1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * zpool memory storage api 4 * 5 * Copyright (C) 2014 Dan Streetman 6 * 7 * This is a common frontend for memory storage pool implementations. 8 * Typically, this is used to store compressed memory. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/list.h> 14 #include <linux/types.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/module.h> 19 #include <linux/zpool.h> 20 21 struct zpool { 22 struct zpool_driver *driver; 23 void *pool; 24 }; 25 26 static LIST_HEAD(drivers_head); 27 static DEFINE_SPINLOCK(drivers_lock); 28 29 /** 30 * zpool_register_driver() - register a zpool implementation. 31 * @driver: driver to register 32 */ 33 void zpool_register_driver(struct zpool_driver *driver) 34 { 35 spin_lock(&drivers_lock); 36 atomic_set(&driver->refcount, 0); 37 list_add(&driver->list, &drivers_head); 38 spin_unlock(&drivers_lock); 39 } 40 EXPORT_SYMBOL(zpool_register_driver); 41 42 /** 43 * zpool_unregister_driver() - unregister a zpool implementation. 44 * @driver: driver to unregister. 45 * 46 * Module usage counting is used to prevent using a driver 47 * while/after unloading, so if this is called from module 48 * exit function, this should never fail; if called from 49 * other than the module exit function, and this returns 50 * failure, the driver is in use and must remain available. 51 */ 52 int zpool_unregister_driver(struct zpool_driver *driver) 53 { 54 int ret = 0, refcount; 55 56 spin_lock(&drivers_lock); 57 refcount = atomic_read(&driver->refcount); 58 WARN_ON(refcount < 0); 59 if (refcount > 0) 60 ret = -EBUSY; 61 else 62 list_del(&driver->list); 63 spin_unlock(&drivers_lock); 64 65 return ret; 66 } 67 EXPORT_SYMBOL(zpool_unregister_driver); 68 69 /* this assumes @type is null-terminated. */ 70 static struct zpool_driver *zpool_get_driver(const char *type) 71 { 72 struct zpool_driver *driver; 73 74 spin_lock(&drivers_lock); 75 list_for_each_entry(driver, &drivers_head, list) { 76 if (!strcmp(driver->type, type)) { 77 bool got = try_module_get(driver->owner); 78 79 if (got) 80 atomic_inc(&driver->refcount); 81 spin_unlock(&drivers_lock); 82 return got ? driver : NULL; 83 } 84 } 85 86 spin_unlock(&drivers_lock); 87 return NULL; 88 } 89 90 static void zpool_put_driver(struct zpool_driver *driver) 91 { 92 atomic_dec(&driver->refcount); 93 module_put(driver->owner); 94 } 95 96 /** 97 * zpool_has_pool() - Check if the pool driver is available 98 * @type: The type of the zpool to check (e.g. zbud, zsmalloc) 99 * 100 * This checks if the @type pool driver is available. This will try to load 101 * the requested module, if needed, but there is no guarantee the module will 102 * still be loaded and available immediately after calling. If this returns 103 * true, the caller should assume the pool is available, but must be prepared 104 * to handle the @zpool_create_pool() returning failure. However if this 105 * returns false, the caller should assume the requested pool type is not 106 * available; either the requested pool type module does not exist, or could 107 * not be loaded, and calling @zpool_create_pool() with the pool type will 108 * fail. 109 * 110 * The @type string must be null-terminated. 111 * 112 * Returns: true if @type pool is available, false if not 113 */ 114 bool zpool_has_pool(char *type) 115 { 116 struct zpool_driver *driver = zpool_get_driver(type); 117 118 if (!driver) { 119 request_module("zpool-%s", type); 120 driver = zpool_get_driver(type); 121 } 122 123 if (!driver) 124 return false; 125 126 zpool_put_driver(driver); 127 return true; 128 } 129 EXPORT_SYMBOL(zpool_has_pool); 130 131 /** 132 * zpool_create_pool() - Create a new zpool 133 * @type: The type of the zpool to create (e.g. zbud, zsmalloc) 134 * @name: The name of the zpool (e.g. zram0, zswap) 135 * @gfp: The GFP flags to use when allocating the pool. 136 * @ops: The optional ops callback. 137 * 138 * This creates a new zpool of the specified type. The gfp flags will be 139 * used when allocating memory, if the implementation supports it. If the 140 * ops param is NULL, then the created zpool will not be evictable. 141 * 142 * Implementations must guarantee this to be thread-safe. 143 * 144 * The @type and @name strings must be null-terminated. 145 * 146 * Returns: New zpool on success, NULL on failure. 147 */ 148 struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp, 149 const struct zpool_ops *ops) 150 { 151 struct zpool_driver *driver; 152 struct zpool *zpool; 153 154 pr_debug("creating pool type %s\n", type); 155 156 driver = zpool_get_driver(type); 157 158 if (!driver) { 159 request_module("zpool-%s", type); 160 driver = zpool_get_driver(type); 161 } 162 163 if (!driver) { 164 pr_err("no driver for type %s\n", type); 165 return NULL; 166 } 167 168 zpool = kmalloc(sizeof(*zpool), gfp); 169 if (!zpool) { 170 pr_err("couldn't create zpool - out of memory\n"); 171 zpool_put_driver(driver); 172 return NULL; 173 } 174 175 zpool->driver = driver; 176 zpool->pool = driver->create(name, gfp, ops, zpool); 177 178 if (!zpool->pool) { 179 pr_err("couldn't create %s pool\n", type); 180 zpool_put_driver(driver); 181 kfree(zpool); 182 return NULL; 183 } 184 185 pr_debug("created pool type %s\n", type); 186 187 return zpool; 188 } 189 190 /** 191 * zpool_destroy_pool() - Destroy a zpool 192 * @zpool: The zpool to destroy. 193 * 194 * Implementations must guarantee this to be thread-safe, 195 * however only when destroying different pools. The same 196 * pool should only be destroyed once, and should not be used 197 * after it is destroyed. 198 * 199 * This destroys an existing zpool. The zpool should not be in use. 200 */ 201 void zpool_destroy_pool(struct zpool *zpool) 202 { 203 pr_debug("destroying pool type %s\n", zpool->driver->type); 204 205 zpool->driver->destroy(zpool->pool); 206 zpool_put_driver(zpool->driver); 207 kfree(zpool); 208 } 209 210 /** 211 * zpool_get_type() - Get the type of the zpool 212 * @zpool: The zpool to check 213 * 214 * This returns the type of the pool. 215 * 216 * Implementations must guarantee this to be thread-safe. 217 * 218 * Returns: The type of zpool. 219 */ 220 const char *zpool_get_type(struct zpool *zpool) 221 { 222 return zpool->driver->type; 223 } 224 225 /** 226 * zpool_malloc_support_movable() - Check if the zpool supports 227 * allocating movable memory 228 * @zpool: The zpool to check 229 * 230 * This returns if the zpool supports allocating movable memory. 231 * 232 * Implementations must guarantee this to be thread-safe. 233 * 234 * Returns: true if the zpool supports allocating movable memory, false if not 235 */ 236 bool zpool_malloc_support_movable(struct zpool *zpool) 237 { 238 return zpool->driver->malloc_support_movable; 239 } 240 241 /** 242 * zpool_malloc() - Allocate memory 243 * @zpool: The zpool to allocate from. 244 * @size: The amount of memory to allocate. 245 * @gfp: The GFP flags to use when allocating memory. 246 * @handle: Pointer to the handle to set 247 * 248 * This allocates the requested amount of memory from the pool. 249 * The gfp flags will be used when allocating memory, if the 250 * implementation supports it. The provided @handle will be 251 * set to the allocated object handle. 252 * 253 * Implementations must guarantee this to be thread-safe. 254 * 255 * Returns: 0 on success, negative value on error. 256 */ 257 int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp, 258 unsigned long *handle) 259 { 260 return zpool->driver->malloc(zpool->pool, size, gfp, handle); 261 } 262 263 /** 264 * zpool_free() - Free previously allocated memory 265 * @zpool: The zpool that allocated the memory. 266 * @handle: The handle to the memory to free. 267 * 268 * This frees previously allocated memory. This does not guarantee 269 * that the pool will actually free memory, only that the memory 270 * in the pool will become available for use by the pool. 271 * 272 * Implementations must guarantee this to be thread-safe, 273 * however only when freeing different handles. The same 274 * handle should only be freed once, and should not be used 275 * after freeing. 276 */ 277 void zpool_free(struct zpool *zpool, unsigned long handle) 278 { 279 zpool->driver->free(zpool->pool, handle); 280 } 281 282 /** 283 * zpool_shrink() - Shrink the pool size 284 * @zpool: The zpool to shrink. 285 * @pages: The number of pages to shrink the pool. 286 * @reclaimed: The number of pages successfully evicted. 287 * 288 * This attempts to shrink the actual memory size of the pool 289 * by evicting currently used handle(s). If the pool was 290 * created with no zpool_ops, or the evict call fails for any 291 * of the handles, this will fail. If non-NULL, the @reclaimed 292 * parameter will be set to the number of pages reclaimed, 293 * which may be more than the number of pages requested. 294 * 295 * Implementations must guarantee this to be thread-safe. 296 * 297 * Returns: 0 on success, negative value on error/failure. 298 */ 299 int zpool_shrink(struct zpool *zpool, unsigned int pages, 300 unsigned int *reclaimed) 301 { 302 return zpool->driver->shrink ? 303 zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL; 304 } 305 306 /** 307 * zpool_map_handle() - Map a previously allocated handle into memory 308 * @zpool: The zpool that the handle was allocated from 309 * @handle: The handle to map 310 * @mapmode: How the memory should be mapped 311 * 312 * This maps a previously allocated handle into memory. The @mapmode 313 * param indicates to the implementation how the memory will be 314 * used, i.e. read-only, write-only, read-write. If the 315 * implementation does not support it, the memory will be treated 316 * as read-write. 317 * 318 * This may hold locks, disable interrupts, and/or preemption, 319 * and the zpool_unmap_handle() must be called to undo those 320 * actions. The code that uses the mapped handle should complete 321 * its operations on the mapped handle memory quickly and unmap 322 * as soon as possible. As the implementation may use per-cpu 323 * data, multiple handles should not be mapped concurrently on 324 * any cpu. 325 * 326 * Returns: A pointer to the handle's mapped memory area. 327 */ 328 void *zpool_map_handle(struct zpool *zpool, unsigned long handle, 329 enum zpool_mapmode mapmode) 330 { 331 return zpool->driver->map(zpool->pool, handle, mapmode); 332 } 333 334 /** 335 * zpool_unmap_handle() - Unmap a previously mapped handle 336 * @zpool: The zpool that the handle was allocated from 337 * @handle: The handle to unmap 338 * 339 * This unmaps a previously mapped handle. Any locks or other 340 * actions that the implementation took in zpool_map_handle() 341 * will be undone here. The memory area returned from 342 * zpool_map_handle() should no longer be used after this. 343 */ 344 void zpool_unmap_handle(struct zpool *zpool, unsigned long handle) 345 { 346 zpool->driver->unmap(zpool->pool, handle); 347 } 348 349 /** 350 * zpool_get_total_size() - The total size of the pool 351 * @zpool: The zpool to check 352 * 353 * This returns the total size in bytes of the pool. 354 * 355 * Returns: Total size of the zpool in bytes. 356 */ 357 u64 zpool_get_total_size(struct zpool *zpool) 358 { 359 return zpool->driver->total_size(zpool->pool); 360 } 361 362 /** 363 * zpool_evictable() - Test if zpool is potentially evictable 364 * @zpool: The zpool to test 365 * 366 * Zpool is only potentially evictable when it's created with struct 367 * zpool_ops.evict and its driver implements struct zpool_driver.shrink. 368 * 369 * However, it doesn't necessarily mean driver will use zpool_ops.evict 370 * in its implementation of zpool_driver.shrink. It could do internal 371 * defragmentation instead. 372 * 373 * Returns: true if potentially evictable; false otherwise. 374 */ 375 bool zpool_evictable(struct zpool *zpool) 376 { 377 return zpool->driver->shrink; 378 } 379 380 /** 381 * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped. 382 * @zpool: The zpool to test 383 * 384 * Some allocators enter non-preemptible context in ->map() callback (e.g. 385 * disable pagefaults) and exit that context in ->unmap(), which limits what 386 * we can do with the mapped object. For instance, we cannot wait for 387 * asynchronous crypto API to decompress such an object or take mutexes 388 * since those will call into the scheduler. This function tells us whether 389 * we use such an allocator. 390 * 391 * Returns: true if zpool can sleep; false otherwise. 392 */ 393 bool zpool_can_sleep_mapped(struct zpool *zpool) 394 { 395 return zpool->driver->sleep_mapped; 396 } 397 398 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>"); 399 MODULE_DESCRIPTION("Common API for compressed memory storage"); 400