1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/pseudo_fs.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 #include <linux/magic.h> 46 47 /* 48 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 49 * adjusting internal fragmentation. It also determines the number of 50 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 51 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 52 * in the beginning of an allocated page are occupied by z3fold header, so 53 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 54 * which shows the max number of free chunks in z3fold page, also there will 55 * be 63, or 62, respectively, freelists per pool. 56 */ 57 #define NCHUNKS_ORDER 6 58 59 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 60 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 62 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 63 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 64 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 65 66 #define BUDDY_MASK (0x3) 67 #define BUDDY_SHIFT 2 68 #define SLOTS_ALIGN (0x40) 69 70 /***************** 71 * Structures 72 *****************/ 73 struct z3fold_pool; 74 struct z3fold_ops { 75 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 76 }; 77 78 enum buddy { 79 HEADLESS = 0, 80 FIRST, 81 MIDDLE, 82 LAST, 83 BUDDIES_MAX = LAST 84 }; 85 86 struct z3fold_buddy_slots { 87 /* 88 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 89 * be enough slots to hold all possible variants 90 */ 91 unsigned long slot[BUDDY_MASK + 1]; 92 unsigned long pool; /* back link + flags */ 93 }; 94 #define HANDLE_FLAG_MASK (0x03) 95 96 /* 97 * struct z3fold_header - z3fold page metadata occupying first chunks of each 98 * z3fold page, except for HEADLESS pages 99 * @buddy: links the z3fold page into the relevant list in the 100 * pool 101 * @page_lock: per-page lock 102 * @refcount: reference count for the z3fold page 103 * @work: work_struct for page layout optimization 104 * @slots: pointer to the structure holding buddy slots 105 * @pool: pointer to the containing pool 106 * @cpu: CPU which this page "belongs" to 107 * @first_chunks: the size of the first buddy in chunks, 0 if free 108 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 109 * @last_chunks: the size of the last buddy in chunks, 0 if free 110 * @first_num: the starting number (for the first handle) 111 * @mapped_count: the number of objects currently mapped 112 */ 113 struct z3fold_header { 114 struct list_head buddy; 115 spinlock_t page_lock; 116 struct kref refcount; 117 struct work_struct work; 118 struct z3fold_buddy_slots *slots; 119 struct z3fold_pool *pool; 120 short cpu; 121 unsigned short first_chunks; 122 unsigned short middle_chunks; 123 unsigned short last_chunks; 124 unsigned short start_middle; 125 unsigned short first_num:2; 126 unsigned short mapped_count:2; 127 }; 128 129 /** 130 * struct z3fold_pool - stores metadata for each z3fold pool 131 * @name: pool name 132 * @lock: protects pool unbuddied/lru lists 133 * @stale_lock: protects pool stale page list 134 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 135 * buddies; the list each z3fold page is added to depends on 136 * the size of its free region. 137 * @lru: list tracking the z3fold pages in LRU order by most recently 138 * added buddy. 139 * @stale: list of pages marked for freeing 140 * @pages_nr: number of z3fold pages in the pool. 141 * @c_handle: cache for z3fold_buddy_slots allocation 142 * @ops: pointer to a structure of user defined operations specified at 143 * pool creation time. 144 * @compact_wq: workqueue for page layout background optimization 145 * @release_wq: workqueue for safe page release 146 * @work: work_struct for safe page release 147 * @inode: inode for z3fold pseudo filesystem 148 * 149 * This structure is allocated at pool creation time and maintains metadata 150 * pertaining to a particular z3fold pool. 151 */ 152 struct z3fold_pool { 153 const char *name; 154 spinlock_t lock; 155 spinlock_t stale_lock; 156 struct list_head *unbuddied; 157 struct list_head lru; 158 struct list_head stale; 159 atomic64_t pages_nr; 160 struct kmem_cache *c_handle; 161 const struct z3fold_ops *ops; 162 struct zpool *zpool; 163 const struct zpool_ops *zpool_ops; 164 struct workqueue_struct *compact_wq; 165 struct workqueue_struct *release_wq; 166 struct work_struct work; 167 struct inode *inode; 168 }; 169 170 /* 171 * Internal z3fold page flags 172 */ 173 enum z3fold_page_flags { 174 PAGE_HEADLESS = 0, 175 MIDDLE_CHUNK_MAPPED, 176 NEEDS_COMPACTING, 177 PAGE_STALE, 178 PAGE_CLAIMED, /* by either reclaim or free */ 179 }; 180 181 /***************** 182 * Helpers 183 *****************/ 184 185 /* Converts an allocation size in bytes to size in z3fold chunks */ 186 static int size_to_chunks(size_t size) 187 { 188 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 189 } 190 191 #define for_each_unbuddied_list(_iter, _begin) \ 192 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 193 194 static void compact_page_work(struct work_struct *w); 195 196 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 197 gfp_t gfp) 198 { 199 struct z3fold_buddy_slots *slots; 200 201 slots = kmem_cache_alloc(pool->c_handle, 202 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE))); 203 204 if (slots) { 205 memset(slots->slot, 0, sizeof(slots->slot)); 206 slots->pool = (unsigned long)pool; 207 } 208 209 return slots; 210 } 211 212 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 213 { 214 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 215 } 216 217 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 218 { 219 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 220 } 221 222 static inline void free_handle(unsigned long handle) 223 { 224 struct z3fold_buddy_slots *slots; 225 int i; 226 bool is_free; 227 228 if (handle & (1 << PAGE_HEADLESS)) 229 return; 230 231 WARN_ON(*(unsigned long *)handle == 0); 232 *(unsigned long *)handle = 0; 233 slots = handle_to_slots(handle); 234 is_free = true; 235 for (i = 0; i <= BUDDY_MASK; i++) { 236 if (slots->slot[i]) { 237 is_free = false; 238 break; 239 } 240 } 241 242 if (is_free) { 243 struct z3fold_pool *pool = slots_to_pool(slots); 244 245 kmem_cache_free(pool->c_handle, slots); 246 } 247 } 248 249 static int z3fold_init_fs_context(struct fs_context *fc) 250 { 251 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM; 252 } 253 254 static struct file_system_type z3fold_fs = { 255 .name = "z3fold", 256 .init_fs_context = z3fold_init_fs_context, 257 .kill_sb = kill_anon_super, 258 }; 259 260 static struct vfsmount *z3fold_mnt; 261 static int z3fold_mount(void) 262 { 263 int ret = 0; 264 265 z3fold_mnt = kern_mount(&z3fold_fs); 266 if (IS_ERR(z3fold_mnt)) 267 ret = PTR_ERR(z3fold_mnt); 268 269 return ret; 270 } 271 272 static void z3fold_unmount(void) 273 { 274 kern_unmount(z3fold_mnt); 275 } 276 277 static const struct address_space_operations z3fold_aops; 278 static int z3fold_register_migration(struct z3fold_pool *pool) 279 { 280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 281 if (IS_ERR(pool->inode)) { 282 pool->inode = NULL; 283 return 1; 284 } 285 286 pool->inode->i_mapping->private_data = pool; 287 pool->inode->i_mapping->a_ops = &z3fold_aops; 288 return 0; 289 } 290 291 static void z3fold_unregister_migration(struct z3fold_pool *pool) 292 { 293 if (pool->inode) 294 iput(pool->inode); 295 } 296 297 /* Initializes the z3fold header of a newly allocated z3fold page */ 298 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless, 299 struct z3fold_pool *pool, gfp_t gfp) 300 { 301 struct z3fold_header *zhdr = page_address(page); 302 struct z3fold_buddy_slots *slots; 303 304 INIT_LIST_HEAD(&page->lru); 305 clear_bit(PAGE_HEADLESS, &page->private); 306 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 307 clear_bit(NEEDS_COMPACTING, &page->private); 308 clear_bit(PAGE_STALE, &page->private); 309 clear_bit(PAGE_CLAIMED, &page->private); 310 if (headless) 311 return zhdr; 312 313 slots = alloc_slots(pool, gfp); 314 if (!slots) 315 return NULL; 316 317 spin_lock_init(&zhdr->page_lock); 318 kref_init(&zhdr->refcount); 319 zhdr->first_chunks = 0; 320 zhdr->middle_chunks = 0; 321 zhdr->last_chunks = 0; 322 zhdr->first_num = 0; 323 zhdr->start_middle = 0; 324 zhdr->cpu = -1; 325 zhdr->slots = slots; 326 zhdr->pool = pool; 327 INIT_LIST_HEAD(&zhdr->buddy); 328 INIT_WORK(&zhdr->work, compact_page_work); 329 return zhdr; 330 } 331 332 /* Resets the struct page fields and frees the page */ 333 static void free_z3fold_page(struct page *page, bool headless) 334 { 335 if (!headless) { 336 lock_page(page); 337 __ClearPageMovable(page); 338 unlock_page(page); 339 } 340 ClearPagePrivate(page); 341 __free_page(page); 342 } 343 344 /* Lock a z3fold page */ 345 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 346 { 347 spin_lock(&zhdr->page_lock); 348 } 349 350 /* Try to lock a z3fold page */ 351 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 352 { 353 return spin_trylock(&zhdr->page_lock); 354 } 355 356 /* Unlock a z3fold page */ 357 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 358 { 359 spin_unlock(&zhdr->page_lock); 360 } 361 362 /* Helper function to build the index */ 363 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 364 { 365 return (bud + zhdr->first_num) & BUDDY_MASK; 366 } 367 368 /* 369 * Encodes the handle of a particular buddy within a z3fold page 370 * Pool lock should be held as this function accesses first_num 371 */ 372 static unsigned long __encode_handle(struct z3fold_header *zhdr, 373 struct z3fold_buddy_slots *slots, 374 enum buddy bud) 375 { 376 unsigned long h = (unsigned long)zhdr; 377 int idx = 0; 378 379 /* 380 * For a headless page, its handle is its pointer with the extra 381 * PAGE_HEADLESS bit set 382 */ 383 if (bud == HEADLESS) 384 return h | (1 << PAGE_HEADLESS); 385 386 /* otherwise, return pointer to encoded handle */ 387 idx = __idx(zhdr, bud); 388 h += idx; 389 if (bud == LAST) 390 h |= (zhdr->last_chunks << BUDDY_SHIFT); 391 392 slots->slot[idx] = h; 393 return (unsigned long)&slots->slot[idx]; 394 } 395 396 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 397 { 398 return __encode_handle(zhdr, zhdr->slots, bud); 399 } 400 401 /* Returns the z3fold page where a given handle is stored */ 402 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 403 { 404 unsigned long addr = h; 405 406 if (!(addr & (1 << PAGE_HEADLESS))) 407 addr = *(unsigned long *)h; 408 409 return (struct z3fold_header *)(addr & PAGE_MASK); 410 } 411 412 /* only for LAST bud, returns zero otherwise */ 413 static unsigned short handle_to_chunks(unsigned long handle) 414 { 415 unsigned long addr = *(unsigned long *)handle; 416 417 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 418 } 419 420 /* 421 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 422 * but that doesn't matter. because the masking will result in the 423 * correct buddy number. 424 */ 425 static enum buddy handle_to_buddy(unsigned long handle) 426 { 427 struct z3fold_header *zhdr; 428 unsigned long addr; 429 430 WARN_ON(handle & (1 << PAGE_HEADLESS)); 431 addr = *(unsigned long *)handle; 432 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 433 return (addr - zhdr->first_num) & BUDDY_MASK; 434 } 435 436 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 437 { 438 return zhdr->pool; 439 } 440 441 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 442 { 443 struct page *page = virt_to_page(zhdr); 444 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 445 446 WARN_ON(!list_empty(&zhdr->buddy)); 447 set_bit(PAGE_STALE, &page->private); 448 clear_bit(NEEDS_COMPACTING, &page->private); 449 spin_lock(&pool->lock); 450 if (!list_empty(&page->lru)) 451 list_del_init(&page->lru); 452 spin_unlock(&pool->lock); 453 if (locked) 454 z3fold_page_unlock(zhdr); 455 spin_lock(&pool->stale_lock); 456 list_add(&zhdr->buddy, &pool->stale); 457 queue_work(pool->release_wq, &pool->work); 458 spin_unlock(&pool->stale_lock); 459 } 460 461 static void __attribute__((__unused__)) 462 release_z3fold_page(struct kref *ref) 463 { 464 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 465 refcount); 466 __release_z3fold_page(zhdr, false); 467 } 468 469 static void release_z3fold_page_locked(struct kref *ref) 470 { 471 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 472 refcount); 473 WARN_ON(z3fold_page_trylock(zhdr)); 474 __release_z3fold_page(zhdr, true); 475 } 476 477 static void release_z3fold_page_locked_list(struct kref *ref) 478 { 479 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 480 refcount); 481 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 482 spin_lock(&pool->lock); 483 list_del_init(&zhdr->buddy); 484 spin_unlock(&pool->lock); 485 486 WARN_ON(z3fold_page_trylock(zhdr)); 487 __release_z3fold_page(zhdr, true); 488 } 489 490 static void free_pages_work(struct work_struct *w) 491 { 492 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 493 494 spin_lock(&pool->stale_lock); 495 while (!list_empty(&pool->stale)) { 496 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 497 struct z3fold_header, buddy); 498 struct page *page = virt_to_page(zhdr); 499 500 list_del(&zhdr->buddy); 501 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 502 continue; 503 spin_unlock(&pool->stale_lock); 504 cancel_work_sync(&zhdr->work); 505 free_z3fold_page(page, false); 506 cond_resched(); 507 spin_lock(&pool->stale_lock); 508 } 509 spin_unlock(&pool->stale_lock); 510 } 511 512 /* 513 * Returns the number of free chunks in a z3fold page. 514 * NB: can't be used with HEADLESS pages. 515 */ 516 static int num_free_chunks(struct z3fold_header *zhdr) 517 { 518 int nfree; 519 /* 520 * If there is a middle object, pick up the bigger free space 521 * either before or after it. Otherwise just subtract the number 522 * of chunks occupied by the first and the last objects. 523 */ 524 if (zhdr->middle_chunks != 0) { 525 int nfree_before = zhdr->first_chunks ? 526 0 : zhdr->start_middle - ZHDR_CHUNKS; 527 int nfree_after = zhdr->last_chunks ? 528 0 : TOTAL_CHUNKS - 529 (zhdr->start_middle + zhdr->middle_chunks); 530 nfree = max(nfree_before, nfree_after); 531 } else 532 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 533 return nfree; 534 } 535 536 /* Add to the appropriate unbuddied list */ 537 static inline void add_to_unbuddied(struct z3fold_pool *pool, 538 struct z3fold_header *zhdr) 539 { 540 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 541 zhdr->middle_chunks == 0) { 542 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 543 544 int freechunks = num_free_chunks(zhdr); 545 spin_lock(&pool->lock); 546 list_add(&zhdr->buddy, &unbuddied[freechunks]); 547 spin_unlock(&pool->lock); 548 zhdr->cpu = smp_processor_id(); 549 put_cpu_ptr(pool->unbuddied); 550 } 551 } 552 553 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 554 unsigned short dst_chunk) 555 { 556 void *beg = zhdr; 557 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 558 beg + (zhdr->start_middle << CHUNK_SHIFT), 559 zhdr->middle_chunks << CHUNK_SHIFT); 560 } 561 562 #define BIG_CHUNK_GAP 3 563 /* Has to be called with lock held */ 564 static int z3fold_compact_page(struct z3fold_header *zhdr) 565 { 566 struct page *page = virt_to_page(zhdr); 567 568 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 569 return 0; /* can't move middle chunk, it's used */ 570 571 if (unlikely(PageIsolated(page))) 572 return 0; 573 574 if (zhdr->middle_chunks == 0) 575 return 0; /* nothing to compact */ 576 577 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 578 /* move to the beginning */ 579 mchunk_memmove(zhdr, ZHDR_CHUNKS); 580 zhdr->first_chunks = zhdr->middle_chunks; 581 zhdr->middle_chunks = 0; 582 zhdr->start_middle = 0; 583 zhdr->first_num++; 584 return 1; 585 } 586 587 /* 588 * moving data is expensive, so let's only do that if 589 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 590 */ 591 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 592 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 593 BIG_CHUNK_GAP) { 594 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 595 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 596 return 1; 597 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 598 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 599 + zhdr->middle_chunks) >= 600 BIG_CHUNK_GAP) { 601 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 602 zhdr->middle_chunks; 603 mchunk_memmove(zhdr, new_start); 604 zhdr->start_middle = new_start; 605 return 1; 606 } 607 608 return 0; 609 } 610 611 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 612 { 613 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 614 struct page *page; 615 616 page = virt_to_page(zhdr); 617 if (locked) 618 WARN_ON(z3fold_page_trylock(zhdr)); 619 else 620 z3fold_page_lock(zhdr); 621 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 622 z3fold_page_unlock(zhdr); 623 return; 624 } 625 spin_lock(&pool->lock); 626 list_del_init(&zhdr->buddy); 627 spin_unlock(&pool->lock); 628 629 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 630 atomic64_dec(&pool->pages_nr); 631 return; 632 } 633 634 if (unlikely(PageIsolated(page) || 635 test_bit(PAGE_CLAIMED, &page->private) || 636 test_bit(PAGE_STALE, &page->private))) { 637 z3fold_page_unlock(zhdr); 638 return; 639 } 640 641 z3fold_compact_page(zhdr); 642 add_to_unbuddied(pool, zhdr); 643 z3fold_page_unlock(zhdr); 644 } 645 646 static void compact_page_work(struct work_struct *w) 647 { 648 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 649 work); 650 651 do_compact_page(zhdr, false); 652 } 653 654 /* returns _locked_ z3fold page header or NULL */ 655 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 656 size_t size, bool can_sleep) 657 { 658 struct z3fold_header *zhdr = NULL; 659 struct page *page; 660 struct list_head *unbuddied; 661 int chunks = size_to_chunks(size), i; 662 663 lookup: 664 /* First, try to find an unbuddied z3fold page. */ 665 unbuddied = get_cpu_ptr(pool->unbuddied); 666 for_each_unbuddied_list(i, chunks) { 667 struct list_head *l = &unbuddied[i]; 668 669 zhdr = list_first_entry_or_null(READ_ONCE(l), 670 struct z3fold_header, buddy); 671 672 if (!zhdr) 673 continue; 674 675 /* Re-check under lock. */ 676 spin_lock(&pool->lock); 677 l = &unbuddied[i]; 678 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 679 struct z3fold_header, buddy)) || 680 !z3fold_page_trylock(zhdr)) { 681 spin_unlock(&pool->lock); 682 zhdr = NULL; 683 put_cpu_ptr(pool->unbuddied); 684 if (can_sleep) 685 cond_resched(); 686 goto lookup; 687 } 688 list_del_init(&zhdr->buddy); 689 zhdr->cpu = -1; 690 spin_unlock(&pool->lock); 691 692 page = virt_to_page(zhdr); 693 if (test_bit(NEEDS_COMPACTING, &page->private)) { 694 z3fold_page_unlock(zhdr); 695 zhdr = NULL; 696 put_cpu_ptr(pool->unbuddied); 697 if (can_sleep) 698 cond_resched(); 699 goto lookup; 700 } 701 702 /* 703 * this page could not be removed from its unbuddied 704 * list while pool lock was held, and then we've taken 705 * page lock so kref_put could not be called before 706 * we got here, so it's safe to just call kref_get() 707 */ 708 kref_get(&zhdr->refcount); 709 break; 710 } 711 put_cpu_ptr(pool->unbuddied); 712 713 if (!zhdr) { 714 int cpu; 715 716 /* look for _exact_ match on other cpus' lists */ 717 for_each_online_cpu(cpu) { 718 struct list_head *l; 719 720 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 721 spin_lock(&pool->lock); 722 l = &unbuddied[chunks]; 723 724 zhdr = list_first_entry_or_null(READ_ONCE(l), 725 struct z3fold_header, buddy); 726 727 if (!zhdr || !z3fold_page_trylock(zhdr)) { 728 spin_unlock(&pool->lock); 729 zhdr = NULL; 730 continue; 731 } 732 list_del_init(&zhdr->buddy); 733 zhdr->cpu = -1; 734 spin_unlock(&pool->lock); 735 736 page = virt_to_page(zhdr); 737 if (test_bit(NEEDS_COMPACTING, &page->private)) { 738 z3fold_page_unlock(zhdr); 739 zhdr = NULL; 740 if (can_sleep) 741 cond_resched(); 742 continue; 743 } 744 kref_get(&zhdr->refcount); 745 break; 746 } 747 } 748 749 return zhdr; 750 } 751 752 /* 753 * API Functions 754 */ 755 756 /** 757 * z3fold_create_pool() - create a new z3fold pool 758 * @name: pool name 759 * @gfp: gfp flags when allocating the z3fold pool structure 760 * @ops: user-defined operations for the z3fold pool 761 * 762 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 763 * failed. 764 */ 765 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 766 const struct z3fold_ops *ops) 767 { 768 struct z3fold_pool *pool = NULL; 769 int i, cpu; 770 771 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 772 if (!pool) 773 goto out; 774 pool->c_handle = kmem_cache_create("z3fold_handle", 775 sizeof(struct z3fold_buddy_slots), 776 SLOTS_ALIGN, 0, NULL); 777 if (!pool->c_handle) 778 goto out_c; 779 spin_lock_init(&pool->lock); 780 spin_lock_init(&pool->stale_lock); 781 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 782 if (!pool->unbuddied) 783 goto out_pool; 784 for_each_possible_cpu(cpu) { 785 struct list_head *unbuddied = 786 per_cpu_ptr(pool->unbuddied, cpu); 787 for_each_unbuddied_list(i, 0) 788 INIT_LIST_HEAD(&unbuddied[i]); 789 } 790 INIT_LIST_HEAD(&pool->lru); 791 INIT_LIST_HEAD(&pool->stale); 792 atomic64_set(&pool->pages_nr, 0); 793 pool->name = name; 794 pool->compact_wq = create_singlethread_workqueue(pool->name); 795 if (!pool->compact_wq) 796 goto out_unbuddied; 797 pool->release_wq = create_singlethread_workqueue(pool->name); 798 if (!pool->release_wq) 799 goto out_wq; 800 if (z3fold_register_migration(pool)) 801 goto out_rwq; 802 INIT_WORK(&pool->work, free_pages_work); 803 pool->ops = ops; 804 return pool; 805 806 out_rwq: 807 destroy_workqueue(pool->release_wq); 808 out_wq: 809 destroy_workqueue(pool->compact_wq); 810 out_unbuddied: 811 free_percpu(pool->unbuddied); 812 out_pool: 813 kmem_cache_destroy(pool->c_handle); 814 out_c: 815 kfree(pool); 816 out: 817 return NULL; 818 } 819 820 /** 821 * z3fold_destroy_pool() - destroys an existing z3fold pool 822 * @pool: the z3fold pool to be destroyed 823 * 824 * The pool should be emptied before this function is called. 825 */ 826 static void z3fold_destroy_pool(struct z3fold_pool *pool) 827 { 828 kmem_cache_destroy(pool->c_handle); 829 830 /* 831 * We need to destroy pool->compact_wq before pool->release_wq, 832 * as any pending work on pool->compact_wq will call 833 * queue_work(pool->release_wq, &pool->work). 834 * 835 * There are still outstanding pages until both workqueues are drained, 836 * so we cannot unregister migration until then. 837 */ 838 839 destroy_workqueue(pool->compact_wq); 840 destroy_workqueue(pool->release_wq); 841 z3fold_unregister_migration(pool); 842 kfree(pool); 843 } 844 845 /** 846 * z3fold_alloc() - allocates a region of a given size 847 * @pool: z3fold pool from which to allocate 848 * @size: size in bytes of the desired allocation 849 * @gfp: gfp flags used if the pool needs to grow 850 * @handle: handle of the new allocation 851 * 852 * This function will attempt to find a free region in the pool large enough to 853 * satisfy the allocation request. A search of the unbuddied lists is 854 * performed first. If no suitable free region is found, then a new page is 855 * allocated and added to the pool to satisfy the request. 856 * 857 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 858 * as z3fold pool pages. 859 * 860 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 861 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 862 * a new page. 863 */ 864 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 865 unsigned long *handle) 866 { 867 int chunks = size_to_chunks(size); 868 struct z3fold_header *zhdr = NULL; 869 struct page *page = NULL; 870 enum buddy bud; 871 bool can_sleep = gfpflags_allow_blocking(gfp); 872 873 if (!size) 874 return -EINVAL; 875 876 if (size > PAGE_SIZE) 877 return -ENOSPC; 878 879 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 880 bud = HEADLESS; 881 else { 882 retry: 883 zhdr = __z3fold_alloc(pool, size, can_sleep); 884 if (zhdr) { 885 if (zhdr->first_chunks == 0) { 886 if (zhdr->middle_chunks != 0 && 887 chunks >= zhdr->start_middle) 888 bud = LAST; 889 else 890 bud = FIRST; 891 } else if (zhdr->last_chunks == 0) 892 bud = LAST; 893 else if (zhdr->middle_chunks == 0) 894 bud = MIDDLE; 895 else { 896 if (kref_put(&zhdr->refcount, 897 release_z3fold_page_locked)) 898 atomic64_dec(&pool->pages_nr); 899 else 900 z3fold_page_unlock(zhdr); 901 pr_err("No free chunks in unbuddied\n"); 902 WARN_ON(1); 903 goto retry; 904 } 905 page = virt_to_page(zhdr); 906 goto found; 907 } 908 bud = FIRST; 909 } 910 911 page = NULL; 912 if (can_sleep) { 913 spin_lock(&pool->stale_lock); 914 zhdr = list_first_entry_or_null(&pool->stale, 915 struct z3fold_header, buddy); 916 /* 917 * Before allocating a page, let's see if we can take one from 918 * the stale pages list. cancel_work_sync() can sleep so we 919 * limit this case to the contexts where we can sleep 920 */ 921 if (zhdr) { 922 list_del(&zhdr->buddy); 923 spin_unlock(&pool->stale_lock); 924 cancel_work_sync(&zhdr->work); 925 page = virt_to_page(zhdr); 926 } else { 927 spin_unlock(&pool->stale_lock); 928 } 929 } 930 if (!page) 931 page = alloc_page(gfp); 932 933 if (!page) 934 return -ENOMEM; 935 936 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp); 937 if (!zhdr) { 938 __free_page(page); 939 return -ENOMEM; 940 } 941 atomic64_inc(&pool->pages_nr); 942 943 if (bud == HEADLESS) { 944 set_bit(PAGE_HEADLESS, &page->private); 945 goto headless; 946 } 947 if (can_sleep) { 948 lock_page(page); 949 __SetPageMovable(page, pool->inode->i_mapping); 950 unlock_page(page); 951 } else { 952 if (trylock_page(page)) { 953 __SetPageMovable(page, pool->inode->i_mapping); 954 unlock_page(page); 955 } 956 } 957 z3fold_page_lock(zhdr); 958 959 found: 960 if (bud == FIRST) 961 zhdr->first_chunks = chunks; 962 else if (bud == LAST) 963 zhdr->last_chunks = chunks; 964 else { 965 zhdr->middle_chunks = chunks; 966 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 967 } 968 add_to_unbuddied(pool, zhdr); 969 970 headless: 971 spin_lock(&pool->lock); 972 /* Add/move z3fold page to beginning of LRU */ 973 if (!list_empty(&page->lru)) 974 list_del(&page->lru); 975 976 list_add(&page->lru, &pool->lru); 977 978 *handle = encode_handle(zhdr, bud); 979 spin_unlock(&pool->lock); 980 if (bud != HEADLESS) 981 z3fold_page_unlock(zhdr); 982 983 return 0; 984 } 985 986 /** 987 * z3fold_free() - frees the allocation associated with the given handle 988 * @pool: pool in which the allocation resided 989 * @handle: handle associated with the allocation returned by z3fold_alloc() 990 * 991 * In the case that the z3fold page in which the allocation resides is under 992 * reclaim, as indicated by the PG_reclaim flag being set, this function 993 * only sets the first|last_chunks to 0. The page is actually freed 994 * once both buddies are evicted (see z3fold_reclaim_page() below). 995 */ 996 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 997 { 998 struct z3fold_header *zhdr; 999 struct page *page; 1000 enum buddy bud; 1001 bool page_claimed; 1002 1003 zhdr = handle_to_z3fold_header(handle); 1004 page = virt_to_page(zhdr); 1005 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private); 1006 1007 if (test_bit(PAGE_HEADLESS, &page->private)) { 1008 /* if a headless page is under reclaim, just leave. 1009 * NB: we use test_and_set_bit for a reason: if the bit 1010 * has not been set before, we release this page 1011 * immediately so we don't care about its value any more. 1012 */ 1013 if (!page_claimed) { 1014 spin_lock(&pool->lock); 1015 list_del(&page->lru); 1016 spin_unlock(&pool->lock); 1017 free_z3fold_page(page, true); 1018 atomic64_dec(&pool->pages_nr); 1019 } 1020 return; 1021 } 1022 1023 /* Non-headless case */ 1024 z3fold_page_lock(zhdr); 1025 bud = handle_to_buddy(handle); 1026 1027 switch (bud) { 1028 case FIRST: 1029 zhdr->first_chunks = 0; 1030 break; 1031 case MIDDLE: 1032 zhdr->middle_chunks = 0; 1033 break; 1034 case LAST: 1035 zhdr->last_chunks = 0; 1036 break; 1037 default: 1038 pr_err("%s: unknown bud %d\n", __func__, bud); 1039 WARN_ON(1); 1040 z3fold_page_unlock(zhdr); 1041 return; 1042 } 1043 1044 free_handle(handle); 1045 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1046 atomic64_dec(&pool->pages_nr); 1047 return; 1048 } 1049 if (page_claimed) { 1050 /* the page has not been claimed by us */ 1051 z3fold_page_unlock(zhdr); 1052 return; 1053 } 1054 if (unlikely(PageIsolated(page)) || 1055 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1056 z3fold_page_unlock(zhdr); 1057 clear_bit(PAGE_CLAIMED, &page->private); 1058 return; 1059 } 1060 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1061 spin_lock(&pool->lock); 1062 list_del_init(&zhdr->buddy); 1063 spin_unlock(&pool->lock); 1064 zhdr->cpu = -1; 1065 kref_get(&zhdr->refcount); 1066 do_compact_page(zhdr, true); 1067 clear_bit(PAGE_CLAIMED, &page->private); 1068 return; 1069 } 1070 kref_get(&zhdr->refcount); 1071 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1072 clear_bit(PAGE_CLAIMED, &page->private); 1073 z3fold_page_unlock(zhdr); 1074 } 1075 1076 /** 1077 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1078 * @pool: pool from which a page will attempt to be evicted 1079 * @retries: number of pages on the LRU list for which eviction will 1080 * be attempted before failing 1081 * 1082 * z3fold reclaim is different from normal system reclaim in that it is done 1083 * from the bottom, up. This is because only the bottom layer, z3fold, has 1084 * information on how the allocations are organized within each z3fold page. 1085 * This has the potential to create interesting locking situations between 1086 * z3fold and the user, however. 1087 * 1088 * To avoid these, this is how z3fold_reclaim_page() should be called: 1089 * 1090 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1091 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1092 * call the user-defined eviction handler with the pool and handle as 1093 * arguments. 1094 * 1095 * If the handle can not be evicted, the eviction handler should return 1096 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1097 * appropriate list and try the next z3fold page on the LRU up to 1098 * a user defined number of retries. 1099 * 1100 * If the handle is successfully evicted, the eviction handler should 1101 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1102 * contains logic to delay freeing the page if the page is under reclaim, 1103 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1104 * 1105 * If all buddies in the z3fold page are successfully evicted, then the 1106 * z3fold page can be freed. 1107 * 1108 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1109 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1110 * the retry limit was hit. 1111 */ 1112 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1113 { 1114 int i, ret = 0; 1115 struct z3fold_header *zhdr = NULL; 1116 struct page *page = NULL; 1117 struct list_head *pos; 1118 struct z3fold_buddy_slots slots; 1119 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1120 1121 spin_lock(&pool->lock); 1122 if (!pool->ops || !pool->ops->evict || retries == 0) { 1123 spin_unlock(&pool->lock); 1124 return -EINVAL; 1125 } 1126 for (i = 0; i < retries; i++) { 1127 if (list_empty(&pool->lru)) { 1128 spin_unlock(&pool->lock); 1129 return -EINVAL; 1130 } 1131 list_for_each_prev(pos, &pool->lru) { 1132 page = list_entry(pos, struct page, lru); 1133 1134 /* this bit could have been set by free, in which case 1135 * we pass over to the next page in the pool. 1136 */ 1137 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) { 1138 page = NULL; 1139 continue; 1140 } 1141 1142 if (unlikely(PageIsolated(page))) { 1143 clear_bit(PAGE_CLAIMED, &page->private); 1144 page = NULL; 1145 continue; 1146 } 1147 zhdr = page_address(page); 1148 if (test_bit(PAGE_HEADLESS, &page->private)) 1149 break; 1150 1151 if (!z3fold_page_trylock(zhdr)) { 1152 clear_bit(PAGE_CLAIMED, &page->private); 1153 zhdr = NULL; 1154 continue; /* can't evict at this point */ 1155 } 1156 kref_get(&zhdr->refcount); 1157 list_del_init(&zhdr->buddy); 1158 zhdr->cpu = -1; 1159 break; 1160 } 1161 1162 if (!zhdr) 1163 break; 1164 1165 list_del_init(&page->lru); 1166 spin_unlock(&pool->lock); 1167 1168 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1169 /* 1170 * We need encode the handles before unlocking, and 1171 * use our local slots structure because z3fold_free 1172 * can zero out zhdr->slots and we can't do much 1173 * about that 1174 */ 1175 first_handle = 0; 1176 last_handle = 0; 1177 middle_handle = 0; 1178 if (zhdr->first_chunks) 1179 first_handle = __encode_handle(zhdr, &slots, 1180 FIRST); 1181 if (zhdr->middle_chunks) 1182 middle_handle = __encode_handle(zhdr, &slots, 1183 MIDDLE); 1184 if (zhdr->last_chunks) 1185 last_handle = __encode_handle(zhdr, &slots, 1186 LAST); 1187 /* 1188 * it's safe to unlock here because we hold a 1189 * reference to this page 1190 */ 1191 z3fold_page_unlock(zhdr); 1192 } else { 1193 first_handle = __encode_handle(zhdr, &slots, HEADLESS); 1194 last_handle = middle_handle = 0; 1195 } 1196 1197 /* Issue the eviction callback(s) */ 1198 if (middle_handle) { 1199 ret = pool->ops->evict(pool, middle_handle); 1200 if (ret) 1201 goto next; 1202 } 1203 if (first_handle) { 1204 ret = pool->ops->evict(pool, first_handle); 1205 if (ret) 1206 goto next; 1207 } 1208 if (last_handle) { 1209 ret = pool->ops->evict(pool, last_handle); 1210 if (ret) 1211 goto next; 1212 } 1213 next: 1214 if (test_bit(PAGE_HEADLESS, &page->private)) { 1215 if (ret == 0) { 1216 free_z3fold_page(page, true); 1217 atomic64_dec(&pool->pages_nr); 1218 return 0; 1219 } 1220 spin_lock(&pool->lock); 1221 list_add(&page->lru, &pool->lru); 1222 spin_unlock(&pool->lock); 1223 clear_bit(PAGE_CLAIMED, &page->private); 1224 } else { 1225 z3fold_page_lock(zhdr); 1226 if (kref_put(&zhdr->refcount, 1227 release_z3fold_page_locked)) { 1228 atomic64_dec(&pool->pages_nr); 1229 return 0; 1230 } 1231 /* 1232 * if we are here, the page is still not completely 1233 * free. Take the global pool lock then to be able 1234 * to add it back to the lru list 1235 */ 1236 spin_lock(&pool->lock); 1237 list_add(&page->lru, &pool->lru); 1238 spin_unlock(&pool->lock); 1239 z3fold_page_unlock(zhdr); 1240 clear_bit(PAGE_CLAIMED, &page->private); 1241 } 1242 1243 /* We started off locked to we need to lock the pool back */ 1244 spin_lock(&pool->lock); 1245 } 1246 spin_unlock(&pool->lock); 1247 return -EAGAIN; 1248 } 1249 1250 /** 1251 * z3fold_map() - maps the allocation associated with the given handle 1252 * @pool: pool in which the allocation resides 1253 * @handle: handle associated with the allocation to be mapped 1254 * 1255 * Extracts the buddy number from handle and constructs the pointer to the 1256 * correct starting chunk within the page. 1257 * 1258 * Returns: a pointer to the mapped allocation 1259 */ 1260 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1261 { 1262 struct z3fold_header *zhdr; 1263 struct page *page; 1264 void *addr; 1265 enum buddy buddy; 1266 1267 zhdr = handle_to_z3fold_header(handle); 1268 addr = zhdr; 1269 page = virt_to_page(zhdr); 1270 1271 if (test_bit(PAGE_HEADLESS, &page->private)) 1272 goto out; 1273 1274 z3fold_page_lock(zhdr); 1275 buddy = handle_to_buddy(handle); 1276 switch (buddy) { 1277 case FIRST: 1278 addr += ZHDR_SIZE_ALIGNED; 1279 break; 1280 case MIDDLE: 1281 addr += zhdr->start_middle << CHUNK_SHIFT; 1282 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1283 break; 1284 case LAST: 1285 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1286 break; 1287 default: 1288 pr_err("unknown buddy id %d\n", buddy); 1289 WARN_ON(1); 1290 addr = NULL; 1291 break; 1292 } 1293 1294 if (addr) 1295 zhdr->mapped_count++; 1296 z3fold_page_unlock(zhdr); 1297 out: 1298 return addr; 1299 } 1300 1301 /** 1302 * z3fold_unmap() - unmaps the allocation associated with the given handle 1303 * @pool: pool in which the allocation resides 1304 * @handle: handle associated with the allocation to be unmapped 1305 */ 1306 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1307 { 1308 struct z3fold_header *zhdr; 1309 struct page *page; 1310 enum buddy buddy; 1311 1312 zhdr = handle_to_z3fold_header(handle); 1313 page = virt_to_page(zhdr); 1314 1315 if (test_bit(PAGE_HEADLESS, &page->private)) 1316 return; 1317 1318 z3fold_page_lock(zhdr); 1319 buddy = handle_to_buddy(handle); 1320 if (buddy == MIDDLE) 1321 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1322 zhdr->mapped_count--; 1323 z3fold_page_unlock(zhdr); 1324 } 1325 1326 /** 1327 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1328 * @pool: pool whose size is being queried 1329 * 1330 * Returns: size in pages of the given pool. 1331 */ 1332 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1333 { 1334 return atomic64_read(&pool->pages_nr); 1335 } 1336 1337 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1338 { 1339 struct z3fold_header *zhdr; 1340 struct z3fold_pool *pool; 1341 1342 VM_BUG_ON_PAGE(!PageMovable(page), page); 1343 VM_BUG_ON_PAGE(PageIsolated(page), page); 1344 1345 if (test_bit(PAGE_HEADLESS, &page->private) || 1346 test_bit(PAGE_CLAIMED, &page->private)) 1347 return false; 1348 1349 zhdr = page_address(page); 1350 z3fold_page_lock(zhdr); 1351 if (test_bit(NEEDS_COMPACTING, &page->private) || 1352 test_bit(PAGE_STALE, &page->private)) 1353 goto out; 1354 1355 pool = zhdr_to_pool(zhdr); 1356 1357 if (zhdr->mapped_count == 0) { 1358 kref_get(&zhdr->refcount); 1359 if (!list_empty(&zhdr->buddy)) 1360 list_del_init(&zhdr->buddy); 1361 spin_lock(&pool->lock); 1362 if (!list_empty(&page->lru)) 1363 list_del(&page->lru); 1364 spin_unlock(&pool->lock); 1365 z3fold_page_unlock(zhdr); 1366 return true; 1367 } 1368 out: 1369 z3fold_page_unlock(zhdr); 1370 return false; 1371 } 1372 1373 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1374 struct page *page, enum migrate_mode mode) 1375 { 1376 struct z3fold_header *zhdr, *new_zhdr; 1377 struct z3fold_pool *pool; 1378 struct address_space *new_mapping; 1379 1380 VM_BUG_ON_PAGE(!PageMovable(page), page); 1381 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1382 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1383 1384 zhdr = page_address(page); 1385 pool = zhdr_to_pool(zhdr); 1386 1387 if (!z3fold_page_trylock(zhdr)) { 1388 return -EAGAIN; 1389 } 1390 if (zhdr->mapped_count != 0) { 1391 z3fold_page_unlock(zhdr); 1392 return -EBUSY; 1393 } 1394 if (work_pending(&zhdr->work)) { 1395 z3fold_page_unlock(zhdr); 1396 return -EAGAIN; 1397 } 1398 new_zhdr = page_address(newpage); 1399 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1400 newpage->private = page->private; 1401 page->private = 0; 1402 z3fold_page_unlock(zhdr); 1403 spin_lock_init(&new_zhdr->page_lock); 1404 INIT_WORK(&new_zhdr->work, compact_page_work); 1405 /* 1406 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty, 1407 * so we only have to reinitialize it. 1408 */ 1409 INIT_LIST_HEAD(&new_zhdr->buddy); 1410 new_mapping = page_mapping(page); 1411 __ClearPageMovable(page); 1412 ClearPagePrivate(page); 1413 1414 get_page(newpage); 1415 z3fold_page_lock(new_zhdr); 1416 if (new_zhdr->first_chunks) 1417 encode_handle(new_zhdr, FIRST); 1418 if (new_zhdr->last_chunks) 1419 encode_handle(new_zhdr, LAST); 1420 if (new_zhdr->middle_chunks) 1421 encode_handle(new_zhdr, MIDDLE); 1422 set_bit(NEEDS_COMPACTING, &newpage->private); 1423 new_zhdr->cpu = smp_processor_id(); 1424 spin_lock(&pool->lock); 1425 list_add(&newpage->lru, &pool->lru); 1426 spin_unlock(&pool->lock); 1427 __SetPageMovable(newpage, new_mapping); 1428 z3fold_page_unlock(new_zhdr); 1429 1430 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1431 1432 page_mapcount_reset(page); 1433 put_page(page); 1434 return 0; 1435 } 1436 1437 static void z3fold_page_putback(struct page *page) 1438 { 1439 struct z3fold_header *zhdr; 1440 struct z3fold_pool *pool; 1441 1442 zhdr = page_address(page); 1443 pool = zhdr_to_pool(zhdr); 1444 1445 z3fold_page_lock(zhdr); 1446 if (!list_empty(&zhdr->buddy)) 1447 list_del_init(&zhdr->buddy); 1448 INIT_LIST_HEAD(&page->lru); 1449 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1450 atomic64_dec(&pool->pages_nr); 1451 return; 1452 } 1453 spin_lock(&pool->lock); 1454 list_add(&page->lru, &pool->lru); 1455 spin_unlock(&pool->lock); 1456 z3fold_page_unlock(zhdr); 1457 } 1458 1459 static const struct address_space_operations z3fold_aops = { 1460 .isolate_page = z3fold_page_isolate, 1461 .migratepage = z3fold_page_migrate, 1462 .putback_page = z3fold_page_putback, 1463 }; 1464 1465 /***************** 1466 * zpool 1467 ****************/ 1468 1469 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1470 { 1471 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1472 return pool->zpool_ops->evict(pool->zpool, handle); 1473 else 1474 return -ENOENT; 1475 } 1476 1477 static const struct z3fold_ops z3fold_zpool_ops = { 1478 .evict = z3fold_zpool_evict 1479 }; 1480 1481 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1482 const struct zpool_ops *zpool_ops, 1483 struct zpool *zpool) 1484 { 1485 struct z3fold_pool *pool; 1486 1487 pool = z3fold_create_pool(name, gfp, 1488 zpool_ops ? &z3fold_zpool_ops : NULL); 1489 if (pool) { 1490 pool->zpool = zpool; 1491 pool->zpool_ops = zpool_ops; 1492 } 1493 return pool; 1494 } 1495 1496 static void z3fold_zpool_destroy(void *pool) 1497 { 1498 z3fold_destroy_pool(pool); 1499 } 1500 1501 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1502 unsigned long *handle) 1503 { 1504 return z3fold_alloc(pool, size, gfp, handle); 1505 } 1506 static void z3fold_zpool_free(void *pool, unsigned long handle) 1507 { 1508 z3fold_free(pool, handle); 1509 } 1510 1511 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1512 unsigned int *reclaimed) 1513 { 1514 unsigned int total = 0; 1515 int ret = -EINVAL; 1516 1517 while (total < pages) { 1518 ret = z3fold_reclaim_page(pool, 8); 1519 if (ret < 0) 1520 break; 1521 total++; 1522 } 1523 1524 if (reclaimed) 1525 *reclaimed = total; 1526 1527 return ret; 1528 } 1529 1530 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1531 enum zpool_mapmode mm) 1532 { 1533 return z3fold_map(pool, handle); 1534 } 1535 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1536 { 1537 z3fold_unmap(pool, handle); 1538 } 1539 1540 static u64 z3fold_zpool_total_size(void *pool) 1541 { 1542 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1543 } 1544 1545 static struct zpool_driver z3fold_zpool_driver = { 1546 .type = "z3fold", 1547 .owner = THIS_MODULE, 1548 .create = z3fold_zpool_create, 1549 .destroy = z3fold_zpool_destroy, 1550 .malloc = z3fold_zpool_malloc, 1551 .free = z3fold_zpool_free, 1552 .shrink = z3fold_zpool_shrink, 1553 .map = z3fold_zpool_map, 1554 .unmap = z3fold_zpool_unmap, 1555 .total_size = z3fold_zpool_total_size, 1556 }; 1557 1558 MODULE_ALIAS("zpool-z3fold"); 1559 1560 static int __init init_z3fold(void) 1561 { 1562 int ret; 1563 1564 /* Make sure the z3fold header is not larger than the page size */ 1565 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1566 ret = z3fold_mount(); 1567 if (ret) 1568 return ret; 1569 1570 zpool_register_driver(&z3fold_zpool_driver); 1571 1572 return 0; 1573 } 1574 1575 static void __exit exit_z3fold(void) 1576 { 1577 z3fold_unmount(); 1578 zpool_unregister_driver(&z3fold_zpool_driver); 1579 } 1580 1581 module_init(init_z3fold); 1582 module_exit(exit_z3fold); 1583 1584 MODULE_LICENSE("GPL"); 1585 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1586 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1587