1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34 * lock ordering:
35 * page_lock
36 * pool->lock
37 * zspage->lock
38 */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC 0x58
67
68 /*
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74 #define ZS_ALIGN 8
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * a single (unsigned long) handle value.
81 *
82 * Note that object index <obj_idx> starts from 0.
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108 #define OBJ_ALLOCATED_TAG 1
109
110 #define OBJ_TAG_BITS 1
111 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
112
113 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
114 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115
116 #define HUGE_BITS 1
117 #define FULLNESS_BITS 4
118 #define CLASS_BITS 8
119 #define ISOLATED_BITS 5
120 #define MAGIC_VAL_BITS 8
121
122 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
123
124 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
131
132 /*
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 *
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
144 */
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
148
149 /*
150 * Pages are distinguished by the ratio of used memory (that is the ratio
151 * of ->inuse objects to all objects that page can store). For example,
152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153 *
154 * The number of fullness groups is not random. It allows us to keep
155 * difference between the least busy page in the group (minimum permitted
156 * number of ->inuse objects) and the most busy page (maximum permitted
157 * number of ->inuse objects) at a reasonable value.
158 */
159 enum fullness_group {
160 ZS_INUSE_RATIO_0,
161 ZS_INUSE_RATIO_10,
162 /* NOTE: 8 more fullness groups here */
163 ZS_INUSE_RATIO_99 = 10,
164 ZS_INUSE_RATIO_100,
165 NR_FULLNESS_GROUPS,
166 };
167
168 enum class_stat_type {
169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
171 ZS_OBJS_INUSE,
172 NR_CLASS_STAT_TYPES,
173 };
174
175 struct zs_size_stat {
176 unsigned long objs[NR_CLASS_STAT_TYPES];
177 };
178
179 #ifdef CONFIG_ZSMALLOC_STAT
180 static struct dentry *zs_stat_root;
181 #endif
182
183 static size_t huge_class_size;
184
185 struct size_class {
186 struct list_head fullness_list[NR_FULLNESS_GROUPS];
187 /*
188 * Size of objects stored in this class. Must be multiple
189 * of ZS_ALIGN.
190 */
191 int size;
192 int objs_per_zspage;
193 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194 int pages_per_zspage;
195
196 unsigned int index;
197 struct zs_size_stat stats;
198 };
199
200 /*
201 * Placed within free objects to form a singly linked list.
202 * For every zspage, zspage->freeobj gives head of this list.
203 *
204 * This must be power of 2 and less than or equal to ZS_ALIGN
205 */
206 struct link_free {
207 union {
208 /*
209 * Free object index;
210 * It's valid for non-allocated object
211 */
212 unsigned long next;
213 /*
214 * Handle of allocated object.
215 */
216 unsigned long handle;
217 };
218 };
219
220 struct zs_pool {
221 const char *name;
222
223 struct size_class *size_class[ZS_SIZE_CLASSES];
224 struct kmem_cache *handle_cachep;
225 struct kmem_cache *zspage_cachep;
226
227 atomic_long_t pages_allocated;
228
229 struct zs_pool_stats stats;
230
231 /* Compact classes */
232 struct shrinker shrinker;
233
234 #ifdef CONFIG_ZSMALLOC_STAT
235 struct dentry *stat_dentry;
236 #endif
237 #ifdef CONFIG_COMPACTION
238 struct work_struct free_work;
239 #endif
240 spinlock_t lock;
241 atomic_t compaction_in_progress;
242 };
243
244 struct zspage {
245 struct {
246 unsigned int huge:HUGE_BITS;
247 unsigned int fullness:FULLNESS_BITS;
248 unsigned int class:CLASS_BITS + 1;
249 unsigned int isolated:ISOLATED_BITS;
250 unsigned int magic:MAGIC_VAL_BITS;
251 };
252 unsigned int inuse;
253 unsigned int freeobj;
254 struct page *first_page;
255 struct list_head list; /* fullness list */
256 struct zs_pool *pool;
257 rwlock_t lock;
258 };
259
260 struct mapping_area {
261 local_lock_t lock;
262 char *vm_buf; /* copy buffer for objects that span pages */
263 char *vm_addr; /* address of kmap_atomic()'ed pages */
264 enum zs_mapmode vm_mm; /* mapping mode */
265 };
266
267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)268 static void SetZsHugePage(struct zspage *zspage)
269 {
270 zspage->huge = 1;
271 }
272
ZsHugePage(struct zspage * zspage)273 static bool ZsHugePage(struct zspage *zspage)
274 {
275 return zspage->huge;
276 }
277
278 static void migrate_lock_init(struct zspage *zspage);
279 static void migrate_read_lock(struct zspage *zspage);
280 static void migrate_read_unlock(struct zspage *zspage);
281
282 #ifdef CONFIG_COMPACTION
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_lock_nested(struct zspage *zspage);
285 static void migrate_write_unlock(struct zspage *zspage);
286 static void kick_deferred_free(struct zs_pool *pool);
287 static void init_deferred_free(struct zs_pool *pool);
288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289 #else
migrate_write_lock(struct zspage * zspage)290 static void migrate_write_lock(struct zspage *zspage) {}
migrate_write_lock_nested(struct zspage * zspage)291 static void migrate_write_lock_nested(struct zspage *zspage) {}
migrate_write_unlock(struct zspage * zspage)292 static void migrate_write_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool * pool)293 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)294 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)295 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296 #endif
297
create_cache(struct zs_pool * pool)298 static int create_cache(struct zs_pool *pool)
299 {
300 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
301 0, 0, NULL);
302 if (!pool->handle_cachep)
303 return 1;
304
305 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
306 0, 0, NULL);
307 if (!pool->zspage_cachep) {
308 kmem_cache_destroy(pool->handle_cachep);
309 pool->handle_cachep = NULL;
310 return 1;
311 }
312
313 return 0;
314 }
315
destroy_cache(struct zs_pool * pool)316 static void destroy_cache(struct zs_pool *pool)
317 {
318 kmem_cache_destroy(pool->handle_cachep);
319 kmem_cache_destroy(pool->zspage_cachep);
320 }
321
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)322 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
323 {
324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
325 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
326 }
327
cache_free_handle(struct zs_pool * pool,unsigned long handle)328 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
329 {
330 kmem_cache_free(pool->handle_cachep, (void *)handle);
331 }
332
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)333 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
334 {
335 return kmem_cache_zalloc(pool->zspage_cachep,
336 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
337 }
338
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)339 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
340 {
341 kmem_cache_free(pool->zspage_cachep, zspage);
342 }
343
344 /* pool->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)345 static void record_obj(unsigned long handle, unsigned long obj)
346 {
347 *(unsigned long *)handle = obj;
348 }
349
350 /* zpool driver */
351
352 #ifdef CONFIG_ZPOOL
353
zs_zpool_create(const char * name,gfp_t gfp)354 static void *zs_zpool_create(const char *name, gfp_t gfp)
355 {
356 /*
357 * Ignore global gfp flags: zs_malloc() may be invoked from
358 * different contexts and its caller must provide a valid
359 * gfp mask.
360 */
361 return zs_create_pool(name);
362 }
363
zs_zpool_destroy(void * pool)364 static void zs_zpool_destroy(void *pool)
365 {
366 zs_destroy_pool(pool);
367 }
368
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)369 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
370 unsigned long *handle)
371 {
372 *handle = zs_malloc(pool, size, gfp);
373
374 if (IS_ERR_VALUE(*handle))
375 return PTR_ERR((void *)*handle);
376 return 0;
377 }
zs_zpool_free(void * pool,unsigned long handle)378 static void zs_zpool_free(void *pool, unsigned long handle)
379 {
380 zs_free(pool, handle);
381 }
382
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)383 static void *zs_zpool_map(void *pool, unsigned long handle,
384 enum zpool_mapmode mm)
385 {
386 enum zs_mapmode zs_mm;
387
388 switch (mm) {
389 case ZPOOL_MM_RO:
390 zs_mm = ZS_MM_RO;
391 break;
392 case ZPOOL_MM_WO:
393 zs_mm = ZS_MM_WO;
394 break;
395 case ZPOOL_MM_RW:
396 default:
397 zs_mm = ZS_MM_RW;
398 break;
399 }
400
401 return zs_map_object(pool, handle, zs_mm);
402 }
zs_zpool_unmap(void * pool,unsigned long handle)403 static void zs_zpool_unmap(void *pool, unsigned long handle)
404 {
405 zs_unmap_object(pool, handle);
406 }
407
zs_zpool_total_size(void * pool)408 static u64 zs_zpool_total_size(void *pool)
409 {
410 return zs_get_total_pages(pool) << PAGE_SHIFT;
411 }
412
413 static struct zpool_driver zs_zpool_driver = {
414 .type = "zsmalloc",
415 .owner = THIS_MODULE,
416 .create = zs_zpool_create,
417 .destroy = zs_zpool_destroy,
418 .malloc_support_movable = true,
419 .malloc = zs_zpool_malloc,
420 .free = zs_zpool_free,
421 .map = zs_zpool_map,
422 .unmap = zs_zpool_unmap,
423 .total_size = zs_zpool_total_size,
424 };
425
426 MODULE_ALIAS("zpool-zsmalloc");
427 #endif /* CONFIG_ZPOOL */
428
429 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
430 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
431 .lock = INIT_LOCAL_LOCK(lock),
432 };
433
is_first_page(struct page * page)434 static __maybe_unused int is_first_page(struct page *page)
435 {
436 return PagePrivate(page);
437 }
438
439 /* Protected by pool->lock */
get_zspage_inuse(struct zspage * zspage)440 static inline int get_zspage_inuse(struct zspage *zspage)
441 {
442 return zspage->inuse;
443 }
444
445
mod_zspage_inuse(struct zspage * zspage,int val)446 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
447 {
448 zspage->inuse += val;
449 }
450
get_first_page(struct zspage * zspage)451 static inline struct page *get_first_page(struct zspage *zspage)
452 {
453 struct page *first_page = zspage->first_page;
454
455 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
456 return first_page;
457 }
458
get_first_obj_offset(struct page * page)459 static inline unsigned int get_first_obj_offset(struct page *page)
460 {
461 return page->page_type;
462 }
463
set_first_obj_offset(struct page * page,unsigned int offset)464 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
465 {
466 page->page_type = offset;
467 }
468
get_freeobj(struct zspage * zspage)469 static inline unsigned int get_freeobj(struct zspage *zspage)
470 {
471 return zspage->freeobj;
472 }
473
set_freeobj(struct zspage * zspage,unsigned int obj)474 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
475 {
476 zspage->freeobj = obj;
477 }
478
get_zspage_mapping(struct zspage * zspage,unsigned int * class_idx,int * fullness)479 static void get_zspage_mapping(struct zspage *zspage,
480 unsigned int *class_idx,
481 int *fullness)
482 {
483 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
484
485 *fullness = zspage->fullness;
486 *class_idx = zspage->class;
487 }
488
zspage_class(struct zs_pool * pool,struct zspage * zspage)489 static struct size_class *zspage_class(struct zs_pool *pool,
490 struct zspage *zspage)
491 {
492 return pool->size_class[zspage->class];
493 }
494
set_zspage_mapping(struct zspage * zspage,unsigned int class_idx,int fullness)495 static void set_zspage_mapping(struct zspage *zspage,
496 unsigned int class_idx,
497 int fullness)
498 {
499 zspage->class = class_idx;
500 zspage->fullness = fullness;
501 }
502
503 /*
504 * zsmalloc divides the pool into various size classes where each
505 * class maintains a list of zspages where each zspage is divided
506 * into equal sized chunks. Each allocation falls into one of these
507 * classes depending on its size. This function returns index of the
508 * size class which has chunk size big enough to hold the given size.
509 */
get_size_class_index(int size)510 static int get_size_class_index(int size)
511 {
512 int idx = 0;
513
514 if (likely(size > ZS_MIN_ALLOC_SIZE))
515 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
516 ZS_SIZE_CLASS_DELTA);
517
518 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
519 }
520
class_stat_inc(struct size_class * class,int type,unsigned long cnt)521 static inline void class_stat_inc(struct size_class *class,
522 int type, unsigned long cnt)
523 {
524 class->stats.objs[type] += cnt;
525 }
526
class_stat_dec(struct size_class * class,int type,unsigned long cnt)527 static inline void class_stat_dec(struct size_class *class,
528 int type, unsigned long cnt)
529 {
530 class->stats.objs[type] -= cnt;
531 }
532
zs_stat_get(struct size_class * class,int type)533 static inline unsigned long zs_stat_get(struct size_class *class, int type)
534 {
535 return class->stats.objs[type];
536 }
537
538 #ifdef CONFIG_ZSMALLOC_STAT
539
zs_stat_init(void)540 static void __init zs_stat_init(void)
541 {
542 if (!debugfs_initialized()) {
543 pr_warn("debugfs not available, stat dir not created\n");
544 return;
545 }
546
547 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
548 }
549
zs_stat_exit(void)550 static void __exit zs_stat_exit(void)
551 {
552 debugfs_remove_recursive(zs_stat_root);
553 }
554
555 static unsigned long zs_can_compact(struct size_class *class);
556
zs_stats_size_show(struct seq_file * s,void * v)557 static int zs_stats_size_show(struct seq_file *s, void *v)
558 {
559 int i, fg;
560 struct zs_pool *pool = s->private;
561 struct size_class *class;
562 int objs_per_zspage;
563 unsigned long obj_allocated, obj_used, pages_used, freeable;
564 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
565 unsigned long total_freeable = 0;
566 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
567
568 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
569 "class", "size", "10%", "20%", "30%", "40%",
570 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
571 "obj_allocated", "obj_used", "pages_used",
572 "pages_per_zspage", "freeable");
573
574 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
575
576 class = pool->size_class[i];
577
578 if (class->index != i)
579 continue;
580
581 spin_lock(&pool->lock);
582
583 seq_printf(s, " %5u %5u ", i, class->size);
584 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
585 inuse_totals[fg] += zs_stat_get(class, fg);
586 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
587 }
588
589 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
590 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
591 freeable = zs_can_compact(class);
592 spin_unlock(&pool->lock);
593
594 objs_per_zspage = class->objs_per_zspage;
595 pages_used = obj_allocated / objs_per_zspage *
596 class->pages_per_zspage;
597
598 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
599 obj_allocated, obj_used, pages_used,
600 class->pages_per_zspage, freeable);
601
602 total_objs += obj_allocated;
603 total_used_objs += obj_used;
604 total_pages += pages_used;
605 total_freeable += freeable;
606 }
607
608 seq_puts(s, "\n");
609 seq_printf(s, " %5s %5s ", "Total", "");
610
611 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
612 seq_printf(s, "%9lu ", inuse_totals[fg]);
613
614 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
615 total_objs, total_used_objs, total_pages, "",
616 total_freeable);
617
618 return 0;
619 }
620 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
621
zs_pool_stat_create(struct zs_pool * pool,const char * name)622 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
623 {
624 if (!zs_stat_root) {
625 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
626 return;
627 }
628
629 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
630
631 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
632 &zs_stats_size_fops);
633 }
634
zs_pool_stat_destroy(struct zs_pool * pool)635 static void zs_pool_stat_destroy(struct zs_pool *pool)
636 {
637 debugfs_remove_recursive(pool->stat_dentry);
638 }
639
640 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)641 static void __init zs_stat_init(void)
642 {
643 }
644
zs_stat_exit(void)645 static void __exit zs_stat_exit(void)
646 {
647 }
648
zs_pool_stat_create(struct zs_pool * pool,const char * name)649 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651 }
652
zs_pool_stat_destroy(struct zs_pool * pool)653 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654 {
655 }
656 #endif
657
658
659 /*
660 * For each size class, zspages are divided into different groups
661 * depending on their usage ratio. This function returns fullness
662 * status of the given page.
663 */
get_fullness_group(struct size_class * class,struct zspage * zspage)664 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
665 {
666 int inuse, objs_per_zspage, ratio;
667
668 inuse = get_zspage_inuse(zspage);
669 objs_per_zspage = class->objs_per_zspage;
670
671 if (inuse == 0)
672 return ZS_INUSE_RATIO_0;
673 if (inuse == objs_per_zspage)
674 return ZS_INUSE_RATIO_100;
675
676 ratio = 100 * inuse / objs_per_zspage;
677 /*
678 * Take integer division into consideration: a page with one inuse
679 * object out of 127 possible, will end up having 0 usage ratio,
680 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
681 */
682 return ratio / 10 + 1;
683 }
684
685 /*
686 * Each size class maintains various freelists and zspages are assigned
687 * to one of these freelists based on the number of live objects they
688 * have. This functions inserts the given zspage into the freelist
689 * identified by <class, fullness_group>.
690 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)691 static void insert_zspage(struct size_class *class,
692 struct zspage *zspage,
693 int fullness)
694 {
695 class_stat_inc(class, fullness, 1);
696 list_add(&zspage->list, &class->fullness_list[fullness]);
697 }
698
699 /*
700 * This function removes the given zspage from the freelist identified
701 * by <class, fullness_group>.
702 */
remove_zspage(struct size_class * class,struct zspage * zspage,int fullness)703 static void remove_zspage(struct size_class *class,
704 struct zspage *zspage,
705 int fullness)
706 {
707 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708
709 list_del_init(&zspage->list);
710 class_stat_dec(class, fullness, 1);
711 }
712
713 /*
714 * Each size class maintains zspages in different fullness groups depending
715 * on the number of live objects they contain. When allocating or freeing
716 * objects, the fullness status of the page can change, for instance, from
717 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718 * checks if such a status change has occurred for the given page and
719 * accordingly moves the page from the list of the old fullness group to that
720 * of the new fullness group.
721 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723 {
724 int class_idx;
725 int currfg, newfg;
726
727 get_zspage_mapping(zspage, &class_idx, &currfg);
728 newfg = get_fullness_group(class, zspage);
729 if (newfg == currfg)
730 goto out;
731
732 remove_zspage(class, zspage, currfg);
733 insert_zspage(class, zspage, newfg);
734 set_zspage_mapping(zspage, class_idx, newfg);
735 out:
736 return newfg;
737 }
738
get_zspage(struct page * page)739 static struct zspage *get_zspage(struct page *page)
740 {
741 struct zspage *zspage = (struct zspage *)page_private(page);
742
743 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
744 return zspage;
745 }
746
get_next_page(struct page * page)747 static struct page *get_next_page(struct page *page)
748 {
749 struct zspage *zspage = get_zspage(page);
750
751 if (unlikely(ZsHugePage(zspage)))
752 return NULL;
753
754 return (struct page *)page->index;
755 }
756
757 /**
758 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
759 * @obj: the encoded object value
760 * @page: page object resides in zspage
761 * @obj_idx: object index
762 */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)763 static void obj_to_location(unsigned long obj, struct page **page,
764 unsigned int *obj_idx)
765 {
766 obj >>= OBJ_TAG_BITS;
767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 *obj_idx = (obj & OBJ_INDEX_MASK);
769 }
770
obj_to_page(unsigned long obj,struct page ** page)771 static void obj_to_page(unsigned long obj, struct page **page)
772 {
773 obj >>= OBJ_TAG_BITS;
774 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
775 }
776
777 /**
778 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779 * @page: page object resides in zspage
780 * @obj_idx: object index
781 */
location_to_obj(struct page * page,unsigned int obj_idx)782 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
783 {
784 unsigned long obj;
785
786 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
787 obj |= obj_idx & OBJ_INDEX_MASK;
788 obj <<= OBJ_TAG_BITS;
789
790 return obj;
791 }
792
handle_to_obj(unsigned long handle)793 static unsigned long handle_to_obj(unsigned long handle)
794 {
795 return *(unsigned long *)handle;
796 }
797
obj_allocated(struct page * page,void * obj,unsigned long * phandle)798 static inline bool obj_allocated(struct page *page, void *obj,
799 unsigned long *phandle)
800 {
801 unsigned long handle;
802 struct zspage *zspage = get_zspage(page);
803
804 if (unlikely(ZsHugePage(zspage))) {
805 VM_BUG_ON_PAGE(!is_first_page(page), page);
806 handle = page->index;
807 } else
808 handle = *(unsigned long *)obj;
809
810 if (!(handle & OBJ_ALLOCATED_TAG))
811 return false;
812
813 /* Clear all tags before returning the handle */
814 *phandle = handle & ~OBJ_TAG_MASK;
815 return true;
816 }
817
reset_page(struct page * page)818 static void reset_page(struct page *page)
819 {
820 __ClearPageMovable(page);
821 ClearPagePrivate(page);
822 set_page_private(page, 0);
823 page_mapcount_reset(page);
824 page->index = 0;
825 }
826
trylock_zspage(struct zspage * zspage)827 static int trylock_zspage(struct zspage *zspage)
828 {
829 struct page *cursor, *fail;
830
831 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
832 get_next_page(cursor)) {
833 if (!trylock_page(cursor)) {
834 fail = cursor;
835 goto unlock;
836 }
837 }
838
839 return 1;
840 unlock:
841 for (cursor = get_first_page(zspage); cursor != fail; cursor =
842 get_next_page(cursor))
843 unlock_page(cursor);
844
845 return 0;
846 }
847
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)848 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
849 struct zspage *zspage)
850 {
851 struct page *page, *next;
852 int fg;
853 unsigned int class_idx;
854
855 get_zspage_mapping(zspage, &class_idx, &fg);
856
857 assert_spin_locked(&pool->lock);
858
859 VM_BUG_ON(get_zspage_inuse(zspage));
860 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
861
862 next = page = get_first_page(zspage);
863 do {
864 VM_BUG_ON_PAGE(!PageLocked(page), page);
865 next = get_next_page(page);
866 reset_page(page);
867 unlock_page(page);
868 dec_zone_page_state(page, NR_ZSPAGES);
869 put_page(page);
870 page = next;
871 } while (page != NULL);
872
873 cache_free_zspage(pool, zspage);
874
875 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
876 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
877 }
878
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)879 static void free_zspage(struct zs_pool *pool, struct size_class *class,
880 struct zspage *zspage)
881 {
882 VM_BUG_ON(get_zspage_inuse(zspage));
883 VM_BUG_ON(list_empty(&zspage->list));
884
885 /*
886 * Since zs_free couldn't be sleepable, this function cannot call
887 * lock_page. The page locks trylock_zspage got will be released
888 * by __free_zspage.
889 */
890 if (!trylock_zspage(zspage)) {
891 kick_deferred_free(pool);
892 return;
893 }
894
895 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
896 __free_zspage(pool, class, zspage);
897 }
898
899 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)900 static void init_zspage(struct size_class *class, struct zspage *zspage)
901 {
902 unsigned int freeobj = 1;
903 unsigned long off = 0;
904 struct page *page = get_first_page(zspage);
905
906 while (page) {
907 struct page *next_page;
908 struct link_free *link;
909 void *vaddr;
910
911 set_first_obj_offset(page, off);
912
913 vaddr = kmap_atomic(page);
914 link = (struct link_free *)vaddr + off / sizeof(*link);
915
916 while ((off += class->size) < PAGE_SIZE) {
917 link->next = freeobj++ << OBJ_TAG_BITS;
918 link += class->size / sizeof(*link);
919 }
920
921 /*
922 * We now come to the last (full or partial) object on this
923 * page, which must point to the first object on the next
924 * page (if present)
925 */
926 next_page = get_next_page(page);
927 if (next_page) {
928 link->next = freeobj++ << OBJ_TAG_BITS;
929 } else {
930 /*
931 * Reset OBJ_TAG_BITS bit to last link to tell
932 * whether it's allocated object or not.
933 */
934 link->next = -1UL << OBJ_TAG_BITS;
935 }
936 kunmap_atomic(vaddr);
937 page = next_page;
938 off %= PAGE_SIZE;
939 }
940
941 set_freeobj(zspage, 0);
942 }
943
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])944 static void create_page_chain(struct size_class *class, struct zspage *zspage,
945 struct page *pages[])
946 {
947 int i;
948 struct page *page;
949 struct page *prev_page = NULL;
950 int nr_pages = class->pages_per_zspage;
951
952 /*
953 * Allocate individual pages and link them together as:
954 * 1. all pages are linked together using page->index
955 * 2. each sub-page point to zspage using page->private
956 *
957 * we set PG_private to identify the first page (i.e. no other sub-page
958 * has this flag set).
959 */
960 for (i = 0; i < nr_pages; i++) {
961 page = pages[i];
962 set_page_private(page, (unsigned long)zspage);
963 page->index = 0;
964 if (i == 0) {
965 zspage->first_page = page;
966 SetPagePrivate(page);
967 if (unlikely(class->objs_per_zspage == 1 &&
968 class->pages_per_zspage == 1))
969 SetZsHugePage(zspage);
970 } else {
971 prev_page->index = (unsigned long)page;
972 }
973 prev_page = page;
974 }
975 }
976
977 /*
978 * Allocate a zspage for the given size class
979 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)980 static struct zspage *alloc_zspage(struct zs_pool *pool,
981 struct size_class *class,
982 gfp_t gfp)
983 {
984 int i;
985 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
986 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
987
988 if (!zspage)
989 return NULL;
990
991 zspage->magic = ZSPAGE_MAGIC;
992 migrate_lock_init(zspage);
993
994 for (i = 0; i < class->pages_per_zspage; i++) {
995 struct page *page;
996
997 page = alloc_page(gfp);
998 if (!page) {
999 while (--i >= 0) {
1000 dec_zone_page_state(pages[i], NR_ZSPAGES);
1001 __free_page(pages[i]);
1002 }
1003 cache_free_zspage(pool, zspage);
1004 return NULL;
1005 }
1006
1007 inc_zone_page_state(page, NR_ZSPAGES);
1008 pages[i] = page;
1009 }
1010
1011 create_page_chain(class, zspage, pages);
1012 init_zspage(class, zspage);
1013 zspage->pool = pool;
1014
1015 return zspage;
1016 }
1017
find_get_zspage(struct size_class * class)1018 static struct zspage *find_get_zspage(struct size_class *class)
1019 {
1020 int i;
1021 struct zspage *zspage;
1022
1023 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1024 zspage = list_first_entry_or_null(&class->fullness_list[i],
1025 struct zspage, list);
1026 if (zspage)
1027 break;
1028 }
1029
1030 return zspage;
1031 }
1032
__zs_cpu_up(struct mapping_area * area)1033 static inline int __zs_cpu_up(struct mapping_area *area)
1034 {
1035 /*
1036 * Make sure we don't leak memory if a cpu UP notification
1037 * and zs_init() race and both call zs_cpu_up() on the same cpu
1038 */
1039 if (area->vm_buf)
1040 return 0;
1041 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1042 if (!area->vm_buf)
1043 return -ENOMEM;
1044 return 0;
1045 }
1046
__zs_cpu_down(struct mapping_area * area)1047 static inline void __zs_cpu_down(struct mapping_area *area)
1048 {
1049 kfree(area->vm_buf);
1050 area->vm_buf = NULL;
1051 }
1052
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1053 static void *__zs_map_object(struct mapping_area *area,
1054 struct page *pages[2], int off, int size)
1055 {
1056 int sizes[2];
1057 void *addr;
1058 char *buf = area->vm_buf;
1059
1060 /* disable page faults to match kmap_atomic() return conditions */
1061 pagefault_disable();
1062
1063 /* no read fastpath */
1064 if (area->vm_mm == ZS_MM_WO)
1065 goto out;
1066
1067 sizes[0] = PAGE_SIZE - off;
1068 sizes[1] = size - sizes[0];
1069
1070 /* copy object to per-cpu buffer */
1071 addr = kmap_atomic(pages[0]);
1072 memcpy(buf, addr + off, sizes[0]);
1073 kunmap_atomic(addr);
1074 addr = kmap_atomic(pages[1]);
1075 memcpy(buf + sizes[0], addr, sizes[1]);
1076 kunmap_atomic(addr);
1077 out:
1078 return area->vm_buf;
1079 }
1080
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1081 static void __zs_unmap_object(struct mapping_area *area,
1082 struct page *pages[2], int off, int size)
1083 {
1084 int sizes[2];
1085 void *addr;
1086 char *buf;
1087
1088 /* no write fastpath */
1089 if (area->vm_mm == ZS_MM_RO)
1090 goto out;
1091
1092 buf = area->vm_buf;
1093 buf = buf + ZS_HANDLE_SIZE;
1094 size -= ZS_HANDLE_SIZE;
1095 off += ZS_HANDLE_SIZE;
1096
1097 sizes[0] = PAGE_SIZE - off;
1098 sizes[1] = size - sizes[0];
1099
1100 /* copy per-cpu buffer to object */
1101 addr = kmap_atomic(pages[0]);
1102 memcpy(addr + off, buf, sizes[0]);
1103 kunmap_atomic(addr);
1104 addr = kmap_atomic(pages[1]);
1105 memcpy(addr, buf + sizes[0], sizes[1]);
1106 kunmap_atomic(addr);
1107
1108 out:
1109 /* enable page faults to match kunmap_atomic() return conditions */
1110 pagefault_enable();
1111 }
1112
zs_cpu_prepare(unsigned int cpu)1113 static int zs_cpu_prepare(unsigned int cpu)
1114 {
1115 struct mapping_area *area;
1116
1117 area = &per_cpu(zs_map_area, cpu);
1118 return __zs_cpu_up(area);
1119 }
1120
zs_cpu_dead(unsigned int cpu)1121 static int zs_cpu_dead(unsigned int cpu)
1122 {
1123 struct mapping_area *area;
1124
1125 area = &per_cpu(zs_map_area, cpu);
1126 __zs_cpu_down(area);
1127 return 0;
1128 }
1129
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1130 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1131 int objs_per_zspage)
1132 {
1133 if (prev->pages_per_zspage == pages_per_zspage &&
1134 prev->objs_per_zspage == objs_per_zspage)
1135 return true;
1136
1137 return false;
1138 }
1139
zspage_full(struct size_class * class,struct zspage * zspage)1140 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1141 {
1142 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1143 }
1144
zspage_empty(struct zspage * zspage)1145 static bool zspage_empty(struct zspage *zspage)
1146 {
1147 return get_zspage_inuse(zspage) == 0;
1148 }
1149
1150 /**
1151 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1152 * that hold objects of the provided size.
1153 * @pool: zsmalloc pool to use
1154 * @size: object size
1155 *
1156 * Context: Any context.
1157 *
1158 * Return: the index of the zsmalloc &size_class that hold objects of the
1159 * provided size.
1160 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1161 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1162 {
1163 struct size_class *class;
1164
1165 class = pool->size_class[get_size_class_index(size)];
1166
1167 return class->index;
1168 }
1169 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1170
zs_get_total_pages(struct zs_pool * pool)1171 unsigned long zs_get_total_pages(struct zs_pool *pool)
1172 {
1173 return atomic_long_read(&pool->pages_allocated);
1174 }
1175 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1176
1177 /**
1178 * zs_map_object - get address of allocated object from handle.
1179 * @pool: pool from which the object was allocated
1180 * @handle: handle returned from zs_malloc
1181 * @mm: mapping mode to use
1182 *
1183 * Before using an object allocated from zs_malloc, it must be mapped using
1184 * this function. When done with the object, it must be unmapped using
1185 * zs_unmap_object.
1186 *
1187 * Only one object can be mapped per cpu at a time. There is no protection
1188 * against nested mappings.
1189 *
1190 * This function returns with preemption and page faults disabled.
1191 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1192 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1193 enum zs_mapmode mm)
1194 {
1195 struct zspage *zspage;
1196 struct page *page;
1197 unsigned long obj, off;
1198 unsigned int obj_idx;
1199
1200 struct size_class *class;
1201 struct mapping_area *area;
1202 struct page *pages[2];
1203 void *ret;
1204
1205 /*
1206 * Because we use per-cpu mapping areas shared among the
1207 * pools/users, we can't allow mapping in interrupt context
1208 * because it can corrupt another users mappings.
1209 */
1210 BUG_ON(in_interrupt());
1211
1212 /* It guarantees it can get zspage from handle safely */
1213 spin_lock(&pool->lock);
1214 obj = handle_to_obj(handle);
1215 obj_to_location(obj, &page, &obj_idx);
1216 zspage = get_zspage(page);
1217
1218 /*
1219 * migration cannot move any zpages in this zspage. Here, pool->lock
1220 * is too heavy since callers would take some time until they calls
1221 * zs_unmap_object API so delegate the locking from class to zspage
1222 * which is smaller granularity.
1223 */
1224 migrate_read_lock(zspage);
1225 spin_unlock(&pool->lock);
1226
1227 class = zspage_class(pool, zspage);
1228 off = offset_in_page(class->size * obj_idx);
1229
1230 local_lock(&zs_map_area.lock);
1231 area = this_cpu_ptr(&zs_map_area);
1232 area->vm_mm = mm;
1233 if (off + class->size <= PAGE_SIZE) {
1234 /* this object is contained entirely within a page */
1235 area->vm_addr = kmap_atomic(page);
1236 ret = area->vm_addr + off;
1237 goto out;
1238 }
1239
1240 /* this object spans two pages */
1241 pages[0] = page;
1242 pages[1] = get_next_page(page);
1243 BUG_ON(!pages[1]);
1244
1245 ret = __zs_map_object(area, pages, off, class->size);
1246 out:
1247 if (likely(!ZsHugePage(zspage)))
1248 ret += ZS_HANDLE_SIZE;
1249
1250 return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(zs_map_object);
1253
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1254 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1255 {
1256 struct zspage *zspage;
1257 struct page *page;
1258 unsigned long obj, off;
1259 unsigned int obj_idx;
1260
1261 struct size_class *class;
1262 struct mapping_area *area;
1263
1264 obj = handle_to_obj(handle);
1265 obj_to_location(obj, &page, &obj_idx);
1266 zspage = get_zspage(page);
1267 class = zspage_class(pool, zspage);
1268 off = offset_in_page(class->size * obj_idx);
1269
1270 area = this_cpu_ptr(&zs_map_area);
1271 if (off + class->size <= PAGE_SIZE)
1272 kunmap_atomic(area->vm_addr);
1273 else {
1274 struct page *pages[2];
1275
1276 pages[0] = page;
1277 pages[1] = get_next_page(page);
1278 BUG_ON(!pages[1]);
1279
1280 __zs_unmap_object(area, pages, off, class->size);
1281 }
1282 local_unlock(&zs_map_area.lock);
1283
1284 migrate_read_unlock(zspage);
1285 }
1286 EXPORT_SYMBOL_GPL(zs_unmap_object);
1287
1288 /**
1289 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1290 * zsmalloc &size_class.
1291 * @pool: zsmalloc pool to use
1292 *
1293 * The function returns the size of the first huge class - any object of equal
1294 * or bigger size will be stored in zspage consisting of a single physical
1295 * page.
1296 *
1297 * Context: Any context.
1298 *
1299 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1300 */
zs_huge_class_size(struct zs_pool * pool)1301 size_t zs_huge_class_size(struct zs_pool *pool)
1302 {
1303 return huge_class_size;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1306
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1307 static unsigned long obj_malloc(struct zs_pool *pool,
1308 struct zspage *zspage, unsigned long handle)
1309 {
1310 int i, nr_page, offset;
1311 unsigned long obj;
1312 struct link_free *link;
1313 struct size_class *class;
1314
1315 struct page *m_page;
1316 unsigned long m_offset;
1317 void *vaddr;
1318
1319 class = pool->size_class[zspage->class];
1320 handle |= OBJ_ALLOCATED_TAG;
1321 obj = get_freeobj(zspage);
1322
1323 offset = obj * class->size;
1324 nr_page = offset >> PAGE_SHIFT;
1325 m_offset = offset_in_page(offset);
1326 m_page = get_first_page(zspage);
1327
1328 for (i = 0; i < nr_page; i++)
1329 m_page = get_next_page(m_page);
1330
1331 vaddr = kmap_atomic(m_page);
1332 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1333 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1334 if (likely(!ZsHugePage(zspage)))
1335 /* record handle in the header of allocated chunk */
1336 link->handle = handle;
1337 else
1338 /* record handle to page->index */
1339 zspage->first_page->index = handle;
1340
1341 kunmap_atomic(vaddr);
1342 mod_zspage_inuse(zspage, 1);
1343
1344 obj = location_to_obj(m_page, obj);
1345
1346 return obj;
1347 }
1348
1349
1350 /**
1351 * zs_malloc - Allocate block of given size from pool.
1352 * @pool: pool to allocate from
1353 * @size: size of block to allocate
1354 * @gfp: gfp flags when allocating object
1355 *
1356 * On success, handle to the allocated object is returned,
1357 * otherwise an ERR_PTR().
1358 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1359 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1360 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1361 {
1362 unsigned long handle, obj;
1363 struct size_class *class;
1364 int newfg;
1365 struct zspage *zspage;
1366
1367 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1368 return (unsigned long)ERR_PTR(-EINVAL);
1369
1370 handle = cache_alloc_handle(pool, gfp);
1371 if (!handle)
1372 return (unsigned long)ERR_PTR(-ENOMEM);
1373
1374 /* extra space in chunk to keep the handle */
1375 size += ZS_HANDLE_SIZE;
1376 class = pool->size_class[get_size_class_index(size)];
1377
1378 /* pool->lock effectively protects the zpage migration */
1379 spin_lock(&pool->lock);
1380 zspage = find_get_zspage(class);
1381 if (likely(zspage)) {
1382 obj = obj_malloc(pool, zspage, handle);
1383 /* Now move the zspage to another fullness group, if required */
1384 fix_fullness_group(class, zspage);
1385 record_obj(handle, obj);
1386 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1387
1388 goto out;
1389 }
1390
1391 spin_unlock(&pool->lock);
1392
1393 zspage = alloc_zspage(pool, class, gfp);
1394 if (!zspage) {
1395 cache_free_handle(pool, handle);
1396 return (unsigned long)ERR_PTR(-ENOMEM);
1397 }
1398
1399 spin_lock(&pool->lock);
1400 obj = obj_malloc(pool, zspage, handle);
1401 newfg = get_fullness_group(class, zspage);
1402 insert_zspage(class, zspage, newfg);
1403 set_zspage_mapping(zspage, class->index, newfg);
1404 record_obj(handle, obj);
1405 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1406 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1407 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1408
1409 /* We completely set up zspage so mark them as movable */
1410 SetZsPageMovable(pool, zspage);
1411 out:
1412 spin_unlock(&pool->lock);
1413
1414 return handle;
1415 }
1416 EXPORT_SYMBOL_GPL(zs_malloc);
1417
obj_free(int class_size,unsigned long obj)1418 static void obj_free(int class_size, unsigned long obj)
1419 {
1420 struct link_free *link;
1421 struct zspage *zspage;
1422 struct page *f_page;
1423 unsigned long f_offset;
1424 unsigned int f_objidx;
1425 void *vaddr;
1426
1427 obj_to_location(obj, &f_page, &f_objidx);
1428 f_offset = offset_in_page(class_size * f_objidx);
1429 zspage = get_zspage(f_page);
1430
1431 vaddr = kmap_atomic(f_page);
1432 link = (struct link_free *)(vaddr + f_offset);
1433
1434 /* Insert this object in containing zspage's freelist */
1435 if (likely(!ZsHugePage(zspage)))
1436 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1437 else
1438 f_page->index = 0;
1439 set_freeobj(zspage, f_objidx);
1440
1441 kunmap_atomic(vaddr);
1442 mod_zspage_inuse(zspage, -1);
1443 }
1444
zs_free(struct zs_pool * pool,unsigned long handle)1445 void zs_free(struct zs_pool *pool, unsigned long handle)
1446 {
1447 struct zspage *zspage;
1448 struct page *f_page;
1449 unsigned long obj;
1450 struct size_class *class;
1451 int fullness;
1452
1453 if (IS_ERR_OR_NULL((void *)handle))
1454 return;
1455
1456 /*
1457 * The pool->lock protects the race with zpage's migration
1458 * so it's safe to get the page from handle.
1459 */
1460 spin_lock(&pool->lock);
1461 obj = handle_to_obj(handle);
1462 obj_to_page(obj, &f_page);
1463 zspage = get_zspage(f_page);
1464 class = zspage_class(pool, zspage);
1465
1466 class_stat_dec(class, ZS_OBJS_INUSE, 1);
1467 obj_free(class->size, obj);
1468
1469 fullness = fix_fullness_group(class, zspage);
1470 if (fullness == ZS_INUSE_RATIO_0)
1471 free_zspage(pool, class, zspage);
1472
1473 spin_unlock(&pool->lock);
1474 cache_free_handle(pool, handle);
1475 }
1476 EXPORT_SYMBOL_GPL(zs_free);
1477
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1478 static void zs_object_copy(struct size_class *class, unsigned long dst,
1479 unsigned long src)
1480 {
1481 struct page *s_page, *d_page;
1482 unsigned int s_objidx, d_objidx;
1483 unsigned long s_off, d_off;
1484 void *s_addr, *d_addr;
1485 int s_size, d_size, size;
1486 int written = 0;
1487
1488 s_size = d_size = class->size;
1489
1490 obj_to_location(src, &s_page, &s_objidx);
1491 obj_to_location(dst, &d_page, &d_objidx);
1492
1493 s_off = offset_in_page(class->size * s_objidx);
1494 d_off = offset_in_page(class->size * d_objidx);
1495
1496 if (s_off + class->size > PAGE_SIZE)
1497 s_size = PAGE_SIZE - s_off;
1498
1499 if (d_off + class->size > PAGE_SIZE)
1500 d_size = PAGE_SIZE - d_off;
1501
1502 s_addr = kmap_atomic(s_page);
1503 d_addr = kmap_atomic(d_page);
1504
1505 while (1) {
1506 size = min(s_size, d_size);
1507 memcpy(d_addr + d_off, s_addr + s_off, size);
1508 written += size;
1509
1510 if (written == class->size)
1511 break;
1512
1513 s_off += size;
1514 s_size -= size;
1515 d_off += size;
1516 d_size -= size;
1517
1518 /*
1519 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1520 * calls must occurs in reverse order of calls to kmap_atomic().
1521 * So, to call kunmap_atomic(s_addr) we should first call
1522 * kunmap_atomic(d_addr). For more details see
1523 * Documentation/mm/highmem.rst.
1524 */
1525 if (s_off >= PAGE_SIZE) {
1526 kunmap_atomic(d_addr);
1527 kunmap_atomic(s_addr);
1528 s_page = get_next_page(s_page);
1529 s_addr = kmap_atomic(s_page);
1530 d_addr = kmap_atomic(d_page);
1531 s_size = class->size - written;
1532 s_off = 0;
1533 }
1534
1535 if (d_off >= PAGE_SIZE) {
1536 kunmap_atomic(d_addr);
1537 d_page = get_next_page(d_page);
1538 d_addr = kmap_atomic(d_page);
1539 d_size = class->size - written;
1540 d_off = 0;
1541 }
1542 }
1543
1544 kunmap_atomic(d_addr);
1545 kunmap_atomic(s_addr);
1546 }
1547
1548 /*
1549 * Find alloced object in zspage from index object and
1550 * return handle.
1551 */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1552 static unsigned long find_alloced_obj(struct size_class *class,
1553 struct page *page, int *obj_idx)
1554 {
1555 unsigned int offset;
1556 int index = *obj_idx;
1557 unsigned long handle = 0;
1558 void *addr = kmap_atomic(page);
1559
1560 offset = get_first_obj_offset(page);
1561 offset += class->size * index;
1562
1563 while (offset < PAGE_SIZE) {
1564 if (obj_allocated(page, addr + offset, &handle))
1565 break;
1566
1567 offset += class->size;
1568 index++;
1569 }
1570
1571 kunmap_atomic(addr);
1572
1573 *obj_idx = index;
1574
1575 return handle;
1576 }
1577
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1578 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1579 struct zspage *dst_zspage)
1580 {
1581 unsigned long used_obj, free_obj;
1582 unsigned long handle;
1583 int obj_idx = 0;
1584 struct page *s_page = get_first_page(src_zspage);
1585 struct size_class *class = pool->size_class[src_zspage->class];
1586
1587 while (1) {
1588 handle = find_alloced_obj(class, s_page, &obj_idx);
1589 if (!handle) {
1590 s_page = get_next_page(s_page);
1591 if (!s_page)
1592 break;
1593 obj_idx = 0;
1594 continue;
1595 }
1596
1597 used_obj = handle_to_obj(handle);
1598 free_obj = obj_malloc(pool, dst_zspage, handle);
1599 zs_object_copy(class, free_obj, used_obj);
1600 obj_idx++;
1601 record_obj(handle, free_obj);
1602 obj_free(class->size, used_obj);
1603
1604 /* Stop if there is no more space */
1605 if (zspage_full(class, dst_zspage))
1606 break;
1607
1608 /* Stop if there are no more objects to migrate */
1609 if (zspage_empty(src_zspage))
1610 break;
1611 }
1612 }
1613
isolate_src_zspage(struct size_class * class)1614 static struct zspage *isolate_src_zspage(struct size_class *class)
1615 {
1616 struct zspage *zspage;
1617 int fg;
1618
1619 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1620 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1621 struct zspage, list);
1622 if (zspage) {
1623 remove_zspage(class, zspage, fg);
1624 return zspage;
1625 }
1626 }
1627
1628 return zspage;
1629 }
1630
isolate_dst_zspage(struct size_class * class)1631 static struct zspage *isolate_dst_zspage(struct size_class *class)
1632 {
1633 struct zspage *zspage;
1634 int fg;
1635
1636 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1637 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1638 struct zspage, list);
1639 if (zspage) {
1640 remove_zspage(class, zspage, fg);
1641 return zspage;
1642 }
1643 }
1644
1645 return zspage;
1646 }
1647
1648 /*
1649 * putback_zspage - add @zspage into right class's fullness list
1650 * @class: destination class
1651 * @zspage: target page
1652 *
1653 * Return @zspage's fullness status
1654 */
putback_zspage(struct size_class * class,struct zspage * zspage)1655 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1656 {
1657 int fullness;
1658
1659 fullness = get_fullness_group(class, zspage);
1660 insert_zspage(class, zspage, fullness);
1661 set_zspage_mapping(zspage, class->index, fullness);
1662
1663 return fullness;
1664 }
1665
1666 #ifdef CONFIG_COMPACTION
1667 /*
1668 * To prevent zspage destroy during migration, zspage freeing should
1669 * hold locks of all pages in the zspage.
1670 */
lock_zspage(struct zspage * zspage)1671 static void lock_zspage(struct zspage *zspage)
1672 {
1673 struct page *curr_page, *page;
1674
1675 /*
1676 * Pages we haven't locked yet can be migrated off the list while we're
1677 * trying to lock them, so we need to be careful and only attempt to
1678 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1679 * may no longer belong to the zspage. This means that we may wait for
1680 * the wrong page to unlock, so we must take a reference to the page
1681 * prior to waiting for it to unlock outside migrate_read_lock().
1682 */
1683 while (1) {
1684 migrate_read_lock(zspage);
1685 page = get_first_page(zspage);
1686 if (trylock_page(page))
1687 break;
1688 get_page(page);
1689 migrate_read_unlock(zspage);
1690 wait_on_page_locked(page);
1691 put_page(page);
1692 }
1693
1694 curr_page = page;
1695 while ((page = get_next_page(curr_page))) {
1696 if (trylock_page(page)) {
1697 curr_page = page;
1698 } else {
1699 get_page(page);
1700 migrate_read_unlock(zspage);
1701 wait_on_page_locked(page);
1702 put_page(page);
1703 migrate_read_lock(zspage);
1704 }
1705 }
1706 migrate_read_unlock(zspage);
1707 }
1708 #endif /* CONFIG_COMPACTION */
1709
migrate_lock_init(struct zspage * zspage)1710 static void migrate_lock_init(struct zspage *zspage)
1711 {
1712 rwlock_init(&zspage->lock);
1713 }
1714
migrate_read_lock(struct zspage * zspage)1715 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1716 {
1717 read_lock(&zspage->lock);
1718 }
1719
migrate_read_unlock(struct zspage * zspage)1720 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1721 {
1722 read_unlock(&zspage->lock);
1723 }
1724
1725 #ifdef CONFIG_COMPACTION
migrate_write_lock(struct zspage * zspage)1726 static void migrate_write_lock(struct zspage *zspage)
1727 {
1728 write_lock(&zspage->lock);
1729 }
1730
migrate_write_lock_nested(struct zspage * zspage)1731 static void migrate_write_lock_nested(struct zspage *zspage)
1732 {
1733 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1734 }
1735
migrate_write_unlock(struct zspage * zspage)1736 static void migrate_write_unlock(struct zspage *zspage)
1737 {
1738 write_unlock(&zspage->lock);
1739 }
1740
1741 /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage * zspage)1742 static void inc_zspage_isolation(struct zspage *zspage)
1743 {
1744 zspage->isolated++;
1745 }
1746
dec_zspage_isolation(struct zspage * zspage)1747 static void dec_zspage_isolation(struct zspage *zspage)
1748 {
1749 VM_BUG_ON(zspage->isolated == 0);
1750 zspage->isolated--;
1751 }
1752
1753 static const struct movable_operations zsmalloc_mops;
1754
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1755 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1756 struct page *newpage, struct page *oldpage)
1757 {
1758 struct page *page;
1759 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1760 int idx = 0;
1761
1762 page = get_first_page(zspage);
1763 do {
1764 if (page == oldpage)
1765 pages[idx] = newpage;
1766 else
1767 pages[idx] = page;
1768 idx++;
1769 } while ((page = get_next_page(page)) != NULL);
1770
1771 create_page_chain(class, zspage, pages);
1772 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1773 if (unlikely(ZsHugePage(zspage)))
1774 newpage->index = oldpage->index;
1775 __SetPageMovable(newpage, &zsmalloc_mops);
1776 }
1777
zs_page_isolate(struct page * page,isolate_mode_t mode)1778 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1779 {
1780 struct zs_pool *pool;
1781 struct zspage *zspage;
1782
1783 /*
1784 * Page is locked so zspage couldn't be destroyed. For detail, look at
1785 * lock_zspage in free_zspage.
1786 */
1787 VM_BUG_ON_PAGE(PageIsolated(page), page);
1788
1789 zspage = get_zspage(page);
1790 pool = zspage->pool;
1791 spin_lock(&pool->lock);
1792 inc_zspage_isolation(zspage);
1793 spin_unlock(&pool->lock);
1794
1795 return true;
1796 }
1797
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1798 static int zs_page_migrate(struct page *newpage, struct page *page,
1799 enum migrate_mode mode)
1800 {
1801 struct zs_pool *pool;
1802 struct size_class *class;
1803 struct zspage *zspage;
1804 struct page *dummy;
1805 void *s_addr, *d_addr, *addr;
1806 unsigned int offset;
1807 unsigned long handle;
1808 unsigned long old_obj, new_obj;
1809 unsigned int obj_idx;
1810
1811 /*
1812 * We cannot support the _NO_COPY case here, because copy needs to
1813 * happen under the zs lock, which does not work with
1814 * MIGRATE_SYNC_NO_COPY workflow.
1815 */
1816 if (mode == MIGRATE_SYNC_NO_COPY)
1817 return -EINVAL;
1818
1819 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1820
1821 /* The page is locked, so this pointer must remain valid */
1822 zspage = get_zspage(page);
1823 pool = zspage->pool;
1824
1825 /*
1826 * The pool's lock protects the race between zpage migration
1827 * and zs_free.
1828 */
1829 spin_lock(&pool->lock);
1830 class = zspage_class(pool, zspage);
1831
1832 /* the migrate_write_lock protects zpage access via zs_map_object */
1833 migrate_write_lock(zspage);
1834
1835 offset = get_first_obj_offset(page);
1836 s_addr = kmap_atomic(page);
1837
1838 /*
1839 * Here, any user cannot access all objects in the zspage so let's move.
1840 */
1841 d_addr = kmap_atomic(newpage);
1842 memcpy(d_addr, s_addr, PAGE_SIZE);
1843 kunmap_atomic(d_addr);
1844
1845 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1846 addr += class->size) {
1847 if (obj_allocated(page, addr, &handle)) {
1848
1849 old_obj = handle_to_obj(handle);
1850 obj_to_location(old_obj, &dummy, &obj_idx);
1851 new_obj = (unsigned long)location_to_obj(newpage,
1852 obj_idx);
1853 record_obj(handle, new_obj);
1854 }
1855 }
1856 kunmap_atomic(s_addr);
1857
1858 replace_sub_page(class, zspage, newpage, page);
1859 dec_zspage_isolation(zspage);
1860 /*
1861 * Since we complete the data copy and set up new zspage structure,
1862 * it's okay to release the pool's lock.
1863 */
1864 spin_unlock(&pool->lock);
1865 migrate_write_unlock(zspage);
1866
1867 get_page(newpage);
1868 if (page_zone(newpage) != page_zone(page)) {
1869 dec_zone_page_state(page, NR_ZSPAGES);
1870 inc_zone_page_state(newpage, NR_ZSPAGES);
1871 }
1872
1873 reset_page(page);
1874 put_page(page);
1875
1876 return MIGRATEPAGE_SUCCESS;
1877 }
1878
zs_page_putback(struct page * page)1879 static void zs_page_putback(struct page *page)
1880 {
1881 struct zs_pool *pool;
1882 struct zspage *zspage;
1883
1884 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1885
1886 zspage = get_zspage(page);
1887 pool = zspage->pool;
1888 spin_lock(&pool->lock);
1889 dec_zspage_isolation(zspage);
1890 spin_unlock(&pool->lock);
1891 }
1892
1893 static const struct movable_operations zsmalloc_mops = {
1894 .isolate_page = zs_page_isolate,
1895 .migrate_page = zs_page_migrate,
1896 .putback_page = zs_page_putback,
1897 };
1898
1899 /*
1900 * Caller should hold page_lock of all pages in the zspage
1901 * In here, we cannot use zspage meta data.
1902 */
async_free_zspage(struct work_struct * work)1903 static void async_free_zspage(struct work_struct *work)
1904 {
1905 int i;
1906 struct size_class *class;
1907 unsigned int class_idx;
1908 int fullness;
1909 struct zspage *zspage, *tmp;
1910 LIST_HEAD(free_pages);
1911 struct zs_pool *pool = container_of(work, struct zs_pool,
1912 free_work);
1913
1914 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1915 class = pool->size_class[i];
1916 if (class->index != i)
1917 continue;
1918
1919 spin_lock(&pool->lock);
1920 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1921 &free_pages);
1922 spin_unlock(&pool->lock);
1923 }
1924
1925 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1926 list_del(&zspage->list);
1927 lock_zspage(zspage);
1928
1929 get_zspage_mapping(zspage, &class_idx, &fullness);
1930 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
1931 class = pool->size_class[class_idx];
1932 spin_lock(&pool->lock);
1933 __free_zspage(pool, class, zspage);
1934 spin_unlock(&pool->lock);
1935 }
1936 };
1937
kick_deferred_free(struct zs_pool * pool)1938 static void kick_deferred_free(struct zs_pool *pool)
1939 {
1940 schedule_work(&pool->free_work);
1941 }
1942
zs_flush_migration(struct zs_pool * pool)1943 static void zs_flush_migration(struct zs_pool *pool)
1944 {
1945 flush_work(&pool->free_work);
1946 }
1947
init_deferred_free(struct zs_pool * pool)1948 static void init_deferred_free(struct zs_pool *pool)
1949 {
1950 INIT_WORK(&pool->free_work, async_free_zspage);
1951 }
1952
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1953 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1954 {
1955 struct page *page = get_first_page(zspage);
1956
1957 do {
1958 WARN_ON(!trylock_page(page));
1959 __SetPageMovable(page, &zsmalloc_mops);
1960 unlock_page(page);
1961 } while ((page = get_next_page(page)) != NULL);
1962 }
1963 #else
zs_flush_migration(struct zs_pool * pool)1964 static inline void zs_flush_migration(struct zs_pool *pool) { }
1965 #endif
1966
1967 /*
1968 *
1969 * Based on the number of unused allocated objects calculate
1970 * and return the number of pages that we can free.
1971 */
zs_can_compact(struct size_class * class)1972 static unsigned long zs_can_compact(struct size_class *class)
1973 {
1974 unsigned long obj_wasted;
1975 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1976 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1977
1978 if (obj_allocated <= obj_used)
1979 return 0;
1980
1981 obj_wasted = obj_allocated - obj_used;
1982 obj_wasted /= class->objs_per_zspage;
1983
1984 return obj_wasted * class->pages_per_zspage;
1985 }
1986
__zs_compact(struct zs_pool * pool,struct size_class * class)1987 static unsigned long __zs_compact(struct zs_pool *pool,
1988 struct size_class *class)
1989 {
1990 struct zspage *src_zspage = NULL;
1991 struct zspage *dst_zspage = NULL;
1992 unsigned long pages_freed = 0;
1993
1994 /*
1995 * protect the race between zpage migration and zs_free
1996 * as well as zpage allocation/free
1997 */
1998 spin_lock(&pool->lock);
1999 while (zs_can_compact(class)) {
2000 int fg;
2001
2002 if (!dst_zspage) {
2003 dst_zspage = isolate_dst_zspage(class);
2004 if (!dst_zspage)
2005 break;
2006 migrate_write_lock(dst_zspage);
2007 }
2008
2009 src_zspage = isolate_src_zspage(class);
2010 if (!src_zspage)
2011 break;
2012
2013 migrate_write_lock_nested(src_zspage);
2014
2015 migrate_zspage(pool, src_zspage, dst_zspage);
2016 fg = putback_zspage(class, src_zspage);
2017 migrate_write_unlock(src_zspage);
2018
2019 if (fg == ZS_INUSE_RATIO_0) {
2020 free_zspage(pool, class, src_zspage);
2021 pages_freed += class->pages_per_zspage;
2022 }
2023 src_zspage = NULL;
2024
2025 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2026 || spin_is_contended(&pool->lock)) {
2027 putback_zspage(class, dst_zspage);
2028 migrate_write_unlock(dst_zspage);
2029 dst_zspage = NULL;
2030
2031 spin_unlock(&pool->lock);
2032 cond_resched();
2033 spin_lock(&pool->lock);
2034 }
2035 }
2036
2037 if (src_zspage) {
2038 putback_zspage(class, src_zspage);
2039 migrate_write_unlock(src_zspage);
2040 }
2041
2042 if (dst_zspage) {
2043 putback_zspage(class, dst_zspage);
2044 migrate_write_unlock(dst_zspage);
2045 }
2046 spin_unlock(&pool->lock);
2047
2048 return pages_freed;
2049 }
2050
zs_compact(struct zs_pool * pool)2051 unsigned long zs_compact(struct zs_pool *pool)
2052 {
2053 int i;
2054 struct size_class *class;
2055 unsigned long pages_freed = 0;
2056
2057 /*
2058 * Pool compaction is performed under pool->lock so it is basically
2059 * single-threaded. Having more than one thread in __zs_compact()
2060 * will increase pool->lock contention, which will impact other
2061 * zsmalloc operations that need pool->lock.
2062 */
2063 if (atomic_xchg(&pool->compaction_in_progress, 1))
2064 return 0;
2065
2066 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2067 class = pool->size_class[i];
2068 if (class->index != i)
2069 continue;
2070 pages_freed += __zs_compact(pool, class);
2071 }
2072 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2073 atomic_set(&pool->compaction_in_progress, 0);
2074
2075 return pages_freed;
2076 }
2077 EXPORT_SYMBOL_GPL(zs_compact);
2078
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2079 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2080 {
2081 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2082 }
2083 EXPORT_SYMBOL_GPL(zs_pool_stats);
2084
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2085 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2086 struct shrink_control *sc)
2087 {
2088 unsigned long pages_freed;
2089 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2090 shrinker);
2091
2092 /*
2093 * Compact classes and calculate compaction delta.
2094 * Can run concurrently with a manually triggered
2095 * (by user) compaction.
2096 */
2097 pages_freed = zs_compact(pool);
2098
2099 return pages_freed ? pages_freed : SHRINK_STOP;
2100 }
2101
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2102 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2103 struct shrink_control *sc)
2104 {
2105 int i;
2106 struct size_class *class;
2107 unsigned long pages_to_free = 0;
2108 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2109 shrinker);
2110
2111 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2112 class = pool->size_class[i];
2113 if (class->index != i)
2114 continue;
2115
2116 pages_to_free += zs_can_compact(class);
2117 }
2118
2119 return pages_to_free;
2120 }
2121
zs_unregister_shrinker(struct zs_pool * pool)2122 static void zs_unregister_shrinker(struct zs_pool *pool)
2123 {
2124 unregister_shrinker(&pool->shrinker);
2125 }
2126
zs_register_shrinker(struct zs_pool * pool)2127 static int zs_register_shrinker(struct zs_pool *pool)
2128 {
2129 pool->shrinker.scan_objects = zs_shrinker_scan;
2130 pool->shrinker.count_objects = zs_shrinker_count;
2131 pool->shrinker.batch = 0;
2132 pool->shrinker.seeks = DEFAULT_SEEKS;
2133
2134 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2135 pool->name);
2136 }
2137
calculate_zspage_chain_size(int class_size)2138 static int calculate_zspage_chain_size(int class_size)
2139 {
2140 int i, min_waste = INT_MAX;
2141 int chain_size = 1;
2142
2143 if (is_power_of_2(class_size))
2144 return chain_size;
2145
2146 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2147 int waste;
2148
2149 waste = (i * PAGE_SIZE) % class_size;
2150 if (waste < min_waste) {
2151 min_waste = waste;
2152 chain_size = i;
2153 }
2154 }
2155
2156 return chain_size;
2157 }
2158
2159 /**
2160 * zs_create_pool - Creates an allocation pool to work from.
2161 * @name: pool name to be created
2162 *
2163 * This function must be called before anything when using
2164 * the zsmalloc allocator.
2165 *
2166 * On success, a pointer to the newly created pool is returned,
2167 * otherwise NULL.
2168 */
zs_create_pool(const char * name)2169 struct zs_pool *zs_create_pool(const char *name)
2170 {
2171 int i;
2172 struct zs_pool *pool;
2173 struct size_class *prev_class = NULL;
2174
2175 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2176 if (!pool)
2177 return NULL;
2178
2179 init_deferred_free(pool);
2180 spin_lock_init(&pool->lock);
2181 atomic_set(&pool->compaction_in_progress, 0);
2182
2183 pool->name = kstrdup(name, GFP_KERNEL);
2184 if (!pool->name)
2185 goto err;
2186
2187 if (create_cache(pool))
2188 goto err;
2189
2190 /*
2191 * Iterate reversely, because, size of size_class that we want to use
2192 * for merging should be larger or equal to current size.
2193 */
2194 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2195 int size;
2196 int pages_per_zspage;
2197 int objs_per_zspage;
2198 struct size_class *class;
2199 int fullness;
2200
2201 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2202 if (size > ZS_MAX_ALLOC_SIZE)
2203 size = ZS_MAX_ALLOC_SIZE;
2204 pages_per_zspage = calculate_zspage_chain_size(size);
2205 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2206
2207 /*
2208 * We iterate from biggest down to smallest classes,
2209 * so huge_class_size holds the size of the first huge
2210 * class. Any object bigger than or equal to that will
2211 * endup in the huge class.
2212 */
2213 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2214 !huge_class_size) {
2215 huge_class_size = size;
2216 /*
2217 * The object uses ZS_HANDLE_SIZE bytes to store the
2218 * handle. We need to subtract it, because zs_malloc()
2219 * unconditionally adds handle size before it performs
2220 * size class search - so object may be smaller than
2221 * huge class size, yet it still can end up in the huge
2222 * class because it grows by ZS_HANDLE_SIZE extra bytes
2223 * right before class lookup.
2224 */
2225 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2226 }
2227
2228 /*
2229 * size_class is used for normal zsmalloc operation such
2230 * as alloc/free for that size. Although it is natural that we
2231 * have one size_class for each size, there is a chance that we
2232 * can get more memory utilization if we use one size_class for
2233 * many different sizes whose size_class have same
2234 * characteristics. So, we makes size_class point to
2235 * previous size_class if possible.
2236 */
2237 if (prev_class) {
2238 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2239 pool->size_class[i] = prev_class;
2240 continue;
2241 }
2242 }
2243
2244 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2245 if (!class)
2246 goto err;
2247
2248 class->size = size;
2249 class->index = i;
2250 class->pages_per_zspage = pages_per_zspage;
2251 class->objs_per_zspage = objs_per_zspage;
2252 pool->size_class[i] = class;
2253
2254 fullness = ZS_INUSE_RATIO_0;
2255 while (fullness < NR_FULLNESS_GROUPS) {
2256 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2257 fullness++;
2258 }
2259
2260 prev_class = class;
2261 }
2262
2263 /* debug only, don't abort if it fails */
2264 zs_pool_stat_create(pool, name);
2265
2266 /*
2267 * Not critical since shrinker is only used to trigger internal
2268 * defragmentation of the pool which is pretty optional thing. If
2269 * registration fails we still can use the pool normally and user can
2270 * trigger compaction manually. Thus, ignore return code.
2271 */
2272 zs_register_shrinker(pool);
2273
2274 return pool;
2275
2276 err:
2277 zs_destroy_pool(pool);
2278 return NULL;
2279 }
2280 EXPORT_SYMBOL_GPL(zs_create_pool);
2281
zs_destroy_pool(struct zs_pool * pool)2282 void zs_destroy_pool(struct zs_pool *pool)
2283 {
2284 int i;
2285
2286 zs_unregister_shrinker(pool);
2287 zs_flush_migration(pool);
2288 zs_pool_stat_destroy(pool);
2289
2290 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2291 int fg;
2292 struct size_class *class = pool->size_class[i];
2293
2294 if (!class)
2295 continue;
2296
2297 if (class->index != i)
2298 continue;
2299
2300 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2301 if (list_empty(&class->fullness_list[fg]))
2302 continue;
2303
2304 pr_err("Class-%d fullness group %d is not empty\n",
2305 class->size, fg);
2306 }
2307 kfree(class);
2308 }
2309
2310 destroy_cache(pool);
2311 kfree(pool->name);
2312 kfree(pool);
2313 }
2314 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2315
zs_init(void)2316 static int __init zs_init(void)
2317 {
2318 int ret;
2319
2320 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2321 zs_cpu_prepare, zs_cpu_dead);
2322 if (ret)
2323 goto out;
2324
2325 #ifdef CONFIG_ZPOOL
2326 zpool_register_driver(&zs_zpool_driver);
2327 #endif
2328
2329 zs_stat_init();
2330
2331 return 0;
2332
2333 out:
2334 return ret;
2335 }
2336
zs_exit(void)2337 static void __exit zs_exit(void)
2338 {
2339 #ifdef CONFIG_ZPOOL
2340 zpool_unregister_driver(&zs_zpool_driver);
2341 #endif
2342 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2343
2344 zs_stat_exit();
2345 }
2346
2347 module_init(zs_init);
2348 module_exit(zs_exit);
2349
2350 MODULE_LICENSE("Dual BSD/GPL");
2351 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2352