fullness groups depending 756 * on the number of live objects they contain. When allocating or freeing 757 * objects, the fullness status of the page can change, say, from ALMOST_FULL 758 * to ALMOST_EMPTY when freeing an object. This function checks if such 759 * a status change has occurred for the given page and accordingly moves the 760 * page from the freelist of the old fullness group to that of the new 761 * fullness group. 762 */ 763 static enum fullness_group fix_fullness_group(struct size_class *class, 764 struct zspage *zspage) 765 { 766 int class_idx; 767 enum fullness_group currfg, newfg; 768 769 get_zspage_mapping(zspage, &class_idx, &currfg); 770 newfg = get_fullness_group(class, zspage); 771 if (newfg == currfg) 772 goto out; 773 774 if (!is_zspage_isolated(zspage)) { 775 remove_zspage(class, zspage, currfg); 776 insert_zspage(class, zspage, newfg); 777 } 778 779 set_zspage_mapping(zspage, class_idx, newfg); 780 781 out: 782 return newfg; 783 } 784 785 /* 786 * We have to decide on how many pages to link together 787 * to form a zspage for each size class. This is important 788 * to reduce wastage due to unusable space left at end of 789 * each zspage which is given as: 790 * wastage = Zp % class_size 791 * usage = Zp - wastage 792 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 793 * 794 * For example, for size class of 3/8 * PAGE_SIZE, we should 795 * link together 3 PAGE_SIZE sized pages to form a zspage 796 * since then we can perfectly fit in 8 such objects. 797 */ 798 static int get_pages_per_zspage(int class_size) 799 { 800 int i, max_usedpc = 0; 801 /* zspage order which gives maximum used size per KB */ 802 int max_usedpc_order = 1; 803 804 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 805 int zspage_size; 806 int waste, usedpc; 807 808 zspage_size = i * PAGE_SIZE; 809 waste = zspage_size % class_size; 810 usedpc = (zspage_size - waste) * 100 / zspage_size; 811 812 if (usedpc > max_usedpc) { 813 max_usedpc = usedpc; 814 max_usedpc_order = i; 815 } 816 } 817 818 return max_usedpc_order; 819 } 820 821 static struct zspage *get_zspage(struct page *page) 822 { 823 struct zspage *zspage = (struct zspage *)page->private; 824 825 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 826 return zspage; 827 } 828 829 static struct page *get_next_page(struct page *page) 830 { 831 if (unlikely(PageHugeObject(page))) 832 return NULL; 833 834 return page->freelist; 835 } 836 837 /** 838 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 839 * @obj: the encoded object value 840 * @page: page object resides in zspage 841 * @obj_idx: object index 842 */ 843 static void obj_to_location(unsigned long obj, struct page **page, 844 unsigned int *obj_idx) 845 { 846 obj >>= OBJ_TAG_BITS; 847 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 848 *obj_idx = (obj & OBJ_INDEX_MASK); 849 } 850 851 /** 852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 853 * @page: page object resides in zspage 854 * @obj_idx: object index 855 */ 856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 857 { 858 unsigned long obj; 859 860 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 861 obj |= obj_idx & OBJ_INDEX_MASK; 862 obj <<= OBJ_TAG_BITS; 863 864 return obj; 865 } 866 867 static unsigned long handle_to_obj(unsigned long handle) 868 { 869 return *(unsigned long *)handle; 870 } 871 872 static unsigned long obj_to_head(struct page *page, void *obj) 873 { 874 if (unlikely(PageHugeObject(page))) { 875 VM_BUG_ON_PAGE(!is_first_page(page), page); 876 return page->index; 877 } else 878 return *(unsigned long *)obj; 879 } 880 881 static inline int testpin_tag(unsigned long handle) 882 { 883 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 884 } 885 886 static inline int trypin_tag(unsigned long handle) 887 { 888 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 889 } 890 891 static void pin_tag(unsigned long handle) 892 { 893 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 894 } 895 896 static void unpin_tag(unsigned long handle) 897 { 898 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 899 } 900 901 static void reset_page(struct page *page) 902 { 903 __ClearPageMovable(page); 904 ClearPagePrivate(page); 905 set_page_private(page, 0); 906 page_mapcount_reset(page); 907 ClearPageHugeObject(page); 908 page->freelist = NULL; 909 } 910 911 static int trylock_zspage(struct zspage *zspage) 912 { 913 struct page *cursor, *fail; 914 915 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 916 get_next_page(cursor)) { 917 if (!trylock_page(cursor)) { 918 fail = cursor; 919 goto unlock; 920 } 921 } 922 923 return 1; 924 unlock: 925 for (cursor = get_first_page(zspage); cursor != fail; cursor = 926 get_next_page(cursor)) 927 unlock_page(cursor); 928 929 return 0; 930 } 931 932 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 933 struct zspage *zspage) 934 { 935 struct page *page, *next; 936 enum fullness_group fg; 937 unsigned int class_idx; 938 939 get_zspage_mapping(zspage, &class_idx, &fg); 940 941 assert_spin_locked(&class->lock); 942 943 VM_BUG_ON(get_zspage_inuse(zspage)); 944 VM_BUG_ON(fg != ZS_EMPTY); 945 946 next = page = get_first_page(zspage); 947 do { 948 VM_BUG_ON_PAGE(!PageLocked(page), page); 949 next = get_next_page(page); 950 reset_page(page); 951 unlock_page(page); 952 dec_zone_page_state(page, NR_ZSPAGES); 953 put_page(page); 954 page = next; 955 } while (page != NULL); 956 957 cache_free_zspage(pool, zspage); 958 959 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 960 atomic_long_sub(class->pages_per_zspage, 961 &pool->pages_allocated); 962 } 963 964 static void free_zspage(struct zs_pool *pool, struct size_class *class, 965 struct zspage *zspage) 966 { 967 VM_BUG_ON(get_zspage_inuse(zspage)); 968 VM_BUG_ON(list_empty(&zspage->list)); 969 970 if (!trylock_zspage(zspage)) { 971 kick_deferred_free(pool); 972 return; 973 } 974 975 remove_zspage(class, zspage, ZS_EMPTY); 976 __free_zspage(pool, class, zspage); 977 } 978 979 /* Initialize a newly allocated zspage */ 980 static void init_zspage(struct size_class *class, struct zspage *zspage) 981 { 982 unsigned int freeobj = 1; 983 unsigned long off = 0; 984 struct page *page = get_first_page(zspage); 985 986 while (page) { 987 struct page *next_page; 988 struct link_free *link; 989 void *vaddr; 990 991 set_first_obj_offset(page, off); 992 993 vaddr = kmap_atomic(page); 994 link = (struct link_free *)vaddr + off / sizeof(*link); 995 996 while ((off += class->size) < PAGE_SIZE) { 997 link->next = freeobj++ << OBJ_TAG_BITS; 998 link += class->size / sizeof(*link); 999 } 1000 1001 /* 1002 * We now come to the last (full or partial) object on this 1003 * page, which must point to the first object on the next 1004 * page (if present) 1005 */ 1006 next_page = get_next_page(page); 1007 if (next_page) { 1008 link->next = freeobj++ << OBJ_TAG_BITS; 1009 } else { 1010 /* 1011 * Reset OBJ_TAG_BITS bit to last link to tell 1012 * whether it's allocated object or not. 1013 */ 1014 link->next = -1UL << OBJ_TAG_BITS; 1015 } 1016 kunmap_atomic(vaddr); 1017 page = next_page; 1018 off %= PAGE_SIZE; 1019 } 1020 1021 set_freeobj(zspage, 0); 1022 } 1023 1024 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1025 struct page *pages[]) 1026 { 1027 int i; 1028 struct page *page; 1029 struct page *prev_page = NULL; 1030 int nr_pages = class->pages_per_zspage; 1031 1032 /* 1033 * Allocate individual pages and link them together as: 1034 * 1. all pages are linked together using page->freelist 1035 * 2. each sub-page point to zspage using page->private 1036 * 1037 * we set PG_private to identify the first page (i.e. no other sub-page 1038 * has this flag set). 1039 */ 1040 for (i = 0; i < nr_pages; i++) { 1041 page = pages[i]; 1042 set_page_private(page, (unsigned long)zspage); 1043 page->freelist = NULL; 1044 if (i == 0) { 1045 zspage->first_page = page; 1046 SetPagePrivate(page); 1047 if (unlikely(class->objs_per_zspage == 1 && 1048 class->pages_per_zspage == 1)) 1049 SetPageHugeObject(page); 1050 } else { 1051 prev_page->freelist = page; 1052 } 1053 prev_page = page; 1054 } 1055 } 1056 1057 /* 1058 * Allocate a zspage for the given size class 1059 */ 1060 static struct zspage *alloc_zspage(struct zs_pool *pool, 1061 struct size_class *class, 1062 gfp_t gfp) 1063 { 1064 int i; 1065 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1066 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1067 1068 if (!zspage) 1069 return NULL; 1070 1071 memset(zspage, 0, sizeof(struct zspage)); 1072 zspage->magic = ZSPAGE_MAGIC; 1073 migrate_lock_init(zspage); 1074 1075 for (i = 0; i < class->pages_per_zspage; i++) { 1076 struct page *page; 1077 1078 page = alloc_page(gfp); 1079 if (!page) { 1080 while (--i >= 0) { 1081 dec_zone_page_state(pages[i], NR_ZSPAGES); 1082 __free_page(pages[i]); 1083 } 1084 cache_free_zspage(pool, zspage); 1085 return NULL; 1086 } 1087 1088 inc_zone_page_state(page, NR_ZSPAGES); 1089 pages[i] = page; 1090 } 1091 1092 create_page_chain(class, zspage, pages); 1093 init_zspage(class, zspage); 1094 1095 return zspage; 1096 } 1097 1098 static struct zspage *find_get_zspage(struct size_class *class) 1099 { 1100 int i; 1101 struct zspage *zspage; 1102 1103 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1104 zspage = list_first_entry_or_null(&class->fullness_list[i], 1105 struct zspage, list); 1106 if (zspage) 1107 break; 1108 } 1109 1110 return zspage; 1111 } 1112 1113 #ifdef CONFIG_PGTABLE_MAPPING 1114 static inline int __zs_cpu_up(struct mapping_area *area) 1115 { 1116 /* 1117 * Make sure we don't leak memory if a cpu UP notification 1118 * and zs_init() race and both call zs_cpu_up() on the same cpu 1119 */ 1120 if (area->vm) 1121 return 0; 1122 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1123 if (!area->vm) 1124 return -ENOMEM; 1125 return 0; 1126 } 1127 1128 static inline void __zs_cpu_down(struct mapping_area *area) 1129 { 1130 if (area->vm) 1131 free_vm_area(area->vm); 1132 area->vm = NULL; 1133 } 1134 1135 static inline void *__zs_map_object(struct mapping_area *area, 1136 struct page *pages[2], int off, int size) 1137 { 1138 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1139 area->vm_addr = area->vm->addr; 1140 return area->vm_addr + off; 1141 } 1142 1143 static inline void __zs_unmap_object(struct mapping_area *area, 1144 struct page *pages[2], int off, int size) 1145 { 1146 unsigned long addr = (unsigned long)area->vm_addr; 1147 1148 unmap_kernel_range(addr, PAGE_SIZE * 2); 1149 } 1150 1151 #else /* CONFIG_PGTABLE_MAPPING */ 1152 1153 static inline int __zs_cpu_up(struct mapping_area *area) 1154 { 1155 /* 1156 * Make sure we don't leak memory if a cpu UP notification 1157 * and zs_init() race and both call zs_cpu_up() on the same cpu 1158 */ 1159 if (area->vm_buf) 1160 return 0; 1161 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1162 if (!area->vm_buf) 1163 return -ENOMEM; 1164 return 0; 1165 } 1166 1167 static inline void __zs_cpu_down(struct mapping_area *area) 1168 { 1169 kfree(area->vm_buf); 1170 area->vm_buf = NULL; 1171 } 1172 1173 static void *__zs_map_object(struct mapping_area *area, 1174 struct page *pages[2], int off, int size) 1175 { 1176 int sizes[2]; 1177 void *addr; 1178 char *buf = area->vm_buf; 1179 1180 /* disable page faults to match kmap_atomic() return conditions */ 1181 pagefault_disable(); 1182 1183 /* no read fastpath */ 1184 if (area->vm_mm == ZS_MM_WO) 1185 goto out; 1186 1187 sizes[0] = PAGE_SIZE - off; 1188 sizes[1] = size - sizes[0]; 1189 1190 /* copy object to per-cpu buffer */ 1191 addr = kmap_atomic(pages[0]); 1192 memcpy(buf, addr + off, sizes[0]); 1193 kunmap_atomic(addr); 1194 addr = kmap_atomic(pages[1]); 1195 memcpy(buf + sizes[0], addr, sizes[1]); 1196 kunmap_atomic(addr); 1197 out: 1198 return area->vm_buf; 1199 } 1200 1201 static void __zs_unmap_object(struct mapping_area *area, 1202 struct page *pages[2], int off, int size) 1203 { 1204 int sizes[2]; 1205 void *addr; 1206 char *buf; 1207 1208 /* no write fastpath */ 1209 if (area->vm_mm == ZS_MM_RO) 1210 goto out; 1211 1212 buf = area->vm_buf; 1213 buf = buf + ZS_HANDLE_SIZE; 1214 size -= ZS_HANDLE_SIZE; 1215 off += ZS_HANDLE_SIZE; 1216 1217 sizes[0] = PAGE_SIZE - off; 1218 sizes[1] = size - sizes[0]; 1219 1220 /* copy per-cpu buffer to object */ 1221 addr = kmap_atomic(pages[0]); 1222 memcpy(addr + off, buf, sizes[0]); 1223 kunmap_atomic(addr); 1224 addr = kmap_atomic(pages[1]); 1225 memcpy(addr, buf + sizes[0], sizes[1]); 1226 kunmap_atomic(addr); 1227 1228 out: 1229 /* enable page faults to match kunmap_atomic() return conditions */ 1230 pagefault_enable(); 1231 } 1232 1233 #endif /* CONFIG_PGTABLE_MAPPING */ 1234 1235 static int zs_cpu_prepare(unsigned int cpu) 1236 { 1237 struct mapping_area *area; 1238 1239 area = &per_cpu(zs_map_area, cpu); 1240 return __zs_cpu_up(area); 1241 } 1242 1243 static int zs_cpu_dead(unsigned int cpu) 1244 { 1245 struct mapping_area *area; 1246 1247 area = &per_cpu(zs_map_area, cpu); 1248 __zs_cpu_down(area); 1249 return 0; 1250 } 1251 1252 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1253 int objs_per_zspage) 1254 { 1255 if (prev->pages_per_zspage == pages_per_zspage && 1256 prev->objs_per_zspage == objs_per_zspage) 1257 return true; 1258 1259 return false; 1260 } 1261 1262 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1263 { 1264 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1265 } 1266 1267 unsigned long zs_get_total_pages(struct zs_pool *pool) 1268 { 1269 return atomic_long_read(&pool->pages_allocated); 1270 } 1271 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1272 1273 /** 1274 * zs_map_object - get address of allocated object from handle. 1275 * @pool: pool from which the object was allocated 1276 * @handle: handle returned from zs_malloc 1277 * @mm: maping mode to use 1278 * 1279 * Before using an object allocated from zs_malloc, it must be mapped using 1280 * this function. When done with the object, it must be unmapped using 1281 * zs_unmap_object. 1282 * 1283 * Only one object can be mapped per cpu at a time. There is no protection 1284 * against nested mappings. 1285 * 1286 * This function returns with preemption and page faults disabled. 1287 */ 1288 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1289 enum zs_mapmode mm) 1290 { 1291 struct zspage *zspage; 1292 struct page *page; 1293 unsigned long obj, off; 1294 unsigned int obj_idx; 1295 1296 unsigned int class_idx; 1297 enum fullness_group fg; 1298 struct size_class *class; 1299 struct mapping_area *area; 1300 struct page *pages[2]; 1301 void *ret; 1302 1303 /* 1304 * Because we use per-cpu mapping areas shared among the 1305 * pools/users, we can't allow mapping in interrupt context 1306 * because it can corrupt another users mappings. 1307 */ 1308 BUG_ON(in_interrupt()); 1309 1310 /* From now on, migration cannot move the object */ 1311 pin_tag(handle); 1312 1313 obj = handle_to_obj(handle); 1314 obj_to_location(obj, &page, &obj_idx); 1315 zspage = get_zspage(page); 1316 1317 /* migration cannot move any subpage in this zspage */ 1318 migrate_read_lock(zspage); 1319 1320 get_zspage_mapping(zspage, &class_idx, &fg); 1321 class = pool->size_class[class_idx]; 1322 off = (class->size * obj_idx) & ~PAGE_MASK; 1323 1324 area = &get_cpu_var(zs_map_area); 1325 area->vm_mm = mm; 1326 if (off + class->size <= PAGE_SIZE) { 1327 /* this object is contained entirely within a page */ 1328 area->vm_addr = kmap_atomic(page); 1329 ret = area->vm_addr + off; 1330 goto out; 1331 } 1332 1333 /* this object spans two pages */ 1334 pages[0] = page; 1335 pages[1] = get_next_page(page); 1336 BUG_ON(!pages[1]); 1337 1338 ret = __zs_map_object(area, pages, off, class->size); 1339 out: 1340 if (likely(!PageHugeObject(page))) 1341 ret += ZS_HANDLE_SIZE; 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL_GPL(zs_map_object); 1346 1347 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1348 { 1349 struct zspage *zspage; 1350 struct page *page; 1351 unsigned long obj, off; 1352 unsigned int obj_idx; 1353 1354 unsigned int class_idx; 1355 enum fullness_group fg; 1356 struct size_class *class; 1357 struct mapping_area *area; 1358 1359 obj = handle_to_obj(handle); 1360 obj_to_location(obj, &page, &obj_idx); 1361 zspage = get_zspage(page); 1362 get_zspage_mapping(zspage, &class_idx, &fg); 1363 class = pool->size_class[class_idx]; 1364 off = (class->size * obj_idx) & ~PAGE_MASK; 1365 1366 area = this_cpu_ptr(&zs_map_area); 1367 if (off + class->size <= PAGE_SIZE) 1368 kunmap_atomic(area->vm_addr); 1369 else { 1370 struct page *pages[2]; 1371 1372 pages[0] = page; 1373 pages[1] = get_next_page(page); 1374 BUG_ON(!pages[1]); 1375 1376 __zs_unmap_object(area, pages, off, class->size); 1377 } 1378 put_cpu_var(zs_map_area); 1379 1380 migrate_read_unlock(zspage); 1381 unpin_tag(handle); 1382 } 1383 EXPORT_SYMBOL_GPL(zs_unmap_object); 1384 1385 /** 1386 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1387 * zsmalloc &size_class. 1388 * @pool: zsmalloc pool to use 1389 * 1390 * The function returns the size of the first huge class - any object of equal 1391 * or bigger size will be stored in zspage consisting of a single physical 1392 * page. 1393 * 1394 * Context: Any context. 1395 * 1396 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1397 */ 1398 size_t zs_huge_class_size(struct zs_pool *pool) 1399 { 1400 return huge_class_size; 1401 } 1402 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1403 1404 static unsigned long obj_malloc(struct size_class *class, 1405 struct zspage *zspage, unsigned long handle) 1406 { 1407 int i, nr_page, offset; 1408 unsigned long obj; 1409 struct link_free *link; 1410 1411 struct page *m_page; 1412 unsigned long m_offset; 1413 void *vaddr; 1414 1415 handle |= OBJ_ALLOCATED_TAG; 1416 obj = get_freeobj(zspage); 1417 1418 offset = obj * class->size; 1419 nr_page = offset >> PAGE_SHIFT; 1420 m_offset = offset & ~PAGE_MASK; 1421 m_page = get_first_page(zspage); 1422 1423 for (i = 0; i < nr_page; i++) 1424 m_page = get_next_page(m_page); 1425 1426 vaddr = kmap_atomic(m_page); 1427 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1428 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1429 if (likely(!PageHugeObject(m_page))) 1430 /* record handle in the header of allocated chunk */ 1431 link->handle = handle; 1432 else 1433 /* record handle to page->index */ 1434 zspage->first_page->index = handle; 1435 1436 kunmap_atomic(vaddr); 1437 mod_zspage_inuse(zspage, 1); 1438 zs_stat_inc(class, OBJ_USED, 1); 1439 1440 obj = location_to_obj(m_page, obj); 1441 1442 return obj; 1443 } 1444 1445 1446 /** 1447 * zs_malloc - Allocate block of given size from pool. 1448 * @pool: pool to allocate from 1449 * @size: size of block to allocate 1450 * @gfp: gfp flags when allocating object 1451 * 1452 * On success, handle to the allocated object is returned, 1453 * otherwise 0. 1454 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1455 */ 1456 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1457 { 1458 unsigned long handle, obj; 1459 struct size_class *class; 1460 enum fullness_group newfg; 1461 struct zspage *zspage; 1462 1463 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1464 return 0; 1465 1466 handle = cache_alloc_handle(pool, gfp); 1467 if (!handle) 1468 return 0; 1469 1470 /* extra space in chunk to keep the handle */ 1471 size += ZS_HANDLE_SIZE; 1472 class = pool->size_class[get_size_class_index(size)]; 1473 1474 spin_lock(&class->lock); 1475 zspage = find_get_zspage(class); 1476 if (likely(zspage)) { 1477 obj = obj_malloc(class, zspage, handle); 1478 /* Now move the zspage to another fullness group, if required */ 1479 fix_fullness_group(class, zspage); 1480 record_obj(handle, obj); 1481 spin_unlock(&class->lock); 1482 1483 return handle; 1484 } 1485 1486 spin_unlock(&class->lock); 1487 1488 zspage = alloc_zspage(pool, class, gfp); 1489 if (!zspage) { 1490 cache_free_handle(pool, handle); 1491 return 0; 1492 } 1493 1494 spin_lock(&class->lock); 1495 obj = obj_malloc(class, zspage, handle); 1496 newfg = get_fullness_group(class, zspage); 1497 insert_zspage(class, zspage, newfg); 1498 set_zspage_mapping(zspage, class->index, newfg); 1499 record_obj(handle, obj); 1500 atomic_long_add(class->pages_per_zspage, 1501 &pool->pages_allocated); 1502 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1503 1504 /* We completely set up zspage so mark them as movable */ 1505 SetZsPageMovable(pool, zspage); 1506 spin_unlock(&class->lock); 1507 1508 return handle; 1509 } 1510 EXPORT_SYMBOL_GPL(zs_malloc); 1511 1512 static void obj_free(struct size_class *class, unsigned long obj) 1513 { 1514 struct link_free *link; 1515 struct zspage *zspage; 1516 struct page *f_page; 1517 unsigned long f_offset; 1518 unsigned int f_objidx; 1519 void *vaddr; 1520 1521 obj &= ~OBJ_ALLOCATED_TAG; 1522 obj_to_location(obj, &f_page, &f_objidx); 1523 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1524 zspage = get_zspage(f_page); 1525 1526 vaddr = kmap_atomic(f_page); 1527 1528 /* Insert this object in containing zspage's freelist */ 1529 link = (struct link_free *)(vaddr + f_offset); 1530 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1531 kunmap_atomic(vaddr); 1532 set_freeobj(zspage, f_objidx); 1533 mod_zspage_inuse(zspage, -1); 1534 zs_stat_dec(class, OBJ_USED, 1); 1535 } 1536 1537 void zs_free(struct zs_pool *pool, unsigned long handle) 1538 { 1539 struct zspage *zspage; 1540 struct page *f_page; 1541 unsigned long obj; 1542 unsigned int f_objidx; 1543 int class_idx; 1544 struct size_class *class; 1545 enum fullness_group fullness; 1546 bool isolated; 1547 1548 if (unlikely(!handle)) 1549 return; 1550 1551 pin_tag(handle); 1552 obj = handle_to_obj(handle); 1553 obj_to_location(obj, &f_page, &f_objidx); 1554 zspage = get_zspage(f_page); 1555 1556 migrate_read_lock(zspage); 1557 1558 get_zspage_mapping(zspage, &class_idx, &fullness); 1559 class = pool->size_class[class_idx]; 1560 1561 spin_lock(&class->lock); 1562 obj_free(class, obj); 1563 fullness = fix_fullness_group(class, zspage); 1564 if (fullness != ZS_EMPTY) { 1565 migrate_read_unlock(zspage); 1566 goto out; 1567 } 1568 1569 isolated = is_zspage_isolated(zspage); 1570 migrate_read_unlock(zspage); 1571 /* If zspage is isolated, zs_page_putback will free the zspage */ 1572 if (likely(!isolated)) 1573 free_zspage(pool, class, zspage); 1574 out: 1575 1576 spin_unlock(&class->lock); 1577 unpin_tag(handle); 1578 cache_free_handle(pool, handle); 1579 } 1580 EXPORT_SYMBOL_GPL(zs_free); 1581 1582 static void zs_object_copy(struct size_class *class, unsigned long dst, 1583 unsigned long src) 1584 { 1585 struct page *s_page, *d_page; 1586 unsigned int s_objidx, d_objidx; 1587 unsigned long s_off, d_off; 1588 void *s_addr, *d_addr; 1589 int s_size, d_size, size; 1590 int written = 0; 1591 1592 s_size = d_size = class->size; 1593 1594 obj_to_location(src, &s_page, &s_objidx); 1595 obj_to_location(dst, &d_page, &d_objidx); 1596 1597 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1598 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1599 1600 if (s_off + class->size > PAGE_SIZE) 1601 s_size = PAGE_SIZE - s_off; 1602 1603 if (d_off + class->size > PAGE_SIZE) 1604 d_size = PAGE_SIZE - d_off; 1605 1606 s_addr = kmap_atomic(s_page); 1607 d_addr = kmap_atomic(d_page); 1608 1609 while (1) { 1610 size = min(s_size, d_size); 1611 memcpy(d_addr + d_off, s_addr + s_off, size); 1612 written += size; 1613 1614 if (written == class->size) 1615 break; 1616 1617 s_off += size; 1618 s_size -= size; 1619 d_off += size; 1620 d_size -= size; 1621 1622 if (s_off >= PAGE_SIZE) { 1623 kunmap_atomic(d_addr); 1624 kunmap_atomic(s_addr); 1625 s_page = get_next_page(s_page); 1626 s_addr = kmap_atomic(s_page); 1627 d_addr = kmap_atomic(d_page); 1628 s_size = class->size - written; 1629 s_off = 0; 1630 } 1631 1632 if (d_off >= PAGE_SIZE) { 1633 kunmap_atomic(d_addr); 1634 d_page = get_next_page(d_page); 1635 d_addr = kmap_atomic(d_page); 1636 d_size = class->size - written; 1637 d_off = 0; 1638 } 1639 } 1640 1641 kunmap_atomic(d_addr); 1642 kunmap_atomic(s_addr); 1643 } 1644 1645 /* 1646 * Find alloced object in zspage from index object and 1647 * return handle. 1648 */ 1649 static unsigned long find_alloced_obj(struct size_class *class, 1650 struct page *page, int *obj_idx) 1651 { 1652 unsigned long head; 1653 int offset = 0; 1654 int index = *obj_idx; 1655 unsigned long handle = 0; 1656 void *addr = kmap_atomic(page); 1657 1658 offset = get_first_obj_offset(page); 1659 offset += class->size * index; 1660 1661 while (offset < PAGE_SIZE) { 1662 head = obj_to_head(page, addr + offset); 1663 if (head & OBJ_ALLOCATED_TAG) { 1664 handle = head & ~OBJ_ALLOCATED_TAG; 1665 if (trypin_tag(handle)) 1666 break; 1667 handle = 0; 1668 } 1669 1670 offset += class->size; 1671 index++; 1672 } 1673 1674 kunmap_atomic(addr); 1675 1676 *obj_idx = index; 1677 1678 return handle; 1679 } 1680 1681 struct zs_compact_control { 1682 /* Source spage for migration which could be a subpage of zspage */ 1683 struct page *s_page; 1684 /* Destination page for migration which should be a first page 1685 * of zspage. */ 1686 struct page *d_page; 1687 /* Starting object index within @s_page which used for live object 1688 * in the subpage. */ 1689 int obj_idx; 1690 }; 1691 1692 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1693 struct zs_compact_control *cc) 1694 { 1695 unsigned long used_obj, free_obj; 1696 unsigned long handle; 1697 struct page *s_page = cc->s_page; 1698 struct page *d_page = cc->d_page; 1699 int obj_idx = cc->obj_idx; 1700 int ret = 0; 1701 1702 while (1) { 1703 handle = find_alloced_obj(class, s_page, &obj_idx); 1704 if (!handle) { 1705 s_page = get_next_page(s_page); 1706 if (!s_page) 1707 break; 1708 obj_idx = 0; 1709 continue; 1710 } 1711 1712 /* Stop if there is no more space */ 1713 if (zspage_full(class, get_zspage(d_page))) { 1714 unpin_tag(handle); 1715 ret = -ENOMEM; 1716 break; 1717 } 1718 1719 used_obj = handle_to_obj(handle); 1720 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1721 zs_object_copy(class, free_obj, used_obj); 1722 obj_idx++; 1723 /* 1724 * record_obj updates handle's value to free_obj and it will 1725 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1726 * breaks synchronization using pin_tag(e,g, zs_free) so 1727 * let's keep the lock bit. 1728 */ 1729 free_obj |= BIT(HANDLE_PIN_BIT); 1730 record_obj(handle, free_obj); 1731 unpin_tag(handle); 1732 obj_free(class, used_obj); 1733 } 1734 1735 /* Remember last position in this iteration */ 1736 cc->s_page = s_page; 1737 cc->obj_idx = obj_idx; 1738 1739 return ret; 1740 } 1741 1742 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1743 { 1744 int i; 1745 struct zspage *zspage; 1746 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1747 1748 if (!source) { 1749 fg[0] = ZS_ALMOST_FULL; 1750 fg[1] = ZS_ALMOST_EMPTY; 1751 } 1752 1753 for (i = 0; i < 2; i++) { 1754 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1755 struct zspage, list); 1756 if (zspage) { 1757 VM_BUG_ON(is_zspage_isolated(zspage)); 1758 remove_zspage(class, zspage, fg[i]); 1759 return zspage; 1760 } 1761 } 1762 1763 return zspage; 1764 } 1765 1766 /* 1767 * putback_zspage - add @zspage into right class's fullness list 1768 * @class: destination class 1769 * @zspage: target page 1770 * 1771 * Return @zspage's fullness_group 1772 */ 1773 static enum fullness_group putback_zspage(struct size_class *class, 1774 struct zspage *zspage) 1775 { 1776 enum fullness_group fullness; 1777 1778 VM_BUG_ON(is_zspage_isolated(zspage)); 1779 1780 fullness = get_fullness_group(class, zspage); 1781 insert_zspage(class, zspage, fullness); 1782 set_zspage_mapping(zspage, class->index, fullness); 1783 1784 return fullness; 1785 } 1786 1787 #ifdef CONFIG_COMPACTION 1788 /* 1789 * To prevent zspage destroy during migration, zspage freeing should 1790 * hold locks of all pages in the zspage. 1791 */ 1792 static void lock_zspage(struct zspage *zspage) 1793 { 1794 struct page *page = get_first_page(zspage); 1795 1796 do { 1797 lock_page(page); 1798 } while ((page = get_next_page(page)) != NULL); 1799 } 1800 1801 static struct dentry *zs_mount(struct file_system_type *fs_type, 1802 int flags, const char *dev_name, void *data) 1803 { 1804 static const struct dentry_operations ops = { 1805 .d_dname = simple_dname, 1806 }; 1807 1808 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1809 } 1810 1811 static struct file_system_type zsmalloc_fs = { 1812 .name = "zsmalloc", 1813 .mount = zs_mount, 1814 .kill_sb = kill_anon_super, 1815 }; 1816 1817 static int zsmalloc_mount(void) 1818 { 1819 int ret = 0; 1820 1821 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1822 if (IS_ERR(zsmalloc_mnt)) 1823 ret = PTR_ERR(zsmalloc_mnt); 1824 1825 return ret; 1826 } 1827 1828 static void zsmalloc_unmount(void) 1829 { 1830 kern_unmount(zsmalloc_mnt); 1831 } 1832 1833 static void migrate_lock_init(struct zspage *zspage) 1834 { 1835 rwlock_init(&zspage->lock); 1836 } 1837 1838 static void migrate_read_lock(struct zspage *zspage) 1839 { 1840 read_lock(&zspage->lock); 1841 } 1842 1843 static void migrate_read_unlock(struct zspage *zspage) 1844 { 1845 read_unlock(&zspage->lock); 1846 } 1847 1848 static void migrate_write_lock(struct zspage *zspage) 1849 { 1850 write_lock(&zspage->lock); 1851 } 1852 1853 static void migrate_write_unlock(struct zspage *zspage) 1854 { 1855 write_unlock(&zspage->lock); 1856 } 1857 1858 /* Number of isolated subpage for *page migration* in this zspage */ 1859 static void inc_zspage_isolation(struct zspage *zspage) 1860 { 1861 zspage->isolated++; 1862 } 1863 1864 static void dec_zspage_isolation(struct zspage *zspage) 1865 { 1866 zspage->isolated--; 1867 } 1868 1869 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1870 struct page *newpage, struct page *oldpage) 1871 { 1872 struct page *page; 1873 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1874 int idx = 0; 1875 1876 page = get_first_page(zspage); 1877 do { 1878 if (page == oldpage) 1879 pages[idx] = newpage; 1880 else 1881 pages[idx] = page; 1882 idx++; 1883 } while ((page = get_next_page(page)) != NULL); 1884 1885 create_page_chain(class, zspage, pages); 1886 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1887 if (unlikely(PageHugeObject(oldpage))) 1888 newpage->index = oldpage->index; 1889 __SetPageMovable(newpage, page_mapping(oldpage)); 1890 } 1891 1892 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1893 { 1894 struct zs_pool *pool; 1895 struct size_class *class; 1896 int class_idx; 1897 enum fullness_group fullness; 1898 struct zspage *zspage; 1899 struct address_space *mapping; 1900 1901 /* 1902 * Page is locked so zspage couldn't be destroyed. For detail, look at 1903 * lock_zspage in free_zspage. 1904 */ 1905 VM_BUG_ON_PAGE(!PageMovable(page), page); 1906 VM_BUG_ON_PAGE(PageIsolated(page), page); 1907 1908 zspage = get_zspage(page); 1909 1910 /* 1911 * Without class lock, fullness could be stale while class_idx is okay 1912 * because class_idx is constant unless page is freed so we should get 1913 * fullness again under class lock. 1914 */ 1915 get_zspage_mapping(zspage, &class_idx, &fullness); 1916 mapping = page_mapping(page); 1917 pool = mapping->private_data; 1918 class = pool->size_class[class_idx]; 1919 1920 spin_lock(&class->lock); 1921 if (get_zspage_inuse(zspage) == 0) { 1922 spin_unlock(&class->lock); 1923 return false; 1924 } 1925 1926 /* zspage is isolated for object migration */ 1927 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1928 spin_unlock(&class->lock); 1929 return false; 1930 } 1931 1932 /* 1933 * If this is first time isolation for the zspage, isolate zspage from 1934 * size_class to prevent further object allocation from the zspage. 1935 */ 1936 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1937 get_zspage_mapping(zspage, &class_idx, &fullness); 1938 remove_zspage(class, zspage, fullness); 1939 } 1940 1941 inc_zspage_isolation(zspage); 1942 spin_unlock(&class->lock); 1943 1944 return true; 1945 } 1946 1947 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1948 struct page *page, enum migrate_mode mode) 1949 { 1950 struct zs_pool *pool; 1951 struct size_class *class; 1952 int class_idx; 1953 enum fullness_group fullness; 1954 struct zspage *zspage; 1955 struct page *dummy; 1956 void *s_addr, *d_addr, *addr; 1957 int offset, pos; 1958 unsigned long handle, head; 1959 unsigned long old_obj, new_obj; 1960 unsigned int obj_idx; 1961 int ret = -EAGAIN; 1962 1963 /* 1964 * We cannot support the _NO_COPY case here, because copy needs to 1965 * happen under the zs lock, which does not work with 1966 * MIGRATE_SYNC_NO_COPY workflow. 1967 */ 1968 if (mode == MIGRATE_SYNC_NO_COPY) 1969 return -EINVAL; 1970 1971 VM_BUG_ON_PAGE(!PageMovable(page), page); 1972 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1973 1974 zspage = get_zspage(page); 1975 1976 /* Concurrent compactor cannot migrate any subpage in zspage */ 1977 migrate_write_lock(zspage); 1978 get_zspage_mapping(zspage, &class_idx, &fullness); 1979 pool = mapping->private_data; 1980 class = pool->size_class[class_idx]; 1981 offset = get_first_obj_offset(page); 1982 1983 spin_lock(&class->lock); 1984 if (!get_zspage_inuse(zspage)) { 1985 /* 1986 * Set "offset" to end of the page so that every loops 1987 * skips unnecessary object scanning. 1988 */ 1989 offset = PAGE_SIZE; 1990 } 1991 1992 pos = offset; 1993 s_addr = kmap_atomic(page); 1994 while (pos < PAGE_SIZE) { 1995 head = obj_to_head(page, s_addr + pos); 1996 if (head & OBJ_ALLOCATED_TAG) { 1997 handle = head & ~OBJ_ALLOCATED_TAG; 1998 if (!trypin_tag(handle)) 1999 goto unpin_objects; 2000 } 2001 pos += class->size; 2002 } 2003 2004 /* 2005 * Here, any user cannot access all objects in the zspage so let's move. 2006 */ 2007 d_addr = kmap_atomic(newpage); 2008 memcpy(d_addr, s_addr, PAGE_SIZE); 2009 kunmap_atomic(d_addr); 2010 2011 for (addr = s_addr + offset; addr < s_addr + pos; 2012 addr += class->size) { 2013 head = obj_to_head(page, addr); 2014 if (head & OBJ_ALLOCATED_TAG) { 2015 handle = head & ~OBJ_ALLOCATED_TAG; 2016 if (!testpin_tag(handle)) 2017 BUG(); 2018 2019 old_obj = handle_to_obj(handle); 2020 obj_to_location(old_obj, &dummy, &obj_idx); 2021 new_obj = (unsigned long)location_to_obj(newpage, 2022 obj_idx); 2023 new_obj |= BIT(HANDLE_PIN_BIT); 2024 record_obj(handle, new_obj); 2025 } 2026 } 2027 2028 replace_sub_page(class, zspage, newpage, page); 2029 get_page(newpage); 2030 2031 dec_zspage_isolation(zspage); 2032 2033 /* 2034 * Page migration is done so let's putback isolated zspage to 2035 * the list if @page is final isolated subpage in the zspage. 2036 */ 2037 if (!is_zspage_isolated(zspage)) 2038 putback_zspage(class, zspage); 2039 2040 reset_page(page); 2041 put_page(page); 2042 page = newpage; 2043 2044 ret = MIGRATEPAGE_SUCCESS; 2045 unpin_objects: 2046 for (addr = s_addr + offset; addr < s_addr + pos; 2047 addr += class->size) { 2048 head = obj_to_head(page, addr); 2049 if (head & OBJ_ALLOCATED_TAG) { 2050 handle = head & ~OBJ_ALLOCATED_TAG; 2051 if (!testpin_tag(handle)) 2052 BUG(); 2053 unpin_tag(handle); 2054 } 2055 } 2056 kunmap_atomic(s_addr); 2057 spin_unlock(&class->lock); 2058 migrate_write_unlock(zspage); 2059 2060 return ret; 2061 } 2062 2063 static void zs_page_putback(struct page *page) 2064 { 2065 struct zs_pool *pool; 2066 struct size_class *class; 2067 int class_idx; 2068 enum fullness_group fg; 2069 struct address_space *mapping; 2070 struct zspage *zspage; 2071 2072 VM_BUG_ON_PAGE(!PageMovable(page), page); 2073 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2074 2075 zspage = get_zspage(page); 2076 get_zspage_mapping(zspage, &class_idx, &fg); 2077 mapping = page_mapping(page); 2078 pool = mapping->private_data; 2079 class = pool->size_class[class_idx]; 2080 2081 spin_lock(&class->lock); 2082 dec_zspage_isolation(zspage); 2083 if (!is_zspage_isolated(zspage)) { 2084 fg = putback_zspage(class, zspage); 2085 /* 2086 * Due to page_lock, we cannot free zspage immediately 2087 * so let's defer. 2088 */ 2089 if (fg == ZS_EMPTY) 2090 schedule_work(&pool->free_work); 2091 } 2092 spin_unlock(&class->lock); 2093 } 2094 2095 static const struct address_space_operations zsmalloc_aops = { 2096 .isolate_page = zs_page_isolate, 2097 .migratepage = zs_page_migrate, 2098 .putback_page = zs_page_putback, 2099 }; 2100 2101 static int zs_register_migration(struct zs_pool *pool) 2102 { 2103 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2104 if (IS_ERR(pool->inode)) { 2105 pool->inode = NULL; 2106 return 1; 2107 } 2108 2109 pool->inode->i_mapping->private_data = pool; 2110 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2111 return 0; 2112 } 2113 2114 static void zs_unregister_migration(struct zs_pool *pool) 2115 { 2116 flush_work(&pool->free_work); 2117 iput(pool->inode); 2118 } 2119 2120 /* 2121 * Caller should hold page_lock of all pages in the zspage 2122 * In here, we cannot use zspage meta data. 2123 */ 2124 static void async_free_zspage(struct work_struct *work) 2125 { 2126 int i; 2127 struct size_class *class; 2128 unsigned int class_idx; 2129 enum fullness_group fullness; 2130 struct zspage *zspage, *tmp; 2131 LIST_HEAD(free_pages); 2132 struct zs_pool *pool = container_of(work, struct zs_pool, 2133 free_work); 2134 2135 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2136 class = pool->size_class[i]; 2137 if (class->index != i) 2138 continue; 2139 2140 spin_lock(&class->lock); 2141 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2142 spin_unlock(&class->lock); 2143 } 2144 2145 2146 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2147 list_del(&zspage->list); 2148 lock_zspage(zspage); 2149 2150 get_zspage_mapping(zspage, &class_idx, &fullness); 2151 VM_BUG_ON(fullness != ZS_EMPTY); 2152 class = pool->size_class[class_idx]; 2153 spin_lock(&class->lock); 2154 __free_zspage(pool, pool->size_class[class_idx], zspage); 2155 spin_unlock(&class->lock); 2156 } 2157 }; 2158 2159 static void kick_deferred_free(struct zs_pool *pool) 2160 { 2161 schedule_work(&pool->free_work); 2162 } 2163 2164 static void init_deferred_free(struct zs_pool *pool) 2165 { 2166 INIT_WORK(&pool->free_work, async_free_zspage); 2167 } 2168 2169 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2170 { 2171 struct page *page = get_first_page(zspage); 2172 2173 do { 2174 WARN_ON(!trylock_page(page)); 2175 __SetPageMovable(page, pool->inode->i_mapping); 2176 unlock_page(page); 2177 } while ((page = get_next_page(page)) != NULL); 2178 } 2179 #endif 2180 2181 /* 2182 * 2183 * Based on the number of unused allocated objects calculate 2184 * and return the number of pages that we can free. 2185 */ 2186 static unsigned long zs_can_compact(struct size_class *class) 2187 { 2188 unsigned long obj_wasted; 2189 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2190 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2191 2192 if (obj_allocated <= obj_used) 2193 return 0; 2194 2195 obj_wasted = obj_allocated - obj_used; 2196 obj_wasted /= class->objs_per_zspage; 2197 2198 return obj_wasted * class->pages_per_zspage; 2199 } 2200 2201 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2202 { 2203 struct zs_compact_control cc; 2204 struct zspage *src_zspage; 2205 struct zspage *dst_zspage = NULL; 2206 2207 spin_lock(&class->lock); 2208 while ((src_zspage = isolate_zspage(class, true))) { 2209 2210 if (!zs_can_compact(class)) 2211 break; 2212 2213 cc.obj_idx = 0; 2214 cc.s_page = get_first_page(src_zspage); 2215 2216 while ((dst_zspage = isolate_zspage(class, false))) { 2217 cc.d_page = get_first_page(dst_zspage); 2218 /* 2219 * If there is no more space in dst_page, resched 2220 * and see if anyone had allocated another zspage. 2221 */ 2222 if (!migrate_zspage(pool, class, &cc)) 2223 break; 2224 2225 putback_zspage(class, dst_zspage); 2226 } 2227 2228 /* Stop if we couldn't find slot */ 2229 if (dst_zspage == NULL) 2230 break; 2231 2232 putback_zspage(class, dst_zspage); 2233 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2234 free_zspage(pool, class, src_zspage); 2235 pool->stats.pages_compacted += class->pages_per_zspage; 2236 } 2237 spin_unlock(&class->lock); 2238 cond_resched(); 2239 spin_lock(&class->lock); 2240 } 2241 2242 if (src_zspage) 2243 putback_zspage(class, src_zspage); 2244 2245 spin_unlock(&class->lock); 2246 } 2247 2248 unsigned long zs_compact(struct zs_pool *pool) 2249 { 2250 int i; 2251 struct size_class *class; 2252 2253 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2254 class = pool->size_class[i]; 2255 if (!class) 2256 continue; 2257 if (class->index != i) 2258 continue; 2259 __zs_compact(pool, class); 2260 } 2261 2262 return pool->stats.pages_compacted; 2263 } 2264 EXPORT_SYMBOL_GPL(zs_compact); 2265 2266 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2267 { 2268 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2269 } 2270 EXPORT_SYMBOL_GPL(zs_pool_stats); 2271 2272 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2273 struct shrink_control *sc) 2274 { 2275 unsigned long pages_freed; 2276 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2277 shrinker); 2278 2279 pages_freed = pool->stats.pages_compacted; 2280 /* 2281 * Compact classes and calculate compaction delta. 2282 * Can run concurrently with a manually triggered 2283 * (by user) compaction. 2284 */ 2285 pages_freed = zs_compact(pool) - pages_freed; 2286 2287 return pages_freed ? pages_freed : SHRINK_STOP; 2288 } 2289 2290 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2291 struct shrink_control *sc) 2292 { 2293 int i; 2294 struct size_class *class; 2295 unsigned long pages_to_free = 0; 2296 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2297 shrinker); 2298 2299 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2300 class = pool->size_class[i]; 2301 if (!class) 2302 continue; 2303 if (class->index != i) 2304 continue; 2305 2306 pages_to_free += zs_can_compact(class); 2307 } 2308 2309 return pages_to_free; 2310 } 2311 2312 static void zs_unregister_shrinker(struct zs_pool *pool) 2313 { 2314 unregister_shrinker(&pool->shrinker); 2315 } 2316 2317 static int zs_register_shrinker(struct zs_pool *pool) 2318 { 2319 pool->shrinker.scan_objects = zs_shrinker_scan; 2320 pool->shrinker.count_objects = zs_shrinker_count; 2321 pool->shrinker.batch = 0; 2322 pool->shrinker.seeks = DEFAULT_SEEKS; 2323 2324 return register_shrinker(&pool->shrinker); 2325 } 2326 2327 /** 2328 * zs_create_pool - Creates an allocation pool to work from. 2329 * @name: pool name to be created 2330 * 2331 * This function must be called before anything when using 2332 * the zsmalloc allocator. 2333 * 2334 * On success, a pointer to the newly created pool is returned, 2335 * otherwise NULL. 2336 */ 2337 struct zs_pool *zs_create_pool(const char *name) 2338 { 2339 int i; 2340 struct zs_pool *pool; 2341 struct size_class *prev_class = NULL; 2342 2343 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2344 if (!pool) 2345 return NULL; 2346 2347 init_deferred_free(pool); 2348 2349 pool->name = kstrdup(name, GFP_KERNEL); 2350 if (!pool->name) 2351 goto err; 2352 2353 if (create_cache(pool)) 2354 goto err; 2355 2356 /* 2357 * Iterate reversely, because, size of size_class that we want to use 2358 * for merging should be larger or equal to current size. 2359 */ 2360 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2361 int size; 2362 int pages_per_zspage; 2363 int objs_per_zspage; 2364 struct size_class *class; 2365 int fullness = 0; 2366 2367 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2368 if (size > ZS_MAX_ALLOC_SIZE) 2369 size = ZS_MAX_ALLOC_SIZE; 2370 pages_per_zspage = get_pages_per_zspage(size); 2371 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2372 2373 /* 2374 * We iterate from biggest down to smallest classes, 2375 * so huge_class_size holds the size of the first huge 2376 * class. Any object bigger than or equal to that will 2377 * endup in the huge class. 2378 */ 2379 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2380 !huge_class_size) { 2381 huge_class_size = size; 2382 /* 2383 * The object uses ZS_HANDLE_SIZE bytes to store the 2384 * handle. We need to subtract it, because zs_malloc() 2385 * unconditionally adds handle size before it performs 2386 * size class search - so object may be smaller than 2387 * huge class size, yet it still can end up in the huge 2388 * class because it grows by ZS_HANDLE_SIZE extra bytes 2389 * right before class lookup. 2390 */ 2391 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2392 } 2393 2394 /* 2395 * size_class is used for normal zsmalloc operation such 2396 * as alloc/free for that size. Although it is natural that we 2397 * have one size_class for each size, there is a chance that we 2398 * can get more memory utilization if we use one size_class for 2399 * many different sizes whose size_class have same 2400 * characteristics. So, we makes size_class point to 2401 * previous size_class if possible. 2402 */ 2403 if (prev_class) { 2404 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2405 pool->size_class[i] = prev_class; 2406 continue; 2407 } 2408 } 2409 2410 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2411 if (!class) 2412 goto err; 2413 2414 class->size = size; 2415 class->index = i; 2416 class->pages_per_zspage = pages_per_zspage; 2417 class->objs_per_zspage = objs_per_zspage; 2418 spin_lock_init(&class->lock); 2419 pool->size_class[i] = class; 2420 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2421 fullness++) 2422 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2423 2424 prev_class = class; 2425 } 2426 2427 /* debug only, don't abort if it fails */ 2428 zs_pool_stat_create(pool, name); 2429 2430 if (zs_register_migration(pool)) 2431 goto err; 2432 2433 /* 2434 * Not critical since shrinker is only used to trigger internal 2435 * defragmentation of the pool which is pretty optional thing. If 2436 * registration fails we still can use the pool normally and user can 2437 * trigger compaction manually. Thus, ignore return code. 2438 */ 2439 zs_register_shrinker(pool); 2440 2441 return pool; 2442 2443 err: 2444 zs_destroy_pool(pool); 2445 return NULL; 2446 } 2447 EXPORT_SYMBOL_GPL(zs_create_pool); 2448 2449 void zs_destroy_pool(struct zs_pool *pool) 2450 { 2451 int i; 2452 2453 zs_unregister_shrinker(pool); 2454 zs_unregister_migration(pool); 2455 zs_pool_stat_destroy(pool); 2456 2457 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2458 int fg; 2459 struct size_class *class = pool->size_class[i]; 2460 2461 if (!class) 2462 continue; 2463 2464 if (class->index != i) 2465 continue; 2466 2467 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2468 if (!list_empty(&class->fullness_list[fg])) { 2469 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2470 class->size, fg); 2471 } 2472 } 2473 kfree(class); 2474 } 2475 2476 destroy_cache(pool); 2477 kfree(pool->name); 2478 kfree(pool); 2479 } 2480 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2481 2482 static int __init zs_init(void) 2483 { 2484 int ret; 2485 2486 ret = zsmalloc_mount(); 2487 if (ret) 2488 goto out; 2489 2490 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2491 zs_cpu_prepare, zs_cpu_dead); 2492 if (ret) 2493 goto hp_setup_fail; 2494 2495 #ifdef CONFIG_ZPOOL 2496 zpool_register_driver(&zs_zpool_driver); 2497 #endif 2498 2499 zs_stat_init(); 2500 2501 return 0; 2502 2503 hp_setup_fail: 2504 zsmalloc_unmount(); 2505 out: 2506 return ret; 2507 } 2508 2509 static void __exit zs_exit(void) 2510 { 2511 #ifdef CONFIG_ZPOOL 2512 zpool_unregister_driver(&zs_zpool_driver); 2513 #endif 2514 zsmalloc_unmount(); 2515 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2516 2517 zs_stat_exit(); 2518 } 2519 2520 module_init(zs_init); 2521 module_exit(zs_exit); 2522 2523 MODULE_LICENSE("Dual BSD/GPL"); 2524 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2525