xref: /openbmc/linux/mm/zsmalloc.c (revision 06b53b02)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82 
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84 
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * a single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> starts from 0.
90  *
91  * This is made more complicated by various memory models and PAE.
92  */
93 
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97 #else
98 /*
99  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100  * be PAGE_SHIFT
101  */
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103 #endif
104 #endif
105 
106 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107 
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 
117 #ifdef CONFIG_ZPOOL
118 /*
119  * The second least-significant bit in the object's header identifies if the
120  * value stored at the header is a deferred handle from the last reclaim
121  * attempt.
122  *
123  * As noted above, this is valid because we have room for two bits.
124  */
125 #define OBJ_DEFERRED_HANDLE_TAG	2
126 #define OBJ_TAG_BITS	2
127 #define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
128 #else
129 #define OBJ_TAG_BITS	1
130 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
131 #endif /* CONFIG_ZPOOL */
132 
133 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
134 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
135 
136 #define HUGE_BITS	1
137 #define FULLNESS_BITS	2
138 #define CLASS_BITS	8
139 #define ISOLATED_BITS	3
140 #define MAGIC_VAL_BITS	8
141 
142 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
143 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
144 #define ZS_MIN_ALLOC_SIZE \
145 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
146 /* each chunk includes extra space to keep handle */
147 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
148 
149 /*
150  * On systems with 4K page size, this gives 255 size classes! There is a
151  * trader-off here:
152  *  - Large number of size classes is potentially wasteful as free page are
153  *    spread across these classes
154  *  - Small number of size classes causes large internal fragmentation
155  *  - Probably its better to use specific size classes (empirically
156  *    determined). NOTE: all those class sizes must be set as multiple of
157  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
158  *
159  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
160  *  (reason above)
161  */
162 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
163 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
164 				      ZS_SIZE_CLASS_DELTA) + 1)
165 
166 enum fullness_group {
167 	ZS_EMPTY,
168 	ZS_ALMOST_EMPTY,
169 	ZS_ALMOST_FULL,
170 	ZS_FULL,
171 	NR_ZS_FULLNESS,
172 };
173 
174 enum class_stat_type {
175 	CLASS_EMPTY,
176 	CLASS_ALMOST_EMPTY,
177 	CLASS_ALMOST_FULL,
178 	CLASS_FULL,
179 	OBJ_ALLOCATED,
180 	OBJ_USED,
181 	NR_ZS_STAT_TYPE,
182 };
183 
184 struct zs_size_stat {
185 	unsigned long objs[NR_ZS_STAT_TYPE];
186 };
187 
188 #ifdef CONFIG_ZSMALLOC_STAT
189 static struct dentry *zs_stat_root;
190 #endif
191 
192 /*
193  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194  *	n <= N / f, where
195  * n = number of allocated objects
196  * N = total number of objects zspage can store
197  * f = fullness_threshold_frac
198  *
199  * Similarly, we assign zspage to:
200  *	ZS_ALMOST_FULL	when n > N / f
201  *	ZS_EMPTY	when n == 0
202  *	ZS_FULL		when n == N
203  *
204  * (see: fix_fullness_group())
205  */
206 static const int fullness_threshold_frac = 4;
207 static size_t huge_class_size;
208 
209 struct size_class {
210 	struct list_head fullness_list[NR_ZS_FULLNESS];
211 	/*
212 	 * Size of objects stored in this class. Must be multiple
213 	 * of ZS_ALIGN.
214 	 */
215 	int size;
216 	int objs_per_zspage;
217 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218 	int pages_per_zspage;
219 
220 	unsigned int index;
221 	struct zs_size_stat stats;
222 };
223 
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231 	union {
232 		/*
233 		 * Free object index;
234 		 * It's valid for non-allocated object
235 		 */
236 		unsigned long next;
237 		/*
238 		 * Handle of allocated object.
239 		 */
240 		unsigned long handle;
241 #ifdef CONFIG_ZPOOL
242 		/*
243 		 * Deferred handle of a reclaimed object.
244 		 */
245 		unsigned long deferred_handle;
246 #endif
247 	};
248 };
249 
250 struct zs_pool {
251 	const char *name;
252 
253 	struct size_class *size_class[ZS_SIZE_CLASSES];
254 	struct kmem_cache *handle_cachep;
255 	struct kmem_cache *zspage_cachep;
256 
257 	atomic_long_t pages_allocated;
258 
259 	struct zs_pool_stats stats;
260 
261 	/* Compact classes */
262 	struct shrinker shrinker;
263 
264 #ifdef CONFIG_ZPOOL
265 	/* List tracking the zspages in LRU order by most recently added object */
266 	struct list_head lru;
267 	struct zpool *zpool;
268 	const struct zpool_ops *zpool_ops;
269 #endif
270 
271 #ifdef CONFIG_ZSMALLOC_STAT
272 	struct dentry *stat_dentry;
273 #endif
274 #ifdef CONFIG_COMPACTION
275 	struct work_struct free_work;
276 #endif
277 	spinlock_t lock;
278 };
279 
280 struct zspage {
281 	struct {
282 		unsigned int huge:HUGE_BITS;
283 		unsigned int fullness:FULLNESS_BITS;
284 		unsigned int class:CLASS_BITS + 1;
285 		unsigned int isolated:ISOLATED_BITS;
286 		unsigned int magic:MAGIC_VAL_BITS;
287 	};
288 	unsigned int inuse;
289 	unsigned int freeobj;
290 	struct page *first_page;
291 	struct list_head list; /* fullness list */
292 
293 #ifdef CONFIG_ZPOOL
294 	/* links the zspage to the lru list in the pool */
295 	struct list_head lru;
296 	bool under_reclaim;
297 #endif
298 
299 	struct zs_pool *pool;
300 	rwlock_t lock;
301 };
302 
303 struct mapping_area {
304 	local_lock_t lock;
305 	char *vm_buf; /* copy buffer for objects that span pages */
306 	char *vm_addr; /* address of kmap_atomic()'ed pages */
307 	enum zs_mapmode vm_mm; /* mapping mode */
308 };
309 
310 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
311 static void SetZsHugePage(struct zspage *zspage)
312 {
313 	zspage->huge = 1;
314 }
315 
316 static bool ZsHugePage(struct zspage *zspage)
317 {
318 	return zspage->huge;
319 }
320 
321 static void migrate_lock_init(struct zspage *zspage);
322 static void migrate_read_lock(struct zspage *zspage);
323 static void migrate_read_unlock(struct zspage *zspage);
324 
325 #ifdef CONFIG_COMPACTION
326 static void migrate_write_lock(struct zspage *zspage);
327 static void migrate_write_lock_nested(struct zspage *zspage);
328 static void migrate_write_unlock(struct zspage *zspage);
329 static void kick_deferred_free(struct zs_pool *pool);
330 static void init_deferred_free(struct zs_pool *pool);
331 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
332 #else
333 static void migrate_write_lock(struct zspage *zspage) {}
334 static void migrate_write_lock_nested(struct zspage *zspage) {}
335 static void migrate_write_unlock(struct zspage *zspage) {}
336 static void kick_deferred_free(struct zs_pool *pool) {}
337 static void init_deferred_free(struct zs_pool *pool) {}
338 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
339 #endif
340 
341 static int create_cache(struct zs_pool *pool)
342 {
343 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
344 					0, 0, NULL);
345 	if (!pool->handle_cachep)
346 		return 1;
347 
348 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
349 					0, 0, NULL);
350 	if (!pool->zspage_cachep) {
351 		kmem_cache_destroy(pool->handle_cachep);
352 		pool->handle_cachep = NULL;
353 		return 1;
354 	}
355 
356 	return 0;
357 }
358 
359 static void destroy_cache(struct zs_pool *pool)
360 {
361 	kmem_cache_destroy(pool->handle_cachep);
362 	kmem_cache_destroy(pool->zspage_cachep);
363 }
364 
365 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
366 {
367 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
368 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 }
370 
371 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
372 {
373 	kmem_cache_free(pool->handle_cachep, (void *)handle);
374 }
375 
376 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
377 {
378 	return kmem_cache_zalloc(pool->zspage_cachep,
379 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
380 }
381 
382 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
383 {
384 	kmem_cache_free(pool->zspage_cachep, zspage);
385 }
386 
387 /* pool->lock(which owns the handle) synchronizes races */
388 static void record_obj(unsigned long handle, unsigned long obj)
389 {
390 	*(unsigned long *)handle = obj;
391 }
392 
393 /* zpool driver */
394 
395 #ifdef CONFIG_ZPOOL
396 
397 static void *zs_zpool_create(const char *name, gfp_t gfp,
398 			     const struct zpool_ops *zpool_ops,
399 			     struct zpool *zpool)
400 {
401 	/*
402 	 * Ignore global gfp flags: zs_malloc() may be invoked from
403 	 * different contexts and its caller must provide a valid
404 	 * gfp mask.
405 	 */
406 	struct zs_pool *pool = zs_create_pool(name);
407 
408 	if (pool) {
409 		pool->zpool = zpool;
410 		pool->zpool_ops = zpool_ops;
411 	}
412 
413 	return pool;
414 }
415 
416 static void zs_zpool_destroy(void *pool)
417 {
418 	zs_destroy_pool(pool);
419 }
420 
421 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
422 			unsigned long *handle)
423 {
424 	*handle = zs_malloc(pool, size, gfp);
425 
426 	if (IS_ERR_VALUE(*handle))
427 		return PTR_ERR((void *)*handle);
428 	return 0;
429 }
430 static void zs_zpool_free(void *pool, unsigned long handle)
431 {
432 	zs_free(pool, handle);
433 }
434 
435 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
436 
437 static int zs_zpool_shrink(void *pool, unsigned int pages,
438 			unsigned int *reclaimed)
439 {
440 	unsigned int total = 0;
441 	int ret = -EINVAL;
442 
443 	while (total < pages) {
444 		ret = zs_reclaim_page(pool, 8);
445 		if (ret < 0)
446 			break;
447 		total++;
448 	}
449 
450 	if (reclaimed)
451 		*reclaimed = total;
452 
453 	return ret;
454 }
455 
456 static void *zs_zpool_map(void *pool, unsigned long handle,
457 			enum zpool_mapmode mm)
458 {
459 	enum zs_mapmode zs_mm;
460 
461 	switch (mm) {
462 	case ZPOOL_MM_RO:
463 		zs_mm = ZS_MM_RO;
464 		break;
465 	case ZPOOL_MM_WO:
466 		zs_mm = ZS_MM_WO;
467 		break;
468 	case ZPOOL_MM_RW:
469 	default:
470 		zs_mm = ZS_MM_RW;
471 		break;
472 	}
473 
474 	return zs_map_object(pool, handle, zs_mm);
475 }
476 static void zs_zpool_unmap(void *pool, unsigned long handle)
477 {
478 	zs_unmap_object(pool, handle);
479 }
480 
481 static u64 zs_zpool_total_size(void *pool)
482 {
483 	return zs_get_total_pages(pool) << PAGE_SHIFT;
484 }
485 
486 static struct zpool_driver zs_zpool_driver = {
487 	.type =			  "zsmalloc",
488 	.owner =		  THIS_MODULE,
489 	.create =		  zs_zpool_create,
490 	.destroy =		  zs_zpool_destroy,
491 	.malloc_support_movable = true,
492 	.malloc =		  zs_zpool_malloc,
493 	.free =			  zs_zpool_free,
494 	.shrink =		  zs_zpool_shrink,
495 	.map =			  zs_zpool_map,
496 	.unmap =		  zs_zpool_unmap,
497 	.total_size =		  zs_zpool_total_size,
498 };
499 
500 MODULE_ALIAS("zpool-zsmalloc");
501 #endif /* CONFIG_ZPOOL */
502 
503 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
504 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
505 	.lock	= INIT_LOCAL_LOCK(lock),
506 };
507 
508 static __maybe_unused int is_first_page(struct page *page)
509 {
510 	return PagePrivate(page);
511 }
512 
513 /* Protected by pool->lock */
514 static inline int get_zspage_inuse(struct zspage *zspage)
515 {
516 	return zspage->inuse;
517 }
518 
519 
520 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
521 {
522 	zspage->inuse += val;
523 }
524 
525 static inline struct page *get_first_page(struct zspage *zspage)
526 {
527 	struct page *first_page = zspage->first_page;
528 
529 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
530 	return first_page;
531 }
532 
533 static inline unsigned int get_first_obj_offset(struct page *page)
534 {
535 	return page->page_type;
536 }
537 
538 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
539 {
540 	page->page_type = offset;
541 }
542 
543 static inline unsigned int get_freeobj(struct zspage *zspage)
544 {
545 	return zspage->freeobj;
546 }
547 
548 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
549 {
550 	zspage->freeobj = obj;
551 }
552 
553 static void get_zspage_mapping(struct zspage *zspage,
554 				unsigned int *class_idx,
555 				enum fullness_group *fullness)
556 {
557 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
558 
559 	*fullness = zspage->fullness;
560 	*class_idx = zspage->class;
561 }
562 
563 static struct size_class *zspage_class(struct zs_pool *pool,
564 					     struct zspage *zspage)
565 {
566 	return pool->size_class[zspage->class];
567 }
568 
569 static void set_zspage_mapping(struct zspage *zspage,
570 				unsigned int class_idx,
571 				enum fullness_group fullness)
572 {
573 	zspage->class = class_idx;
574 	zspage->fullness = fullness;
575 }
576 
577 /*
578  * zsmalloc divides the pool into various size classes where each
579  * class maintains a list of zspages where each zspage is divided
580  * into equal sized chunks. Each allocation falls into one of these
581  * classes depending on its size. This function returns index of the
582  * size class which has chunk size big enough to hold the given size.
583  */
584 static int get_size_class_index(int size)
585 {
586 	int idx = 0;
587 
588 	if (likely(size > ZS_MIN_ALLOC_SIZE))
589 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
590 				ZS_SIZE_CLASS_DELTA);
591 
592 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
593 }
594 
595 /* type can be of enum type class_stat_type or fullness_group */
596 static inline void class_stat_inc(struct size_class *class,
597 				int type, unsigned long cnt)
598 {
599 	class->stats.objs[type] += cnt;
600 }
601 
602 /* type can be of enum type class_stat_type or fullness_group */
603 static inline void class_stat_dec(struct size_class *class,
604 				int type, unsigned long cnt)
605 {
606 	class->stats.objs[type] -= cnt;
607 }
608 
609 /* type can be of enum type class_stat_type or fullness_group */
610 static inline unsigned long zs_stat_get(struct size_class *class,
611 				int type)
612 {
613 	return class->stats.objs[type];
614 }
615 
616 #ifdef CONFIG_ZSMALLOC_STAT
617 
618 static void __init zs_stat_init(void)
619 {
620 	if (!debugfs_initialized()) {
621 		pr_warn("debugfs not available, stat dir not created\n");
622 		return;
623 	}
624 
625 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
626 }
627 
628 static void __exit zs_stat_exit(void)
629 {
630 	debugfs_remove_recursive(zs_stat_root);
631 }
632 
633 static unsigned long zs_can_compact(struct size_class *class);
634 
635 static int zs_stats_size_show(struct seq_file *s, void *v)
636 {
637 	int i;
638 	struct zs_pool *pool = s->private;
639 	struct size_class *class;
640 	int objs_per_zspage;
641 	unsigned long class_almost_full, class_almost_empty;
642 	unsigned long obj_allocated, obj_used, pages_used, freeable;
643 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
644 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
645 	unsigned long total_freeable = 0;
646 
647 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
648 			"class", "size", "almost_full", "almost_empty",
649 			"obj_allocated", "obj_used", "pages_used",
650 			"pages_per_zspage", "freeable");
651 
652 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
653 		class = pool->size_class[i];
654 
655 		if (class->index != i)
656 			continue;
657 
658 		spin_lock(&pool->lock);
659 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
660 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
661 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
662 		obj_used = zs_stat_get(class, OBJ_USED);
663 		freeable = zs_can_compact(class);
664 		spin_unlock(&pool->lock);
665 
666 		objs_per_zspage = class->objs_per_zspage;
667 		pages_used = obj_allocated / objs_per_zspage *
668 				class->pages_per_zspage;
669 
670 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
671 				" %10lu %10lu %16d %8lu\n",
672 			i, class->size, class_almost_full, class_almost_empty,
673 			obj_allocated, obj_used, pages_used,
674 			class->pages_per_zspage, freeable);
675 
676 		total_class_almost_full += class_almost_full;
677 		total_class_almost_empty += class_almost_empty;
678 		total_objs += obj_allocated;
679 		total_used_objs += obj_used;
680 		total_pages += pages_used;
681 		total_freeable += freeable;
682 	}
683 
684 	seq_puts(s, "\n");
685 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
686 			"Total", "", total_class_almost_full,
687 			total_class_almost_empty, total_objs,
688 			total_used_objs, total_pages, "", total_freeable);
689 
690 	return 0;
691 }
692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
693 
694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695 {
696 	if (!zs_stat_root) {
697 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
698 		return;
699 	}
700 
701 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
702 
703 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704 			    &zs_stats_size_fops);
705 }
706 
707 static void zs_pool_stat_destroy(struct zs_pool *pool)
708 {
709 	debugfs_remove_recursive(pool->stat_dentry);
710 }
711 
712 #else /* CONFIG_ZSMALLOC_STAT */
713 static void __init zs_stat_init(void)
714 {
715 }
716 
717 static void __exit zs_stat_exit(void)
718 {
719 }
720 
721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
722 {
723 }
724 
725 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
726 {
727 }
728 #endif
729 
730 
731 /*
732  * For each size class, zspages are divided into different groups
733  * depending on how "full" they are. This was done so that we could
734  * easily find empty or nearly empty zspages when we try to shrink
735  * the pool (not yet implemented). This function returns fullness
736  * status of the given page.
737  */
738 static enum fullness_group get_fullness_group(struct size_class *class,
739 						struct zspage *zspage)
740 {
741 	int inuse, objs_per_zspage;
742 	enum fullness_group fg;
743 
744 	inuse = get_zspage_inuse(zspage);
745 	objs_per_zspage = class->objs_per_zspage;
746 
747 	if (inuse == 0)
748 		fg = ZS_EMPTY;
749 	else if (inuse == objs_per_zspage)
750 		fg = ZS_FULL;
751 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
752 		fg = ZS_ALMOST_EMPTY;
753 	else
754 		fg = ZS_ALMOST_FULL;
755 
756 	return fg;
757 }
758 
759 /*
760  * Each size class maintains various freelists and zspages are assigned
761  * to one of these freelists based on the number of live objects they
762  * have. This functions inserts the given zspage into the freelist
763  * identified by <class, fullness_group>.
764  */
765 static void insert_zspage(struct size_class *class,
766 				struct zspage *zspage,
767 				enum fullness_group fullness)
768 {
769 	struct zspage *head;
770 
771 	class_stat_inc(class, fullness, 1);
772 	head = list_first_entry_or_null(&class->fullness_list[fullness],
773 					struct zspage, list);
774 	/*
775 	 * We want to see more ZS_FULL pages and less almost empty/full.
776 	 * Put pages with higher ->inuse first.
777 	 */
778 	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
779 		list_add(&zspage->list, &head->list);
780 	else
781 		list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783 
784 /*
785  * This function removes the given zspage from the freelist identified
786  * by <class, fullness_group>.
787  */
788 static void remove_zspage(struct size_class *class,
789 				struct zspage *zspage,
790 				enum fullness_group fullness)
791 {
792 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793 
794 	list_del_init(&zspage->list);
795 	class_stat_dec(class, fullness, 1);
796 }
797 
798 /*
799  * Each size class maintains zspages in different fullness groups depending
800  * on the number of live objects they contain. When allocating or freeing
801  * objects, the fullness status of the page can change, say, from ALMOST_FULL
802  * to ALMOST_EMPTY when freeing an object. This function checks if such
803  * a status change has occurred for the given page and accordingly moves the
804  * page from the freelist of the old fullness group to that of the new
805  * fullness group.
806  */
807 static enum fullness_group fix_fullness_group(struct size_class *class,
808 						struct zspage *zspage)
809 {
810 	int class_idx;
811 	enum fullness_group currfg, newfg;
812 
813 	get_zspage_mapping(zspage, &class_idx, &currfg);
814 	newfg = get_fullness_group(class, zspage);
815 	if (newfg == currfg)
816 		goto out;
817 
818 	remove_zspage(class, zspage, currfg);
819 	insert_zspage(class, zspage, newfg);
820 	set_zspage_mapping(zspage, class_idx, newfg);
821 out:
822 	return newfg;
823 }
824 
825 /*
826  * We have to decide on how many pages to link together
827  * to form a zspage for each size class. This is important
828  * to reduce wastage due to unusable space left at end of
829  * each zspage which is given as:
830  *     wastage = Zp % class_size
831  *     usage = Zp - wastage
832  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
833  *
834  * For example, for size class of 3/8 * PAGE_SIZE, we should
835  * link together 3 PAGE_SIZE sized pages to form a zspage
836  * since then we can perfectly fit in 8 such objects.
837  */
838 static int get_pages_per_zspage(int class_size)
839 {
840 	int i, max_usedpc = 0;
841 	/* zspage order which gives maximum used size per KB */
842 	int max_usedpc_order = 1;
843 
844 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845 		int zspage_size;
846 		int waste, usedpc;
847 
848 		zspage_size = i * PAGE_SIZE;
849 		waste = zspage_size % class_size;
850 		usedpc = (zspage_size - waste) * 100 / zspage_size;
851 
852 		if (usedpc > max_usedpc) {
853 			max_usedpc = usedpc;
854 			max_usedpc_order = i;
855 		}
856 	}
857 
858 	return max_usedpc_order;
859 }
860 
861 static struct zspage *get_zspage(struct page *page)
862 {
863 	struct zspage *zspage = (struct zspage *)page_private(page);
864 
865 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866 	return zspage;
867 }
868 
869 static struct page *get_next_page(struct page *page)
870 {
871 	struct zspage *zspage = get_zspage(page);
872 
873 	if (unlikely(ZsHugePage(zspage)))
874 		return NULL;
875 
876 	return (struct page *)page->index;
877 }
878 
879 /**
880  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
881  * @obj: the encoded object value
882  * @page: page object resides in zspage
883  * @obj_idx: object index
884  */
885 static void obj_to_location(unsigned long obj, struct page **page,
886 				unsigned int *obj_idx)
887 {
888 	obj >>= OBJ_TAG_BITS;
889 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
890 	*obj_idx = (obj & OBJ_INDEX_MASK);
891 }
892 
893 static void obj_to_page(unsigned long obj, struct page **page)
894 {
895 	obj >>= OBJ_TAG_BITS;
896 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
897 }
898 
899 /**
900  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
901  * @page: page object resides in zspage
902  * @obj_idx: object index
903  */
904 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
905 {
906 	unsigned long obj;
907 
908 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
909 	obj |= obj_idx & OBJ_INDEX_MASK;
910 	obj <<= OBJ_TAG_BITS;
911 
912 	return obj;
913 }
914 
915 static unsigned long handle_to_obj(unsigned long handle)
916 {
917 	return *(unsigned long *)handle;
918 }
919 
920 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
921 		int tag)
922 {
923 	unsigned long handle;
924 	struct zspage *zspage = get_zspage(page);
925 
926 	if (unlikely(ZsHugePage(zspage))) {
927 		VM_BUG_ON_PAGE(!is_first_page(page), page);
928 		handle = page->index;
929 	} else
930 		handle = *(unsigned long *)obj;
931 
932 	if (!(handle & tag))
933 		return false;
934 
935 	/* Clear all tags before returning the handle */
936 	*phandle = handle & ~OBJ_TAG_MASK;
937 	return true;
938 }
939 
940 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
941 {
942 	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
943 }
944 
945 #ifdef CONFIG_ZPOOL
946 static bool obj_stores_deferred_handle(struct page *page, void *obj,
947 		unsigned long *phandle)
948 {
949 	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
950 }
951 #endif
952 
953 static void reset_page(struct page *page)
954 {
955 	__ClearPageMovable(page);
956 	ClearPagePrivate(page);
957 	set_page_private(page, 0);
958 	page_mapcount_reset(page);
959 	page->index = 0;
960 }
961 
962 static int trylock_zspage(struct zspage *zspage)
963 {
964 	struct page *cursor, *fail;
965 
966 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967 					get_next_page(cursor)) {
968 		if (!trylock_page(cursor)) {
969 			fail = cursor;
970 			goto unlock;
971 		}
972 	}
973 
974 	return 1;
975 unlock:
976 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
977 					get_next_page(cursor))
978 		unlock_page(cursor);
979 
980 	return 0;
981 }
982 
983 #ifdef CONFIG_ZPOOL
984 static unsigned long find_deferred_handle_obj(struct size_class *class,
985 		struct page *page, int *obj_idx);
986 
987 /*
988  * Free all the deferred handles whose objects are freed in zs_free.
989  */
990 static void free_handles(struct zs_pool *pool, struct size_class *class,
991 		struct zspage *zspage)
992 {
993 	int obj_idx = 0;
994 	struct page *page = get_first_page(zspage);
995 	unsigned long handle;
996 
997 	while (1) {
998 		handle = find_deferred_handle_obj(class, page, &obj_idx);
999 		if (!handle) {
1000 			page = get_next_page(page);
1001 			if (!page)
1002 				break;
1003 			obj_idx = 0;
1004 			continue;
1005 		}
1006 
1007 		cache_free_handle(pool, handle);
1008 		obj_idx++;
1009 	}
1010 }
1011 #else
1012 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013 		struct zspage *zspage) {}
1014 #endif
1015 
1016 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017 				struct zspage *zspage)
1018 {
1019 	struct page *page, *next;
1020 	enum fullness_group fg;
1021 	unsigned int class_idx;
1022 
1023 	get_zspage_mapping(zspage, &class_idx, &fg);
1024 
1025 	assert_spin_locked(&pool->lock);
1026 
1027 	VM_BUG_ON(get_zspage_inuse(zspage));
1028 	VM_BUG_ON(fg != ZS_EMPTY);
1029 
1030 	/* Free all deferred handles from zs_free */
1031 	free_handles(pool, class, zspage);
1032 
1033 	next = page = get_first_page(zspage);
1034 	do {
1035 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1036 		next = get_next_page(page);
1037 		reset_page(page);
1038 		unlock_page(page);
1039 		dec_zone_page_state(page, NR_ZSPAGES);
1040 		put_page(page);
1041 		page = next;
1042 	} while (page != NULL);
1043 
1044 	cache_free_zspage(pool, zspage);
1045 
1046 	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047 	atomic_long_sub(class->pages_per_zspage,
1048 					&pool->pages_allocated);
1049 }
1050 
1051 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052 				struct zspage *zspage)
1053 {
1054 	VM_BUG_ON(get_zspage_inuse(zspage));
1055 	VM_BUG_ON(list_empty(&zspage->list));
1056 
1057 	/*
1058 	 * Since zs_free couldn't be sleepable, this function cannot call
1059 	 * lock_page. The page locks trylock_zspage got will be released
1060 	 * by __free_zspage.
1061 	 */
1062 	if (!trylock_zspage(zspage)) {
1063 		kick_deferred_free(pool);
1064 		return;
1065 	}
1066 
1067 	remove_zspage(class, zspage, ZS_EMPTY);
1068 #ifdef CONFIG_ZPOOL
1069 	list_del(&zspage->lru);
1070 #endif
1071 	__free_zspage(pool, class, zspage);
1072 }
1073 
1074 /* Initialize a newly allocated zspage */
1075 static void init_zspage(struct size_class *class, struct zspage *zspage)
1076 {
1077 	unsigned int freeobj = 1;
1078 	unsigned long off = 0;
1079 	struct page *page = get_first_page(zspage);
1080 
1081 	while (page) {
1082 		struct page *next_page;
1083 		struct link_free *link;
1084 		void *vaddr;
1085 
1086 		set_first_obj_offset(page, off);
1087 
1088 		vaddr = kmap_atomic(page);
1089 		link = (struct link_free *)vaddr + off / sizeof(*link);
1090 
1091 		while ((off += class->size) < PAGE_SIZE) {
1092 			link->next = freeobj++ << OBJ_TAG_BITS;
1093 			link += class->size / sizeof(*link);
1094 		}
1095 
1096 		/*
1097 		 * We now come to the last (full or partial) object on this
1098 		 * page, which must point to the first object on the next
1099 		 * page (if present)
1100 		 */
1101 		next_page = get_next_page(page);
1102 		if (next_page) {
1103 			link->next = freeobj++ << OBJ_TAG_BITS;
1104 		} else {
1105 			/*
1106 			 * Reset OBJ_TAG_BITS bit to last link to tell
1107 			 * whether it's allocated object or not.
1108 			 */
1109 			link->next = -1UL << OBJ_TAG_BITS;
1110 		}
1111 		kunmap_atomic(vaddr);
1112 		page = next_page;
1113 		off %= PAGE_SIZE;
1114 	}
1115 
1116 #ifdef CONFIG_ZPOOL
1117 	INIT_LIST_HEAD(&zspage->lru);
1118 	zspage->under_reclaim = false;
1119 #endif
1120 
1121 	set_freeobj(zspage, 0);
1122 }
1123 
1124 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125 				struct page *pages[])
1126 {
1127 	int i;
1128 	struct page *page;
1129 	struct page *prev_page = NULL;
1130 	int nr_pages = class->pages_per_zspage;
1131 
1132 	/*
1133 	 * Allocate individual pages and link them together as:
1134 	 * 1. all pages are linked together using page->index
1135 	 * 2. each sub-page point to zspage using page->private
1136 	 *
1137 	 * we set PG_private to identify the first page (i.e. no other sub-page
1138 	 * has this flag set).
1139 	 */
1140 	for (i = 0; i < nr_pages; i++) {
1141 		page = pages[i];
1142 		set_page_private(page, (unsigned long)zspage);
1143 		page->index = 0;
1144 		if (i == 0) {
1145 			zspage->first_page = page;
1146 			SetPagePrivate(page);
1147 			if (unlikely(class->objs_per_zspage == 1 &&
1148 					class->pages_per_zspage == 1))
1149 				SetZsHugePage(zspage);
1150 		} else {
1151 			prev_page->index = (unsigned long)page;
1152 		}
1153 		prev_page = page;
1154 	}
1155 }
1156 
1157 /*
1158  * Allocate a zspage for the given size class
1159  */
1160 static struct zspage *alloc_zspage(struct zs_pool *pool,
1161 					struct size_class *class,
1162 					gfp_t gfp)
1163 {
1164 	int i;
1165 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167 
1168 	if (!zspage)
1169 		return NULL;
1170 
1171 	zspage->magic = ZSPAGE_MAGIC;
1172 	migrate_lock_init(zspage);
1173 
1174 	for (i = 0; i < class->pages_per_zspage; i++) {
1175 		struct page *page;
1176 
1177 		page = alloc_page(gfp);
1178 		if (!page) {
1179 			while (--i >= 0) {
1180 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1181 				__free_page(pages[i]);
1182 			}
1183 			cache_free_zspage(pool, zspage);
1184 			return NULL;
1185 		}
1186 
1187 		inc_zone_page_state(page, NR_ZSPAGES);
1188 		pages[i] = page;
1189 	}
1190 
1191 	create_page_chain(class, zspage, pages);
1192 	init_zspage(class, zspage);
1193 	zspage->pool = pool;
1194 
1195 	return zspage;
1196 }
1197 
1198 static struct zspage *find_get_zspage(struct size_class *class)
1199 {
1200 	int i;
1201 	struct zspage *zspage;
1202 
1203 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1205 				struct zspage, list);
1206 		if (zspage)
1207 			break;
1208 	}
1209 
1210 	return zspage;
1211 }
1212 
1213 static inline int __zs_cpu_up(struct mapping_area *area)
1214 {
1215 	/*
1216 	 * Make sure we don't leak memory if a cpu UP notification
1217 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1218 	 */
1219 	if (area->vm_buf)
1220 		return 0;
1221 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222 	if (!area->vm_buf)
1223 		return -ENOMEM;
1224 	return 0;
1225 }
1226 
1227 static inline void __zs_cpu_down(struct mapping_area *area)
1228 {
1229 	kfree(area->vm_buf);
1230 	area->vm_buf = NULL;
1231 }
1232 
1233 static void *__zs_map_object(struct mapping_area *area,
1234 			struct page *pages[2], int off, int size)
1235 {
1236 	int sizes[2];
1237 	void *addr;
1238 	char *buf = area->vm_buf;
1239 
1240 	/* disable page faults to match kmap_atomic() return conditions */
1241 	pagefault_disable();
1242 
1243 	/* no read fastpath */
1244 	if (area->vm_mm == ZS_MM_WO)
1245 		goto out;
1246 
1247 	sizes[0] = PAGE_SIZE - off;
1248 	sizes[1] = size - sizes[0];
1249 
1250 	/* copy object to per-cpu buffer */
1251 	addr = kmap_atomic(pages[0]);
1252 	memcpy(buf, addr + off, sizes[0]);
1253 	kunmap_atomic(addr);
1254 	addr = kmap_atomic(pages[1]);
1255 	memcpy(buf + sizes[0], addr, sizes[1]);
1256 	kunmap_atomic(addr);
1257 out:
1258 	return area->vm_buf;
1259 }
1260 
1261 static void __zs_unmap_object(struct mapping_area *area,
1262 			struct page *pages[2], int off, int size)
1263 {
1264 	int sizes[2];
1265 	void *addr;
1266 	char *buf;
1267 
1268 	/* no write fastpath */
1269 	if (area->vm_mm == ZS_MM_RO)
1270 		goto out;
1271 
1272 	buf = area->vm_buf;
1273 	buf = buf + ZS_HANDLE_SIZE;
1274 	size -= ZS_HANDLE_SIZE;
1275 	off += ZS_HANDLE_SIZE;
1276 
1277 	sizes[0] = PAGE_SIZE - off;
1278 	sizes[1] = size - sizes[0];
1279 
1280 	/* copy per-cpu buffer to object */
1281 	addr = kmap_atomic(pages[0]);
1282 	memcpy(addr + off, buf, sizes[0]);
1283 	kunmap_atomic(addr);
1284 	addr = kmap_atomic(pages[1]);
1285 	memcpy(addr, buf + sizes[0], sizes[1]);
1286 	kunmap_atomic(addr);
1287 
1288 out:
1289 	/* enable page faults to match kunmap_atomic() return conditions */
1290 	pagefault_enable();
1291 }
1292 
1293 static int zs_cpu_prepare(unsigned int cpu)
1294 {
1295 	struct mapping_area *area;
1296 
1297 	area = &per_cpu(zs_map_area, cpu);
1298 	return __zs_cpu_up(area);
1299 }
1300 
1301 static int zs_cpu_dead(unsigned int cpu)
1302 {
1303 	struct mapping_area *area;
1304 
1305 	area = &per_cpu(zs_map_area, cpu);
1306 	__zs_cpu_down(area);
1307 	return 0;
1308 }
1309 
1310 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311 					int objs_per_zspage)
1312 {
1313 	if (prev->pages_per_zspage == pages_per_zspage &&
1314 		prev->objs_per_zspage == objs_per_zspage)
1315 		return true;
1316 
1317 	return false;
1318 }
1319 
1320 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321 {
1322 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323 }
1324 
1325 /**
1326  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327  * that hold objects of the provided size.
1328  * @pool: zsmalloc pool to use
1329  * @size: object size
1330  *
1331  * Context: Any context.
1332  *
1333  * Return: the index of the zsmalloc &size_class that hold objects of the
1334  * provided size.
1335  */
1336 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337 {
1338 	struct size_class *class;
1339 
1340 	class = pool->size_class[get_size_class_index(size)];
1341 
1342 	return class->index;
1343 }
1344 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345 
1346 unsigned long zs_get_total_pages(struct zs_pool *pool)
1347 {
1348 	return atomic_long_read(&pool->pages_allocated);
1349 }
1350 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351 
1352 /**
1353  * zs_map_object - get address of allocated object from handle.
1354  * @pool: pool from which the object was allocated
1355  * @handle: handle returned from zs_malloc
1356  * @mm: mapping mode to use
1357  *
1358  * Before using an object allocated from zs_malloc, it must be mapped using
1359  * this function. When done with the object, it must be unmapped using
1360  * zs_unmap_object.
1361  *
1362  * Only one object can be mapped per cpu at a time. There is no protection
1363  * against nested mappings.
1364  *
1365  * This function returns with preemption and page faults disabled.
1366  */
1367 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368 			enum zs_mapmode mm)
1369 {
1370 	struct zspage *zspage;
1371 	struct page *page;
1372 	unsigned long obj, off;
1373 	unsigned int obj_idx;
1374 
1375 	struct size_class *class;
1376 	struct mapping_area *area;
1377 	struct page *pages[2];
1378 	void *ret;
1379 
1380 	/*
1381 	 * Because we use per-cpu mapping areas shared among the
1382 	 * pools/users, we can't allow mapping in interrupt context
1383 	 * because it can corrupt another users mappings.
1384 	 */
1385 	BUG_ON(in_interrupt());
1386 
1387 	/* It guarantees it can get zspage from handle safely */
1388 	spin_lock(&pool->lock);
1389 	obj = handle_to_obj(handle);
1390 	obj_to_location(obj, &page, &obj_idx);
1391 	zspage = get_zspage(page);
1392 
1393 #ifdef CONFIG_ZPOOL
1394 	/*
1395 	 * Move the zspage to front of pool's LRU.
1396 	 *
1397 	 * Note that this is swap-specific, so by definition there are no ongoing
1398 	 * accesses to the memory while the page is swapped out that would make
1399 	 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400 	 * written back or swaps back in.
1401 	 *
1402 	 * Furthermore, map is also called during writeback. We must not put an
1403 	 * isolated page on the LRU mid-reclaim.
1404 	 *
1405 	 * As a result, only update the LRU when the page is mapped for write
1406 	 * when it's first instantiated.
1407 	 *
1408 	 * This is a deviation from the other backends, which perform this update
1409 	 * in the allocation function (zbud_alloc, z3fold_alloc).
1410 	 */
1411 	if (mm == ZS_MM_WO) {
1412 		if (!list_empty(&zspage->lru))
1413 			list_del(&zspage->lru);
1414 		list_add(&zspage->lru, &pool->lru);
1415 	}
1416 #endif
1417 
1418 	/*
1419 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1420 	 * is too heavy since callers would take some time until they calls
1421 	 * zs_unmap_object API so delegate the locking from class to zspage
1422 	 * which is smaller granularity.
1423 	 */
1424 	migrate_read_lock(zspage);
1425 	spin_unlock(&pool->lock);
1426 
1427 	class = zspage_class(pool, zspage);
1428 	off = (class->size * obj_idx) & ~PAGE_MASK;
1429 
1430 	local_lock(&zs_map_area.lock);
1431 	area = this_cpu_ptr(&zs_map_area);
1432 	area->vm_mm = mm;
1433 	if (off + class->size <= PAGE_SIZE) {
1434 		/* this object is contained entirely within a page */
1435 		area->vm_addr = kmap_atomic(page);
1436 		ret = area->vm_addr + off;
1437 		goto out;
1438 	}
1439 
1440 	/* this object spans two pages */
1441 	pages[0] = page;
1442 	pages[1] = get_next_page(page);
1443 	BUG_ON(!pages[1]);
1444 
1445 	ret = __zs_map_object(area, pages, off, class->size);
1446 out:
1447 	if (likely(!ZsHugePage(zspage)))
1448 		ret += ZS_HANDLE_SIZE;
1449 
1450 	return ret;
1451 }
1452 EXPORT_SYMBOL_GPL(zs_map_object);
1453 
1454 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455 {
1456 	struct zspage *zspage;
1457 	struct page *page;
1458 	unsigned long obj, off;
1459 	unsigned int obj_idx;
1460 
1461 	struct size_class *class;
1462 	struct mapping_area *area;
1463 
1464 	obj = handle_to_obj(handle);
1465 	obj_to_location(obj, &page, &obj_idx);
1466 	zspage = get_zspage(page);
1467 	class = zspage_class(pool, zspage);
1468 	off = (class->size * obj_idx) & ~PAGE_MASK;
1469 
1470 	area = this_cpu_ptr(&zs_map_area);
1471 	if (off + class->size <= PAGE_SIZE)
1472 		kunmap_atomic(area->vm_addr);
1473 	else {
1474 		struct page *pages[2];
1475 
1476 		pages[0] = page;
1477 		pages[1] = get_next_page(page);
1478 		BUG_ON(!pages[1]);
1479 
1480 		__zs_unmap_object(area, pages, off, class->size);
1481 	}
1482 	local_unlock(&zs_map_area.lock);
1483 
1484 	migrate_read_unlock(zspage);
1485 }
1486 EXPORT_SYMBOL_GPL(zs_unmap_object);
1487 
1488 /**
1489  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490  *                        zsmalloc &size_class.
1491  * @pool: zsmalloc pool to use
1492  *
1493  * The function returns the size of the first huge class - any object of equal
1494  * or bigger size will be stored in zspage consisting of a single physical
1495  * page.
1496  *
1497  * Context: Any context.
1498  *
1499  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500  */
1501 size_t zs_huge_class_size(struct zs_pool *pool)
1502 {
1503 	return huge_class_size;
1504 }
1505 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506 
1507 static unsigned long obj_malloc(struct zs_pool *pool,
1508 				struct zspage *zspage, unsigned long handle)
1509 {
1510 	int i, nr_page, offset;
1511 	unsigned long obj;
1512 	struct link_free *link;
1513 	struct size_class *class;
1514 
1515 	struct page *m_page;
1516 	unsigned long m_offset;
1517 	void *vaddr;
1518 
1519 	class = pool->size_class[zspage->class];
1520 	handle |= OBJ_ALLOCATED_TAG;
1521 	obj = get_freeobj(zspage);
1522 
1523 	offset = obj * class->size;
1524 	nr_page = offset >> PAGE_SHIFT;
1525 	m_offset = offset & ~PAGE_MASK;
1526 	m_page = get_first_page(zspage);
1527 
1528 	for (i = 0; i < nr_page; i++)
1529 		m_page = get_next_page(m_page);
1530 
1531 	vaddr = kmap_atomic(m_page);
1532 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534 	if (likely(!ZsHugePage(zspage)))
1535 		/* record handle in the header of allocated chunk */
1536 		link->handle = handle;
1537 	else
1538 		/* record handle to page->index */
1539 		zspage->first_page->index = handle;
1540 
1541 	kunmap_atomic(vaddr);
1542 	mod_zspage_inuse(zspage, 1);
1543 
1544 	obj = location_to_obj(m_page, obj);
1545 
1546 	return obj;
1547 }
1548 
1549 
1550 /**
1551  * zs_malloc - Allocate block of given size from pool.
1552  * @pool: pool to allocate from
1553  * @size: size of block to allocate
1554  * @gfp: gfp flags when allocating object
1555  *
1556  * On success, handle to the allocated object is returned,
1557  * otherwise an ERR_PTR().
1558  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559  */
1560 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561 {
1562 	unsigned long handle, obj;
1563 	struct size_class *class;
1564 	enum fullness_group newfg;
1565 	struct zspage *zspage;
1566 
1567 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568 		return (unsigned long)ERR_PTR(-EINVAL);
1569 
1570 	handle = cache_alloc_handle(pool, gfp);
1571 	if (!handle)
1572 		return (unsigned long)ERR_PTR(-ENOMEM);
1573 
1574 	/* extra space in chunk to keep the handle */
1575 	size += ZS_HANDLE_SIZE;
1576 	class = pool->size_class[get_size_class_index(size)];
1577 
1578 	/* pool->lock effectively protects the zpage migration */
1579 	spin_lock(&pool->lock);
1580 	zspage = find_get_zspage(class);
1581 	if (likely(zspage)) {
1582 		obj = obj_malloc(pool, zspage, handle);
1583 		/* Now move the zspage to another fullness group, if required */
1584 		fix_fullness_group(class, zspage);
1585 		record_obj(handle, obj);
1586 		class_stat_inc(class, OBJ_USED, 1);
1587 		spin_unlock(&pool->lock);
1588 
1589 		return handle;
1590 	}
1591 
1592 	spin_unlock(&pool->lock);
1593 
1594 	zspage = alloc_zspage(pool, class, gfp);
1595 	if (!zspage) {
1596 		cache_free_handle(pool, handle);
1597 		return (unsigned long)ERR_PTR(-ENOMEM);
1598 	}
1599 
1600 	spin_lock(&pool->lock);
1601 	obj = obj_malloc(pool, zspage, handle);
1602 	newfg = get_fullness_group(class, zspage);
1603 	insert_zspage(class, zspage, newfg);
1604 	set_zspage_mapping(zspage, class->index, newfg);
1605 	record_obj(handle, obj);
1606 	atomic_long_add(class->pages_per_zspage,
1607 				&pool->pages_allocated);
1608 	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609 	class_stat_inc(class, OBJ_USED, 1);
1610 
1611 	/* We completely set up zspage so mark them as movable */
1612 	SetZsPageMovable(pool, zspage);
1613 	spin_unlock(&pool->lock);
1614 
1615 	return handle;
1616 }
1617 EXPORT_SYMBOL_GPL(zs_malloc);
1618 
1619 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620 {
1621 	struct link_free *link;
1622 	struct zspage *zspage;
1623 	struct page *f_page;
1624 	unsigned long f_offset;
1625 	unsigned int f_objidx;
1626 	void *vaddr;
1627 
1628 	obj_to_location(obj, &f_page, &f_objidx);
1629 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630 	zspage = get_zspage(f_page);
1631 
1632 	vaddr = kmap_atomic(f_page);
1633 	link = (struct link_free *)(vaddr + f_offset);
1634 
1635 	if (handle) {
1636 #ifdef CONFIG_ZPOOL
1637 		/* Stores the (deferred) handle in the object's header */
1638 		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1639 		*handle &= ~OBJ_ALLOCATED_TAG;
1640 
1641 		if (likely(!ZsHugePage(zspage)))
1642 			link->deferred_handle = *handle;
1643 		else
1644 			f_page->index = *handle;
1645 #endif
1646 	} else {
1647 		/* Insert this object in containing zspage's freelist */
1648 		if (likely(!ZsHugePage(zspage)))
1649 			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650 		else
1651 			f_page->index = 0;
1652 		set_freeobj(zspage, f_objidx);
1653 	}
1654 
1655 	kunmap_atomic(vaddr);
1656 	mod_zspage_inuse(zspage, -1);
1657 }
1658 
1659 void zs_free(struct zs_pool *pool, unsigned long handle)
1660 {
1661 	struct zspage *zspage;
1662 	struct page *f_page;
1663 	unsigned long obj;
1664 	struct size_class *class;
1665 	enum fullness_group fullness;
1666 
1667 	if (IS_ERR_OR_NULL((void *)handle))
1668 		return;
1669 
1670 	/*
1671 	 * The pool->lock protects the race with zpage's migration
1672 	 * so it's safe to get the page from handle.
1673 	 */
1674 	spin_lock(&pool->lock);
1675 	obj = handle_to_obj(handle);
1676 	obj_to_page(obj, &f_page);
1677 	zspage = get_zspage(f_page);
1678 	class = zspage_class(pool, zspage);
1679 
1680 	class_stat_dec(class, OBJ_USED, 1);
1681 
1682 #ifdef CONFIG_ZPOOL
1683 	if (zspage->under_reclaim) {
1684 		/*
1685 		 * Reclaim needs the handles during writeback. It'll free
1686 		 * them along with the zspage when it's done with them.
1687 		 *
1688 		 * Record current deferred handle in the object's header.
1689 		 */
1690 		obj_free(class->size, obj, &handle);
1691 		spin_unlock(&pool->lock);
1692 		return;
1693 	}
1694 #endif
1695 	obj_free(class->size, obj, NULL);
1696 
1697 	fullness = fix_fullness_group(class, zspage);
1698 	if (fullness == ZS_EMPTY)
1699 		free_zspage(pool, class, zspage);
1700 
1701 	spin_unlock(&pool->lock);
1702 	cache_free_handle(pool, handle);
1703 }
1704 EXPORT_SYMBOL_GPL(zs_free);
1705 
1706 static void zs_object_copy(struct size_class *class, unsigned long dst,
1707 				unsigned long src)
1708 {
1709 	struct page *s_page, *d_page;
1710 	unsigned int s_objidx, d_objidx;
1711 	unsigned long s_off, d_off;
1712 	void *s_addr, *d_addr;
1713 	int s_size, d_size, size;
1714 	int written = 0;
1715 
1716 	s_size = d_size = class->size;
1717 
1718 	obj_to_location(src, &s_page, &s_objidx);
1719 	obj_to_location(dst, &d_page, &d_objidx);
1720 
1721 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723 
1724 	if (s_off + class->size > PAGE_SIZE)
1725 		s_size = PAGE_SIZE - s_off;
1726 
1727 	if (d_off + class->size > PAGE_SIZE)
1728 		d_size = PAGE_SIZE - d_off;
1729 
1730 	s_addr = kmap_atomic(s_page);
1731 	d_addr = kmap_atomic(d_page);
1732 
1733 	while (1) {
1734 		size = min(s_size, d_size);
1735 		memcpy(d_addr + d_off, s_addr + s_off, size);
1736 		written += size;
1737 
1738 		if (written == class->size)
1739 			break;
1740 
1741 		s_off += size;
1742 		s_size -= size;
1743 		d_off += size;
1744 		d_size -= size;
1745 
1746 		/*
1747 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748 		 * calls must occurs in reverse order of calls to kmap_atomic().
1749 		 * So, to call kunmap_atomic(s_addr) we should first call
1750 		 * kunmap_atomic(d_addr). For more details see
1751 		 * Documentation/mm/highmem.rst.
1752 		 */
1753 		if (s_off >= PAGE_SIZE) {
1754 			kunmap_atomic(d_addr);
1755 			kunmap_atomic(s_addr);
1756 			s_page = get_next_page(s_page);
1757 			s_addr = kmap_atomic(s_page);
1758 			d_addr = kmap_atomic(d_page);
1759 			s_size = class->size - written;
1760 			s_off = 0;
1761 		}
1762 
1763 		if (d_off >= PAGE_SIZE) {
1764 			kunmap_atomic(d_addr);
1765 			d_page = get_next_page(d_page);
1766 			d_addr = kmap_atomic(d_page);
1767 			d_size = class->size - written;
1768 			d_off = 0;
1769 		}
1770 	}
1771 
1772 	kunmap_atomic(d_addr);
1773 	kunmap_atomic(s_addr);
1774 }
1775 
1776 /*
1777  * Find object with a certain tag in zspage from index object and
1778  * return handle.
1779  */
1780 static unsigned long find_tagged_obj(struct size_class *class,
1781 					struct page *page, int *obj_idx, int tag)
1782 {
1783 	unsigned int offset;
1784 	int index = *obj_idx;
1785 	unsigned long handle = 0;
1786 	void *addr = kmap_atomic(page);
1787 
1788 	offset = get_first_obj_offset(page);
1789 	offset += class->size * index;
1790 
1791 	while (offset < PAGE_SIZE) {
1792 		if (obj_tagged(page, addr + offset, &handle, tag))
1793 			break;
1794 
1795 		offset += class->size;
1796 		index++;
1797 	}
1798 
1799 	kunmap_atomic(addr);
1800 
1801 	*obj_idx = index;
1802 
1803 	return handle;
1804 }
1805 
1806 /*
1807  * Find alloced object in zspage from index object and
1808  * return handle.
1809  */
1810 static unsigned long find_alloced_obj(struct size_class *class,
1811 					struct page *page, int *obj_idx)
1812 {
1813 	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814 }
1815 
1816 #ifdef CONFIG_ZPOOL
1817 /*
1818  * Find object storing a deferred handle in header in zspage from index object
1819  * and return handle.
1820  */
1821 static unsigned long find_deferred_handle_obj(struct size_class *class,
1822 		struct page *page, int *obj_idx)
1823 {
1824 	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825 }
1826 #endif
1827 
1828 struct zs_compact_control {
1829 	/* Source spage for migration which could be a subpage of zspage */
1830 	struct page *s_page;
1831 	/* Destination page for migration which should be a first page
1832 	 * of zspage. */
1833 	struct page *d_page;
1834 	 /* Starting object index within @s_page which used for live object
1835 	  * in the subpage. */
1836 	int obj_idx;
1837 };
1838 
1839 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840 				struct zs_compact_control *cc)
1841 {
1842 	unsigned long used_obj, free_obj;
1843 	unsigned long handle;
1844 	struct page *s_page = cc->s_page;
1845 	struct page *d_page = cc->d_page;
1846 	int obj_idx = cc->obj_idx;
1847 	int ret = 0;
1848 
1849 	while (1) {
1850 		handle = find_alloced_obj(class, s_page, &obj_idx);
1851 		if (!handle) {
1852 			s_page = get_next_page(s_page);
1853 			if (!s_page)
1854 				break;
1855 			obj_idx = 0;
1856 			continue;
1857 		}
1858 
1859 		/* Stop if there is no more space */
1860 		if (zspage_full(class, get_zspage(d_page))) {
1861 			ret = -ENOMEM;
1862 			break;
1863 		}
1864 
1865 		used_obj = handle_to_obj(handle);
1866 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867 		zs_object_copy(class, free_obj, used_obj);
1868 		obj_idx++;
1869 		record_obj(handle, free_obj);
1870 		obj_free(class->size, used_obj, NULL);
1871 	}
1872 
1873 	/* Remember last position in this iteration */
1874 	cc->s_page = s_page;
1875 	cc->obj_idx = obj_idx;
1876 
1877 	return ret;
1878 }
1879 
1880 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881 {
1882 	int i;
1883 	struct zspage *zspage;
1884 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885 
1886 	if (!source) {
1887 		fg[0] = ZS_ALMOST_FULL;
1888 		fg[1] = ZS_ALMOST_EMPTY;
1889 	}
1890 
1891 	for (i = 0; i < 2; i++) {
1892 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893 							struct zspage, list);
1894 		if (zspage) {
1895 			remove_zspage(class, zspage, fg[i]);
1896 			return zspage;
1897 		}
1898 	}
1899 
1900 	return zspage;
1901 }
1902 
1903 /*
1904  * putback_zspage - add @zspage into right class's fullness list
1905  * @class: destination class
1906  * @zspage: target page
1907  *
1908  * Return @zspage's fullness_group
1909  */
1910 static enum fullness_group putback_zspage(struct size_class *class,
1911 			struct zspage *zspage)
1912 {
1913 	enum fullness_group fullness;
1914 
1915 	fullness = get_fullness_group(class, zspage);
1916 	insert_zspage(class, zspage, fullness);
1917 	set_zspage_mapping(zspage, class->index, fullness);
1918 
1919 	return fullness;
1920 }
1921 
1922 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923 /*
1924  * To prevent zspage destroy during migration, zspage freeing should
1925  * hold locks of all pages in the zspage.
1926  */
1927 static void lock_zspage(struct zspage *zspage)
1928 {
1929 	struct page *curr_page, *page;
1930 
1931 	/*
1932 	 * Pages we haven't locked yet can be migrated off the list while we're
1933 	 * trying to lock them, so we need to be careful and only attempt to
1934 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935 	 * may no longer belong to the zspage. This means that we may wait for
1936 	 * the wrong page to unlock, so we must take a reference to the page
1937 	 * prior to waiting for it to unlock outside migrate_read_lock().
1938 	 */
1939 	while (1) {
1940 		migrate_read_lock(zspage);
1941 		page = get_first_page(zspage);
1942 		if (trylock_page(page))
1943 			break;
1944 		get_page(page);
1945 		migrate_read_unlock(zspage);
1946 		wait_on_page_locked(page);
1947 		put_page(page);
1948 	}
1949 
1950 	curr_page = page;
1951 	while ((page = get_next_page(curr_page))) {
1952 		if (trylock_page(page)) {
1953 			curr_page = page;
1954 		} else {
1955 			get_page(page);
1956 			migrate_read_unlock(zspage);
1957 			wait_on_page_locked(page);
1958 			put_page(page);
1959 			migrate_read_lock(zspage);
1960 		}
1961 	}
1962 	migrate_read_unlock(zspage);
1963 }
1964 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965 
1966 #ifdef CONFIG_ZPOOL
1967 /*
1968  * Unlocks all the pages of the zspage.
1969  *
1970  * pool->lock must be held before this function is called
1971  * to prevent the underlying pages from migrating.
1972  */
1973 static void unlock_zspage(struct zspage *zspage)
1974 {
1975 	struct page *page = get_first_page(zspage);
1976 
1977 	do {
1978 		unlock_page(page);
1979 	} while ((page = get_next_page(page)) != NULL);
1980 }
1981 #endif /* CONFIG_ZPOOL */
1982 
1983 static void migrate_lock_init(struct zspage *zspage)
1984 {
1985 	rwlock_init(&zspage->lock);
1986 }
1987 
1988 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989 {
1990 	read_lock(&zspage->lock);
1991 }
1992 
1993 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994 {
1995 	read_unlock(&zspage->lock);
1996 }
1997 
1998 #ifdef CONFIG_COMPACTION
1999 static void migrate_write_lock(struct zspage *zspage)
2000 {
2001 	write_lock(&zspage->lock);
2002 }
2003 
2004 static void migrate_write_lock_nested(struct zspage *zspage)
2005 {
2006 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007 }
2008 
2009 static void migrate_write_unlock(struct zspage *zspage)
2010 {
2011 	write_unlock(&zspage->lock);
2012 }
2013 
2014 /* Number of isolated subpage for *page migration* in this zspage */
2015 static void inc_zspage_isolation(struct zspage *zspage)
2016 {
2017 	zspage->isolated++;
2018 }
2019 
2020 static void dec_zspage_isolation(struct zspage *zspage)
2021 {
2022 	VM_BUG_ON(zspage->isolated == 0);
2023 	zspage->isolated--;
2024 }
2025 
2026 static const struct movable_operations zsmalloc_mops;
2027 
2028 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029 				struct page *newpage, struct page *oldpage)
2030 {
2031 	struct page *page;
2032 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033 	int idx = 0;
2034 
2035 	page = get_first_page(zspage);
2036 	do {
2037 		if (page == oldpage)
2038 			pages[idx] = newpage;
2039 		else
2040 			pages[idx] = page;
2041 		idx++;
2042 	} while ((page = get_next_page(page)) != NULL);
2043 
2044 	create_page_chain(class, zspage, pages);
2045 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046 	if (unlikely(ZsHugePage(zspage)))
2047 		newpage->index = oldpage->index;
2048 	__SetPageMovable(newpage, &zsmalloc_mops);
2049 }
2050 
2051 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052 {
2053 	struct zspage *zspage;
2054 
2055 	/*
2056 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057 	 * lock_zspage in free_zspage.
2058 	 */
2059 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2060 	VM_BUG_ON_PAGE(PageIsolated(page), page);
2061 
2062 	zspage = get_zspage(page);
2063 	migrate_write_lock(zspage);
2064 	inc_zspage_isolation(zspage);
2065 	migrate_write_unlock(zspage);
2066 
2067 	return true;
2068 }
2069 
2070 static int zs_page_migrate(struct page *newpage, struct page *page,
2071 		enum migrate_mode mode)
2072 {
2073 	struct zs_pool *pool;
2074 	struct size_class *class;
2075 	struct zspage *zspage;
2076 	struct page *dummy;
2077 	void *s_addr, *d_addr, *addr;
2078 	unsigned int offset;
2079 	unsigned long handle;
2080 	unsigned long old_obj, new_obj;
2081 	unsigned int obj_idx;
2082 
2083 	/*
2084 	 * We cannot support the _NO_COPY case here, because copy needs to
2085 	 * happen under the zs lock, which does not work with
2086 	 * MIGRATE_SYNC_NO_COPY workflow.
2087 	 */
2088 	if (mode == MIGRATE_SYNC_NO_COPY)
2089 		return -EINVAL;
2090 
2091 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2092 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093 
2094 	/* The page is locked, so this pointer must remain valid */
2095 	zspage = get_zspage(page);
2096 	pool = zspage->pool;
2097 
2098 	/*
2099 	 * The pool's lock protects the race between zpage migration
2100 	 * and zs_free.
2101 	 */
2102 	spin_lock(&pool->lock);
2103 	class = zspage_class(pool, zspage);
2104 
2105 	/* the migrate_write_lock protects zpage access via zs_map_object */
2106 	migrate_write_lock(zspage);
2107 
2108 	offset = get_first_obj_offset(page);
2109 	s_addr = kmap_atomic(page);
2110 
2111 	/*
2112 	 * Here, any user cannot access all objects in the zspage so let's move.
2113 	 */
2114 	d_addr = kmap_atomic(newpage);
2115 	memcpy(d_addr, s_addr, PAGE_SIZE);
2116 	kunmap_atomic(d_addr);
2117 
2118 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119 					addr += class->size) {
2120 		if (obj_allocated(page, addr, &handle)) {
2121 
2122 			old_obj = handle_to_obj(handle);
2123 			obj_to_location(old_obj, &dummy, &obj_idx);
2124 			new_obj = (unsigned long)location_to_obj(newpage,
2125 								obj_idx);
2126 			record_obj(handle, new_obj);
2127 		}
2128 	}
2129 	kunmap_atomic(s_addr);
2130 
2131 	replace_sub_page(class, zspage, newpage, page);
2132 	/*
2133 	 * Since we complete the data copy and set up new zspage structure,
2134 	 * it's okay to release the pool's lock.
2135 	 */
2136 	spin_unlock(&pool->lock);
2137 	dec_zspage_isolation(zspage);
2138 	migrate_write_unlock(zspage);
2139 
2140 	get_page(newpage);
2141 	if (page_zone(newpage) != page_zone(page)) {
2142 		dec_zone_page_state(page, NR_ZSPAGES);
2143 		inc_zone_page_state(newpage, NR_ZSPAGES);
2144 	}
2145 
2146 	reset_page(page);
2147 	put_page(page);
2148 
2149 	return MIGRATEPAGE_SUCCESS;
2150 }
2151 
2152 static void zs_page_putback(struct page *page)
2153 {
2154 	struct zspage *zspage;
2155 
2156 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2157 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158 
2159 	zspage = get_zspage(page);
2160 	migrate_write_lock(zspage);
2161 	dec_zspage_isolation(zspage);
2162 	migrate_write_unlock(zspage);
2163 }
2164 
2165 static const struct movable_operations zsmalloc_mops = {
2166 	.isolate_page = zs_page_isolate,
2167 	.migrate_page = zs_page_migrate,
2168 	.putback_page = zs_page_putback,
2169 };
2170 
2171 /*
2172  * Caller should hold page_lock of all pages in the zspage
2173  * In here, we cannot use zspage meta data.
2174  */
2175 static void async_free_zspage(struct work_struct *work)
2176 {
2177 	int i;
2178 	struct size_class *class;
2179 	unsigned int class_idx;
2180 	enum fullness_group fullness;
2181 	struct zspage *zspage, *tmp;
2182 	LIST_HEAD(free_pages);
2183 	struct zs_pool *pool = container_of(work, struct zs_pool,
2184 					free_work);
2185 
2186 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187 		class = pool->size_class[i];
2188 		if (class->index != i)
2189 			continue;
2190 
2191 		spin_lock(&pool->lock);
2192 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193 		spin_unlock(&pool->lock);
2194 	}
2195 
2196 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197 		list_del(&zspage->list);
2198 		lock_zspage(zspage);
2199 
2200 		get_zspage_mapping(zspage, &class_idx, &fullness);
2201 		VM_BUG_ON(fullness != ZS_EMPTY);
2202 		class = pool->size_class[class_idx];
2203 		spin_lock(&pool->lock);
2204 #ifdef CONFIG_ZPOOL
2205 		list_del(&zspage->lru);
2206 #endif
2207 		__free_zspage(pool, class, zspage);
2208 		spin_unlock(&pool->lock);
2209 	}
2210 };
2211 
2212 static void kick_deferred_free(struct zs_pool *pool)
2213 {
2214 	schedule_work(&pool->free_work);
2215 }
2216 
2217 static void zs_flush_migration(struct zs_pool *pool)
2218 {
2219 	flush_work(&pool->free_work);
2220 }
2221 
2222 static void init_deferred_free(struct zs_pool *pool)
2223 {
2224 	INIT_WORK(&pool->free_work, async_free_zspage);
2225 }
2226 
2227 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228 {
2229 	struct page *page = get_first_page(zspage);
2230 
2231 	do {
2232 		WARN_ON(!trylock_page(page));
2233 		__SetPageMovable(page, &zsmalloc_mops);
2234 		unlock_page(page);
2235 	} while ((page = get_next_page(page)) != NULL);
2236 }
2237 #else
2238 static inline void zs_flush_migration(struct zs_pool *pool) { }
2239 #endif
2240 
2241 /*
2242  *
2243  * Based on the number of unused allocated objects calculate
2244  * and return the number of pages that we can free.
2245  */
2246 static unsigned long zs_can_compact(struct size_class *class)
2247 {
2248 	unsigned long obj_wasted;
2249 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251 
2252 	if (obj_allocated <= obj_used)
2253 		return 0;
2254 
2255 	obj_wasted = obj_allocated - obj_used;
2256 	obj_wasted /= class->objs_per_zspage;
2257 
2258 	return obj_wasted * class->pages_per_zspage;
2259 }
2260 
2261 static unsigned long __zs_compact(struct zs_pool *pool,
2262 				  struct size_class *class)
2263 {
2264 	struct zs_compact_control cc;
2265 	struct zspage *src_zspage;
2266 	struct zspage *dst_zspage = NULL;
2267 	unsigned long pages_freed = 0;
2268 
2269 	/*
2270 	 * protect the race between zpage migration and zs_free
2271 	 * as well as zpage allocation/free
2272 	 */
2273 	spin_lock(&pool->lock);
2274 	while ((src_zspage = isolate_zspage(class, true))) {
2275 		/* protect someone accessing the zspage(i.e., zs_map_object) */
2276 		migrate_write_lock(src_zspage);
2277 
2278 		if (!zs_can_compact(class))
2279 			break;
2280 
2281 		cc.obj_idx = 0;
2282 		cc.s_page = get_first_page(src_zspage);
2283 
2284 		while ((dst_zspage = isolate_zspage(class, false))) {
2285 			migrate_write_lock_nested(dst_zspage);
2286 
2287 			cc.d_page = get_first_page(dst_zspage);
2288 			/*
2289 			 * If there is no more space in dst_page, resched
2290 			 * and see if anyone had allocated another zspage.
2291 			 */
2292 			if (!migrate_zspage(pool, class, &cc))
2293 				break;
2294 
2295 			putback_zspage(class, dst_zspage);
2296 			migrate_write_unlock(dst_zspage);
2297 			dst_zspage = NULL;
2298 			if (spin_is_contended(&pool->lock))
2299 				break;
2300 		}
2301 
2302 		/* Stop if we couldn't find slot */
2303 		if (dst_zspage == NULL)
2304 			break;
2305 
2306 		putback_zspage(class, dst_zspage);
2307 		migrate_write_unlock(dst_zspage);
2308 
2309 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310 			migrate_write_unlock(src_zspage);
2311 			free_zspage(pool, class, src_zspage);
2312 			pages_freed += class->pages_per_zspage;
2313 		} else
2314 			migrate_write_unlock(src_zspage);
2315 		spin_unlock(&pool->lock);
2316 		cond_resched();
2317 		spin_lock(&pool->lock);
2318 	}
2319 
2320 	if (src_zspage) {
2321 		putback_zspage(class, src_zspage);
2322 		migrate_write_unlock(src_zspage);
2323 	}
2324 
2325 	spin_unlock(&pool->lock);
2326 
2327 	return pages_freed;
2328 }
2329 
2330 unsigned long zs_compact(struct zs_pool *pool)
2331 {
2332 	int i;
2333 	struct size_class *class;
2334 	unsigned long pages_freed = 0;
2335 
2336 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337 		class = pool->size_class[i];
2338 		if (class->index != i)
2339 			continue;
2340 		pages_freed += __zs_compact(pool, class);
2341 	}
2342 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343 
2344 	return pages_freed;
2345 }
2346 EXPORT_SYMBOL_GPL(zs_compact);
2347 
2348 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349 {
2350 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351 }
2352 EXPORT_SYMBOL_GPL(zs_pool_stats);
2353 
2354 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355 		struct shrink_control *sc)
2356 {
2357 	unsigned long pages_freed;
2358 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359 			shrinker);
2360 
2361 	/*
2362 	 * Compact classes and calculate compaction delta.
2363 	 * Can run concurrently with a manually triggered
2364 	 * (by user) compaction.
2365 	 */
2366 	pages_freed = zs_compact(pool);
2367 
2368 	return pages_freed ? pages_freed : SHRINK_STOP;
2369 }
2370 
2371 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372 		struct shrink_control *sc)
2373 {
2374 	int i;
2375 	struct size_class *class;
2376 	unsigned long pages_to_free = 0;
2377 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378 			shrinker);
2379 
2380 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381 		class = pool->size_class[i];
2382 		if (class->index != i)
2383 			continue;
2384 
2385 		pages_to_free += zs_can_compact(class);
2386 	}
2387 
2388 	return pages_to_free;
2389 }
2390 
2391 static void zs_unregister_shrinker(struct zs_pool *pool)
2392 {
2393 	unregister_shrinker(&pool->shrinker);
2394 }
2395 
2396 static int zs_register_shrinker(struct zs_pool *pool)
2397 {
2398 	pool->shrinker.scan_objects = zs_shrinker_scan;
2399 	pool->shrinker.count_objects = zs_shrinker_count;
2400 	pool->shrinker.batch = 0;
2401 	pool->shrinker.seeks = DEFAULT_SEEKS;
2402 
2403 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404 				 pool->name);
2405 }
2406 
2407 /**
2408  * zs_create_pool - Creates an allocation pool to work from.
2409  * @name: pool name to be created
2410  *
2411  * This function must be called before anything when using
2412  * the zsmalloc allocator.
2413  *
2414  * On success, a pointer to the newly created pool is returned,
2415  * otherwise NULL.
2416  */
2417 struct zs_pool *zs_create_pool(const char *name)
2418 {
2419 	int i;
2420 	struct zs_pool *pool;
2421 	struct size_class *prev_class = NULL;
2422 
2423 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424 	if (!pool)
2425 		return NULL;
2426 
2427 	init_deferred_free(pool);
2428 	spin_lock_init(&pool->lock);
2429 
2430 	pool->name = kstrdup(name, GFP_KERNEL);
2431 	if (!pool->name)
2432 		goto err;
2433 
2434 	if (create_cache(pool))
2435 		goto err;
2436 
2437 	/*
2438 	 * Iterate reversely, because, size of size_class that we want to use
2439 	 * for merging should be larger or equal to current size.
2440 	 */
2441 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442 		int size;
2443 		int pages_per_zspage;
2444 		int objs_per_zspage;
2445 		struct size_class *class;
2446 		int fullness = 0;
2447 
2448 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449 		if (size > ZS_MAX_ALLOC_SIZE)
2450 			size = ZS_MAX_ALLOC_SIZE;
2451 		pages_per_zspage = get_pages_per_zspage(size);
2452 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453 
2454 		/*
2455 		 * We iterate from biggest down to smallest classes,
2456 		 * so huge_class_size holds the size of the first huge
2457 		 * class. Any object bigger than or equal to that will
2458 		 * endup in the huge class.
2459 		 */
2460 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461 				!huge_class_size) {
2462 			huge_class_size = size;
2463 			/*
2464 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2465 			 * handle. We need to subtract it, because zs_malloc()
2466 			 * unconditionally adds handle size before it performs
2467 			 * size class search - so object may be smaller than
2468 			 * huge class size, yet it still can end up in the huge
2469 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2470 			 * right before class lookup.
2471 			 */
2472 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473 		}
2474 
2475 		/*
2476 		 * size_class is used for normal zsmalloc operation such
2477 		 * as alloc/free for that size. Although it is natural that we
2478 		 * have one size_class for each size, there is a chance that we
2479 		 * can get more memory utilization if we use one size_class for
2480 		 * many different sizes whose size_class have same
2481 		 * characteristics. So, we makes size_class point to
2482 		 * previous size_class if possible.
2483 		 */
2484 		if (prev_class) {
2485 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486 				pool->size_class[i] = prev_class;
2487 				continue;
2488 			}
2489 		}
2490 
2491 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492 		if (!class)
2493 			goto err;
2494 
2495 		class->size = size;
2496 		class->index = i;
2497 		class->pages_per_zspage = pages_per_zspage;
2498 		class->objs_per_zspage = objs_per_zspage;
2499 		pool->size_class[i] = class;
2500 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501 							fullness++)
2502 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503 
2504 		prev_class = class;
2505 	}
2506 
2507 	/* debug only, don't abort if it fails */
2508 	zs_pool_stat_create(pool, name);
2509 
2510 	/*
2511 	 * Not critical since shrinker is only used to trigger internal
2512 	 * defragmentation of the pool which is pretty optional thing.  If
2513 	 * registration fails we still can use the pool normally and user can
2514 	 * trigger compaction manually. Thus, ignore return code.
2515 	 */
2516 	zs_register_shrinker(pool);
2517 
2518 #ifdef CONFIG_ZPOOL
2519 	INIT_LIST_HEAD(&pool->lru);
2520 #endif
2521 
2522 	return pool;
2523 
2524 err:
2525 	zs_destroy_pool(pool);
2526 	return NULL;
2527 }
2528 EXPORT_SYMBOL_GPL(zs_create_pool);
2529 
2530 void zs_destroy_pool(struct zs_pool *pool)
2531 {
2532 	int i;
2533 
2534 	zs_unregister_shrinker(pool);
2535 	zs_flush_migration(pool);
2536 	zs_pool_stat_destroy(pool);
2537 
2538 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539 		int fg;
2540 		struct size_class *class = pool->size_class[i];
2541 
2542 		if (!class)
2543 			continue;
2544 
2545 		if (class->index != i)
2546 			continue;
2547 
2548 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549 			if (!list_empty(&class->fullness_list[fg])) {
2550 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551 					class->size, fg);
2552 			}
2553 		}
2554 		kfree(class);
2555 	}
2556 
2557 	destroy_cache(pool);
2558 	kfree(pool->name);
2559 	kfree(pool);
2560 }
2561 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562 
2563 #ifdef CONFIG_ZPOOL
2564 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565 		struct zspage *zspage)
2566 {
2567 	unsigned int obj_idx = 0;
2568 	unsigned long handle, off = 0; /* off is within-page offset */
2569 	struct page *page = get_first_page(zspage);
2570 	struct link_free *prev_free = NULL;
2571 	void *prev_page_vaddr = NULL;
2572 
2573 	/* in case no free object found */
2574 	set_freeobj(zspage, (unsigned int)(-1UL));
2575 
2576 	while (page) {
2577 		void *vaddr = kmap_atomic(page);
2578 		struct page *next_page;
2579 
2580 		while (off < PAGE_SIZE) {
2581 			void *obj_addr = vaddr + off;
2582 
2583 			/* skip allocated object */
2584 			if (obj_allocated(page, obj_addr, &handle)) {
2585 				obj_idx++;
2586 				off += class->size;
2587 				continue;
2588 			}
2589 
2590 			/* free deferred handle from reclaim attempt */
2591 			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592 				cache_free_handle(pool, handle);
2593 
2594 			if (prev_free)
2595 				prev_free->next = obj_idx << OBJ_TAG_BITS;
2596 			else /* first free object found */
2597 				set_freeobj(zspage, obj_idx);
2598 
2599 			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600 			/* if last free object in a previous page, need to unmap */
2601 			if (prev_page_vaddr) {
2602 				kunmap_atomic(prev_page_vaddr);
2603 				prev_page_vaddr = NULL;
2604 			}
2605 
2606 			obj_idx++;
2607 			off += class->size;
2608 		}
2609 
2610 		/*
2611 		 * Handle the last (full or partial) object on this page.
2612 		 */
2613 		next_page = get_next_page(page);
2614 		if (next_page) {
2615 			if (!prev_free || prev_page_vaddr) {
2616 				/*
2617 				 * There is no free object in this page, so we can safely
2618 				 * unmap it.
2619 				 */
2620 				kunmap_atomic(vaddr);
2621 			} else {
2622 				/* update prev_page_vaddr since prev_free is on this page */
2623 				prev_page_vaddr = vaddr;
2624 			}
2625 		} else { /* this is the last page */
2626 			if (prev_free) {
2627 				/*
2628 				 * Reset OBJ_TAG_BITS bit to last link to tell
2629 				 * whether it's allocated object or not.
2630 				 */
2631 				prev_free->next = -1UL << OBJ_TAG_BITS;
2632 			}
2633 
2634 			/* unmap previous page (if not done yet) */
2635 			if (prev_page_vaddr) {
2636 				kunmap_atomic(prev_page_vaddr);
2637 				prev_page_vaddr = NULL;
2638 			}
2639 
2640 			kunmap_atomic(vaddr);
2641 		}
2642 
2643 		page = next_page;
2644 		off %= PAGE_SIZE;
2645 	}
2646 }
2647 
2648 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649 {
2650 	int i, obj_idx, ret = 0;
2651 	unsigned long handle;
2652 	struct zspage *zspage;
2653 	struct page *page;
2654 	enum fullness_group fullness;
2655 
2656 	/* Lock LRU and fullness list */
2657 	spin_lock(&pool->lock);
2658 	if (list_empty(&pool->lru)) {
2659 		spin_unlock(&pool->lock);
2660 		return -EINVAL;
2661 	}
2662 
2663 	for (i = 0; i < retries; i++) {
2664 		struct size_class *class;
2665 
2666 		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667 		list_del(&zspage->lru);
2668 
2669 		/* zs_free may free objects, but not the zspage and handles */
2670 		zspage->under_reclaim = true;
2671 
2672 		class = zspage_class(pool, zspage);
2673 		fullness = get_fullness_group(class, zspage);
2674 
2675 		/* Lock out object allocations and object compaction */
2676 		remove_zspage(class, zspage, fullness);
2677 
2678 		spin_unlock(&pool->lock);
2679 		cond_resched();
2680 
2681 		/* Lock backing pages into place */
2682 		lock_zspage(zspage);
2683 
2684 		obj_idx = 0;
2685 		page = get_first_page(zspage);
2686 		while (1) {
2687 			handle = find_alloced_obj(class, page, &obj_idx);
2688 			if (!handle) {
2689 				page = get_next_page(page);
2690 				if (!page)
2691 					break;
2692 				obj_idx = 0;
2693 				continue;
2694 			}
2695 
2696 			/*
2697 			 * This will write the object and call zs_free.
2698 			 *
2699 			 * zs_free will free the object, but the
2700 			 * under_reclaim flag prevents it from freeing
2701 			 * the zspage altogether. This is necessary so
2702 			 * that we can continue working with the
2703 			 * zspage potentially after the last object
2704 			 * has been freed.
2705 			 */
2706 			ret = pool->zpool_ops->evict(pool->zpool, handle);
2707 			if (ret)
2708 				goto next;
2709 
2710 			obj_idx++;
2711 		}
2712 
2713 next:
2714 		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2715 		spin_lock(&pool->lock);
2716 		zspage->under_reclaim = false;
2717 
2718 		if (!get_zspage_inuse(zspage)) {
2719 			/*
2720 			 * Fullness went stale as zs_free() won't touch it
2721 			 * while the page is removed from the pool. Fix it
2722 			 * up for the check in __free_zspage().
2723 			 */
2724 			zspage->fullness = ZS_EMPTY;
2725 
2726 			__free_zspage(pool, class, zspage);
2727 			spin_unlock(&pool->lock);
2728 			return 0;
2729 		}
2730 
2731 		/*
2732 		 * Eviction fails on one of the handles, so we need to restore zspage.
2733 		 * We need to rebuild its freelist (and free stored deferred handles),
2734 		 * put it back to the correct size class, and add it to the LRU list.
2735 		 */
2736 		restore_freelist(pool, class, zspage);
2737 		putback_zspage(class, zspage);
2738 		list_add(&zspage->lru, &pool->lru);
2739 		unlock_zspage(zspage);
2740 	}
2741 
2742 	spin_unlock(&pool->lock);
2743 	return -EAGAIN;
2744 }
2745 #endif /* CONFIG_ZPOOL */
2746 
2747 static int __init zs_init(void)
2748 {
2749 	int ret;
2750 
2751 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752 				zs_cpu_prepare, zs_cpu_dead);
2753 	if (ret)
2754 		goto out;
2755 
2756 #ifdef CONFIG_ZPOOL
2757 	zpool_register_driver(&zs_zpool_driver);
2758 #endif
2759 
2760 	zs_stat_init();
2761 
2762 	return 0;
2763 
2764 out:
2765 	return ret;
2766 }
2767 
2768 static void __exit zs_exit(void)
2769 {
2770 #ifdef CONFIG_ZPOOL
2771 	zpool_unregister_driver(&zs_zpool_driver);
2772 #endif
2773 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774 
2775 	zs_stat_exit();
2776 }
2777 
2778 module_init(zs_init);
2779 module_exit(zs_exit);
2780 
2781 MODULE_LICENSE("Dual BSD/GPL");
2782 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2783