1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 /* 77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 79 */ 80 #define ZS_MAX_ZSPAGE_ORDER 2 81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 82 83 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 84 85 /* 86 * Object location (<PFN>, <obj_idx>) is encoded as 87 * a single (unsigned long) handle value. 88 * 89 * Note that object index <obj_idx> starts from 0. 90 * 91 * This is made more complicated by various memory models and PAE. 92 */ 93 94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 95 #ifdef MAX_PHYSMEM_BITS 96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 97 #else 98 /* 99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 100 * be PAGE_SHIFT 101 */ 102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 103 #endif 104 #endif 105 106 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 107 108 /* 109 * Head in allocated object should have OBJ_ALLOCATED_TAG 110 * to identify the object was allocated or not. 111 * It's okay to add the status bit in the least bit because 112 * header keeps handle which is 4byte-aligned address so we 113 * have room for two bit at least. 114 */ 115 #define OBJ_ALLOCATED_TAG 1 116 117 #ifdef CONFIG_ZPOOL 118 /* 119 * The second least-significant bit in the object's header identifies if the 120 * value stored at the header is a deferred handle from the last reclaim 121 * attempt. 122 * 123 * As noted above, this is valid because we have room for two bits. 124 */ 125 #define OBJ_DEFERRED_HANDLE_TAG 2 126 #define OBJ_TAG_BITS 2 127 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG) 128 #else 129 #define OBJ_TAG_BITS 1 130 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 131 #endif /* CONFIG_ZPOOL */ 132 133 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 134 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 135 136 #define HUGE_BITS 1 137 #define FULLNESS_BITS 2 138 #define CLASS_BITS 8 139 #define ISOLATED_BITS 3 140 #define MAGIC_VAL_BITS 8 141 142 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 143 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 144 #define ZS_MIN_ALLOC_SIZE \ 145 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 146 /* each chunk includes extra space to keep handle */ 147 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 148 149 /* 150 * On systems with 4K page size, this gives 255 size classes! There is a 151 * trader-off here: 152 * - Large number of size classes is potentially wasteful as free page are 153 * spread across these classes 154 * - Small number of size classes causes large internal fragmentation 155 * - Probably its better to use specific size classes (empirically 156 * determined). NOTE: all those class sizes must be set as multiple of 157 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 158 * 159 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 160 * (reason above) 161 */ 162 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 163 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 164 ZS_SIZE_CLASS_DELTA) + 1) 165 166 enum fullness_group { 167 ZS_EMPTY, 168 ZS_ALMOST_EMPTY, 169 ZS_ALMOST_FULL, 170 ZS_FULL, 171 NR_ZS_FULLNESS, 172 }; 173 174 enum class_stat_type { 175 CLASS_EMPTY, 176 CLASS_ALMOST_EMPTY, 177 CLASS_ALMOST_FULL, 178 CLASS_FULL, 179 OBJ_ALLOCATED, 180 OBJ_USED, 181 NR_ZS_STAT_TYPE, 182 }; 183 184 struct zs_size_stat { 185 unsigned long objs[NR_ZS_STAT_TYPE]; 186 }; 187 188 #ifdef CONFIG_ZSMALLOC_STAT 189 static struct dentry *zs_stat_root; 190 #endif 191 192 /* 193 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 194 * n <= N / f, where 195 * n = number of allocated objects 196 * N = total number of objects zspage can store 197 * f = fullness_threshold_frac 198 * 199 * Similarly, we assign zspage to: 200 * ZS_ALMOST_FULL when n > N / f 201 * ZS_EMPTY when n == 0 202 * ZS_FULL when n == N 203 * 204 * (see: fix_fullness_group()) 205 */ 206 static const int fullness_threshold_frac = 4; 207 static size_t huge_class_size; 208 209 struct size_class { 210 struct list_head fullness_list[NR_ZS_FULLNESS]; 211 /* 212 * Size of objects stored in this class. Must be multiple 213 * of ZS_ALIGN. 214 */ 215 int size; 216 int objs_per_zspage; 217 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 218 int pages_per_zspage; 219 220 unsigned int index; 221 struct zs_size_stat stats; 222 }; 223 224 /* 225 * Placed within free objects to form a singly linked list. 226 * For every zspage, zspage->freeobj gives head of this list. 227 * 228 * This must be power of 2 and less than or equal to ZS_ALIGN 229 */ 230 struct link_free { 231 union { 232 /* 233 * Free object index; 234 * It's valid for non-allocated object 235 */ 236 unsigned long next; 237 /* 238 * Handle of allocated object. 239 */ 240 unsigned long handle; 241 #ifdef CONFIG_ZPOOL 242 /* 243 * Deferred handle of a reclaimed object. 244 */ 245 unsigned long deferred_handle; 246 #endif 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZPOOL 265 /* List tracking the zspages in LRU order by most recently added object */ 266 struct list_head lru; 267 struct zpool *zpool; 268 const struct zpool_ops *zpool_ops; 269 #endif 270 271 #ifdef CONFIG_ZSMALLOC_STAT 272 struct dentry *stat_dentry; 273 #endif 274 #ifdef CONFIG_COMPACTION 275 struct work_struct free_work; 276 #endif 277 spinlock_t lock; 278 }; 279 280 struct zspage { 281 struct { 282 unsigned int huge:HUGE_BITS; 283 unsigned int fullness:FULLNESS_BITS; 284 unsigned int class:CLASS_BITS + 1; 285 unsigned int isolated:ISOLATED_BITS; 286 unsigned int magic:MAGIC_VAL_BITS; 287 }; 288 unsigned int inuse; 289 unsigned int freeobj; 290 struct page *first_page; 291 struct list_head list; /* fullness list */ 292 293 #ifdef CONFIG_ZPOOL 294 /* links the zspage to the lru list in the pool */ 295 struct list_head lru; 296 bool under_reclaim; 297 #endif 298 299 struct zs_pool *pool; 300 rwlock_t lock; 301 }; 302 303 struct mapping_area { 304 local_lock_t lock; 305 char *vm_buf; /* copy buffer for objects that span pages */ 306 char *vm_addr; /* address of kmap_atomic()'ed pages */ 307 enum zs_mapmode vm_mm; /* mapping mode */ 308 }; 309 310 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 311 static void SetZsHugePage(struct zspage *zspage) 312 { 313 zspage->huge = 1; 314 } 315 316 static bool ZsHugePage(struct zspage *zspage) 317 { 318 return zspage->huge; 319 } 320 321 static void migrate_lock_init(struct zspage *zspage); 322 static void migrate_read_lock(struct zspage *zspage); 323 static void migrate_read_unlock(struct zspage *zspage); 324 325 #ifdef CONFIG_COMPACTION 326 static void migrate_write_lock(struct zspage *zspage); 327 static void migrate_write_lock_nested(struct zspage *zspage); 328 static void migrate_write_unlock(struct zspage *zspage); 329 static void kick_deferred_free(struct zs_pool *pool); 330 static void init_deferred_free(struct zs_pool *pool); 331 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 332 #else 333 static void migrate_write_lock(struct zspage *zspage) {} 334 static void migrate_write_lock_nested(struct zspage *zspage) {} 335 static void migrate_write_unlock(struct zspage *zspage) {} 336 static void kick_deferred_free(struct zs_pool *pool) {} 337 static void init_deferred_free(struct zs_pool *pool) {} 338 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 339 #endif 340 341 static int create_cache(struct zs_pool *pool) 342 { 343 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 344 0, 0, NULL); 345 if (!pool->handle_cachep) 346 return 1; 347 348 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 349 0, 0, NULL); 350 if (!pool->zspage_cachep) { 351 kmem_cache_destroy(pool->handle_cachep); 352 pool->handle_cachep = NULL; 353 return 1; 354 } 355 356 return 0; 357 } 358 359 static void destroy_cache(struct zs_pool *pool) 360 { 361 kmem_cache_destroy(pool->handle_cachep); 362 kmem_cache_destroy(pool->zspage_cachep); 363 } 364 365 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 366 { 367 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 368 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 369 } 370 371 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 372 { 373 kmem_cache_free(pool->handle_cachep, (void *)handle); 374 } 375 376 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 377 { 378 return kmem_cache_zalloc(pool->zspage_cachep, 379 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 380 } 381 382 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 383 { 384 kmem_cache_free(pool->zspage_cachep, zspage); 385 } 386 387 /* pool->lock(which owns the handle) synchronizes races */ 388 static void record_obj(unsigned long handle, unsigned long obj) 389 { 390 *(unsigned long *)handle = obj; 391 } 392 393 /* zpool driver */ 394 395 #ifdef CONFIG_ZPOOL 396 397 static void *zs_zpool_create(const char *name, gfp_t gfp, 398 const struct zpool_ops *zpool_ops, 399 struct zpool *zpool) 400 { 401 /* 402 * Ignore global gfp flags: zs_malloc() may be invoked from 403 * different contexts and its caller must provide a valid 404 * gfp mask. 405 */ 406 struct zs_pool *pool = zs_create_pool(name); 407 408 if (pool) { 409 pool->zpool = zpool; 410 pool->zpool_ops = zpool_ops; 411 } 412 413 return pool; 414 } 415 416 static void zs_zpool_destroy(void *pool) 417 { 418 zs_destroy_pool(pool); 419 } 420 421 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 422 unsigned long *handle) 423 { 424 *handle = zs_malloc(pool, size, gfp); 425 426 if (IS_ERR_VALUE(*handle)) 427 return PTR_ERR((void *)*handle); 428 return 0; 429 } 430 static void zs_zpool_free(void *pool, unsigned long handle) 431 { 432 zs_free(pool, handle); 433 } 434 435 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries); 436 437 static int zs_zpool_shrink(void *pool, unsigned int pages, 438 unsigned int *reclaimed) 439 { 440 unsigned int total = 0; 441 int ret = -EINVAL; 442 443 while (total < pages) { 444 ret = zs_reclaim_page(pool, 8); 445 if (ret < 0) 446 break; 447 total++; 448 } 449 450 if (reclaimed) 451 *reclaimed = total; 452 453 return ret; 454 } 455 456 static void *zs_zpool_map(void *pool, unsigned long handle, 457 enum zpool_mapmode mm) 458 { 459 enum zs_mapmode zs_mm; 460 461 switch (mm) { 462 case ZPOOL_MM_RO: 463 zs_mm = ZS_MM_RO; 464 break; 465 case ZPOOL_MM_WO: 466 zs_mm = ZS_MM_WO; 467 break; 468 case ZPOOL_MM_RW: 469 default: 470 zs_mm = ZS_MM_RW; 471 break; 472 } 473 474 return zs_map_object(pool, handle, zs_mm); 475 } 476 static void zs_zpool_unmap(void *pool, unsigned long handle) 477 { 478 zs_unmap_object(pool, handle); 479 } 480 481 static u64 zs_zpool_total_size(void *pool) 482 { 483 return zs_get_total_pages(pool) << PAGE_SHIFT; 484 } 485 486 static struct zpool_driver zs_zpool_driver = { 487 .type = "zsmalloc", 488 .owner = THIS_MODULE, 489 .create = zs_zpool_create, 490 .destroy = zs_zpool_destroy, 491 .malloc_support_movable = true, 492 .malloc = zs_zpool_malloc, 493 .free = zs_zpool_free, 494 .shrink = zs_zpool_shrink, 495 .map = zs_zpool_map, 496 .unmap = zs_zpool_unmap, 497 .total_size = zs_zpool_total_size, 498 }; 499 500 MODULE_ALIAS("zpool-zsmalloc"); 501 #endif /* CONFIG_ZPOOL */ 502 503 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 504 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 505 .lock = INIT_LOCAL_LOCK(lock), 506 }; 507 508 static __maybe_unused int is_first_page(struct page *page) 509 { 510 return PagePrivate(page); 511 } 512 513 /* Protected by pool->lock */ 514 static inline int get_zspage_inuse(struct zspage *zspage) 515 { 516 return zspage->inuse; 517 } 518 519 520 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 521 { 522 zspage->inuse += val; 523 } 524 525 static inline struct page *get_first_page(struct zspage *zspage) 526 { 527 struct page *first_page = zspage->first_page; 528 529 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 530 return first_page; 531 } 532 533 static inline unsigned int get_first_obj_offset(struct page *page) 534 { 535 return page->page_type; 536 } 537 538 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 539 { 540 page->page_type = offset; 541 } 542 543 static inline unsigned int get_freeobj(struct zspage *zspage) 544 { 545 return zspage->freeobj; 546 } 547 548 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 549 { 550 zspage->freeobj = obj; 551 } 552 553 static void get_zspage_mapping(struct zspage *zspage, 554 unsigned int *class_idx, 555 enum fullness_group *fullness) 556 { 557 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 558 559 *fullness = zspage->fullness; 560 *class_idx = zspage->class; 561 } 562 563 static struct size_class *zspage_class(struct zs_pool *pool, 564 struct zspage *zspage) 565 { 566 return pool->size_class[zspage->class]; 567 } 568 569 static void set_zspage_mapping(struct zspage *zspage, 570 unsigned int class_idx, 571 enum fullness_group fullness) 572 { 573 zspage->class = class_idx; 574 zspage->fullness = fullness; 575 } 576 577 /* 578 * zsmalloc divides the pool into various size classes where each 579 * class maintains a list of zspages where each zspage is divided 580 * into equal sized chunks. Each allocation falls into one of these 581 * classes depending on its size. This function returns index of the 582 * size class which has chunk size big enough to hold the given size. 583 */ 584 static int get_size_class_index(int size) 585 { 586 int idx = 0; 587 588 if (likely(size > ZS_MIN_ALLOC_SIZE)) 589 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 590 ZS_SIZE_CLASS_DELTA); 591 592 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 593 } 594 595 /* type can be of enum type class_stat_type or fullness_group */ 596 static inline void class_stat_inc(struct size_class *class, 597 int type, unsigned long cnt) 598 { 599 class->stats.objs[type] += cnt; 600 } 601 602 /* type can be of enum type class_stat_type or fullness_group */ 603 static inline void class_stat_dec(struct size_class *class, 604 int type, unsigned long cnt) 605 { 606 class->stats.objs[type] -= cnt; 607 } 608 609 /* type can be of enum type class_stat_type or fullness_group */ 610 static inline unsigned long zs_stat_get(struct size_class *class, 611 int type) 612 { 613 return class->stats.objs[type]; 614 } 615 616 #ifdef CONFIG_ZSMALLOC_STAT 617 618 static void __init zs_stat_init(void) 619 { 620 if (!debugfs_initialized()) { 621 pr_warn("debugfs not available, stat dir not created\n"); 622 return; 623 } 624 625 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 626 } 627 628 static void __exit zs_stat_exit(void) 629 { 630 debugfs_remove_recursive(zs_stat_root); 631 } 632 633 static unsigned long zs_can_compact(struct size_class *class); 634 635 static int zs_stats_size_show(struct seq_file *s, void *v) 636 { 637 int i; 638 struct zs_pool *pool = s->private; 639 struct size_class *class; 640 int objs_per_zspage; 641 unsigned long class_almost_full, class_almost_empty; 642 unsigned long obj_allocated, obj_used, pages_used, freeable; 643 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 644 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 645 unsigned long total_freeable = 0; 646 647 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 648 "class", "size", "almost_full", "almost_empty", 649 "obj_allocated", "obj_used", "pages_used", 650 "pages_per_zspage", "freeable"); 651 652 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 653 class = pool->size_class[i]; 654 655 if (class->index != i) 656 continue; 657 658 spin_lock(&pool->lock); 659 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 660 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 661 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 662 obj_used = zs_stat_get(class, OBJ_USED); 663 freeable = zs_can_compact(class); 664 spin_unlock(&pool->lock); 665 666 objs_per_zspage = class->objs_per_zspage; 667 pages_used = obj_allocated / objs_per_zspage * 668 class->pages_per_zspage; 669 670 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 671 " %10lu %10lu %16d %8lu\n", 672 i, class->size, class_almost_full, class_almost_empty, 673 obj_allocated, obj_used, pages_used, 674 class->pages_per_zspage, freeable); 675 676 total_class_almost_full += class_almost_full; 677 total_class_almost_empty += class_almost_empty; 678 total_objs += obj_allocated; 679 total_used_objs += obj_used; 680 total_pages += pages_used; 681 total_freeable += freeable; 682 } 683 684 seq_puts(s, "\n"); 685 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 686 "Total", "", total_class_almost_full, 687 total_class_almost_empty, total_objs, 688 total_used_objs, total_pages, "", total_freeable); 689 690 return 0; 691 } 692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 693 694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 695 { 696 if (!zs_stat_root) { 697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 698 return; 699 } 700 701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 702 703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 704 &zs_stats_size_fops); 705 } 706 707 static void zs_pool_stat_destroy(struct zs_pool *pool) 708 { 709 debugfs_remove_recursive(pool->stat_dentry); 710 } 711 712 #else /* CONFIG_ZSMALLOC_STAT */ 713 static void __init zs_stat_init(void) 714 { 715 } 716 717 static void __exit zs_stat_exit(void) 718 { 719 } 720 721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 722 { 723 } 724 725 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 726 { 727 } 728 #endif 729 730 731 /* 732 * For each size class, zspages are divided into different groups 733 * depending on how "full" they are. This was done so that we could 734 * easily find empty or nearly empty zspages when we try to shrink 735 * the pool (not yet implemented). This function returns fullness 736 * status of the given page. 737 */ 738 static enum fullness_group get_fullness_group(struct size_class *class, 739 struct zspage *zspage) 740 { 741 int inuse, objs_per_zspage; 742 enum fullness_group fg; 743 744 inuse = get_zspage_inuse(zspage); 745 objs_per_zspage = class->objs_per_zspage; 746 747 if (inuse == 0) 748 fg = ZS_EMPTY; 749 else if (inuse == objs_per_zspage) 750 fg = ZS_FULL; 751 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 752 fg = ZS_ALMOST_EMPTY; 753 else 754 fg = ZS_ALMOST_FULL; 755 756 return fg; 757 } 758 759 /* 760 * Each size class maintains various freelists and zspages are assigned 761 * to one of these freelists based on the number of live objects they 762 * have. This functions inserts the given zspage into the freelist 763 * identified by <class, fullness_group>. 764 */ 765 static void insert_zspage(struct size_class *class, 766 struct zspage *zspage, 767 enum fullness_group fullness) 768 { 769 struct zspage *head; 770 771 class_stat_inc(class, fullness, 1); 772 head = list_first_entry_or_null(&class->fullness_list[fullness], 773 struct zspage, list); 774 /* 775 * We want to see more ZS_FULL pages and less almost empty/full. 776 * Put pages with higher ->inuse first. 777 */ 778 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 779 list_add(&zspage->list, &head->list); 780 else 781 list_add(&zspage->list, &class->fullness_list[fullness]); 782 } 783 784 /* 785 * This function removes the given zspage from the freelist identified 786 * by <class, fullness_group>. 787 */ 788 static void remove_zspage(struct size_class *class, 789 struct zspage *zspage, 790 enum fullness_group fullness) 791 { 792 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 793 794 list_del_init(&zspage->list); 795 class_stat_dec(class, fullness, 1); 796 } 797 798 /* 799 * Each size class maintains zspages in different fullness groups depending 800 * on the number of live objects they contain. When allocating or freeing 801 * objects, the fullness status of the page can change, say, from ALMOST_FULL 802 * to ALMOST_EMPTY when freeing an object. This function checks if such 803 * a status change has occurred for the given page and accordingly moves the 804 * page from the freelist of the old fullness group to that of the new 805 * fullness group. 806 */ 807 static enum fullness_group fix_fullness_group(struct size_class *class, 808 struct zspage *zspage) 809 { 810 int class_idx; 811 enum fullness_group currfg, newfg; 812 813 get_zspage_mapping(zspage, &class_idx, &currfg); 814 newfg = get_fullness_group(class, zspage); 815 if (newfg == currfg) 816 goto out; 817 818 remove_zspage(class, zspage, currfg); 819 insert_zspage(class, zspage, newfg); 820 set_zspage_mapping(zspage, class_idx, newfg); 821 out: 822 return newfg; 823 } 824 825 /* 826 * We have to decide on how many pages to link together 827 * to form a zspage for each size class. This is important 828 * to reduce wastage due to unusable space left at end of 829 * each zspage which is given as: 830 * wastage = Zp % class_size 831 * usage = Zp - wastage 832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 833 * 834 * For example, for size class of 3/8 * PAGE_SIZE, we should 835 * link together 3 PAGE_SIZE sized pages to form a zspage 836 * since then we can perfectly fit in 8 such objects. 837 */ 838 static int get_pages_per_zspage(int class_size) 839 { 840 int i, max_usedpc = 0; 841 /* zspage order which gives maximum used size per KB */ 842 int max_usedpc_order = 1; 843 844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 845 int zspage_size; 846 int waste, usedpc; 847 848 zspage_size = i * PAGE_SIZE; 849 waste = zspage_size % class_size; 850 usedpc = (zspage_size - waste) * 100 / zspage_size; 851 852 if (usedpc > max_usedpc) { 853 max_usedpc = usedpc; 854 max_usedpc_order = i; 855 } 856 } 857 858 return max_usedpc_order; 859 } 860 861 static struct zspage *get_zspage(struct page *page) 862 { 863 struct zspage *zspage = (struct zspage *)page_private(page); 864 865 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 866 return zspage; 867 } 868 869 static struct page *get_next_page(struct page *page) 870 { 871 struct zspage *zspage = get_zspage(page); 872 873 if (unlikely(ZsHugePage(zspage))) 874 return NULL; 875 876 return (struct page *)page->index; 877 } 878 879 /** 880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 881 * @obj: the encoded object value 882 * @page: page object resides in zspage 883 * @obj_idx: object index 884 */ 885 static void obj_to_location(unsigned long obj, struct page **page, 886 unsigned int *obj_idx) 887 { 888 obj >>= OBJ_TAG_BITS; 889 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 890 *obj_idx = (obj & OBJ_INDEX_MASK); 891 } 892 893 static void obj_to_page(unsigned long obj, struct page **page) 894 { 895 obj >>= OBJ_TAG_BITS; 896 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 897 } 898 899 /** 900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 901 * @page: page object resides in zspage 902 * @obj_idx: object index 903 */ 904 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 905 { 906 unsigned long obj; 907 908 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 909 obj |= obj_idx & OBJ_INDEX_MASK; 910 obj <<= OBJ_TAG_BITS; 911 912 return obj; 913 } 914 915 static unsigned long handle_to_obj(unsigned long handle) 916 { 917 return *(unsigned long *)handle; 918 } 919 920 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle, 921 int tag) 922 { 923 unsigned long handle; 924 struct zspage *zspage = get_zspage(page); 925 926 if (unlikely(ZsHugePage(zspage))) { 927 VM_BUG_ON_PAGE(!is_first_page(page), page); 928 handle = page->index; 929 } else 930 handle = *(unsigned long *)obj; 931 932 if (!(handle & tag)) 933 return false; 934 935 /* Clear all tags before returning the handle */ 936 *phandle = handle & ~OBJ_TAG_MASK; 937 return true; 938 } 939 940 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 941 { 942 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG); 943 } 944 945 #ifdef CONFIG_ZPOOL 946 static bool obj_stores_deferred_handle(struct page *page, void *obj, 947 unsigned long *phandle) 948 { 949 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG); 950 } 951 #endif 952 953 static void reset_page(struct page *page) 954 { 955 __ClearPageMovable(page); 956 ClearPagePrivate(page); 957 set_page_private(page, 0); 958 page_mapcount_reset(page); 959 page->index = 0; 960 } 961 962 static int trylock_zspage(struct zspage *zspage) 963 { 964 struct page *cursor, *fail; 965 966 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 967 get_next_page(cursor)) { 968 if (!trylock_page(cursor)) { 969 fail = cursor; 970 goto unlock; 971 } 972 } 973 974 return 1; 975 unlock: 976 for (cursor = get_first_page(zspage); cursor != fail; cursor = 977 get_next_page(cursor)) 978 unlock_page(cursor); 979 980 return 0; 981 } 982 983 #ifdef CONFIG_ZPOOL 984 static unsigned long find_deferred_handle_obj(struct size_class *class, 985 struct page *page, int *obj_idx); 986 987 /* 988 * Free all the deferred handles whose objects are freed in zs_free. 989 */ 990 static void free_handles(struct zs_pool *pool, struct size_class *class, 991 struct zspage *zspage) 992 { 993 int obj_idx = 0; 994 struct page *page = get_first_page(zspage); 995 unsigned long handle; 996 997 while (1) { 998 handle = find_deferred_handle_obj(class, page, &obj_idx); 999 if (!handle) { 1000 page = get_next_page(page); 1001 if (!page) 1002 break; 1003 obj_idx = 0; 1004 continue; 1005 } 1006 1007 cache_free_handle(pool, handle); 1008 obj_idx++; 1009 } 1010 } 1011 #else 1012 static inline void free_handles(struct zs_pool *pool, struct size_class *class, 1013 struct zspage *zspage) {} 1014 #endif 1015 1016 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 1017 struct zspage *zspage) 1018 { 1019 struct page *page, *next; 1020 enum fullness_group fg; 1021 unsigned int class_idx; 1022 1023 get_zspage_mapping(zspage, &class_idx, &fg); 1024 1025 assert_spin_locked(&pool->lock); 1026 1027 VM_BUG_ON(get_zspage_inuse(zspage)); 1028 VM_BUG_ON(fg != ZS_EMPTY); 1029 1030 /* Free all deferred handles from zs_free */ 1031 free_handles(pool, class, zspage); 1032 1033 next = page = get_first_page(zspage); 1034 do { 1035 VM_BUG_ON_PAGE(!PageLocked(page), page); 1036 next = get_next_page(page); 1037 reset_page(page); 1038 unlock_page(page); 1039 dec_zone_page_state(page, NR_ZSPAGES); 1040 put_page(page); 1041 page = next; 1042 } while (page != NULL); 1043 1044 cache_free_zspage(pool, zspage); 1045 1046 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 1047 atomic_long_sub(class->pages_per_zspage, 1048 &pool->pages_allocated); 1049 } 1050 1051 static void free_zspage(struct zs_pool *pool, struct size_class *class, 1052 struct zspage *zspage) 1053 { 1054 VM_BUG_ON(get_zspage_inuse(zspage)); 1055 VM_BUG_ON(list_empty(&zspage->list)); 1056 1057 /* 1058 * Since zs_free couldn't be sleepable, this function cannot call 1059 * lock_page. The page locks trylock_zspage got will be released 1060 * by __free_zspage. 1061 */ 1062 if (!trylock_zspage(zspage)) { 1063 kick_deferred_free(pool); 1064 return; 1065 } 1066 1067 remove_zspage(class, zspage, ZS_EMPTY); 1068 #ifdef CONFIG_ZPOOL 1069 list_del(&zspage->lru); 1070 #endif 1071 __free_zspage(pool, class, zspage); 1072 } 1073 1074 /* Initialize a newly allocated zspage */ 1075 static void init_zspage(struct size_class *class, struct zspage *zspage) 1076 { 1077 unsigned int freeobj = 1; 1078 unsigned long off = 0; 1079 struct page *page = get_first_page(zspage); 1080 1081 while (page) { 1082 struct page *next_page; 1083 struct link_free *link; 1084 void *vaddr; 1085 1086 set_first_obj_offset(page, off); 1087 1088 vaddr = kmap_atomic(page); 1089 link = (struct link_free *)vaddr + off / sizeof(*link); 1090 1091 while ((off += class->size) < PAGE_SIZE) { 1092 link->next = freeobj++ << OBJ_TAG_BITS; 1093 link += class->size / sizeof(*link); 1094 } 1095 1096 /* 1097 * We now come to the last (full or partial) object on this 1098 * page, which must point to the first object on the next 1099 * page (if present) 1100 */ 1101 next_page = get_next_page(page); 1102 if (next_page) { 1103 link->next = freeobj++ << OBJ_TAG_BITS; 1104 } else { 1105 /* 1106 * Reset OBJ_TAG_BITS bit to last link to tell 1107 * whether it's allocated object or not. 1108 */ 1109 link->next = -1UL << OBJ_TAG_BITS; 1110 } 1111 kunmap_atomic(vaddr); 1112 page = next_page; 1113 off %= PAGE_SIZE; 1114 } 1115 1116 #ifdef CONFIG_ZPOOL 1117 INIT_LIST_HEAD(&zspage->lru); 1118 zspage->under_reclaim = false; 1119 #endif 1120 1121 set_freeobj(zspage, 0); 1122 } 1123 1124 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1125 struct page *pages[]) 1126 { 1127 int i; 1128 struct page *page; 1129 struct page *prev_page = NULL; 1130 int nr_pages = class->pages_per_zspage; 1131 1132 /* 1133 * Allocate individual pages and link them together as: 1134 * 1. all pages are linked together using page->index 1135 * 2. each sub-page point to zspage using page->private 1136 * 1137 * we set PG_private to identify the first page (i.e. no other sub-page 1138 * has this flag set). 1139 */ 1140 for (i = 0; i < nr_pages; i++) { 1141 page = pages[i]; 1142 set_page_private(page, (unsigned long)zspage); 1143 page->index = 0; 1144 if (i == 0) { 1145 zspage->first_page = page; 1146 SetPagePrivate(page); 1147 if (unlikely(class->objs_per_zspage == 1 && 1148 class->pages_per_zspage == 1)) 1149 SetZsHugePage(zspage); 1150 } else { 1151 prev_page->index = (unsigned long)page; 1152 } 1153 prev_page = page; 1154 } 1155 } 1156 1157 /* 1158 * Allocate a zspage for the given size class 1159 */ 1160 static struct zspage *alloc_zspage(struct zs_pool *pool, 1161 struct size_class *class, 1162 gfp_t gfp) 1163 { 1164 int i; 1165 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1166 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1167 1168 if (!zspage) 1169 return NULL; 1170 1171 zspage->magic = ZSPAGE_MAGIC; 1172 migrate_lock_init(zspage); 1173 1174 for (i = 0; i < class->pages_per_zspage; i++) { 1175 struct page *page; 1176 1177 page = alloc_page(gfp); 1178 if (!page) { 1179 while (--i >= 0) { 1180 dec_zone_page_state(pages[i], NR_ZSPAGES); 1181 __free_page(pages[i]); 1182 } 1183 cache_free_zspage(pool, zspage); 1184 return NULL; 1185 } 1186 1187 inc_zone_page_state(page, NR_ZSPAGES); 1188 pages[i] = page; 1189 } 1190 1191 create_page_chain(class, zspage, pages); 1192 init_zspage(class, zspage); 1193 zspage->pool = pool; 1194 1195 return zspage; 1196 } 1197 1198 static struct zspage *find_get_zspage(struct size_class *class) 1199 { 1200 int i; 1201 struct zspage *zspage; 1202 1203 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1204 zspage = list_first_entry_or_null(&class->fullness_list[i], 1205 struct zspage, list); 1206 if (zspage) 1207 break; 1208 } 1209 1210 return zspage; 1211 } 1212 1213 static inline int __zs_cpu_up(struct mapping_area *area) 1214 { 1215 /* 1216 * Make sure we don't leak memory if a cpu UP notification 1217 * and zs_init() race and both call zs_cpu_up() on the same cpu 1218 */ 1219 if (area->vm_buf) 1220 return 0; 1221 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1222 if (!area->vm_buf) 1223 return -ENOMEM; 1224 return 0; 1225 } 1226 1227 static inline void __zs_cpu_down(struct mapping_area *area) 1228 { 1229 kfree(area->vm_buf); 1230 area->vm_buf = NULL; 1231 } 1232 1233 static void *__zs_map_object(struct mapping_area *area, 1234 struct page *pages[2], int off, int size) 1235 { 1236 int sizes[2]; 1237 void *addr; 1238 char *buf = area->vm_buf; 1239 1240 /* disable page faults to match kmap_atomic() return conditions */ 1241 pagefault_disable(); 1242 1243 /* no read fastpath */ 1244 if (area->vm_mm == ZS_MM_WO) 1245 goto out; 1246 1247 sizes[0] = PAGE_SIZE - off; 1248 sizes[1] = size - sizes[0]; 1249 1250 /* copy object to per-cpu buffer */ 1251 addr = kmap_atomic(pages[0]); 1252 memcpy(buf, addr + off, sizes[0]); 1253 kunmap_atomic(addr); 1254 addr = kmap_atomic(pages[1]); 1255 memcpy(buf + sizes[0], addr, sizes[1]); 1256 kunmap_atomic(addr); 1257 out: 1258 return area->vm_buf; 1259 } 1260 1261 static void __zs_unmap_object(struct mapping_area *area, 1262 struct page *pages[2], int off, int size) 1263 { 1264 int sizes[2]; 1265 void *addr; 1266 char *buf; 1267 1268 /* no write fastpath */ 1269 if (area->vm_mm == ZS_MM_RO) 1270 goto out; 1271 1272 buf = area->vm_buf; 1273 buf = buf + ZS_HANDLE_SIZE; 1274 size -= ZS_HANDLE_SIZE; 1275 off += ZS_HANDLE_SIZE; 1276 1277 sizes[0] = PAGE_SIZE - off; 1278 sizes[1] = size - sizes[0]; 1279 1280 /* copy per-cpu buffer to object */ 1281 addr = kmap_atomic(pages[0]); 1282 memcpy(addr + off, buf, sizes[0]); 1283 kunmap_atomic(addr); 1284 addr = kmap_atomic(pages[1]); 1285 memcpy(addr, buf + sizes[0], sizes[1]); 1286 kunmap_atomic(addr); 1287 1288 out: 1289 /* enable page faults to match kunmap_atomic() return conditions */ 1290 pagefault_enable(); 1291 } 1292 1293 static int zs_cpu_prepare(unsigned int cpu) 1294 { 1295 struct mapping_area *area; 1296 1297 area = &per_cpu(zs_map_area, cpu); 1298 return __zs_cpu_up(area); 1299 } 1300 1301 static int zs_cpu_dead(unsigned int cpu) 1302 { 1303 struct mapping_area *area; 1304 1305 area = &per_cpu(zs_map_area, cpu); 1306 __zs_cpu_down(area); 1307 return 0; 1308 } 1309 1310 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1311 int objs_per_zspage) 1312 { 1313 if (prev->pages_per_zspage == pages_per_zspage && 1314 prev->objs_per_zspage == objs_per_zspage) 1315 return true; 1316 1317 return false; 1318 } 1319 1320 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1321 { 1322 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1323 } 1324 1325 /** 1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1327 * that hold objects of the provided size. 1328 * @pool: zsmalloc pool to use 1329 * @size: object size 1330 * 1331 * Context: Any context. 1332 * 1333 * Return: the index of the zsmalloc &size_class that hold objects of the 1334 * provided size. 1335 */ 1336 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1337 { 1338 struct size_class *class; 1339 1340 class = pool->size_class[get_size_class_index(size)]; 1341 1342 return class->index; 1343 } 1344 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1345 1346 unsigned long zs_get_total_pages(struct zs_pool *pool) 1347 { 1348 return atomic_long_read(&pool->pages_allocated); 1349 } 1350 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1351 1352 /** 1353 * zs_map_object - get address of allocated object from handle. 1354 * @pool: pool from which the object was allocated 1355 * @handle: handle returned from zs_malloc 1356 * @mm: mapping mode to use 1357 * 1358 * Before using an object allocated from zs_malloc, it must be mapped using 1359 * this function. When done with the object, it must be unmapped using 1360 * zs_unmap_object. 1361 * 1362 * Only one object can be mapped per cpu at a time. There is no protection 1363 * against nested mappings. 1364 * 1365 * This function returns with preemption and page faults disabled. 1366 */ 1367 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1368 enum zs_mapmode mm) 1369 { 1370 struct zspage *zspage; 1371 struct page *page; 1372 unsigned long obj, off; 1373 unsigned int obj_idx; 1374 1375 struct size_class *class; 1376 struct mapping_area *area; 1377 struct page *pages[2]; 1378 void *ret; 1379 1380 /* 1381 * Because we use per-cpu mapping areas shared among the 1382 * pools/users, we can't allow mapping in interrupt context 1383 * because it can corrupt another users mappings. 1384 */ 1385 BUG_ON(in_interrupt()); 1386 1387 /* It guarantees it can get zspage from handle safely */ 1388 spin_lock(&pool->lock); 1389 obj = handle_to_obj(handle); 1390 obj_to_location(obj, &page, &obj_idx); 1391 zspage = get_zspage(page); 1392 1393 #ifdef CONFIG_ZPOOL 1394 /* 1395 * Move the zspage to front of pool's LRU. 1396 * 1397 * Note that this is swap-specific, so by definition there are no ongoing 1398 * accesses to the memory while the page is swapped out that would make 1399 * it "hot". A new entry is hot, then ages to the tail until it gets either 1400 * written back or swaps back in. 1401 * 1402 * Furthermore, map is also called during writeback. We must not put an 1403 * isolated page on the LRU mid-reclaim. 1404 * 1405 * As a result, only update the LRU when the page is mapped for write 1406 * when it's first instantiated. 1407 * 1408 * This is a deviation from the other backends, which perform this update 1409 * in the allocation function (zbud_alloc, z3fold_alloc). 1410 */ 1411 if (mm == ZS_MM_WO) { 1412 if (!list_empty(&zspage->lru)) 1413 list_del(&zspage->lru); 1414 list_add(&zspage->lru, &pool->lru); 1415 } 1416 #endif 1417 1418 /* 1419 * migration cannot move any zpages in this zspage. Here, pool->lock 1420 * is too heavy since callers would take some time until they calls 1421 * zs_unmap_object API so delegate the locking from class to zspage 1422 * which is smaller granularity. 1423 */ 1424 migrate_read_lock(zspage); 1425 spin_unlock(&pool->lock); 1426 1427 class = zspage_class(pool, zspage); 1428 off = (class->size * obj_idx) & ~PAGE_MASK; 1429 1430 local_lock(&zs_map_area.lock); 1431 area = this_cpu_ptr(&zs_map_area); 1432 area->vm_mm = mm; 1433 if (off + class->size <= PAGE_SIZE) { 1434 /* this object is contained entirely within a page */ 1435 area->vm_addr = kmap_atomic(page); 1436 ret = area->vm_addr + off; 1437 goto out; 1438 } 1439 1440 /* this object spans two pages */ 1441 pages[0] = page; 1442 pages[1] = get_next_page(page); 1443 BUG_ON(!pages[1]); 1444 1445 ret = __zs_map_object(area, pages, off, class->size); 1446 out: 1447 if (likely(!ZsHugePage(zspage))) 1448 ret += ZS_HANDLE_SIZE; 1449 1450 return ret; 1451 } 1452 EXPORT_SYMBOL_GPL(zs_map_object); 1453 1454 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1455 { 1456 struct zspage *zspage; 1457 struct page *page; 1458 unsigned long obj, off; 1459 unsigned int obj_idx; 1460 1461 struct size_class *class; 1462 struct mapping_area *area; 1463 1464 obj = handle_to_obj(handle); 1465 obj_to_location(obj, &page, &obj_idx); 1466 zspage = get_zspage(page); 1467 class = zspage_class(pool, zspage); 1468 off = (class->size * obj_idx) & ~PAGE_MASK; 1469 1470 area = this_cpu_ptr(&zs_map_area); 1471 if (off + class->size <= PAGE_SIZE) 1472 kunmap_atomic(area->vm_addr); 1473 else { 1474 struct page *pages[2]; 1475 1476 pages[0] = page; 1477 pages[1] = get_next_page(page); 1478 BUG_ON(!pages[1]); 1479 1480 __zs_unmap_object(area, pages, off, class->size); 1481 } 1482 local_unlock(&zs_map_area.lock); 1483 1484 migrate_read_unlock(zspage); 1485 } 1486 EXPORT_SYMBOL_GPL(zs_unmap_object); 1487 1488 /** 1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1490 * zsmalloc &size_class. 1491 * @pool: zsmalloc pool to use 1492 * 1493 * The function returns the size of the first huge class - any object of equal 1494 * or bigger size will be stored in zspage consisting of a single physical 1495 * page. 1496 * 1497 * Context: Any context. 1498 * 1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1500 */ 1501 size_t zs_huge_class_size(struct zs_pool *pool) 1502 { 1503 return huge_class_size; 1504 } 1505 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1506 1507 static unsigned long obj_malloc(struct zs_pool *pool, 1508 struct zspage *zspage, unsigned long handle) 1509 { 1510 int i, nr_page, offset; 1511 unsigned long obj; 1512 struct link_free *link; 1513 struct size_class *class; 1514 1515 struct page *m_page; 1516 unsigned long m_offset; 1517 void *vaddr; 1518 1519 class = pool->size_class[zspage->class]; 1520 handle |= OBJ_ALLOCATED_TAG; 1521 obj = get_freeobj(zspage); 1522 1523 offset = obj * class->size; 1524 nr_page = offset >> PAGE_SHIFT; 1525 m_offset = offset & ~PAGE_MASK; 1526 m_page = get_first_page(zspage); 1527 1528 for (i = 0; i < nr_page; i++) 1529 m_page = get_next_page(m_page); 1530 1531 vaddr = kmap_atomic(m_page); 1532 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1533 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1534 if (likely(!ZsHugePage(zspage))) 1535 /* record handle in the header of allocated chunk */ 1536 link->handle = handle; 1537 else 1538 /* record handle to page->index */ 1539 zspage->first_page->index = handle; 1540 1541 kunmap_atomic(vaddr); 1542 mod_zspage_inuse(zspage, 1); 1543 1544 obj = location_to_obj(m_page, obj); 1545 1546 return obj; 1547 } 1548 1549 1550 /** 1551 * zs_malloc - Allocate block of given size from pool. 1552 * @pool: pool to allocate from 1553 * @size: size of block to allocate 1554 * @gfp: gfp flags when allocating object 1555 * 1556 * On success, handle to the allocated object is returned, 1557 * otherwise an ERR_PTR(). 1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1559 */ 1560 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1561 { 1562 unsigned long handle, obj; 1563 struct size_class *class; 1564 enum fullness_group newfg; 1565 struct zspage *zspage; 1566 1567 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1568 return (unsigned long)ERR_PTR(-EINVAL); 1569 1570 handle = cache_alloc_handle(pool, gfp); 1571 if (!handle) 1572 return (unsigned long)ERR_PTR(-ENOMEM); 1573 1574 /* extra space in chunk to keep the handle */ 1575 size += ZS_HANDLE_SIZE; 1576 class = pool->size_class[get_size_class_index(size)]; 1577 1578 /* pool->lock effectively protects the zpage migration */ 1579 spin_lock(&pool->lock); 1580 zspage = find_get_zspage(class); 1581 if (likely(zspage)) { 1582 obj = obj_malloc(pool, zspage, handle); 1583 /* Now move the zspage to another fullness group, if required */ 1584 fix_fullness_group(class, zspage); 1585 record_obj(handle, obj); 1586 class_stat_inc(class, OBJ_USED, 1); 1587 spin_unlock(&pool->lock); 1588 1589 return handle; 1590 } 1591 1592 spin_unlock(&pool->lock); 1593 1594 zspage = alloc_zspage(pool, class, gfp); 1595 if (!zspage) { 1596 cache_free_handle(pool, handle); 1597 return (unsigned long)ERR_PTR(-ENOMEM); 1598 } 1599 1600 spin_lock(&pool->lock); 1601 obj = obj_malloc(pool, zspage, handle); 1602 newfg = get_fullness_group(class, zspage); 1603 insert_zspage(class, zspage, newfg); 1604 set_zspage_mapping(zspage, class->index, newfg); 1605 record_obj(handle, obj); 1606 atomic_long_add(class->pages_per_zspage, 1607 &pool->pages_allocated); 1608 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1609 class_stat_inc(class, OBJ_USED, 1); 1610 1611 /* We completely set up zspage so mark them as movable */ 1612 SetZsPageMovable(pool, zspage); 1613 spin_unlock(&pool->lock); 1614 1615 return handle; 1616 } 1617 EXPORT_SYMBOL_GPL(zs_malloc); 1618 1619 static void obj_free(int class_size, unsigned long obj, unsigned long *handle) 1620 { 1621 struct link_free *link; 1622 struct zspage *zspage; 1623 struct page *f_page; 1624 unsigned long f_offset; 1625 unsigned int f_objidx; 1626 void *vaddr; 1627 1628 obj_to_location(obj, &f_page, &f_objidx); 1629 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1630 zspage = get_zspage(f_page); 1631 1632 vaddr = kmap_atomic(f_page); 1633 link = (struct link_free *)(vaddr + f_offset); 1634 1635 if (handle) { 1636 #ifdef CONFIG_ZPOOL 1637 /* Stores the (deferred) handle in the object's header */ 1638 *handle |= OBJ_DEFERRED_HANDLE_TAG; 1639 *handle &= ~OBJ_ALLOCATED_TAG; 1640 1641 if (likely(!ZsHugePage(zspage))) 1642 link->deferred_handle = *handle; 1643 else 1644 f_page->index = *handle; 1645 #endif 1646 } else { 1647 /* Insert this object in containing zspage's freelist */ 1648 if (likely(!ZsHugePage(zspage))) 1649 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1650 else 1651 f_page->index = 0; 1652 set_freeobj(zspage, f_objidx); 1653 } 1654 1655 kunmap_atomic(vaddr); 1656 mod_zspage_inuse(zspage, -1); 1657 } 1658 1659 void zs_free(struct zs_pool *pool, unsigned long handle) 1660 { 1661 struct zspage *zspage; 1662 struct page *f_page; 1663 unsigned long obj; 1664 struct size_class *class; 1665 enum fullness_group fullness; 1666 1667 if (IS_ERR_OR_NULL((void *)handle)) 1668 return; 1669 1670 /* 1671 * The pool->lock protects the race with zpage's migration 1672 * so it's safe to get the page from handle. 1673 */ 1674 spin_lock(&pool->lock); 1675 obj = handle_to_obj(handle); 1676 obj_to_page(obj, &f_page); 1677 zspage = get_zspage(f_page); 1678 class = zspage_class(pool, zspage); 1679 1680 class_stat_dec(class, OBJ_USED, 1); 1681 1682 #ifdef CONFIG_ZPOOL 1683 if (zspage->under_reclaim) { 1684 /* 1685 * Reclaim needs the handles during writeback. It'll free 1686 * them along with the zspage when it's done with them. 1687 * 1688 * Record current deferred handle in the object's header. 1689 */ 1690 obj_free(class->size, obj, &handle); 1691 spin_unlock(&pool->lock); 1692 return; 1693 } 1694 #endif 1695 obj_free(class->size, obj, NULL); 1696 1697 fullness = fix_fullness_group(class, zspage); 1698 if (fullness == ZS_EMPTY) 1699 free_zspage(pool, class, zspage); 1700 1701 spin_unlock(&pool->lock); 1702 cache_free_handle(pool, handle); 1703 } 1704 EXPORT_SYMBOL_GPL(zs_free); 1705 1706 static void zs_object_copy(struct size_class *class, unsigned long dst, 1707 unsigned long src) 1708 { 1709 struct page *s_page, *d_page; 1710 unsigned int s_objidx, d_objidx; 1711 unsigned long s_off, d_off; 1712 void *s_addr, *d_addr; 1713 int s_size, d_size, size; 1714 int written = 0; 1715 1716 s_size = d_size = class->size; 1717 1718 obj_to_location(src, &s_page, &s_objidx); 1719 obj_to_location(dst, &d_page, &d_objidx); 1720 1721 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1722 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1723 1724 if (s_off + class->size > PAGE_SIZE) 1725 s_size = PAGE_SIZE - s_off; 1726 1727 if (d_off + class->size > PAGE_SIZE) 1728 d_size = PAGE_SIZE - d_off; 1729 1730 s_addr = kmap_atomic(s_page); 1731 d_addr = kmap_atomic(d_page); 1732 1733 while (1) { 1734 size = min(s_size, d_size); 1735 memcpy(d_addr + d_off, s_addr + s_off, size); 1736 written += size; 1737 1738 if (written == class->size) 1739 break; 1740 1741 s_off += size; 1742 s_size -= size; 1743 d_off += size; 1744 d_size -= size; 1745 1746 /* 1747 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1748 * calls must occurs in reverse order of calls to kmap_atomic(). 1749 * So, to call kunmap_atomic(s_addr) we should first call 1750 * kunmap_atomic(d_addr). For more details see 1751 * Documentation/mm/highmem.rst. 1752 */ 1753 if (s_off >= PAGE_SIZE) { 1754 kunmap_atomic(d_addr); 1755 kunmap_atomic(s_addr); 1756 s_page = get_next_page(s_page); 1757 s_addr = kmap_atomic(s_page); 1758 d_addr = kmap_atomic(d_page); 1759 s_size = class->size - written; 1760 s_off = 0; 1761 } 1762 1763 if (d_off >= PAGE_SIZE) { 1764 kunmap_atomic(d_addr); 1765 d_page = get_next_page(d_page); 1766 d_addr = kmap_atomic(d_page); 1767 d_size = class->size - written; 1768 d_off = 0; 1769 } 1770 } 1771 1772 kunmap_atomic(d_addr); 1773 kunmap_atomic(s_addr); 1774 } 1775 1776 /* 1777 * Find object with a certain tag in zspage from index object and 1778 * return handle. 1779 */ 1780 static unsigned long find_tagged_obj(struct size_class *class, 1781 struct page *page, int *obj_idx, int tag) 1782 { 1783 unsigned int offset; 1784 int index = *obj_idx; 1785 unsigned long handle = 0; 1786 void *addr = kmap_atomic(page); 1787 1788 offset = get_first_obj_offset(page); 1789 offset += class->size * index; 1790 1791 while (offset < PAGE_SIZE) { 1792 if (obj_tagged(page, addr + offset, &handle, tag)) 1793 break; 1794 1795 offset += class->size; 1796 index++; 1797 } 1798 1799 kunmap_atomic(addr); 1800 1801 *obj_idx = index; 1802 1803 return handle; 1804 } 1805 1806 /* 1807 * Find alloced object in zspage from index object and 1808 * return handle. 1809 */ 1810 static unsigned long find_alloced_obj(struct size_class *class, 1811 struct page *page, int *obj_idx) 1812 { 1813 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG); 1814 } 1815 1816 #ifdef CONFIG_ZPOOL 1817 /* 1818 * Find object storing a deferred handle in header in zspage from index object 1819 * and return handle. 1820 */ 1821 static unsigned long find_deferred_handle_obj(struct size_class *class, 1822 struct page *page, int *obj_idx) 1823 { 1824 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG); 1825 } 1826 #endif 1827 1828 struct zs_compact_control { 1829 /* Source spage for migration which could be a subpage of zspage */ 1830 struct page *s_page; 1831 /* Destination page for migration which should be a first page 1832 * of zspage. */ 1833 struct page *d_page; 1834 /* Starting object index within @s_page which used for live object 1835 * in the subpage. */ 1836 int obj_idx; 1837 }; 1838 1839 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1840 struct zs_compact_control *cc) 1841 { 1842 unsigned long used_obj, free_obj; 1843 unsigned long handle; 1844 struct page *s_page = cc->s_page; 1845 struct page *d_page = cc->d_page; 1846 int obj_idx = cc->obj_idx; 1847 int ret = 0; 1848 1849 while (1) { 1850 handle = find_alloced_obj(class, s_page, &obj_idx); 1851 if (!handle) { 1852 s_page = get_next_page(s_page); 1853 if (!s_page) 1854 break; 1855 obj_idx = 0; 1856 continue; 1857 } 1858 1859 /* Stop if there is no more space */ 1860 if (zspage_full(class, get_zspage(d_page))) { 1861 ret = -ENOMEM; 1862 break; 1863 } 1864 1865 used_obj = handle_to_obj(handle); 1866 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1867 zs_object_copy(class, free_obj, used_obj); 1868 obj_idx++; 1869 record_obj(handle, free_obj); 1870 obj_free(class->size, used_obj, NULL); 1871 } 1872 1873 /* Remember last position in this iteration */ 1874 cc->s_page = s_page; 1875 cc->obj_idx = obj_idx; 1876 1877 return ret; 1878 } 1879 1880 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1881 { 1882 int i; 1883 struct zspage *zspage; 1884 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1885 1886 if (!source) { 1887 fg[0] = ZS_ALMOST_FULL; 1888 fg[1] = ZS_ALMOST_EMPTY; 1889 } 1890 1891 for (i = 0; i < 2; i++) { 1892 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1893 struct zspage, list); 1894 if (zspage) { 1895 remove_zspage(class, zspage, fg[i]); 1896 return zspage; 1897 } 1898 } 1899 1900 return zspage; 1901 } 1902 1903 /* 1904 * putback_zspage - add @zspage into right class's fullness list 1905 * @class: destination class 1906 * @zspage: target page 1907 * 1908 * Return @zspage's fullness_group 1909 */ 1910 static enum fullness_group putback_zspage(struct size_class *class, 1911 struct zspage *zspage) 1912 { 1913 enum fullness_group fullness; 1914 1915 fullness = get_fullness_group(class, zspage); 1916 insert_zspage(class, zspage, fullness); 1917 set_zspage_mapping(zspage, class->index, fullness); 1918 1919 return fullness; 1920 } 1921 1922 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) 1923 /* 1924 * To prevent zspage destroy during migration, zspage freeing should 1925 * hold locks of all pages in the zspage. 1926 */ 1927 static void lock_zspage(struct zspage *zspage) 1928 { 1929 struct page *curr_page, *page; 1930 1931 /* 1932 * Pages we haven't locked yet can be migrated off the list while we're 1933 * trying to lock them, so we need to be careful and only attempt to 1934 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1935 * may no longer belong to the zspage. This means that we may wait for 1936 * the wrong page to unlock, so we must take a reference to the page 1937 * prior to waiting for it to unlock outside migrate_read_lock(). 1938 */ 1939 while (1) { 1940 migrate_read_lock(zspage); 1941 page = get_first_page(zspage); 1942 if (trylock_page(page)) 1943 break; 1944 get_page(page); 1945 migrate_read_unlock(zspage); 1946 wait_on_page_locked(page); 1947 put_page(page); 1948 } 1949 1950 curr_page = page; 1951 while ((page = get_next_page(curr_page))) { 1952 if (trylock_page(page)) { 1953 curr_page = page; 1954 } else { 1955 get_page(page); 1956 migrate_read_unlock(zspage); 1957 wait_on_page_locked(page); 1958 put_page(page); 1959 migrate_read_lock(zspage); 1960 } 1961 } 1962 migrate_read_unlock(zspage); 1963 } 1964 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */ 1965 1966 #ifdef CONFIG_ZPOOL 1967 /* 1968 * Unlocks all the pages of the zspage. 1969 * 1970 * pool->lock must be held before this function is called 1971 * to prevent the underlying pages from migrating. 1972 */ 1973 static void unlock_zspage(struct zspage *zspage) 1974 { 1975 struct page *page = get_first_page(zspage); 1976 1977 do { 1978 unlock_page(page); 1979 } while ((page = get_next_page(page)) != NULL); 1980 } 1981 #endif /* CONFIG_ZPOOL */ 1982 1983 static void migrate_lock_init(struct zspage *zspage) 1984 { 1985 rwlock_init(&zspage->lock); 1986 } 1987 1988 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1989 { 1990 read_lock(&zspage->lock); 1991 } 1992 1993 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1994 { 1995 read_unlock(&zspage->lock); 1996 } 1997 1998 #ifdef CONFIG_COMPACTION 1999 static void migrate_write_lock(struct zspage *zspage) 2000 { 2001 write_lock(&zspage->lock); 2002 } 2003 2004 static void migrate_write_lock_nested(struct zspage *zspage) 2005 { 2006 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 2007 } 2008 2009 static void migrate_write_unlock(struct zspage *zspage) 2010 { 2011 write_unlock(&zspage->lock); 2012 } 2013 2014 /* Number of isolated subpage for *page migration* in this zspage */ 2015 static void inc_zspage_isolation(struct zspage *zspage) 2016 { 2017 zspage->isolated++; 2018 } 2019 2020 static void dec_zspage_isolation(struct zspage *zspage) 2021 { 2022 VM_BUG_ON(zspage->isolated == 0); 2023 zspage->isolated--; 2024 } 2025 2026 static const struct movable_operations zsmalloc_mops; 2027 2028 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 2029 struct page *newpage, struct page *oldpage) 2030 { 2031 struct page *page; 2032 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 2033 int idx = 0; 2034 2035 page = get_first_page(zspage); 2036 do { 2037 if (page == oldpage) 2038 pages[idx] = newpage; 2039 else 2040 pages[idx] = page; 2041 idx++; 2042 } while ((page = get_next_page(page)) != NULL); 2043 2044 create_page_chain(class, zspage, pages); 2045 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 2046 if (unlikely(ZsHugePage(zspage))) 2047 newpage->index = oldpage->index; 2048 __SetPageMovable(newpage, &zsmalloc_mops); 2049 } 2050 2051 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 2052 { 2053 struct zspage *zspage; 2054 2055 /* 2056 * Page is locked so zspage couldn't be destroyed. For detail, look at 2057 * lock_zspage in free_zspage. 2058 */ 2059 VM_BUG_ON_PAGE(!PageMovable(page), page); 2060 VM_BUG_ON_PAGE(PageIsolated(page), page); 2061 2062 zspage = get_zspage(page); 2063 migrate_write_lock(zspage); 2064 inc_zspage_isolation(zspage); 2065 migrate_write_unlock(zspage); 2066 2067 return true; 2068 } 2069 2070 static int zs_page_migrate(struct page *newpage, struct page *page, 2071 enum migrate_mode mode) 2072 { 2073 struct zs_pool *pool; 2074 struct size_class *class; 2075 struct zspage *zspage; 2076 struct page *dummy; 2077 void *s_addr, *d_addr, *addr; 2078 unsigned int offset; 2079 unsigned long handle; 2080 unsigned long old_obj, new_obj; 2081 unsigned int obj_idx; 2082 2083 /* 2084 * We cannot support the _NO_COPY case here, because copy needs to 2085 * happen under the zs lock, which does not work with 2086 * MIGRATE_SYNC_NO_COPY workflow. 2087 */ 2088 if (mode == MIGRATE_SYNC_NO_COPY) 2089 return -EINVAL; 2090 2091 VM_BUG_ON_PAGE(!PageMovable(page), page); 2092 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2093 2094 /* The page is locked, so this pointer must remain valid */ 2095 zspage = get_zspage(page); 2096 pool = zspage->pool; 2097 2098 /* 2099 * The pool's lock protects the race between zpage migration 2100 * and zs_free. 2101 */ 2102 spin_lock(&pool->lock); 2103 class = zspage_class(pool, zspage); 2104 2105 /* the migrate_write_lock protects zpage access via zs_map_object */ 2106 migrate_write_lock(zspage); 2107 2108 offset = get_first_obj_offset(page); 2109 s_addr = kmap_atomic(page); 2110 2111 /* 2112 * Here, any user cannot access all objects in the zspage so let's move. 2113 */ 2114 d_addr = kmap_atomic(newpage); 2115 memcpy(d_addr, s_addr, PAGE_SIZE); 2116 kunmap_atomic(d_addr); 2117 2118 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 2119 addr += class->size) { 2120 if (obj_allocated(page, addr, &handle)) { 2121 2122 old_obj = handle_to_obj(handle); 2123 obj_to_location(old_obj, &dummy, &obj_idx); 2124 new_obj = (unsigned long)location_to_obj(newpage, 2125 obj_idx); 2126 record_obj(handle, new_obj); 2127 } 2128 } 2129 kunmap_atomic(s_addr); 2130 2131 replace_sub_page(class, zspage, newpage, page); 2132 /* 2133 * Since we complete the data copy and set up new zspage structure, 2134 * it's okay to release the pool's lock. 2135 */ 2136 spin_unlock(&pool->lock); 2137 dec_zspage_isolation(zspage); 2138 migrate_write_unlock(zspage); 2139 2140 get_page(newpage); 2141 if (page_zone(newpage) != page_zone(page)) { 2142 dec_zone_page_state(page, NR_ZSPAGES); 2143 inc_zone_page_state(newpage, NR_ZSPAGES); 2144 } 2145 2146 reset_page(page); 2147 put_page(page); 2148 2149 return MIGRATEPAGE_SUCCESS; 2150 } 2151 2152 static void zs_page_putback(struct page *page) 2153 { 2154 struct zspage *zspage; 2155 2156 VM_BUG_ON_PAGE(!PageMovable(page), page); 2157 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2158 2159 zspage = get_zspage(page); 2160 migrate_write_lock(zspage); 2161 dec_zspage_isolation(zspage); 2162 migrate_write_unlock(zspage); 2163 } 2164 2165 static const struct movable_operations zsmalloc_mops = { 2166 .isolate_page = zs_page_isolate, 2167 .migrate_page = zs_page_migrate, 2168 .putback_page = zs_page_putback, 2169 }; 2170 2171 /* 2172 * Caller should hold page_lock of all pages in the zspage 2173 * In here, we cannot use zspage meta data. 2174 */ 2175 static void async_free_zspage(struct work_struct *work) 2176 { 2177 int i; 2178 struct size_class *class; 2179 unsigned int class_idx; 2180 enum fullness_group fullness; 2181 struct zspage *zspage, *tmp; 2182 LIST_HEAD(free_pages); 2183 struct zs_pool *pool = container_of(work, struct zs_pool, 2184 free_work); 2185 2186 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2187 class = pool->size_class[i]; 2188 if (class->index != i) 2189 continue; 2190 2191 spin_lock(&pool->lock); 2192 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2193 spin_unlock(&pool->lock); 2194 } 2195 2196 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2197 list_del(&zspage->list); 2198 lock_zspage(zspage); 2199 2200 get_zspage_mapping(zspage, &class_idx, &fullness); 2201 VM_BUG_ON(fullness != ZS_EMPTY); 2202 class = pool->size_class[class_idx]; 2203 spin_lock(&pool->lock); 2204 #ifdef CONFIG_ZPOOL 2205 list_del(&zspage->lru); 2206 #endif 2207 __free_zspage(pool, class, zspage); 2208 spin_unlock(&pool->lock); 2209 } 2210 }; 2211 2212 static void kick_deferred_free(struct zs_pool *pool) 2213 { 2214 schedule_work(&pool->free_work); 2215 } 2216 2217 static void zs_flush_migration(struct zs_pool *pool) 2218 { 2219 flush_work(&pool->free_work); 2220 } 2221 2222 static void init_deferred_free(struct zs_pool *pool) 2223 { 2224 INIT_WORK(&pool->free_work, async_free_zspage); 2225 } 2226 2227 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2228 { 2229 struct page *page = get_first_page(zspage); 2230 2231 do { 2232 WARN_ON(!trylock_page(page)); 2233 __SetPageMovable(page, &zsmalloc_mops); 2234 unlock_page(page); 2235 } while ((page = get_next_page(page)) != NULL); 2236 } 2237 #else 2238 static inline void zs_flush_migration(struct zs_pool *pool) { } 2239 #endif 2240 2241 /* 2242 * 2243 * Based on the number of unused allocated objects calculate 2244 * and return the number of pages that we can free. 2245 */ 2246 static unsigned long zs_can_compact(struct size_class *class) 2247 { 2248 unsigned long obj_wasted; 2249 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2250 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2251 2252 if (obj_allocated <= obj_used) 2253 return 0; 2254 2255 obj_wasted = obj_allocated - obj_used; 2256 obj_wasted /= class->objs_per_zspage; 2257 2258 return obj_wasted * class->pages_per_zspage; 2259 } 2260 2261 static unsigned long __zs_compact(struct zs_pool *pool, 2262 struct size_class *class) 2263 { 2264 struct zs_compact_control cc; 2265 struct zspage *src_zspage; 2266 struct zspage *dst_zspage = NULL; 2267 unsigned long pages_freed = 0; 2268 2269 /* 2270 * protect the race between zpage migration and zs_free 2271 * as well as zpage allocation/free 2272 */ 2273 spin_lock(&pool->lock); 2274 while ((src_zspage = isolate_zspage(class, true))) { 2275 /* protect someone accessing the zspage(i.e., zs_map_object) */ 2276 migrate_write_lock(src_zspage); 2277 2278 if (!zs_can_compact(class)) 2279 break; 2280 2281 cc.obj_idx = 0; 2282 cc.s_page = get_first_page(src_zspage); 2283 2284 while ((dst_zspage = isolate_zspage(class, false))) { 2285 migrate_write_lock_nested(dst_zspage); 2286 2287 cc.d_page = get_first_page(dst_zspage); 2288 /* 2289 * If there is no more space in dst_page, resched 2290 * and see if anyone had allocated another zspage. 2291 */ 2292 if (!migrate_zspage(pool, class, &cc)) 2293 break; 2294 2295 putback_zspage(class, dst_zspage); 2296 migrate_write_unlock(dst_zspage); 2297 dst_zspage = NULL; 2298 if (spin_is_contended(&pool->lock)) 2299 break; 2300 } 2301 2302 /* Stop if we couldn't find slot */ 2303 if (dst_zspage == NULL) 2304 break; 2305 2306 putback_zspage(class, dst_zspage); 2307 migrate_write_unlock(dst_zspage); 2308 2309 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2310 migrate_write_unlock(src_zspage); 2311 free_zspage(pool, class, src_zspage); 2312 pages_freed += class->pages_per_zspage; 2313 } else 2314 migrate_write_unlock(src_zspage); 2315 spin_unlock(&pool->lock); 2316 cond_resched(); 2317 spin_lock(&pool->lock); 2318 } 2319 2320 if (src_zspage) { 2321 putback_zspage(class, src_zspage); 2322 migrate_write_unlock(src_zspage); 2323 } 2324 2325 spin_unlock(&pool->lock); 2326 2327 return pages_freed; 2328 } 2329 2330 unsigned long zs_compact(struct zs_pool *pool) 2331 { 2332 int i; 2333 struct size_class *class; 2334 unsigned long pages_freed = 0; 2335 2336 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2337 class = pool->size_class[i]; 2338 if (class->index != i) 2339 continue; 2340 pages_freed += __zs_compact(pool, class); 2341 } 2342 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2343 2344 return pages_freed; 2345 } 2346 EXPORT_SYMBOL_GPL(zs_compact); 2347 2348 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2349 { 2350 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2351 } 2352 EXPORT_SYMBOL_GPL(zs_pool_stats); 2353 2354 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2355 struct shrink_control *sc) 2356 { 2357 unsigned long pages_freed; 2358 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2359 shrinker); 2360 2361 /* 2362 * Compact classes and calculate compaction delta. 2363 * Can run concurrently with a manually triggered 2364 * (by user) compaction. 2365 */ 2366 pages_freed = zs_compact(pool); 2367 2368 return pages_freed ? pages_freed : SHRINK_STOP; 2369 } 2370 2371 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2372 struct shrink_control *sc) 2373 { 2374 int i; 2375 struct size_class *class; 2376 unsigned long pages_to_free = 0; 2377 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2378 shrinker); 2379 2380 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2381 class = pool->size_class[i]; 2382 if (class->index != i) 2383 continue; 2384 2385 pages_to_free += zs_can_compact(class); 2386 } 2387 2388 return pages_to_free; 2389 } 2390 2391 static void zs_unregister_shrinker(struct zs_pool *pool) 2392 { 2393 unregister_shrinker(&pool->shrinker); 2394 } 2395 2396 static int zs_register_shrinker(struct zs_pool *pool) 2397 { 2398 pool->shrinker.scan_objects = zs_shrinker_scan; 2399 pool->shrinker.count_objects = zs_shrinker_count; 2400 pool->shrinker.batch = 0; 2401 pool->shrinker.seeks = DEFAULT_SEEKS; 2402 2403 return register_shrinker(&pool->shrinker, "mm-zspool:%s", 2404 pool->name); 2405 } 2406 2407 /** 2408 * zs_create_pool - Creates an allocation pool to work from. 2409 * @name: pool name to be created 2410 * 2411 * This function must be called before anything when using 2412 * the zsmalloc allocator. 2413 * 2414 * On success, a pointer to the newly created pool is returned, 2415 * otherwise NULL. 2416 */ 2417 struct zs_pool *zs_create_pool(const char *name) 2418 { 2419 int i; 2420 struct zs_pool *pool; 2421 struct size_class *prev_class = NULL; 2422 2423 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2424 if (!pool) 2425 return NULL; 2426 2427 init_deferred_free(pool); 2428 spin_lock_init(&pool->lock); 2429 2430 pool->name = kstrdup(name, GFP_KERNEL); 2431 if (!pool->name) 2432 goto err; 2433 2434 if (create_cache(pool)) 2435 goto err; 2436 2437 /* 2438 * Iterate reversely, because, size of size_class that we want to use 2439 * for merging should be larger or equal to current size. 2440 */ 2441 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2442 int size; 2443 int pages_per_zspage; 2444 int objs_per_zspage; 2445 struct size_class *class; 2446 int fullness = 0; 2447 2448 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2449 if (size > ZS_MAX_ALLOC_SIZE) 2450 size = ZS_MAX_ALLOC_SIZE; 2451 pages_per_zspage = get_pages_per_zspage(size); 2452 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2453 2454 /* 2455 * We iterate from biggest down to smallest classes, 2456 * so huge_class_size holds the size of the first huge 2457 * class. Any object bigger than or equal to that will 2458 * endup in the huge class. 2459 */ 2460 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2461 !huge_class_size) { 2462 huge_class_size = size; 2463 /* 2464 * The object uses ZS_HANDLE_SIZE bytes to store the 2465 * handle. We need to subtract it, because zs_malloc() 2466 * unconditionally adds handle size before it performs 2467 * size class search - so object may be smaller than 2468 * huge class size, yet it still can end up in the huge 2469 * class because it grows by ZS_HANDLE_SIZE extra bytes 2470 * right before class lookup. 2471 */ 2472 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2473 } 2474 2475 /* 2476 * size_class is used for normal zsmalloc operation such 2477 * as alloc/free for that size. Although it is natural that we 2478 * have one size_class for each size, there is a chance that we 2479 * can get more memory utilization if we use one size_class for 2480 * many different sizes whose size_class have same 2481 * characteristics. So, we makes size_class point to 2482 * previous size_class if possible. 2483 */ 2484 if (prev_class) { 2485 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2486 pool->size_class[i] = prev_class; 2487 continue; 2488 } 2489 } 2490 2491 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2492 if (!class) 2493 goto err; 2494 2495 class->size = size; 2496 class->index = i; 2497 class->pages_per_zspage = pages_per_zspage; 2498 class->objs_per_zspage = objs_per_zspage; 2499 pool->size_class[i] = class; 2500 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2501 fullness++) 2502 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2503 2504 prev_class = class; 2505 } 2506 2507 /* debug only, don't abort if it fails */ 2508 zs_pool_stat_create(pool, name); 2509 2510 /* 2511 * Not critical since shrinker is only used to trigger internal 2512 * defragmentation of the pool which is pretty optional thing. If 2513 * registration fails we still can use the pool normally and user can 2514 * trigger compaction manually. Thus, ignore return code. 2515 */ 2516 zs_register_shrinker(pool); 2517 2518 #ifdef CONFIG_ZPOOL 2519 INIT_LIST_HEAD(&pool->lru); 2520 #endif 2521 2522 return pool; 2523 2524 err: 2525 zs_destroy_pool(pool); 2526 return NULL; 2527 } 2528 EXPORT_SYMBOL_GPL(zs_create_pool); 2529 2530 void zs_destroy_pool(struct zs_pool *pool) 2531 { 2532 int i; 2533 2534 zs_unregister_shrinker(pool); 2535 zs_flush_migration(pool); 2536 zs_pool_stat_destroy(pool); 2537 2538 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2539 int fg; 2540 struct size_class *class = pool->size_class[i]; 2541 2542 if (!class) 2543 continue; 2544 2545 if (class->index != i) 2546 continue; 2547 2548 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2549 if (!list_empty(&class->fullness_list[fg])) { 2550 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2551 class->size, fg); 2552 } 2553 } 2554 kfree(class); 2555 } 2556 2557 destroy_cache(pool); 2558 kfree(pool->name); 2559 kfree(pool); 2560 } 2561 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2562 2563 #ifdef CONFIG_ZPOOL 2564 static void restore_freelist(struct zs_pool *pool, struct size_class *class, 2565 struct zspage *zspage) 2566 { 2567 unsigned int obj_idx = 0; 2568 unsigned long handle, off = 0; /* off is within-page offset */ 2569 struct page *page = get_first_page(zspage); 2570 struct link_free *prev_free = NULL; 2571 void *prev_page_vaddr = NULL; 2572 2573 /* in case no free object found */ 2574 set_freeobj(zspage, (unsigned int)(-1UL)); 2575 2576 while (page) { 2577 void *vaddr = kmap_atomic(page); 2578 struct page *next_page; 2579 2580 while (off < PAGE_SIZE) { 2581 void *obj_addr = vaddr + off; 2582 2583 /* skip allocated object */ 2584 if (obj_allocated(page, obj_addr, &handle)) { 2585 obj_idx++; 2586 off += class->size; 2587 continue; 2588 } 2589 2590 /* free deferred handle from reclaim attempt */ 2591 if (obj_stores_deferred_handle(page, obj_addr, &handle)) 2592 cache_free_handle(pool, handle); 2593 2594 if (prev_free) 2595 prev_free->next = obj_idx << OBJ_TAG_BITS; 2596 else /* first free object found */ 2597 set_freeobj(zspage, obj_idx); 2598 2599 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free); 2600 /* if last free object in a previous page, need to unmap */ 2601 if (prev_page_vaddr) { 2602 kunmap_atomic(prev_page_vaddr); 2603 prev_page_vaddr = NULL; 2604 } 2605 2606 obj_idx++; 2607 off += class->size; 2608 } 2609 2610 /* 2611 * Handle the last (full or partial) object on this page. 2612 */ 2613 next_page = get_next_page(page); 2614 if (next_page) { 2615 if (!prev_free || prev_page_vaddr) { 2616 /* 2617 * There is no free object in this page, so we can safely 2618 * unmap it. 2619 */ 2620 kunmap_atomic(vaddr); 2621 } else { 2622 /* update prev_page_vaddr since prev_free is on this page */ 2623 prev_page_vaddr = vaddr; 2624 } 2625 } else { /* this is the last page */ 2626 if (prev_free) { 2627 /* 2628 * Reset OBJ_TAG_BITS bit to last link to tell 2629 * whether it's allocated object or not. 2630 */ 2631 prev_free->next = -1UL << OBJ_TAG_BITS; 2632 } 2633 2634 /* unmap previous page (if not done yet) */ 2635 if (prev_page_vaddr) { 2636 kunmap_atomic(prev_page_vaddr); 2637 prev_page_vaddr = NULL; 2638 } 2639 2640 kunmap_atomic(vaddr); 2641 } 2642 2643 page = next_page; 2644 off %= PAGE_SIZE; 2645 } 2646 } 2647 2648 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries) 2649 { 2650 int i, obj_idx, ret = 0; 2651 unsigned long handle; 2652 struct zspage *zspage; 2653 struct page *page; 2654 enum fullness_group fullness; 2655 2656 /* Lock LRU and fullness list */ 2657 spin_lock(&pool->lock); 2658 if (list_empty(&pool->lru)) { 2659 spin_unlock(&pool->lock); 2660 return -EINVAL; 2661 } 2662 2663 for (i = 0; i < retries; i++) { 2664 struct size_class *class; 2665 2666 zspage = list_last_entry(&pool->lru, struct zspage, lru); 2667 list_del(&zspage->lru); 2668 2669 /* zs_free may free objects, but not the zspage and handles */ 2670 zspage->under_reclaim = true; 2671 2672 class = zspage_class(pool, zspage); 2673 fullness = get_fullness_group(class, zspage); 2674 2675 /* Lock out object allocations and object compaction */ 2676 remove_zspage(class, zspage, fullness); 2677 2678 spin_unlock(&pool->lock); 2679 cond_resched(); 2680 2681 /* Lock backing pages into place */ 2682 lock_zspage(zspage); 2683 2684 obj_idx = 0; 2685 page = get_first_page(zspage); 2686 while (1) { 2687 handle = find_alloced_obj(class, page, &obj_idx); 2688 if (!handle) { 2689 page = get_next_page(page); 2690 if (!page) 2691 break; 2692 obj_idx = 0; 2693 continue; 2694 } 2695 2696 /* 2697 * This will write the object and call zs_free. 2698 * 2699 * zs_free will free the object, but the 2700 * under_reclaim flag prevents it from freeing 2701 * the zspage altogether. This is necessary so 2702 * that we can continue working with the 2703 * zspage potentially after the last object 2704 * has been freed. 2705 */ 2706 ret = pool->zpool_ops->evict(pool->zpool, handle); 2707 if (ret) 2708 goto next; 2709 2710 obj_idx++; 2711 } 2712 2713 next: 2714 /* For freeing the zspage, or putting it back in the pool and LRU list. */ 2715 spin_lock(&pool->lock); 2716 zspage->under_reclaim = false; 2717 2718 if (!get_zspage_inuse(zspage)) { 2719 /* 2720 * Fullness went stale as zs_free() won't touch it 2721 * while the page is removed from the pool. Fix it 2722 * up for the check in __free_zspage(). 2723 */ 2724 zspage->fullness = ZS_EMPTY; 2725 2726 __free_zspage(pool, class, zspage); 2727 spin_unlock(&pool->lock); 2728 return 0; 2729 } 2730 2731 /* 2732 * Eviction fails on one of the handles, so we need to restore zspage. 2733 * We need to rebuild its freelist (and free stored deferred handles), 2734 * put it back to the correct size class, and add it to the LRU list. 2735 */ 2736 restore_freelist(pool, class, zspage); 2737 putback_zspage(class, zspage); 2738 list_add(&zspage->lru, &pool->lru); 2739 unlock_zspage(zspage); 2740 } 2741 2742 spin_unlock(&pool->lock); 2743 return -EAGAIN; 2744 } 2745 #endif /* CONFIG_ZPOOL */ 2746 2747 static int __init zs_init(void) 2748 { 2749 int ret; 2750 2751 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2752 zs_cpu_prepare, zs_cpu_dead); 2753 if (ret) 2754 goto out; 2755 2756 #ifdef CONFIG_ZPOOL 2757 zpool_register_driver(&zs_zpool_driver); 2758 #endif 2759 2760 zs_stat_init(); 2761 2762 return 0; 2763 2764 out: 2765 return ret; 2766 } 2767 2768 static void __exit zs_exit(void) 2769 { 2770 #ifdef CONFIG_ZPOOL 2771 zpool_unregister_driver(&zs_zpool_driver); 2772 #endif 2773 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2774 2775 zs_stat_exit(); 2776 } 2777 2778 module_init(zs_init); 2779 module_exit(zs_exit); 2780 2781 MODULE_LICENSE("Dual BSD/GPL"); 2782 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2783