xref: /openbmc/linux/mm/z3fold.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 
47 /*
48  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49  * adjusting internal fragmentation.  It also determines the number of
50  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52  * in the beginning of an allocated page are occupied by z3fold header, so
53  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54  * which shows the max number of free chunks in z3fold page, also there will
55  * be 63, or 62, respectively, freelists per pool.
56  */
57 #define NCHUNKS_ORDER	6
58 
59 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
60 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
64 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65 
66 #define BUDDY_MASK	(0x3)
67 #define BUDDY_SHIFT	2
68 #define SLOTS_ALIGN	(0x40)
69 
70 /*****************
71  * Structures
72 *****************/
73 struct z3fold_pool;
74 struct z3fold_ops {
75 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76 };
77 
78 enum buddy {
79 	HEADLESS = 0,
80 	FIRST,
81 	MIDDLE,
82 	LAST,
83 	BUDDIES_MAX = LAST
84 };
85 
86 struct z3fold_buddy_slots {
87 	/*
88 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 	 * be enough slots to hold all possible variants
90 	 */
91 	unsigned long slot[BUDDY_MASK + 1];
92 	unsigned long pool; /* back link + flags */
93 	rwlock_t lock;
94 };
95 #define HANDLE_FLAG_MASK	(0x03)
96 
97 /*
98  * struct z3fold_header - z3fold page metadata occupying first chunks of each
99  *			z3fold page, except for HEADLESS pages
100  * @buddy:		links the z3fold page into the relevant list in the
101  *			pool
102  * @page_lock:		per-page lock
103  * @refcount:		reference count for the z3fold page
104  * @work:		work_struct for page layout optimization
105  * @slots:		pointer to the structure holding buddy slots
106  * @pool:		pointer to the containing pool
107  * @cpu:		CPU which this page "belongs" to
108  * @first_chunks:	the size of the first buddy in chunks, 0 if free
109  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
110  * @last_chunks:	the size of the last buddy in chunks, 0 if free
111  * @first_num:		the starting number (for the first handle)
112  * @mapped_count:	the number of objects currently mapped
113  */
114 struct z3fold_header {
115 	struct list_head buddy;
116 	spinlock_t page_lock;
117 	struct kref refcount;
118 	struct work_struct work;
119 	struct z3fold_buddy_slots *slots;
120 	struct z3fold_pool *pool;
121 	short cpu;
122 	unsigned short first_chunks;
123 	unsigned short middle_chunks;
124 	unsigned short last_chunks;
125 	unsigned short start_middle;
126 	unsigned short first_num:2;
127 	unsigned short mapped_count:2;
128 	unsigned short foreign_handles:2;
129 };
130 
131 /**
132  * struct z3fold_pool - stores metadata for each z3fold pool
133  * @name:	pool name
134  * @lock:	protects pool unbuddied/lru lists
135  * @stale_lock:	protects pool stale page list
136  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
137  *		buddies; the list each z3fold page is added to depends on
138  *		the size of its free region.
139  * @lru:	list tracking the z3fold pages in LRU order by most recently
140  *		added buddy.
141  * @stale:	list of pages marked for freeing
142  * @pages_nr:	number of z3fold pages in the pool.
143  * @c_handle:	cache for z3fold_buddy_slots allocation
144  * @ops:	pointer to a structure of user defined operations specified at
145  *		pool creation time.
146  * @compact_wq:	workqueue for page layout background optimization
147  * @release_wq:	workqueue for safe page release
148  * @work:	work_struct for safe page release
149  * @inode:	inode for z3fold pseudo filesystem
150  *
151  * This structure is allocated at pool creation time and maintains metadata
152  * pertaining to a particular z3fold pool.
153  */
154 struct z3fold_pool {
155 	const char *name;
156 	spinlock_t lock;
157 	spinlock_t stale_lock;
158 	struct list_head *unbuddied;
159 	struct list_head lru;
160 	struct list_head stale;
161 	atomic64_t pages_nr;
162 	struct kmem_cache *c_handle;
163 	const struct z3fold_ops *ops;
164 	struct zpool *zpool;
165 	const struct zpool_ops *zpool_ops;
166 	struct workqueue_struct *compact_wq;
167 	struct workqueue_struct *release_wq;
168 	struct work_struct work;
169 	struct inode *inode;
170 };
171 
172 /*
173  * Internal z3fold page flags
174  */
175 enum z3fold_page_flags {
176 	PAGE_HEADLESS = 0,
177 	MIDDLE_CHUNK_MAPPED,
178 	NEEDS_COMPACTING,
179 	PAGE_STALE,
180 	PAGE_CLAIMED, /* by either reclaim or free */
181 };
182 
183 /*
184  * handle flags, go under HANDLE_FLAG_MASK
185  */
186 enum z3fold_handle_flags {
187 	HANDLES_ORPHANED = 0,
188 };
189 
190 /*
191  * Forward declarations
192  */
193 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
194 static void compact_page_work(struct work_struct *w);
195 
196 /*****************
197  * Helpers
198 *****************/
199 
200 /* Converts an allocation size in bytes to size in z3fold chunks */
201 static int size_to_chunks(size_t size)
202 {
203 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
204 }
205 
206 #define for_each_unbuddied_list(_iter, _begin) \
207 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
208 
209 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
210 							gfp_t gfp)
211 {
212 	struct z3fold_buddy_slots *slots;
213 
214 	slots = kmem_cache_alloc(pool->c_handle,
215 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
216 
217 	if (slots) {
218 		memset(slots->slot, 0, sizeof(slots->slot));
219 		slots->pool = (unsigned long)pool;
220 		rwlock_init(&slots->lock);
221 	}
222 
223 	return slots;
224 }
225 
226 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
227 {
228 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
229 }
230 
231 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
232 {
233 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
234 }
235 
236 /* Lock a z3fold page */
237 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
238 {
239 	spin_lock(&zhdr->page_lock);
240 }
241 
242 /* Try to lock a z3fold page */
243 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
244 {
245 	return spin_trylock(&zhdr->page_lock);
246 }
247 
248 /* Unlock a z3fold page */
249 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
250 {
251 	spin_unlock(&zhdr->page_lock);
252 }
253 
254 
255 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
256 							bool lock)
257 {
258 	struct z3fold_buddy_slots *slots;
259 	struct z3fold_header *zhdr;
260 	int locked = 0;
261 
262 	if (!(handle & (1 << PAGE_HEADLESS))) {
263 		slots = handle_to_slots(handle);
264 		do {
265 			unsigned long addr;
266 
267 			read_lock(&slots->lock);
268 			addr = *(unsigned long *)handle;
269 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
270 			if (lock)
271 				locked = z3fold_page_trylock(zhdr);
272 			read_unlock(&slots->lock);
273 			if (locked)
274 				break;
275 			cpu_relax();
276 		} while (lock);
277 	} else {
278 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
279 	}
280 
281 	return zhdr;
282 }
283 
284 /* Returns the z3fold page where a given handle is stored */
285 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
286 {
287 	return __get_z3fold_header(h, false);
288 }
289 
290 /* return locked z3fold page if it's not headless */
291 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
292 {
293 	return __get_z3fold_header(h, true);
294 }
295 
296 static inline void put_z3fold_header(struct z3fold_header *zhdr)
297 {
298 	struct page *page = virt_to_page(zhdr);
299 
300 	if (!test_bit(PAGE_HEADLESS, &page->private))
301 		z3fold_page_unlock(zhdr);
302 }
303 
304 static inline void free_handle(unsigned long handle)
305 {
306 	struct z3fold_buddy_slots *slots;
307 	struct z3fold_header *zhdr;
308 	int i;
309 	bool is_free;
310 
311 	if (handle & (1 << PAGE_HEADLESS))
312 		return;
313 
314 	if (WARN_ON(*(unsigned long *)handle == 0))
315 		return;
316 
317 	zhdr = handle_to_z3fold_header(handle);
318 	slots = handle_to_slots(handle);
319 	write_lock(&slots->lock);
320 	*(unsigned long *)handle = 0;
321 	write_unlock(&slots->lock);
322 	if (zhdr->slots == slots)
323 		return; /* simple case, nothing else to do */
324 
325 	/* we are freeing a foreign handle if we are here */
326 	zhdr->foreign_handles--;
327 	is_free = true;
328 	read_lock(&slots->lock);
329 	if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
330 		read_unlock(&slots->lock);
331 		return;
332 	}
333 	for (i = 0; i <= BUDDY_MASK; i++) {
334 		if (slots->slot[i]) {
335 			is_free = false;
336 			break;
337 		}
338 	}
339 	read_unlock(&slots->lock);
340 
341 	if (is_free) {
342 		struct z3fold_pool *pool = slots_to_pool(slots);
343 
344 		kmem_cache_free(pool->c_handle, slots);
345 	}
346 }
347 
348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352 
353 static struct file_system_type z3fold_fs = {
354 	.name		= "z3fold",
355 	.init_fs_context = z3fold_init_fs_context,
356 	.kill_sb	= kill_anon_super,
357 };
358 
359 static struct vfsmount *z3fold_mnt;
360 static int z3fold_mount(void)
361 {
362 	int ret = 0;
363 
364 	z3fold_mnt = kern_mount(&z3fold_fs);
365 	if (IS_ERR(z3fold_mnt))
366 		ret = PTR_ERR(z3fold_mnt);
367 
368 	return ret;
369 }
370 
371 static void z3fold_unmount(void)
372 {
373 	kern_unmount(z3fold_mnt);
374 }
375 
376 static const struct address_space_operations z3fold_aops;
377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 	if (IS_ERR(pool->inode)) {
381 		pool->inode = NULL;
382 		return 1;
383 	}
384 
385 	pool->inode->i_mapping->private_data = pool;
386 	pool->inode->i_mapping->a_ops = &z3fold_aops;
387 	return 0;
388 }
389 
390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 	if (pool->inode)
393 		iput(pool->inode);
394  }
395 
396 /* Initializes the z3fold header of a newly allocated z3fold page */
397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 					struct z3fold_pool *pool, gfp_t gfp)
399 {
400 	struct z3fold_header *zhdr = page_address(page);
401 	struct z3fold_buddy_slots *slots;
402 
403 	INIT_LIST_HEAD(&page->lru);
404 	clear_bit(PAGE_HEADLESS, &page->private);
405 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 	clear_bit(NEEDS_COMPACTING, &page->private);
407 	clear_bit(PAGE_STALE, &page->private);
408 	clear_bit(PAGE_CLAIMED, &page->private);
409 	if (headless)
410 		return zhdr;
411 
412 	slots = alloc_slots(pool, gfp);
413 	if (!slots)
414 		return NULL;
415 
416 	spin_lock_init(&zhdr->page_lock);
417 	kref_init(&zhdr->refcount);
418 	zhdr->first_chunks = 0;
419 	zhdr->middle_chunks = 0;
420 	zhdr->last_chunks = 0;
421 	zhdr->first_num = 0;
422 	zhdr->start_middle = 0;
423 	zhdr->cpu = -1;
424 	zhdr->foreign_handles = 0;
425 	zhdr->slots = slots;
426 	zhdr->pool = pool;
427 	INIT_LIST_HEAD(&zhdr->buddy);
428 	INIT_WORK(&zhdr->work, compact_page_work);
429 	return zhdr;
430 }
431 
432 /* Resets the struct page fields and frees the page */
433 static void free_z3fold_page(struct page *page, bool headless)
434 {
435 	if (!headless) {
436 		lock_page(page);
437 		__ClearPageMovable(page);
438 		unlock_page(page);
439 	}
440 	ClearPagePrivate(page);
441 	__free_page(page);
442 }
443 
444 /* Helper function to build the index */
445 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
446 {
447 	return (bud + zhdr->first_num) & BUDDY_MASK;
448 }
449 
450 /*
451  * Encodes the handle of a particular buddy within a z3fold page
452  * Pool lock should be held as this function accesses first_num
453  */
454 static unsigned long __encode_handle(struct z3fold_header *zhdr,
455 				struct z3fold_buddy_slots *slots,
456 				enum buddy bud)
457 {
458 	unsigned long h = (unsigned long)zhdr;
459 	int idx = 0;
460 
461 	/*
462 	 * For a headless page, its handle is its pointer with the extra
463 	 * PAGE_HEADLESS bit set
464 	 */
465 	if (bud == HEADLESS)
466 		return h | (1 << PAGE_HEADLESS);
467 
468 	/* otherwise, return pointer to encoded handle */
469 	idx = __idx(zhdr, bud);
470 	h += idx;
471 	if (bud == LAST)
472 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
473 
474 	write_lock(&slots->lock);
475 	slots->slot[idx] = h;
476 	write_unlock(&slots->lock);
477 	return (unsigned long)&slots->slot[idx];
478 }
479 
480 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
481 {
482 	return __encode_handle(zhdr, zhdr->slots, bud);
483 }
484 
485 /* only for LAST bud, returns zero otherwise */
486 static unsigned short handle_to_chunks(unsigned long handle)
487 {
488 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
489 	unsigned long addr;
490 
491 	read_lock(&slots->lock);
492 	addr = *(unsigned long *)handle;
493 	read_unlock(&slots->lock);
494 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
495 }
496 
497 /*
498  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
499  *  but that doesn't matter. because the masking will result in the
500  *  correct buddy number.
501  */
502 static enum buddy handle_to_buddy(unsigned long handle)
503 {
504 	struct z3fold_header *zhdr;
505 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
506 	unsigned long addr;
507 
508 	read_lock(&slots->lock);
509 	WARN_ON(handle & (1 << PAGE_HEADLESS));
510 	addr = *(unsigned long *)handle;
511 	read_unlock(&slots->lock);
512 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
513 	return (addr - zhdr->first_num) & BUDDY_MASK;
514 }
515 
516 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
517 {
518 	return zhdr->pool;
519 }
520 
521 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
522 {
523 	struct page *page = virt_to_page(zhdr);
524 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
525 	bool is_free = true;
526 	int i;
527 
528 	WARN_ON(!list_empty(&zhdr->buddy));
529 	set_bit(PAGE_STALE, &page->private);
530 	clear_bit(NEEDS_COMPACTING, &page->private);
531 	spin_lock(&pool->lock);
532 	if (!list_empty(&page->lru))
533 		list_del_init(&page->lru);
534 	spin_unlock(&pool->lock);
535 
536 	/* If there are no foreign handles, free the handles array */
537 	read_lock(&zhdr->slots->lock);
538 	for (i = 0; i <= BUDDY_MASK; i++) {
539 		if (zhdr->slots->slot[i]) {
540 			is_free = false;
541 			break;
542 		}
543 	}
544 	if (!is_free)
545 		set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
546 	read_unlock(&zhdr->slots->lock);
547 
548 	if (is_free)
549 		kmem_cache_free(pool->c_handle, zhdr->slots);
550 
551 	if (locked)
552 		z3fold_page_unlock(zhdr);
553 
554 	spin_lock(&pool->stale_lock);
555 	list_add(&zhdr->buddy, &pool->stale);
556 	queue_work(pool->release_wq, &pool->work);
557 	spin_unlock(&pool->stale_lock);
558 }
559 
560 static void __attribute__((__unused__))
561 			release_z3fold_page(struct kref *ref)
562 {
563 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
564 						refcount);
565 	__release_z3fold_page(zhdr, false);
566 }
567 
568 static void release_z3fold_page_locked(struct kref *ref)
569 {
570 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
571 						refcount);
572 	WARN_ON(z3fold_page_trylock(zhdr));
573 	__release_z3fold_page(zhdr, true);
574 }
575 
576 static void release_z3fold_page_locked_list(struct kref *ref)
577 {
578 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
579 					       refcount);
580 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
581 
582 	spin_lock(&pool->lock);
583 	list_del_init(&zhdr->buddy);
584 	spin_unlock(&pool->lock);
585 
586 	WARN_ON(z3fold_page_trylock(zhdr));
587 	__release_z3fold_page(zhdr, true);
588 }
589 
590 static void free_pages_work(struct work_struct *w)
591 {
592 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
593 
594 	spin_lock(&pool->stale_lock);
595 	while (!list_empty(&pool->stale)) {
596 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
597 						struct z3fold_header, buddy);
598 		struct page *page = virt_to_page(zhdr);
599 
600 		list_del(&zhdr->buddy);
601 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
602 			continue;
603 		spin_unlock(&pool->stale_lock);
604 		cancel_work_sync(&zhdr->work);
605 		free_z3fold_page(page, false);
606 		cond_resched();
607 		spin_lock(&pool->stale_lock);
608 	}
609 	spin_unlock(&pool->stale_lock);
610 }
611 
612 /*
613  * Returns the number of free chunks in a z3fold page.
614  * NB: can't be used with HEADLESS pages.
615  */
616 static int num_free_chunks(struct z3fold_header *zhdr)
617 {
618 	int nfree;
619 	/*
620 	 * If there is a middle object, pick up the bigger free space
621 	 * either before or after it. Otherwise just subtract the number
622 	 * of chunks occupied by the first and the last objects.
623 	 */
624 	if (zhdr->middle_chunks != 0) {
625 		int nfree_before = zhdr->first_chunks ?
626 			0 : zhdr->start_middle - ZHDR_CHUNKS;
627 		int nfree_after = zhdr->last_chunks ?
628 			0 : TOTAL_CHUNKS -
629 				(zhdr->start_middle + zhdr->middle_chunks);
630 		nfree = max(nfree_before, nfree_after);
631 	} else
632 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
633 	return nfree;
634 }
635 
636 /* Add to the appropriate unbuddied list */
637 static inline void add_to_unbuddied(struct z3fold_pool *pool,
638 				struct z3fold_header *zhdr)
639 {
640 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
641 			zhdr->middle_chunks == 0) {
642 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
643 
644 		int freechunks = num_free_chunks(zhdr);
645 		spin_lock(&pool->lock);
646 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
647 		spin_unlock(&pool->lock);
648 		zhdr->cpu = smp_processor_id();
649 		put_cpu_ptr(pool->unbuddied);
650 	}
651 }
652 
653 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
654 				unsigned short dst_chunk)
655 {
656 	void *beg = zhdr;
657 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
658 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
659 		       zhdr->middle_chunks << CHUNK_SHIFT);
660 }
661 
662 static inline bool buddy_single(struct z3fold_header *zhdr)
663 {
664 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
665 			(zhdr->first_chunks && zhdr->last_chunks) ||
666 			(zhdr->middle_chunks && zhdr->last_chunks));
667 }
668 
669 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
670 {
671 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
672 	void *p = zhdr;
673 	unsigned long old_handle = 0;
674 	size_t sz = 0;
675 	struct z3fold_header *new_zhdr = NULL;
676 	int first_idx = __idx(zhdr, FIRST);
677 	int middle_idx = __idx(zhdr, MIDDLE);
678 	int last_idx = __idx(zhdr, LAST);
679 	unsigned short *moved_chunks = NULL;
680 
681 	/*
682 	 * No need to protect slots here -- all the slots are "local" and
683 	 * the page lock is already taken
684 	 */
685 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
686 		p += ZHDR_SIZE_ALIGNED;
687 		sz = zhdr->first_chunks << CHUNK_SHIFT;
688 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
689 		moved_chunks = &zhdr->first_chunks;
690 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
691 		p += zhdr->start_middle << CHUNK_SHIFT;
692 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
693 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
694 		moved_chunks = &zhdr->middle_chunks;
695 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
696 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
697 		sz = zhdr->last_chunks << CHUNK_SHIFT;
698 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
699 		moved_chunks = &zhdr->last_chunks;
700 	}
701 
702 	if (sz > 0) {
703 		enum buddy new_bud = HEADLESS;
704 		short chunks = size_to_chunks(sz);
705 		void *q;
706 
707 		new_zhdr = __z3fold_alloc(pool, sz, false);
708 		if (!new_zhdr)
709 			return NULL;
710 
711 		if (WARN_ON(new_zhdr == zhdr))
712 			goto out_fail;
713 
714 		if (new_zhdr->first_chunks == 0) {
715 			if (new_zhdr->middle_chunks != 0 &&
716 					chunks >= new_zhdr->start_middle) {
717 				new_bud = LAST;
718 			} else {
719 				new_bud = FIRST;
720 			}
721 		} else if (new_zhdr->last_chunks == 0) {
722 			new_bud = LAST;
723 		} else if (new_zhdr->middle_chunks == 0) {
724 			new_bud = MIDDLE;
725 		}
726 		q = new_zhdr;
727 		switch (new_bud) {
728 		case FIRST:
729 			new_zhdr->first_chunks = chunks;
730 			q += ZHDR_SIZE_ALIGNED;
731 			break;
732 		case MIDDLE:
733 			new_zhdr->middle_chunks = chunks;
734 			new_zhdr->start_middle =
735 				new_zhdr->first_chunks + ZHDR_CHUNKS;
736 			q += new_zhdr->start_middle << CHUNK_SHIFT;
737 			break;
738 		case LAST:
739 			new_zhdr->last_chunks = chunks;
740 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
741 			break;
742 		default:
743 			goto out_fail;
744 		}
745 		new_zhdr->foreign_handles++;
746 		memcpy(q, p, sz);
747 		write_lock(&zhdr->slots->lock);
748 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
749 			__idx(new_zhdr, new_bud);
750 		if (new_bud == LAST)
751 			*(unsigned long *)old_handle |=
752 					(new_zhdr->last_chunks << BUDDY_SHIFT);
753 		write_unlock(&zhdr->slots->lock);
754 		add_to_unbuddied(pool, new_zhdr);
755 		z3fold_page_unlock(new_zhdr);
756 
757 		*moved_chunks = 0;
758 	}
759 
760 	return new_zhdr;
761 
762 out_fail:
763 	if (new_zhdr) {
764 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
765 			atomic64_dec(&pool->pages_nr);
766 		else {
767 			add_to_unbuddied(pool, new_zhdr);
768 			z3fold_page_unlock(new_zhdr);
769 		}
770 	}
771 	return NULL;
772 
773 }
774 
775 #define BIG_CHUNK_GAP	3
776 /* Has to be called with lock held */
777 static int z3fold_compact_page(struct z3fold_header *zhdr)
778 {
779 	struct page *page = virt_to_page(zhdr);
780 
781 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
782 		return 0; /* can't move middle chunk, it's used */
783 
784 	if (unlikely(PageIsolated(page)))
785 		return 0;
786 
787 	if (zhdr->middle_chunks == 0)
788 		return 0; /* nothing to compact */
789 
790 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
791 		/* move to the beginning */
792 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
793 		zhdr->first_chunks = zhdr->middle_chunks;
794 		zhdr->middle_chunks = 0;
795 		zhdr->start_middle = 0;
796 		zhdr->first_num++;
797 		return 1;
798 	}
799 
800 	/*
801 	 * moving data is expensive, so let's only do that if
802 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
803 	 */
804 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
805 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
806 			BIG_CHUNK_GAP) {
807 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
808 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
809 		return 1;
810 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
811 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
812 					+ zhdr->middle_chunks) >=
813 			BIG_CHUNK_GAP) {
814 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
815 			zhdr->middle_chunks;
816 		mchunk_memmove(zhdr, new_start);
817 		zhdr->start_middle = new_start;
818 		return 1;
819 	}
820 
821 	return 0;
822 }
823 
824 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
825 {
826 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
827 	struct page *page;
828 
829 	page = virt_to_page(zhdr);
830 	if (locked)
831 		WARN_ON(z3fold_page_trylock(zhdr));
832 	else
833 		z3fold_page_lock(zhdr);
834 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
835 		z3fold_page_unlock(zhdr);
836 		return;
837 	}
838 	spin_lock(&pool->lock);
839 	list_del_init(&zhdr->buddy);
840 	spin_unlock(&pool->lock);
841 
842 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
843 		atomic64_dec(&pool->pages_nr);
844 		return;
845 	}
846 
847 	if (unlikely(PageIsolated(page) ||
848 		     test_bit(PAGE_CLAIMED, &page->private) ||
849 		     test_bit(PAGE_STALE, &page->private))) {
850 		z3fold_page_unlock(zhdr);
851 		return;
852 	}
853 
854 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
855 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
856 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
857 			atomic64_dec(&pool->pages_nr);
858 		else
859 			z3fold_page_unlock(zhdr);
860 		return;
861 	}
862 
863 	z3fold_compact_page(zhdr);
864 	add_to_unbuddied(pool, zhdr);
865 	z3fold_page_unlock(zhdr);
866 }
867 
868 static void compact_page_work(struct work_struct *w)
869 {
870 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
871 						work);
872 
873 	do_compact_page(zhdr, false);
874 }
875 
876 /* returns _locked_ z3fold page header or NULL */
877 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
878 						size_t size, bool can_sleep)
879 {
880 	struct z3fold_header *zhdr = NULL;
881 	struct page *page;
882 	struct list_head *unbuddied;
883 	int chunks = size_to_chunks(size), i;
884 
885 lookup:
886 	/* First, try to find an unbuddied z3fold page. */
887 	unbuddied = get_cpu_ptr(pool->unbuddied);
888 	for_each_unbuddied_list(i, chunks) {
889 		struct list_head *l = &unbuddied[i];
890 
891 		zhdr = list_first_entry_or_null(READ_ONCE(l),
892 					struct z3fold_header, buddy);
893 
894 		if (!zhdr)
895 			continue;
896 
897 		/* Re-check under lock. */
898 		spin_lock(&pool->lock);
899 		l = &unbuddied[i];
900 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
901 						struct z3fold_header, buddy)) ||
902 		    !z3fold_page_trylock(zhdr)) {
903 			spin_unlock(&pool->lock);
904 			zhdr = NULL;
905 			put_cpu_ptr(pool->unbuddied);
906 			if (can_sleep)
907 				cond_resched();
908 			goto lookup;
909 		}
910 		list_del_init(&zhdr->buddy);
911 		zhdr->cpu = -1;
912 		spin_unlock(&pool->lock);
913 
914 		page = virt_to_page(zhdr);
915 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
916 		    test_bit(PAGE_CLAIMED, &page->private)) {
917 			z3fold_page_unlock(zhdr);
918 			zhdr = NULL;
919 			put_cpu_ptr(pool->unbuddied);
920 			if (can_sleep)
921 				cond_resched();
922 			goto lookup;
923 		}
924 
925 		/*
926 		 * this page could not be removed from its unbuddied
927 		 * list while pool lock was held, and then we've taken
928 		 * page lock so kref_put could not be called before
929 		 * we got here, so it's safe to just call kref_get()
930 		 */
931 		kref_get(&zhdr->refcount);
932 		break;
933 	}
934 	put_cpu_ptr(pool->unbuddied);
935 
936 	if (!zhdr) {
937 		int cpu;
938 
939 		/* look for _exact_ match on other cpus' lists */
940 		for_each_online_cpu(cpu) {
941 			struct list_head *l;
942 
943 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
944 			spin_lock(&pool->lock);
945 			l = &unbuddied[chunks];
946 
947 			zhdr = list_first_entry_or_null(READ_ONCE(l),
948 						struct z3fold_header, buddy);
949 
950 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
951 				spin_unlock(&pool->lock);
952 				zhdr = NULL;
953 				continue;
954 			}
955 			list_del_init(&zhdr->buddy);
956 			zhdr->cpu = -1;
957 			spin_unlock(&pool->lock);
958 
959 			page = virt_to_page(zhdr);
960 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
961 			    test_bit(PAGE_CLAIMED, &page->private)) {
962 				z3fold_page_unlock(zhdr);
963 				zhdr = NULL;
964 				if (can_sleep)
965 					cond_resched();
966 				continue;
967 			}
968 			kref_get(&zhdr->refcount);
969 			break;
970 		}
971 	}
972 
973 	return zhdr;
974 }
975 
976 /*
977  * API Functions
978  */
979 
980 /**
981  * z3fold_create_pool() - create a new z3fold pool
982  * @name:	pool name
983  * @gfp:	gfp flags when allocating the z3fold pool structure
984  * @ops:	user-defined operations for the z3fold pool
985  *
986  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
987  * failed.
988  */
989 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
990 		const struct z3fold_ops *ops)
991 {
992 	struct z3fold_pool *pool = NULL;
993 	int i, cpu;
994 
995 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
996 	if (!pool)
997 		goto out;
998 	pool->c_handle = kmem_cache_create("z3fold_handle",
999 				sizeof(struct z3fold_buddy_slots),
1000 				SLOTS_ALIGN, 0, NULL);
1001 	if (!pool->c_handle)
1002 		goto out_c;
1003 	spin_lock_init(&pool->lock);
1004 	spin_lock_init(&pool->stale_lock);
1005 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1006 	if (!pool->unbuddied)
1007 		goto out_pool;
1008 	for_each_possible_cpu(cpu) {
1009 		struct list_head *unbuddied =
1010 				per_cpu_ptr(pool->unbuddied, cpu);
1011 		for_each_unbuddied_list(i, 0)
1012 			INIT_LIST_HEAD(&unbuddied[i]);
1013 	}
1014 	INIT_LIST_HEAD(&pool->lru);
1015 	INIT_LIST_HEAD(&pool->stale);
1016 	atomic64_set(&pool->pages_nr, 0);
1017 	pool->name = name;
1018 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1019 	if (!pool->compact_wq)
1020 		goto out_unbuddied;
1021 	pool->release_wq = create_singlethread_workqueue(pool->name);
1022 	if (!pool->release_wq)
1023 		goto out_wq;
1024 	if (z3fold_register_migration(pool))
1025 		goto out_rwq;
1026 	INIT_WORK(&pool->work, free_pages_work);
1027 	pool->ops = ops;
1028 	return pool;
1029 
1030 out_rwq:
1031 	destroy_workqueue(pool->release_wq);
1032 out_wq:
1033 	destroy_workqueue(pool->compact_wq);
1034 out_unbuddied:
1035 	free_percpu(pool->unbuddied);
1036 out_pool:
1037 	kmem_cache_destroy(pool->c_handle);
1038 out_c:
1039 	kfree(pool);
1040 out:
1041 	return NULL;
1042 }
1043 
1044 /**
1045  * z3fold_destroy_pool() - destroys an existing z3fold pool
1046  * @pool:	the z3fold pool to be destroyed
1047  *
1048  * The pool should be emptied before this function is called.
1049  */
1050 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1051 {
1052 	kmem_cache_destroy(pool->c_handle);
1053 
1054 	/*
1055 	 * We need to destroy pool->compact_wq before pool->release_wq,
1056 	 * as any pending work on pool->compact_wq will call
1057 	 * queue_work(pool->release_wq, &pool->work).
1058 	 *
1059 	 * There are still outstanding pages until both workqueues are drained,
1060 	 * so we cannot unregister migration until then.
1061 	 */
1062 
1063 	destroy_workqueue(pool->compact_wq);
1064 	destroy_workqueue(pool->release_wq);
1065 	z3fold_unregister_migration(pool);
1066 	kfree(pool);
1067 }
1068 
1069 /**
1070  * z3fold_alloc() - allocates a region of a given size
1071  * @pool:	z3fold pool from which to allocate
1072  * @size:	size in bytes of the desired allocation
1073  * @gfp:	gfp flags used if the pool needs to grow
1074  * @handle:	handle of the new allocation
1075  *
1076  * This function will attempt to find a free region in the pool large enough to
1077  * satisfy the allocation request.  A search of the unbuddied lists is
1078  * performed first. If no suitable free region is found, then a new page is
1079  * allocated and added to the pool to satisfy the request.
1080  *
1081  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1082  * as z3fold pool pages.
1083  *
1084  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1085  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1086  * a new page.
1087  */
1088 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1089 			unsigned long *handle)
1090 {
1091 	int chunks = size_to_chunks(size);
1092 	struct z3fold_header *zhdr = NULL;
1093 	struct page *page = NULL;
1094 	enum buddy bud;
1095 	bool can_sleep = gfpflags_allow_blocking(gfp);
1096 
1097 	if (!size)
1098 		return -EINVAL;
1099 
1100 	if (size > PAGE_SIZE)
1101 		return -ENOSPC;
1102 
1103 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1104 		bud = HEADLESS;
1105 	else {
1106 retry:
1107 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1108 		if (zhdr) {
1109 			if (zhdr->first_chunks == 0) {
1110 				if (zhdr->middle_chunks != 0 &&
1111 				    chunks >= zhdr->start_middle)
1112 					bud = LAST;
1113 				else
1114 					bud = FIRST;
1115 			} else if (zhdr->last_chunks == 0)
1116 				bud = LAST;
1117 			else if (zhdr->middle_chunks == 0)
1118 				bud = MIDDLE;
1119 			else {
1120 				if (kref_put(&zhdr->refcount,
1121 					     release_z3fold_page_locked))
1122 					atomic64_dec(&pool->pages_nr);
1123 				else
1124 					z3fold_page_unlock(zhdr);
1125 				pr_err("No free chunks in unbuddied\n");
1126 				WARN_ON(1);
1127 				goto retry;
1128 			}
1129 			page = virt_to_page(zhdr);
1130 			goto found;
1131 		}
1132 		bud = FIRST;
1133 	}
1134 
1135 	page = NULL;
1136 	if (can_sleep) {
1137 		spin_lock(&pool->stale_lock);
1138 		zhdr = list_first_entry_or_null(&pool->stale,
1139 						struct z3fold_header, buddy);
1140 		/*
1141 		 * Before allocating a page, let's see if we can take one from
1142 		 * the stale pages list. cancel_work_sync() can sleep so we
1143 		 * limit this case to the contexts where we can sleep
1144 		 */
1145 		if (zhdr) {
1146 			list_del(&zhdr->buddy);
1147 			spin_unlock(&pool->stale_lock);
1148 			cancel_work_sync(&zhdr->work);
1149 			page = virt_to_page(zhdr);
1150 		} else {
1151 			spin_unlock(&pool->stale_lock);
1152 		}
1153 	}
1154 	if (!page)
1155 		page = alloc_page(gfp);
1156 
1157 	if (!page)
1158 		return -ENOMEM;
1159 
1160 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1161 	if (!zhdr) {
1162 		__free_page(page);
1163 		return -ENOMEM;
1164 	}
1165 	atomic64_inc(&pool->pages_nr);
1166 
1167 	if (bud == HEADLESS) {
1168 		set_bit(PAGE_HEADLESS, &page->private);
1169 		goto headless;
1170 	}
1171 	if (can_sleep) {
1172 		lock_page(page);
1173 		__SetPageMovable(page, pool->inode->i_mapping);
1174 		unlock_page(page);
1175 	} else {
1176 		if (trylock_page(page)) {
1177 			__SetPageMovable(page, pool->inode->i_mapping);
1178 			unlock_page(page);
1179 		}
1180 	}
1181 	z3fold_page_lock(zhdr);
1182 
1183 found:
1184 	if (bud == FIRST)
1185 		zhdr->first_chunks = chunks;
1186 	else if (bud == LAST)
1187 		zhdr->last_chunks = chunks;
1188 	else {
1189 		zhdr->middle_chunks = chunks;
1190 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1191 	}
1192 	add_to_unbuddied(pool, zhdr);
1193 
1194 headless:
1195 	spin_lock(&pool->lock);
1196 	/* Add/move z3fold page to beginning of LRU */
1197 	if (!list_empty(&page->lru))
1198 		list_del(&page->lru);
1199 
1200 	list_add(&page->lru, &pool->lru);
1201 
1202 	*handle = encode_handle(zhdr, bud);
1203 	spin_unlock(&pool->lock);
1204 	if (bud != HEADLESS)
1205 		z3fold_page_unlock(zhdr);
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * z3fold_free() - frees the allocation associated with the given handle
1212  * @pool:	pool in which the allocation resided
1213  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1214  *
1215  * In the case that the z3fold page in which the allocation resides is under
1216  * reclaim, as indicated by the PG_reclaim flag being set, this function
1217  * only sets the first|last_chunks to 0.  The page is actually freed
1218  * once both buddies are evicted (see z3fold_reclaim_page() below).
1219  */
1220 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1221 {
1222 	struct z3fold_header *zhdr;
1223 	struct page *page;
1224 	enum buddy bud;
1225 	bool page_claimed;
1226 
1227 	zhdr = get_z3fold_header(handle);
1228 	page = virt_to_page(zhdr);
1229 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1230 
1231 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1232 		/* if a headless page is under reclaim, just leave.
1233 		 * NB: we use test_and_set_bit for a reason: if the bit
1234 		 * has not been set before, we release this page
1235 		 * immediately so we don't care about its value any more.
1236 		 */
1237 		if (!page_claimed) {
1238 			spin_lock(&pool->lock);
1239 			list_del(&page->lru);
1240 			spin_unlock(&pool->lock);
1241 			put_z3fold_header(zhdr);
1242 			free_z3fold_page(page, true);
1243 			atomic64_dec(&pool->pages_nr);
1244 		}
1245 		return;
1246 	}
1247 
1248 	/* Non-headless case */
1249 	bud = handle_to_buddy(handle);
1250 
1251 	switch (bud) {
1252 	case FIRST:
1253 		zhdr->first_chunks = 0;
1254 		break;
1255 	case MIDDLE:
1256 		zhdr->middle_chunks = 0;
1257 		break;
1258 	case LAST:
1259 		zhdr->last_chunks = 0;
1260 		break;
1261 	default:
1262 		pr_err("%s: unknown bud %d\n", __func__, bud);
1263 		WARN_ON(1);
1264 		put_z3fold_header(zhdr);
1265 		clear_bit(PAGE_CLAIMED, &page->private);
1266 		return;
1267 	}
1268 
1269 	if (!page_claimed)
1270 		free_handle(handle);
1271 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1272 		atomic64_dec(&pool->pages_nr);
1273 		return;
1274 	}
1275 	if (page_claimed) {
1276 		/* the page has not been claimed by us */
1277 		z3fold_page_unlock(zhdr);
1278 		return;
1279 	}
1280 	if (unlikely(PageIsolated(page)) ||
1281 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1282 		put_z3fold_header(zhdr);
1283 		clear_bit(PAGE_CLAIMED, &page->private);
1284 		return;
1285 	}
1286 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1287 		spin_lock(&pool->lock);
1288 		list_del_init(&zhdr->buddy);
1289 		spin_unlock(&pool->lock);
1290 		zhdr->cpu = -1;
1291 		kref_get(&zhdr->refcount);
1292 		clear_bit(PAGE_CLAIMED, &page->private);
1293 		do_compact_page(zhdr, true);
1294 		return;
1295 	}
1296 	kref_get(&zhdr->refcount);
1297 	clear_bit(PAGE_CLAIMED, &page->private);
1298 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1299 	put_z3fold_header(zhdr);
1300 }
1301 
1302 /**
1303  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1304  * @pool:	pool from which a page will attempt to be evicted
1305  * @retries:	number of pages on the LRU list for which eviction will
1306  *		be attempted before failing
1307  *
1308  * z3fold reclaim is different from normal system reclaim in that it is done
1309  * from the bottom, up. This is because only the bottom layer, z3fold, has
1310  * information on how the allocations are organized within each z3fold page.
1311  * This has the potential to create interesting locking situations between
1312  * z3fold and the user, however.
1313  *
1314  * To avoid these, this is how z3fold_reclaim_page() should be called:
1315  *
1316  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1317  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1318  * call the user-defined eviction handler with the pool and handle as
1319  * arguments.
1320  *
1321  * If the handle can not be evicted, the eviction handler should return
1322  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1323  * appropriate list and try the next z3fold page on the LRU up to
1324  * a user defined number of retries.
1325  *
1326  * If the handle is successfully evicted, the eviction handler should
1327  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1328  * contains logic to delay freeing the page if the page is under reclaim,
1329  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1330  *
1331  * If all buddies in the z3fold page are successfully evicted, then the
1332  * z3fold page can be freed.
1333  *
1334  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1335  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1336  * the retry limit was hit.
1337  */
1338 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1339 {
1340 	int i, ret = -1;
1341 	struct z3fold_header *zhdr = NULL;
1342 	struct page *page = NULL;
1343 	struct list_head *pos;
1344 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1345 
1346 	spin_lock(&pool->lock);
1347 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1348 		spin_unlock(&pool->lock);
1349 		return -EINVAL;
1350 	}
1351 	for (i = 0; i < retries; i++) {
1352 		if (list_empty(&pool->lru)) {
1353 			spin_unlock(&pool->lock);
1354 			return -EINVAL;
1355 		}
1356 		list_for_each_prev(pos, &pool->lru) {
1357 			page = list_entry(pos, struct page, lru);
1358 
1359 			/* this bit could have been set by free, in which case
1360 			 * we pass over to the next page in the pool.
1361 			 */
1362 			if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1363 				page = NULL;
1364 				continue;
1365 			}
1366 
1367 			if (unlikely(PageIsolated(page))) {
1368 				clear_bit(PAGE_CLAIMED, &page->private);
1369 				page = NULL;
1370 				continue;
1371 			}
1372 			zhdr = page_address(page);
1373 			if (test_bit(PAGE_HEADLESS, &page->private))
1374 				break;
1375 
1376 			if (!z3fold_page_trylock(zhdr)) {
1377 				clear_bit(PAGE_CLAIMED, &page->private);
1378 				zhdr = NULL;
1379 				continue; /* can't evict at this point */
1380 			}
1381 			if (zhdr->foreign_handles) {
1382 				clear_bit(PAGE_CLAIMED, &page->private);
1383 				z3fold_page_unlock(zhdr);
1384 				zhdr = NULL;
1385 				continue; /* can't evict such page */
1386 			}
1387 			kref_get(&zhdr->refcount);
1388 			list_del_init(&zhdr->buddy);
1389 			zhdr->cpu = -1;
1390 			break;
1391 		}
1392 
1393 		if (!zhdr)
1394 			break;
1395 
1396 		list_del_init(&page->lru);
1397 		spin_unlock(&pool->lock);
1398 
1399 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1400 			/*
1401 			 * We need encode the handles before unlocking, and
1402 			 * use our local slots structure because z3fold_free
1403 			 * can zero out zhdr->slots and we can't do much
1404 			 * about that
1405 			 */
1406 			first_handle = 0;
1407 			last_handle = 0;
1408 			middle_handle = 0;
1409 			if (zhdr->first_chunks)
1410 				first_handle = encode_handle(zhdr, FIRST);
1411 			if (zhdr->middle_chunks)
1412 				middle_handle = encode_handle(zhdr, MIDDLE);
1413 			if (zhdr->last_chunks)
1414 				last_handle = encode_handle(zhdr, LAST);
1415 			/*
1416 			 * it's safe to unlock here because we hold a
1417 			 * reference to this page
1418 			 */
1419 			z3fold_page_unlock(zhdr);
1420 		} else {
1421 			first_handle = encode_handle(zhdr, HEADLESS);
1422 			last_handle = middle_handle = 0;
1423 		}
1424 		/* Issue the eviction callback(s) */
1425 		if (middle_handle) {
1426 			ret = pool->ops->evict(pool, middle_handle);
1427 			if (ret)
1428 				goto next;
1429 			free_handle(middle_handle);
1430 		}
1431 		if (first_handle) {
1432 			ret = pool->ops->evict(pool, first_handle);
1433 			if (ret)
1434 				goto next;
1435 			free_handle(first_handle);
1436 		}
1437 		if (last_handle) {
1438 			ret = pool->ops->evict(pool, last_handle);
1439 			if (ret)
1440 				goto next;
1441 			free_handle(last_handle);
1442 		}
1443 next:
1444 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1445 			if (ret == 0) {
1446 				free_z3fold_page(page, true);
1447 				atomic64_dec(&pool->pages_nr);
1448 				return 0;
1449 			}
1450 			spin_lock(&pool->lock);
1451 			list_add(&page->lru, &pool->lru);
1452 			spin_unlock(&pool->lock);
1453 			clear_bit(PAGE_CLAIMED, &page->private);
1454 		} else {
1455 			z3fold_page_lock(zhdr);
1456 			if (kref_put(&zhdr->refcount,
1457 					release_z3fold_page_locked)) {
1458 				atomic64_dec(&pool->pages_nr);
1459 				return 0;
1460 			}
1461 			/*
1462 			 * if we are here, the page is still not completely
1463 			 * free. Take the global pool lock then to be able
1464 			 * to add it back to the lru list
1465 			 */
1466 			spin_lock(&pool->lock);
1467 			list_add(&page->lru, &pool->lru);
1468 			spin_unlock(&pool->lock);
1469 			z3fold_page_unlock(zhdr);
1470 			clear_bit(PAGE_CLAIMED, &page->private);
1471 		}
1472 
1473 		/* We started off locked to we need to lock the pool back */
1474 		spin_lock(&pool->lock);
1475 	}
1476 	spin_unlock(&pool->lock);
1477 	return -EAGAIN;
1478 }
1479 
1480 /**
1481  * z3fold_map() - maps the allocation associated with the given handle
1482  * @pool:	pool in which the allocation resides
1483  * @handle:	handle associated with the allocation to be mapped
1484  *
1485  * Extracts the buddy number from handle and constructs the pointer to the
1486  * correct starting chunk within the page.
1487  *
1488  * Returns: a pointer to the mapped allocation
1489  */
1490 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1491 {
1492 	struct z3fold_header *zhdr;
1493 	struct page *page;
1494 	void *addr;
1495 	enum buddy buddy;
1496 
1497 	zhdr = get_z3fold_header(handle);
1498 	addr = zhdr;
1499 	page = virt_to_page(zhdr);
1500 
1501 	if (test_bit(PAGE_HEADLESS, &page->private))
1502 		goto out;
1503 
1504 	buddy = handle_to_buddy(handle);
1505 	switch (buddy) {
1506 	case FIRST:
1507 		addr += ZHDR_SIZE_ALIGNED;
1508 		break;
1509 	case MIDDLE:
1510 		addr += zhdr->start_middle << CHUNK_SHIFT;
1511 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1512 		break;
1513 	case LAST:
1514 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1515 		break;
1516 	default:
1517 		pr_err("unknown buddy id %d\n", buddy);
1518 		WARN_ON(1);
1519 		addr = NULL;
1520 		break;
1521 	}
1522 
1523 	if (addr)
1524 		zhdr->mapped_count++;
1525 out:
1526 	put_z3fold_header(zhdr);
1527 	return addr;
1528 }
1529 
1530 /**
1531  * z3fold_unmap() - unmaps the allocation associated with the given handle
1532  * @pool:	pool in which the allocation resides
1533  * @handle:	handle associated with the allocation to be unmapped
1534  */
1535 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1536 {
1537 	struct z3fold_header *zhdr;
1538 	struct page *page;
1539 	enum buddy buddy;
1540 
1541 	zhdr = get_z3fold_header(handle);
1542 	page = virt_to_page(zhdr);
1543 
1544 	if (test_bit(PAGE_HEADLESS, &page->private))
1545 		return;
1546 
1547 	buddy = handle_to_buddy(handle);
1548 	if (buddy == MIDDLE)
1549 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1550 	zhdr->mapped_count--;
1551 	put_z3fold_header(zhdr);
1552 }
1553 
1554 /**
1555  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1556  * @pool:	pool whose size is being queried
1557  *
1558  * Returns: size in pages of the given pool.
1559  */
1560 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1561 {
1562 	return atomic64_read(&pool->pages_nr);
1563 }
1564 
1565 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1566 {
1567 	struct z3fold_header *zhdr;
1568 	struct z3fold_pool *pool;
1569 
1570 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1571 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1572 
1573 	if (test_bit(PAGE_HEADLESS, &page->private) ||
1574 	    test_bit(PAGE_CLAIMED, &page->private))
1575 		return false;
1576 
1577 	zhdr = page_address(page);
1578 	z3fold_page_lock(zhdr);
1579 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1580 	    test_bit(PAGE_STALE, &page->private))
1581 		goto out;
1582 
1583 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1584 		goto out;
1585 
1586 	pool = zhdr_to_pool(zhdr);
1587 	spin_lock(&pool->lock);
1588 	if (!list_empty(&zhdr->buddy))
1589 		list_del_init(&zhdr->buddy);
1590 	if (!list_empty(&page->lru))
1591 		list_del_init(&page->lru);
1592 	spin_unlock(&pool->lock);
1593 
1594 	kref_get(&zhdr->refcount);
1595 	z3fold_page_unlock(zhdr);
1596 	return true;
1597 
1598 out:
1599 	z3fold_page_unlock(zhdr);
1600 	return false;
1601 }
1602 
1603 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1604 			       struct page *page, enum migrate_mode mode)
1605 {
1606 	struct z3fold_header *zhdr, *new_zhdr;
1607 	struct z3fold_pool *pool;
1608 	struct address_space *new_mapping;
1609 
1610 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1611 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1612 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1613 
1614 	zhdr = page_address(page);
1615 	pool = zhdr_to_pool(zhdr);
1616 
1617 	if (!z3fold_page_trylock(zhdr)) {
1618 		return -EAGAIN;
1619 	}
1620 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1621 		z3fold_page_unlock(zhdr);
1622 		return -EBUSY;
1623 	}
1624 	if (work_pending(&zhdr->work)) {
1625 		z3fold_page_unlock(zhdr);
1626 		return -EAGAIN;
1627 	}
1628 	new_zhdr = page_address(newpage);
1629 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1630 	newpage->private = page->private;
1631 	page->private = 0;
1632 	z3fold_page_unlock(zhdr);
1633 	spin_lock_init(&new_zhdr->page_lock);
1634 	INIT_WORK(&new_zhdr->work, compact_page_work);
1635 	/*
1636 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1637 	 * so we only have to reinitialize it.
1638 	 */
1639 	INIT_LIST_HEAD(&new_zhdr->buddy);
1640 	new_mapping = page_mapping(page);
1641 	__ClearPageMovable(page);
1642 	ClearPagePrivate(page);
1643 
1644 	get_page(newpage);
1645 	z3fold_page_lock(new_zhdr);
1646 	if (new_zhdr->first_chunks)
1647 		encode_handle(new_zhdr, FIRST);
1648 	if (new_zhdr->last_chunks)
1649 		encode_handle(new_zhdr, LAST);
1650 	if (new_zhdr->middle_chunks)
1651 		encode_handle(new_zhdr, MIDDLE);
1652 	set_bit(NEEDS_COMPACTING, &newpage->private);
1653 	new_zhdr->cpu = smp_processor_id();
1654 	spin_lock(&pool->lock);
1655 	list_add(&newpage->lru, &pool->lru);
1656 	spin_unlock(&pool->lock);
1657 	__SetPageMovable(newpage, new_mapping);
1658 	z3fold_page_unlock(new_zhdr);
1659 
1660 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1661 
1662 	page_mapcount_reset(page);
1663 	put_page(page);
1664 	return 0;
1665 }
1666 
1667 static void z3fold_page_putback(struct page *page)
1668 {
1669 	struct z3fold_header *zhdr;
1670 	struct z3fold_pool *pool;
1671 
1672 	zhdr = page_address(page);
1673 	pool = zhdr_to_pool(zhdr);
1674 
1675 	z3fold_page_lock(zhdr);
1676 	if (!list_empty(&zhdr->buddy))
1677 		list_del_init(&zhdr->buddy);
1678 	INIT_LIST_HEAD(&page->lru);
1679 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1680 		atomic64_dec(&pool->pages_nr);
1681 		return;
1682 	}
1683 	spin_lock(&pool->lock);
1684 	list_add(&page->lru, &pool->lru);
1685 	spin_unlock(&pool->lock);
1686 	z3fold_page_unlock(zhdr);
1687 }
1688 
1689 static const struct address_space_operations z3fold_aops = {
1690 	.isolate_page = z3fold_page_isolate,
1691 	.migratepage = z3fold_page_migrate,
1692 	.putback_page = z3fold_page_putback,
1693 };
1694 
1695 /*****************
1696  * zpool
1697  ****************/
1698 
1699 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1700 {
1701 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1702 		return pool->zpool_ops->evict(pool->zpool, handle);
1703 	else
1704 		return -ENOENT;
1705 }
1706 
1707 static const struct z3fold_ops z3fold_zpool_ops = {
1708 	.evict =	z3fold_zpool_evict
1709 };
1710 
1711 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1712 			       const struct zpool_ops *zpool_ops,
1713 			       struct zpool *zpool)
1714 {
1715 	struct z3fold_pool *pool;
1716 
1717 	pool = z3fold_create_pool(name, gfp,
1718 				zpool_ops ? &z3fold_zpool_ops : NULL);
1719 	if (pool) {
1720 		pool->zpool = zpool;
1721 		pool->zpool_ops = zpool_ops;
1722 	}
1723 	return pool;
1724 }
1725 
1726 static void z3fold_zpool_destroy(void *pool)
1727 {
1728 	z3fold_destroy_pool(pool);
1729 }
1730 
1731 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1732 			unsigned long *handle)
1733 {
1734 	return z3fold_alloc(pool, size, gfp, handle);
1735 }
1736 static void z3fold_zpool_free(void *pool, unsigned long handle)
1737 {
1738 	z3fold_free(pool, handle);
1739 }
1740 
1741 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1742 			unsigned int *reclaimed)
1743 {
1744 	unsigned int total = 0;
1745 	int ret = -EINVAL;
1746 
1747 	while (total < pages) {
1748 		ret = z3fold_reclaim_page(pool, 8);
1749 		if (ret < 0)
1750 			break;
1751 		total++;
1752 	}
1753 
1754 	if (reclaimed)
1755 		*reclaimed = total;
1756 
1757 	return ret;
1758 }
1759 
1760 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1761 			enum zpool_mapmode mm)
1762 {
1763 	return z3fold_map(pool, handle);
1764 }
1765 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1766 {
1767 	z3fold_unmap(pool, handle);
1768 }
1769 
1770 static u64 z3fold_zpool_total_size(void *pool)
1771 {
1772 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1773 }
1774 
1775 static struct zpool_driver z3fold_zpool_driver = {
1776 	.type =		"z3fold",
1777 	.owner =	THIS_MODULE,
1778 	.create =	z3fold_zpool_create,
1779 	.destroy =	z3fold_zpool_destroy,
1780 	.malloc =	z3fold_zpool_malloc,
1781 	.free =		z3fold_zpool_free,
1782 	.shrink =	z3fold_zpool_shrink,
1783 	.map =		z3fold_zpool_map,
1784 	.unmap =	z3fold_zpool_unmap,
1785 	.total_size =	z3fold_zpool_total_size,
1786 };
1787 
1788 MODULE_ALIAS("zpool-z3fold");
1789 
1790 static int __init init_z3fold(void)
1791 {
1792 	int ret;
1793 
1794 	/* Make sure the z3fold header is not larger than the page size */
1795 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1796 	ret = z3fold_mount();
1797 	if (ret)
1798 		return ret;
1799 
1800 	zpool_register_driver(&z3fold_zpool_driver);
1801 
1802 	return 0;
1803 }
1804 
1805 static void __exit exit_z3fold(void)
1806 {
1807 	z3fold_unmount();
1808 	zpool_unregister_driver(&z3fold_zpool_driver);
1809 }
1810 
1811 module_init(init_z3fold);
1812 module_exit(exit_z3fold);
1813 
1814 MODULE_LICENSE("GPL");
1815 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1816 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1817