1 /* 2 * zbud.c 3 * 4 * Copyright (C) 2013, Seth Jennings, IBM 5 * 6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer. 7 * 8 * zbud is an special purpose allocator for storing compressed pages. Contrary 9 * to what its name may suggest, zbud is not a buddy allocator, but rather an 10 * allocator that "buddies" two compressed pages together in a single memory 11 * page. 12 * 13 * While this design limits storage density, it has simple and deterministic 14 * reclaim properties that make it preferable to a higher density approach when 15 * reclaim will be used. 16 * 17 * zbud works by storing compressed pages, or "zpages", together in pairs in a 18 * single memory page called a "zbud page". The first buddy is "left 19 * justified" at the beginning of the zbud page, and the last buddy is "right 20 * justified" at the end of the zbud page. The benefit is that if either 21 * buddy is freed, the freed buddy space, coalesced with whatever slack space 22 * that existed between the buddies, results in the largest possible free region 23 * within the zbud page. 24 * 25 * zbud also provides an attractive lower bound on density. The ratio of zpages 26 * to zbud pages can not be less than 1. This ensures that zbud can never "do 27 * harm" by using more pages to store zpages than the uncompressed zpages would 28 * have used on their own. 29 * 30 * zbud pages are divided into "chunks". The size of the chunks is fixed at 31 * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages 32 * into chunks allows organizing unbuddied zbud pages into a manageable number 33 * of unbuddied lists according to the number of free chunks available in the 34 * zbud page. 35 * 36 * The zbud API differs from that of conventional allocators in that the 37 * allocation function, zbud_alloc(), returns an opaque handle to the user, 38 * not a dereferenceable pointer. The user must map the handle using 39 * zbud_map() in order to get a usable pointer by which to access the 40 * allocation data and unmap the handle with zbud_unmap() when operations 41 * on the allocation data are complete. 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/atomic.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/module.h> 50 #include <linux/preempt.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/zbud.h> 54 #include <linux/zpool.h> 55 56 /***************** 57 * Structures 58 *****************/ 59 /* 60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 61 * adjusting internal fragmentation. It also determines the number of 62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk 64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to 65 * 63 which shows the max number of free chunks in zbud page, also there will be 66 * 63 freelists per pool. 67 */ 68 #define NCHUNKS_ORDER 6 69 70 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 71 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 72 #define ZHDR_SIZE_ALIGNED CHUNK_SIZE 73 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 74 75 /** 76 * struct zbud_pool - stores metadata for each zbud pool 77 * @lock: protects all pool fields and first|last_chunk fields of any 78 * zbud page in the pool 79 * @unbuddied: array of lists tracking zbud pages that only contain one buddy; 80 * the lists each zbud page is added to depends on the size of 81 * its free region. 82 * @buddied: list tracking the zbud pages that contain two buddies; 83 * these zbud pages are full 84 * @lru: list tracking the zbud pages in LRU order by most recently 85 * added buddy. 86 * @pages_nr: number of zbud pages in the pool. 87 * @ops: pointer to a structure of user defined operations specified at 88 * pool creation time. 89 * 90 * This structure is allocated at pool creation time and maintains metadata 91 * pertaining to a particular zbud pool. 92 */ 93 struct zbud_pool { 94 spinlock_t lock; 95 struct list_head unbuddied[NCHUNKS]; 96 struct list_head buddied; 97 struct list_head lru; 98 u64 pages_nr; 99 struct zbud_ops *ops; 100 }; 101 102 /* 103 * struct zbud_header - zbud page metadata occupying the first chunk of each 104 * zbud page. 105 * @buddy: links the zbud page into the unbuddied/buddied lists in the pool 106 * @lru: links the zbud page into the lru list in the pool 107 * @first_chunks: the size of the first buddy in chunks, 0 if free 108 * @last_chunks: the size of the last buddy in chunks, 0 if free 109 */ 110 struct zbud_header { 111 struct list_head buddy; 112 struct list_head lru; 113 unsigned int first_chunks; 114 unsigned int last_chunks; 115 bool under_reclaim; 116 }; 117 118 /***************** 119 * zpool 120 ****************/ 121 122 #ifdef CONFIG_ZPOOL 123 124 static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle) 125 { 126 return zpool_evict(pool, handle); 127 } 128 129 static struct zbud_ops zbud_zpool_ops = { 130 .evict = zbud_zpool_evict 131 }; 132 133 static void *zbud_zpool_create(char *name, gfp_t gfp, 134 struct zpool_ops *zpool_ops) 135 { 136 return zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL); 137 } 138 139 static void zbud_zpool_destroy(void *pool) 140 { 141 zbud_destroy_pool(pool); 142 } 143 144 static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp, 145 unsigned long *handle) 146 { 147 return zbud_alloc(pool, size, gfp, handle); 148 } 149 static void zbud_zpool_free(void *pool, unsigned long handle) 150 { 151 zbud_free(pool, handle); 152 } 153 154 static int zbud_zpool_shrink(void *pool, unsigned int pages, 155 unsigned int *reclaimed) 156 { 157 unsigned int total = 0; 158 int ret = -EINVAL; 159 160 while (total < pages) { 161 ret = zbud_reclaim_page(pool, 8); 162 if (ret < 0) 163 break; 164 total++; 165 } 166 167 if (reclaimed) 168 *reclaimed = total; 169 170 return ret; 171 } 172 173 static void *zbud_zpool_map(void *pool, unsigned long handle, 174 enum zpool_mapmode mm) 175 { 176 return zbud_map(pool, handle); 177 } 178 static void zbud_zpool_unmap(void *pool, unsigned long handle) 179 { 180 zbud_unmap(pool, handle); 181 } 182 183 static u64 zbud_zpool_total_size(void *pool) 184 { 185 return zbud_get_pool_size(pool) * PAGE_SIZE; 186 } 187 188 static struct zpool_driver zbud_zpool_driver = { 189 .type = "zbud", 190 .owner = THIS_MODULE, 191 .create = zbud_zpool_create, 192 .destroy = zbud_zpool_destroy, 193 .malloc = zbud_zpool_malloc, 194 .free = zbud_zpool_free, 195 .shrink = zbud_zpool_shrink, 196 .map = zbud_zpool_map, 197 .unmap = zbud_zpool_unmap, 198 .total_size = zbud_zpool_total_size, 199 }; 200 201 MODULE_ALIAS("zpool-zbud"); 202 #endif /* CONFIG_ZPOOL */ 203 204 /***************** 205 * Helpers 206 *****************/ 207 /* Just to make the code easier to read */ 208 enum buddy { 209 FIRST, 210 LAST 211 }; 212 213 /* Converts an allocation size in bytes to size in zbud chunks */ 214 static int size_to_chunks(size_t size) 215 { 216 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 217 } 218 219 #define for_each_unbuddied_list(_iter, _begin) \ 220 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 221 222 /* Initializes the zbud header of a newly allocated zbud page */ 223 static struct zbud_header *init_zbud_page(struct page *page) 224 { 225 struct zbud_header *zhdr = page_address(page); 226 zhdr->first_chunks = 0; 227 zhdr->last_chunks = 0; 228 INIT_LIST_HEAD(&zhdr->buddy); 229 INIT_LIST_HEAD(&zhdr->lru); 230 zhdr->under_reclaim = 0; 231 return zhdr; 232 } 233 234 /* Resets the struct page fields and frees the page */ 235 static void free_zbud_page(struct zbud_header *zhdr) 236 { 237 __free_page(virt_to_page(zhdr)); 238 } 239 240 /* 241 * Encodes the handle of a particular buddy within a zbud page 242 * Pool lock should be held as this function accesses first|last_chunks 243 */ 244 static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud) 245 { 246 unsigned long handle; 247 248 /* 249 * For now, the encoded handle is actually just the pointer to the data 250 * but this might not always be the case. A little information hiding. 251 * Add CHUNK_SIZE to the handle if it is the first allocation to jump 252 * over the zbud header in the first chunk. 253 */ 254 handle = (unsigned long)zhdr; 255 if (bud == FIRST) 256 /* skip over zbud header */ 257 handle += ZHDR_SIZE_ALIGNED; 258 else /* bud == LAST */ 259 handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); 260 return handle; 261 } 262 263 /* Returns the zbud page where a given handle is stored */ 264 static struct zbud_header *handle_to_zbud_header(unsigned long handle) 265 { 266 return (struct zbud_header *)(handle & PAGE_MASK); 267 } 268 269 /* Returns the number of free chunks in a zbud page */ 270 static int num_free_chunks(struct zbud_header *zhdr) 271 { 272 /* 273 * Rather than branch for different situations, just use the fact that 274 * free buddies have a length of zero to simplify everything. 275 */ 276 return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 277 } 278 279 /***************** 280 * API Functions 281 *****************/ 282 /** 283 * zbud_create_pool() - create a new zbud pool 284 * @gfp: gfp flags when allocating the zbud pool structure 285 * @ops: user-defined operations for the zbud pool 286 * 287 * Return: pointer to the new zbud pool or NULL if the metadata allocation 288 * failed. 289 */ 290 struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops) 291 { 292 struct zbud_pool *pool; 293 int i; 294 295 pool = kmalloc(sizeof(struct zbud_pool), gfp); 296 if (!pool) 297 return NULL; 298 spin_lock_init(&pool->lock); 299 for_each_unbuddied_list(i, 0) 300 INIT_LIST_HEAD(&pool->unbuddied[i]); 301 INIT_LIST_HEAD(&pool->buddied); 302 INIT_LIST_HEAD(&pool->lru); 303 pool->pages_nr = 0; 304 pool->ops = ops; 305 return pool; 306 } 307 308 /** 309 * zbud_destroy_pool() - destroys an existing zbud pool 310 * @pool: the zbud pool to be destroyed 311 * 312 * The pool should be emptied before this function is called. 313 */ 314 void zbud_destroy_pool(struct zbud_pool *pool) 315 { 316 kfree(pool); 317 } 318 319 /** 320 * zbud_alloc() - allocates a region of a given size 321 * @pool: zbud pool from which to allocate 322 * @size: size in bytes of the desired allocation 323 * @gfp: gfp flags used if the pool needs to grow 324 * @handle: handle of the new allocation 325 * 326 * This function will attempt to find a free region in the pool large enough to 327 * satisfy the allocation request. A search of the unbuddied lists is 328 * performed first. If no suitable free region is found, then a new page is 329 * allocated and added to the pool to satisfy the request. 330 * 331 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 332 * as zbud pool pages. 333 * 334 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 335 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 336 * a new page. 337 */ 338 int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp, 339 unsigned long *handle) 340 { 341 int chunks, i, freechunks; 342 struct zbud_header *zhdr = NULL; 343 enum buddy bud; 344 struct page *page; 345 346 if (!size || (gfp & __GFP_HIGHMEM)) 347 return -EINVAL; 348 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 349 return -ENOSPC; 350 chunks = size_to_chunks(size); 351 spin_lock(&pool->lock); 352 353 /* First, try to find an unbuddied zbud page. */ 354 zhdr = NULL; 355 for_each_unbuddied_list(i, chunks) { 356 if (!list_empty(&pool->unbuddied[i])) { 357 zhdr = list_first_entry(&pool->unbuddied[i], 358 struct zbud_header, buddy); 359 list_del(&zhdr->buddy); 360 if (zhdr->first_chunks == 0) 361 bud = FIRST; 362 else 363 bud = LAST; 364 goto found; 365 } 366 } 367 368 /* Couldn't find unbuddied zbud page, create new one */ 369 spin_unlock(&pool->lock); 370 page = alloc_page(gfp); 371 if (!page) 372 return -ENOMEM; 373 spin_lock(&pool->lock); 374 pool->pages_nr++; 375 zhdr = init_zbud_page(page); 376 bud = FIRST; 377 378 found: 379 if (bud == FIRST) 380 zhdr->first_chunks = chunks; 381 else 382 zhdr->last_chunks = chunks; 383 384 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) { 385 /* Add to unbuddied list */ 386 freechunks = num_free_chunks(zhdr); 387 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 388 } else { 389 /* Add to buddied list */ 390 list_add(&zhdr->buddy, &pool->buddied); 391 } 392 393 /* Add/move zbud page to beginning of LRU */ 394 if (!list_empty(&zhdr->lru)) 395 list_del(&zhdr->lru); 396 list_add(&zhdr->lru, &pool->lru); 397 398 *handle = encode_handle(zhdr, bud); 399 spin_unlock(&pool->lock); 400 401 return 0; 402 } 403 404 /** 405 * zbud_free() - frees the allocation associated with the given handle 406 * @pool: pool in which the allocation resided 407 * @handle: handle associated with the allocation returned by zbud_alloc() 408 * 409 * In the case that the zbud page in which the allocation resides is under 410 * reclaim, as indicated by the PG_reclaim flag being set, this function 411 * only sets the first|last_chunks to 0. The page is actually freed 412 * once both buddies are evicted (see zbud_reclaim_page() below). 413 */ 414 void zbud_free(struct zbud_pool *pool, unsigned long handle) 415 { 416 struct zbud_header *zhdr; 417 int freechunks; 418 419 spin_lock(&pool->lock); 420 zhdr = handle_to_zbud_header(handle); 421 422 /* If first buddy, handle will be page aligned */ 423 if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK) 424 zhdr->last_chunks = 0; 425 else 426 zhdr->first_chunks = 0; 427 428 if (zhdr->under_reclaim) { 429 /* zbud page is under reclaim, reclaim will free */ 430 spin_unlock(&pool->lock); 431 return; 432 } 433 434 /* Remove from existing buddy list */ 435 list_del(&zhdr->buddy); 436 437 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 438 /* zbud page is empty, free */ 439 list_del(&zhdr->lru); 440 free_zbud_page(zhdr); 441 pool->pages_nr--; 442 } else { 443 /* Add to unbuddied list */ 444 freechunks = num_free_chunks(zhdr); 445 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 446 } 447 448 spin_unlock(&pool->lock); 449 } 450 451 #define list_tail_entry(ptr, type, member) \ 452 list_entry((ptr)->prev, type, member) 453 454 /** 455 * zbud_reclaim_page() - evicts allocations from a pool page and frees it 456 * @pool: pool from which a page will attempt to be evicted 457 * @retires: number of pages on the LRU list for which eviction will 458 * be attempted before failing 459 * 460 * zbud reclaim is different from normal system reclaim in that the reclaim is 461 * done from the bottom, up. This is because only the bottom layer, zbud, has 462 * information on how the allocations are organized within each zbud page. This 463 * has the potential to create interesting locking situations between zbud and 464 * the user, however. 465 * 466 * To avoid these, this is how zbud_reclaim_page() should be called: 467 468 * The user detects a page should be reclaimed and calls zbud_reclaim_page(). 469 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call 470 * the user-defined eviction handler with the pool and handle as arguments. 471 * 472 * If the handle can not be evicted, the eviction handler should return 473 * non-zero. zbud_reclaim_page() will add the zbud page back to the 474 * appropriate list and try the next zbud page on the LRU up to 475 * a user defined number of retries. 476 * 477 * If the handle is successfully evicted, the eviction handler should 478 * return 0 _and_ should have called zbud_free() on the handle. zbud_free() 479 * contains logic to delay freeing the page if the page is under reclaim, 480 * as indicated by the setting of the PG_reclaim flag on the underlying page. 481 * 482 * If all buddies in the zbud page are successfully evicted, then the 483 * zbud page can be freed. 484 * 485 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 486 * no pages to evict or an eviction handler is not registered, -EAGAIN if 487 * the retry limit was hit. 488 */ 489 int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries) 490 { 491 int i, ret, freechunks; 492 struct zbud_header *zhdr; 493 unsigned long first_handle = 0, last_handle = 0; 494 495 spin_lock(&pool->lock); 496 if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) || 497 retries == 0) { 498 spin_unlock(&pool->lock); 499 return -EINVAL; 500 } 501 for (i = 0; i < retries; i++) { 502 zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru); 503 list_del(&zhdr->lru); 504 list_del(&zhdr->buddy); 505 /* Protect zbud page against free */ 506 zhdr->under_reclaim = true; 507 /* 508 * We need encode the handles before unlocking, since we can 509 * race with free that will set (first|last)_chunks to 0 510 */ 511 first_handle = 0; 512 last_handle = 0; 513 if (zhdr->first_chunks) 514 first_handle = encode_handle(zhdr, FIRST); 515 if (zhdr->last_chunks) 516 last_handle = encode_handle(zhdr, LAST); 517 spin_unlock(&pool->lock); 518 519 /* Issue the eviction callback(s) */ 520 if (first_handle) { 521 ret = pool->ops->evict(pool, first_handle); 522 if (ret) 523 goto next; 524 } 525 if (last_handle) { 526 ret = pool->ops->evict(pool, last_handle); 527 if (ret) 528 goto next; 529 } 530 next: 531 spin_lock(&pool->lock); 532 zhdr->under_reclaim = false; 533 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 534 /* 535 * Both buddies are now free, free the zbud page and 536 * return success. 537 */ 538 free_zbud_page(zhdr); 539 pool->pages_nr--; 540 spin_unlock(&pool->lock); 541 return 0; 542 } else if (zhdr->first_chunks == 0 || 543 zhdr->last_chunks == 0) { 544 /* add to unbuddied list */ 545 freechunks = num_free_chunks(zhdr); 546 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); 547 } else { 548 /* add to buddied list */ 549 list_add(&zhdr->buddy, &pool->buddied); 550 } 551 552 /* add to beginning of LRU */ 553 list_add(&zhdr->lru, &pool->lru); 554 } 555 spin_unlock(&pool->lock); 556 return -EAGAIN; 557 } 558 559 /** 560 * zbud_map() - maps the allocation associated with the given handle 561 * @pool: pool in which the allocation resides 562 * @handle: handle associated with the allocation to be mapped 563 * 564 * While trivial for zbud, the mapping functions for others allocators 565 * implementing this allocation API could have more complex information encoded 566 * in the handle and could create temporary mappings to make the data 567 * accessible to the user. 568 * 569 * Returns: a pointer to the mapped allocation 570 */ 571 void *zbud_map(struct zbud_pool *pool, unsigned long handle) 572 { 573 return (void *)(handle); 574 } 575 576 /** 577 * zbud_unmap() - maps the allocation associated with the given handle 578 * @pool: pool in which the allocation resides 579 * @handle: handle associated with the allocation to be unmapped 580 */ 581 void zbud_unmap(struct zbud_pool *pool, unsigned long handle) 582 { 583 } 584 585 /** 586 * zbud_get_pool_size() - gets the zbud pool size in pages 587 * @pool: pool whose size is being queried 588 * 589 * Returns: size in pages of the given pool. The pool lock need not be 590 * taken to access pages_nr. 591 */ 592 u64 zbud_get_pool_size(struct zbud_pool *pool) 593 { 594 return pool->pages_nr; 595 } 596 597 static int __init init_zbud(void) 598 { 599 /* Make sure the zbud header will fit in one chunk */ 600 BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED); 601 pr_info("loaded\n"); 602 603 #ifdef CONFIG_ZPOOL 604 zpool_register_driver(&zbud_zpool_driver); 605 #endif 606 607 return 0; 608 } 609 610 static void __exit exit_zbud(void) 611 { 612 #ifdef CONFIG_ZPOOL 613 zpool_unregister_driver(&zbud_zpool_driver); 614 #endif 615 616 pr_info("unloaded\n"); 617 } 618 619 module_init(init_zbud); 620 module_exit(exit_zbud); 621 622 MODULE_LICENSE("GPL"); 623 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 624 MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages"); 625