1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/pseudo_fs.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/rwlock.h> 45 #include <linux/zpool.h> 46 #include <linux/magic.h> 47 48 /* 49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 50 * adjusting internal fragmentation. It also determines the number of 51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 53 * in the beginning of an allocated page are occupied by z3fold header, so 54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 55 * which shows the max number of free chunks in z3fold page, also there will 56 * be 63, or 62, respectively, freelists per pool. 57 */ 58 #define NCHUNKS_ORDER 6 59 60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 61 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 66 67 #define BUDDY_MASK (0x3) 68 #define BUDDY_SHIFT 2 69 #define SLOTS_ALIGN (0x40) 70 71 /***************** 72 * Structures 73 *****************/ 74 struct z3fold_pool; 75 struct z3fold_ops { 76 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 77 }; 78 79 enum buddy { 80 HEADLESS = 0, 81 FIRST, 82 MIDDLE, 83 LAST, 84 BUDDIES_MAX = LAST 85 }; 86 87 struct z3fold_buddy_slots { 88 /* 89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 90 * be enough slots to hold all possible variants 91 */ 92 unsigned long slot[BUDDY_MASK + 1]; 93 unsigned long pool; /* back link + flags */ 94 rwlock_t lock; 95 }; 96 #define HANDLE_FLAG_MASK (0x03) 97 98 /* 99 * struct z3fold_header - z3fold page metadata occupying first chunks of each 100 * z3fold page, except for HEADLESS pages 101 * @buddy: links the z3fold page into the relevant list in the 102 * pool 103 * @page_lock: per-page lock 104 * @refcount: reference count for the z3fold page 105 * @work: work_struct for page layout optimization 106 * @slots: pointer to the structure holding buddy slots 107 * @pool: pointer to the containing pool 108 * @cpu: CPU which this page "belongs" to 109 * @first_chunks: the size of the first buddy in chunks, 0 if free 110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 111 * @last_chunks: the size of the last buddy in chunks, 0 if free 112 * @first_num: the starting number (for the first handle) 113 * @mapped_count: the number of objects currently mapped 114 */ 115 struct z3fold_header { 116 struct list_head buddy; 117 spinlock_t page_lock; 118 struct kref refcount; 119 struct work_struct work; 120 struct z3fold_buddy_slots *slots; 121 struct z3fold_pool *pool; 122 short cpu; 123 unsigned short first_chunks; 124 unsigned short middle_chunks; 125 unsigned short last_chunks; 126 unsigned short start_middle; 127 unsigned short first_num:2; 128 unsigned short mapped_count:2; 129 unsigned short foreign_handles:2; 130 }; 131 132 /** 133 * struct z3fold_pool - stores metadata for each z3fold pool 134 * @name: pool name 135 * @lock: protects pool unbuddied/lru lists 136 * @stale_lock: protects pool stale page list 137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 138 * buddies; the list each z3fold page is added to depends on 139 * the size of its free region. 140 * @lru: list tracking the z3fold pages in LRU order by most recently 141 * added buddy. 142 * @stale: list of pages marked for freeing 143 * @pages_nr: number of z3fold pages in the pool. 144 * @c_handle: cache for z3fold_buddy_slots allocation 145 * @ops: pointer to a structure of user defined operations specified at 146 * pool creation time. 147 * @compact_wq: workqueue for page layout background optimization 148 * @release_wq: workqueue for safe page release 149 * @work: work_struct for safe page release 150 * @inode: inode for z3fold pseudo filesystem 151 * 152 * This structure is allocated at pool creation time and maintains metadata 153 * pertaining to a particular z3fold pool. 154 */ 155 struct z3fold_pool { 156 const char *name; 157 spinlock_t lock; 158 spinlock_t stale_lock; 159 struct list_head *unbuddied; 160 struct list_head lru; 161 struct list_head stale; 162 atomic64_t pages_nr; 163 struct kmem_cache *c_handle; 164 const struct z3fold_ops *ops; 165 struct zpool *zpool; 166 const struct zpool_ops *zpool_ops; 167 struct workqueue_struct *compact_wq; 168 struct workqueue_struct *release_wq; 169 struct work_struct work; 170 struct inode *inode; 171 }; 172 173 /* 174 * Internal z3fold page flags 175 */ 176 enum z3fold_page_flags { 177 PAGE_HEADLESS = 0, 178 MIDDLE_CHUNK_MAPPED, 179 NEEDS_COMPACTING, 180 PAGE_STALE, 181 PAGE_CLAIMED, /* by either reclaim or free */ 182 }; 183 184 /* 185 * handle flags, go under HANDLE_FLAG_MASK 186 */ 187 enum z3fold_handle_flags { 188 HANDLES_ORPHANED = 0, 189 }; 190 191 /* 192 * Forward declarations 193 */ 194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool); 195 static void compact_page_work(struct work_struct *w); 196 197 /***************** 198 * Helpers 199 *****************/ 200 201 /* Converts an allocation size in bytes to size in z3fold chunks */ 202 static int size_to_chunks(size_t size) 203 { 204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 205 } 206 207 #define for_each_unbuddied_list(_iter, _begin) \ 208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 209 210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 211 gfp_t gfp) 212 { 213 struct z3fold_buddy_slots *slots; 214 215 slots = kmem_cache_alloc(pool->c_handle, 216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE))); 217 218 if (slots) { 219 memset(slots->slot, 0, sizeof(slots->slot)); 220 slots->pool = (unsigned long)pool; 221 rwlock_init(&slots->lock); 222 } 223 224 return slots; 225 } 226 227 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 228 { 229 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 230 } 231 232 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 233 { 234 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 235 } 236 237 /* Lock a z3fold page */ 238 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 239 { 240 spin_lock(&zhdr->page_lock); 241 } 242 243 /* Try to lock a z3fold page */ 244 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 245 { 246 return spin_trylock(&zhdr->page_lock); 247 } 248 249 /* Unlock a z3fold page */ 250 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 251 { 252 spin_unlock(&zhdr->page_lock); 253 } 254 255 256 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle, 257 bool lock) 258 { 259 struct z3fold_buddy_slots *slots; 260 struct z3fold_header *zhdr; 261 int locked = 0; 262 263 if (!(handle & (1 << PAGE_HEADLESS))) { 264 slots = handle_to_slots(handle); 265 do { 266 unsigned long addr; 267 268 read_lock(&slots->lock); 269 addr = *(unsigned long *)handle; 270 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 271 if (lock) 272 locked = z3fold_page_trylock(zhdr); 273 read_unlock(&slots->lock); 274 if (locked) 275 break; 276 cpu_relax(); 277 } while (lock); 278 } else { 279 zhdr = (struct z3fold_header *)(handle & PAGE_MASK); 280 } 281 282 return zhdr; 283 } 284 285 /* Returns the z3fold page where a given handle is stored */ 286 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 287 { 288 return __get_z3fold_header(h, false); 289 } 290 291 /* return locked z3fold page if it's not headless */ 292 static inline struct z3fold_header *get_z3fold_header(unsigned long h) 293 { 294 return __get_z3fold_header(h, true); 295 } 296 297 static inline void put_z3fold_header(struct z3fold_header *zhdr) 298 { 299 struct page *page = virt_to_page(zhdr); 300 301 if (!test_bit(PAGE_HEADLESS, &page->private)) 302 z3fold_page_unlock(zhdr); 303 } 304 305 static inline void free_handle(unsigned long handle) 306 { 307 struct z3fold_buddy_slots *slots; 308 struct z3fold_header *zhdr; 309 int i; 310 bool is_free; 311 312 if (handle & (1 << PAGE_HEADLESS)) 313 return; 314 315 if (WARN_ON(*(unsigned long *)handle == 0)) 316 return; 317 318 zhdr = handle_to_z3fold_header(handle); 319 slots = handle_to_slots(handle); 320 write_lock(&slots->lock); 321 *(unsigned long *)handle = 0; 322 write_unlock(&slots->lock); 323 if (zhdr->slots == slots) 324 return; /* simple case, nothing else to do */ 325 326 /* we are freeing a foreign handle if we are here */ 327 zhdr->foreign_handles--; 328 is_free = true; 329 read_lock(&slots->lock); 330 if (!test_bit(HANDLES_ORPHANED, &slots->pool)) { 331 read_unlock(&slots->lock); 332 return; 333 } 334 for (i = 0; i <= BUDDY_MASK; i++) { 335 if (slots->slot[i]) { 336 is_free = false; 337 break; 338 } 339 } 340 read_unlock(&slots->lock); 341 342 if (is_free) { 343 struct z3fold_pool *pool = slots_to_pool(slots); 344 345 kmem_cache_free(pool->c_handle, slots); 346 } 347 } 348 349 static int z3fold_init_fs_context(struct fs_context *fc) 350 { 351 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM; 352 } 353 354 static struct file_system_type z3fold_fs = { 355 .name = "z3fold", 356 .init_fs_context = z3fold_init_fs_context, 357 .kill_sb = kill_anon_super, 358 }; 359 360 static struct vfsmount *z3fold_mnt; 361 static int z3fold_mount(void) 362 { 363 int ret = 0; 364 365 z3fold_mnt = kern_mount(&z3fold_fs); 366 if (IS_ERR(z3fold_mnt)) 367 ret = PTR_ERR(z3fold_mnt); 368 369 return ret; 370 } 371 372 static void z3fold_unmount(void) 373 { 374 kern_unmount(z3fold_mnt); 375 } 376 377 static const struct address_space_operations z3fold_aops; 378 static int z3fold_register_migration(struct z3fold_pool *pool) 379 { 380 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 381 if (IS_ERR(pool->inode)) { 382 pool->inode = NULL; 383 return 1; 384 } 385 386 pool->inode->i_mapping->private_data = pool; 387 pool->inode->i_mapping->a_ops = &z3fold_aops; 388 return 0; 389 } 390 391 static void z3fold_unregister_migration(struct z3fold_pool *pool) 392 { 393 if (pool->inode) 394 iput(pool->inode); 395 } 396 397 /* Initializes the z3fold header of a newly allocated z3fold page */ 398 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless, 399 struct z3fold_pool *pool, gfp_t gfp) 400 { 401 struct z3fold_header *zhdr = page_address(page); 402 struct z3fold_buddy_slots *slots; 403 404 INIT_LIST_HEAD(&page->lru); 405 clear_bit(PAGE_HEADLESS, &page->private); 406 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 407 clear_bit(NEEDS_COMPACTING, &page->private); 408 clear_bit(PAGE_STALE, &page->private); 409 clear_bit(PAGE_CLAIMED, &page->private); 410 if (headless) 411 return zhdr; 412 413 slots = alloc_slots(pool, gfp); 414 if (!slots) 415 return NULL; 416 417 spin_lock_init(&zhdr->page_lock); 418 kref_init(&zhdr->refcount); 419 zhdr->first_chunks = 0; 420 zhdr->middle_chunks = 0; 421 zhdr->last_chunks = 0; 422 zhdr->first_num = 0; 423 zhdr->start_middle = 0; 424 zhdr->cpu = -1; 425 zhdr->foreign_handles = 0; 426 zhdr->slots = slots; 427 zhdr->pool = pool; 428 INIT_LIST_HEAD(&zhdr->buddy); 429 INIT_WORK(&zhdr->work, compact_page_work); 430 return zhdr; 431 } 432 433 /* Resets the struct page fields and frees the page */ 434 static void free_z3fold_page(struct page *page, bool headless) 435 { 436 if (!headless) { 437 lock_page(page); 438 __ClearPageMovable(page); 439 unlock_page(page); 440 } 441 ClearPagePrivate(page); 442 __free_page(page); 443 } 444 445 /* Helper function to build the index */ 446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 447 { 448 return (bud + zhdr->first_num) & BUDDY_MASK; 449 } 450 451 /* 452 * Encodes the handle of a particular buddy within a z3fold page 453 * Pool lock should be held as this function accesses first_num 454 */ 455 static unsigned long __encode_handle(struct z3fold_header *zhdr, 456 struct z3fold_buddy_slots *slots, 457 enum buddy bud) 458 { 459 unsigned long h = (unsigned long)zhdr; 460 int idx = 0; 461 462 /* 463 * For a headless page, its handle is its pointer with the extra 464 * PAGE_HEADLESS bit set 465 */ 466 if (bud == HEADLESS) 467 return h | (1 << PAGE_HEADLESS); 468 469 /* otherwise, return pointer to encoded handle */ 470 idx = __idx(zhdr, bud); 471 h += idx; 472 if (bud == LAST) 473 h |= (zhdr->last_chunks << BUDDY_SHIFT); 474 475 write_lock(&slots->lock); 476 slots->slot[idx] = h; 477 write_unlock(&slots->lock); 478 return (unsigned long)&slots->slot[idx]; 479 } 480 481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 482 { 483 return __encode_handle(zhdr, zhdr->slots, bud); 484 } 485 486 /* only for LAST bud, returns zero otherwise */ 487 static unsigned short handle_to_chunks(unsigned long handle) 488 { 489 struct z3fold_buddy_slots *slots = handle_to_slots(handle); 490 unsigned long addr; 491 492 read_lock(&slots->lock); 493 addr = *(unsigned long *)handle; 494 read_unlock(&slots->lock); 495 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 496 } 497 498 /* 499 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 500 * but that doesn't matter. because the masking will result in the 501 * correct buddy number. 502 */ 503 static enum buddy handle_to_buddy(unsigned long handle) 504 { 505 struct z3fold_header *zhdr; 506 struct z3fold_buddy_slots *slots = handle_to_slots(handle); 507 unsigned long addr; 508 509 read_lock(&slots->lock); 510 WARN_ON(handle & (1 << PAGE_HEADLESS)); 511 addr = *(unsigned long *)handle; 512 read_unlock(&slots->lock); 513 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 514 return (addr - zhdr->first_num) & BUDDY_MASK; 515 } 516 517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 518 { 519 return zhdr->pool; 520 } 521 522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 523 { 524 struct page *page = virt_to_page(zhdr); 525 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 526 bool is_free = true; 527 int i; 528 529 WARN_ON(!list_empty(&zhdr->buddy)); 530 set_bit(PAGE_STALE, &page->private); 531 clear_bit(NEEDS_COMPACTING, &page->private); 532 spin_lock(&pool->lock); 533 if (!list_empty(&page->lru)) 534 list_del_init(&page->lru); 535 spin_unlock(&pool->lock); 536 537 /* If there are no foreign handles, free the handles array */ 538 read_lock(&zhdr->slots->lock); 539 for (i = 0; i <= BUDDY_MASK; i++) { 540 if (zhdr->slots->slot[i]) { 541 is_free = false; 542 break; 543 } 544 } 545 if (!is_free) 546 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool); 547 read_unlock(&zhdr->slots->lock); 548 549 if (is_free) 550 kmem_cache_free(pool->c_handle, zhdr->slots); 551 552 if (locked) 553 z3fold_page_unlock(zhdr); 554 555 spin_lock(&pool->stale_lock); 556 list_add(&zhdr->buddy, &pool->stale); 557 queue_work(pool->release_wq, &pool->work); 558 spin_unlock(&pool->stale_lock); 559 } 560 561 static void __attribute__((__unused__)) 562 release_z3fold_page(struct kref *ref) 563 { 564 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 565 refcount); 566 __release_z3fold_page(zhdr, false); 567 } 568 569 static void release_z3fold_page_locked(struct kref *ref) 570 { 571 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 572 refcount); 573 WARN_ON(z3fold_page_trylock(zhdr)); 574 __release_z3fold_page(zhdr, true); 575 } 576 577 static void release_z3fold_page_locked_list(struct kref *ref) 578 { 579 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 580 refcount); 581 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 582 583 spin_lock(&pool->lock); 584 list_del_init(&zhdr->buddy); 585 spin_unlock(&pool->lock); 586 587 WARN_ON(z3fold_page_trylock(zhdr)); 588 __release_z3fold_page(zhdr, true); 589 } 590 591 static void free_pages_work(struct work_struct *w) 592 { 593 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 594 595 spin_lock(&pool->stale_lock); 596 while (!list_empty(&pool->stale)) { 597 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 598 struct z3fold_header, buddy); 599 struct page *page = virt_to_page(zhdr); 600 601 list_del(&zhdr->buddy); 602 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 603 continue; 604 spin_unlock(&pool->stale_lock); 605 cancel_work_sync(&zhdr->work); 606 free_z3fold_page(page, false); 607 cond_resched(); 608 spin_lock(&pool->stale_lock); 609 } 610 spin_unlock(&pool->stale_lock); 611 } 612 613 /* 614 * Returns the number of free chunks in a z3fold page. 615 * NB: can't be used with HEADLESS pages. 616 */ 617 static int num_free_chunks(struct z3fold_header *zhdr) 618 { 619 int nfree; 620 /* 621 * If there is a middle object, pick up the bigger free space 622 * either before or after it. Otherwise just subtract the number 623 * of chunks occupied by the first and the last objects. 624 */ 625 if (zhdr->middle_chunks != 0) { 626 int nfree_before = zhdr->first_chunks ? 627 0 : zhdr->start_middle - ZHDR_CHUNKS; 628 int nfree_after = zhdr->last_chunks ? 629 0 : TOTAL_CHUNKS - 630 (zhdr->start_middle + zhdr->middle_chunks); 631 nfree = max(nfree_before, nfree_after); 632 } else 633 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 634 return nfree; 635 } 636 637 /* Add to the appropriate unbuddied list */ 638 static inline void add_to_unbuddied(struct z3fold_pool *pool, 639 struct z3fold_header *zhdr) 640 { 641 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 642 zhdr->middle_chunks == 0) { 643 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 644 645 int freechunks = num_free_chunks(zhdr); 646 spin_lock(&pool->lock); 647 list_add(&zhdr->buddy, &unbuddied[freechunks]); 648 spin_unlock(&pool->lock); 649 zhdr->cpu = smp_processor_id(); 650 put_cpu_ptr(pool->unbuddied); 651 } 652 } 653 654 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 655 unsigned short dst_chunk) 656 { 657 void *beg = zhdr; 658 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 659 beg + (zhdr->start_middle << CHUNK_SHIFT), 660 zhdr->middle_chunks << CHUNK_SHIFT); 661 } 662 663 static inline bool buddy_single(struct z3fold_header *zhdr) 664 { 665 return !((zhdr->first_chunks && zhdr->middle_chunks) || 666 (zhdr->first_chunks && zhdr->last_chunks) || 667 (zhdr->middle_chunks && zhdr->last_chunks)); 668 } 669 670 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr) 671 { 672 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 673 void *p = zhdr; 674 unsigned long old_handle = 0; 675 size_t sz = 0; 676 struct z3fold_header *new_zhdr = NULL; 677 int first_idx = __idx(zhdr, FIRST); 678 int middle_idx = __idx(zhdr, MIDDLE); 679 int last_idx = __idx(zhdr, LAST); 680 unsigned short *moved_chunks = NULL; 681 682 /* 683 * No need to protect slots here -- all the slots are "local" and 684 * the page lock is already taken 685 */ 686 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) { 687 p += ZHDR_SIZE_ALIGNED; 688 sz = zhdr->first_chunks << CHUNK_SHIFT; 689 old_handle = (unsigned long)&zhdr->slots->slot[first_idx]; 690 moved_chunks = &zhdr->first_chunks; 691 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) { 692 p += zhdr->start_middle << CHUNK_SHIFT; 693 sz = zhdr->middle_chunks << CHUNK_SHIFT; 694 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx]; 695 moved_chunks = &zhdr->middle_chunks; 696 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) { 697 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); 698 sz = zhdr->last_chunks << CHUNK_SHIFT; 699 old_handle = (unsigned long)&zhdr->slots->slot[last_idx]; 700 moved_chunks = &zhdr->last_chunks; 701 } 702 703 if (sz > 0) { 704 enum buddy new_bud = HEADLESS; 705 short chunks = size_to_chunks(sz); 706 void *q; 707 708 new_zhdr = __z3fold_alloc(pool, sz, false); 709 if (!new_zhdr) 710 return NULL; 711 712 if (WARN_ON(new_zhdr == zhdr)) 713 goto out_fail; 714 715 if (new_zhdr->first_chunks == 0) { 716 if (new_zhdr->middle_chunks != 0 && 717 chunks >= new_zhdr->start_middle) { 718 new_bud = LAST; 719 } else { 720 new_bud = FIRST; 721 } 722 } else if (new_zhdr->last_chunks == 0) { 723 new_bud = LAST; 724 } else if (new_zhdr->middle_chunks == 0) { 725 new_bud = MIDDLE; 726 } 727 q = new_zhdr; 728 switch (new_bud) { 729 case FIRST: 730 new_zhdr->first_chunks = chunks; 731 q += ZHDR_SIZE_ALIGNED; 732 break; 733 case MIDDLE: 734 new_zhdr->middle_chunks = chunks; 735 new_zhdr->start_middle = 736 new_zhdr->first_chunks + ZHDR_CHUNKS; 737 q += new_zhdr->start_middle << CHUNK_SHIFT; 738 break; 739 case LAST: 740 new_zhdr->last_chunks = chunks; 741 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT); 742 break; 743 default: 744 goto out_fail; 745 } 746 new_zhdr->foreign_handles++; 747 memcpy(q, p, sz); 748 write_lock(&zhdr->slots->lock); 749 *(unsigned long *)old_handle = (unsigned long)new_zhdr + 750 __idx(new_zhdr, new_bud); 751 if (new_bud == LAST) 752 *(unsigned long *)old_handle |= 753 (new_zhdr->last_chunks << BUDDY_SHIFT); 754 write_unlock(&zhdr->slots->lock); 755 add_to_unbuddied(pool, new_zhdr); 756 z3fold_page_unlock(new_zhdr); 757 758 *moved_chunks = 0; 759 } 760 761 return new_zhdr; 762 763 out_fail: 764 if (new_zhdr) { 765 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked)) 766 atomic64_dec(&pool->pages_nr); 767 else { 768 add_to_unbuddied(pool, new_zhdr); 769 z3fold_page_unlock(new_zhdr); 770 } 771 } 772 return NULL; 773 774 } 775 776 #define BIG_CHUNK_GAP 3 777 /* Has to be called with lock held */ 778 static int z3fold_compact_page(struct z3fold_header *zhdr) 779 { 780 struct page *page = virt_to_page(zhdr); 781 782 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 783 return 0; /* can't move middle chunk, it's used */ 784 785 if (unlikely(PageIsolated(page))) 786 return 0; 787 788 if (zhdr->middle_chunks == 0) 789 return 0; /* nothing to compact */ 790 791 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 792 /* move to the beginning */ 793 mchunk_memmove(zhdr, ZHDR_CHUNKS); 794 zhdr->first_chunks = zhdr->middle_chunks; 795 zhdr->middle_chunks = 0; 796 zhdr->start_middle = 0; 797 zhdr->first_num++; 798 return 1; 799 } 800 801 /* 802 * moving data is expensive, so let's only do that if 803 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 804 */ 805 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 806 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 807 BIG_CHUNK_GAP) { 808 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 809 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 810 return 1; 811 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 812 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 813 + zhdr->middle_chunks) >= 814 BIG_CHUNK_GAP) { 815 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 816 zhdr->middle_chunks; 817 mchunk_memmove(zhdr, new_start); 818 zhdr->start_middle = new_start; 819 return 1; 820 } 821 822 return 0; 823 } 824 825 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 826 { 827 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 828 struct page *page; 829 830 page = virt_to_page(zhdr); 831 if (locked) 832 WARN_ON(z3fold_page_trylock(zhdr)); 833 else 834 z3fold_page_lock(zhdr); 835 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 836 z3fold_page_unlock(zhdr); 837 return; 838 } 839 spin_lock(&pool->lock); 840 list_del_init(&zhdr->buddy); 841 spin_unlock(&pool->lock); 842 843 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 844 atomic64_dec(&pool->pages_nr); 845 return; 846 } 847 848 if (unlikely(PageIsolated(page) || 849 test_bit(PAGE_CLAIMED, &page->private) || 850 test_bit(PAGE_STALE, &page->private))) { 851 z3fold_page_unlock(zhdr); 852 return; 853 } 854 855 if (!zhdr->foreign_handles && buddy_single(zhdr) && 856 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) { 857 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) 858 atomic64_dec(&pool->pages_nr); 859 else 860 z3fold_page_unlock(zhdr); 861 return; 862 } 863 864 z3fold_compact_page(zhdr); 865 add_to_unbuddied(pool, zhdr); 866 z3fold_page_unlock(zhdr); 867 } 868 869 static void compact_page_work(struct work_struct *w) 870 { 871 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 872 work); 873 874 do_compact_page(zhdr, false); 875 } 876 877 /* returns _locked_ z3fold page header or NULL */ 878 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 879 size_t size, bool can_sleep) 880 { 881 struct z3fold_header *zhdr = NULL; 882 struct page *page; 883 struct list_head *unbuddied; 884 int chunks = size_to_chunks(size), i; 885 886 lookup: 887 /* First, try to find an unbuddied z3fold page. */ 888 unbuddied = get_cpu_ptr(pool->unbuddied); 889 for_each_unbuddied_list(i, chunks) { 890 struct list_head *l = &unbuddied[i]; 891 892 zhdr = list_first_entry_or_null(READ_ONCE(l), 893 struct z3fold_header, buddy); 894 895 if (!zhdr) 896 continue; 897 898 /* Re-check under lock. */ 899 spin_lock(&pool->lock); 900 l = &unbuddied[i]; 901 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 902 struct z3fold_header, buddy)) || 903 !z3fold_page_trylock(zhdr)) { 904 spin_unlock(&pool->lock); 905 zhdr = NULL; 906 put_cpu_ptr(pool->unbuddied); 907 if (can_sleep) 908 cond_resched(); 909 goto lookup; 910 } 911 list_del_init(&zhdr->buddy); 912 zhdr->cpu = -1; 913 spin_unlock(&pool->lock); 914 915 page = virt_to_page(zhdr); 916 if (test_bit(NEEDS_COMPACTING, &page->private) || 917 test_bit(PAGE_CLAIMED, &page->private)) { 918 z3fold_page_unlock(zhdr); 919 zhdr = NULL; 920 put_cpu_ptr(pool->unbuddied); 921 if (can_sleep) 922 cond_resched(); 923 goto lookup; 924 } 925 926 /* 927 * this page could not be removed from its unbuddied 928 * list while pool lock was held, and then we've taken 929 * page lock so kref_put could not be called before 930 * we got here, so it's safe to just call kref_get() 931 */ 932 kref_get(&zhdr->refcount); 933 break; 934 } 935 put_cpu_ptr(pool->unbuddied); 936 937 if (!zhdr) { 938 int cpu; 939 940 /* look for _exact_ match on other cpus' lists */ 941 for_each_online_cpu(cpu) { 942 struct list_head *l; 943 944 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 945 spin_lock(&pool->lock); 946 l = &unbuddied[chunks]; 947 948 zhdr = list_first_entry_or_null(READ_ONCE(l), 949 struct z3fold_header, buddy); 950 951 if (!zhdr || !z3fold_page_trylock(zhdr)) { 952 spin_unlock(&pool->lock); 953 zhdr = NULL; 954 continue; 955 } 956 list_del_init(&zhdr->buddy); 957 zhdr->cpu = -1; 958 spin_unlock(&pool->lock); 959 960 page = virt_to_page(zhdr); 961 if (test_bit(NEEDS_COMPACTING, &page->private) || 962 test_bit(PAGE_CLAIMED, &page->private)) { 963 z3fold_page_unlock(zhdr); 964 zhdr = NULL; 965 if (can_sleep) 966 cond_resched(); 967 continue; 968 } 969 kref_get(&zhdr->refcount); 970 break; 971 } 972 } 973 974 return zhdr; 975 } 976 977 /* 978 * API Functions 979 */ 980 981 /** 982 * z3fold_create_pool() - create a new z3fold pool 983 * @name: pool name 984 * @gfp: gfp flags when allocating the z3fold pool structure 985 * @ops: user-defined operations for the z3fold pool 986 * 987 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 988 * failed. 989 */ 990 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 991 const struct z3fold_ops *ops) 992 { 993 struct z3fold_pool *pool = NULL; 994 int i, cpu; 995 996 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 997 if (!pool) 998 goto out; 999 pool->c_handle = kmem_cache_create("z3fold_handle", 1000 sizeof(struct z3fold_buddy_slots), 1001 SLOTS_ALIGN, 0, NULL); 1002 if (!pool->c_handle) 1003 goto out_c; 1004 spin_lock_init(&pool->lock); 1005 spin_lock_init(&pool->stale_lock); 1006 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 1007 if (!pool->unbuddied) 1008 goto out_pool; 1009 for_each_possible_cpu(cpu) { 1010 struct list_head *unbuddied = 1011 per_cpu_ptr(pool->unbuddied, cpu); 1012 for_each_unbuddied_list(i, 0) 1013 INIT_LIST_HEAD(&unbuddied[i]); 1014 } 1015 INIT_LIST_HEAD(&pool->lru); 1016 INIT_LIST_HEAD(&pool->stale); 1017 atomic64_set(&pool->pages_nr, 0); 1018 pool->name = name; 1019 pool->compact_wq = create_singlethread_workqueue(pool->name); 1020 if (!pool->compact_wq) 1021 goto out_unbuddied; 1022 pool->release_wq = create_singlethread_workqueue(pool->name); 1023 if (!pool->release_wq) 1024 goto out_wq; 1025 if (z3fold_register_migration(pool)) 1026 goto out_rwq; 1027 INIT_WORK(&pool->work, free_pages_work); 1028 pool->ops = ops; 1029 return pool; 1030 1031 out_rwq: 1032 destroy_workqueue(pool->release_wq); 1033 out_wq: 1034 destroy_workqueue(pool->compact_wq); 1035 out_unbuddied: 1036 free_percpu(pool->unbuddied); 1037 out_pool: 1038 kmem_cache_destroy(pool->c_handle); 1039 out_c: 1040 kfree(pool); 1041 out: 1042 return NULL; 1043 } 1044 1045 /** 1046 * z3fold_destroy_pool() - destroys an existing z3fold pool 1047 * @pool: the z3fold pool to be destroyed 1048 * 1049 * The pool should be emptied before this function is called. 1050 */ 1051 static void z3fold_destroy_pool(struct z3fold_pool *pool) 1052 { 1053 kmem_cache_destroy(pool->c_handle); 1054 1055 /* 1056 * We need to destroy pool->compact_wq before pool->release_wq, 1057 * as any pending work on pool->compact_wq will call 1058 * queue_work(pool->release_wq, &pool->work). 1059 * 1060 * There are still outstanding pages until both workqueues are drained, 1061 * so we cannot unregister migration until then. 1062 */ 1063 1064 destroy_workqueue(pool->compact_wq); 1065 destroy_workqueue(pool->release_wq); 1066 z3fold_unregister_migration(pool); 1067 kfree(pool); 1068 } 1069 1070 /** 1071 * z3fold_alloc() - allocates a region of a given size 1072 * @pool: z3fold pool from which to allocate 1073 * @size: size in bytes of the desired allocation 1074 * @gfp: gfp flags used if the pool needs to grow 1075 * @handle: handle of the new allocation 1076 * 1077 * This function will attempt to find a free region in the pool large enough to 1078 * satisfy the allocation request. A search of the unbuddied lists is 1079 * performed first. If no suitable free region is found, then a new page is 1080 * allocated and added to the pool to satisfy the request. 1081 * 1082 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 1083 * as z3fold pool pages. 1084 * 1085 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 1086 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 1087 * a new page. 1088 */ 1089 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 1090 unsigned long *handle) 1091 { 1092 int chunks = size_to_chunks(size); 1093 struct z3fold_header *zhdr = NULL; 1094 struct page *page = NULL; 1095 enum buddy bud; 1096 bool can_sleep = gfpflags_allow_blocking(gfp); 1097 1098 if (!size) 1099 return -EINVAL; 1100 1101 if (size > PAGE_SIZE) 1102 return -ENOSPC; 1103 1104 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 1105 bud = HEADLESS; 1106 else { 1107 retry: 1108 zhdr = __z3fold_alloc(pool, size, can_sleep); 1109 if (zhdr) { 1110 if (zhdr->first_chunks == 0) { 1111 if (zhdr->middle_chunks != 0 && 1112 chunks >= zhdr->start_middle) 1113 bud = LAST; 1114 else 1115 bud = FIRST; 1116 } else if (zhdr->last_chunks == 0) 1117 bud = LAST; 1118 else if (zhdr->middle_chunks == 0) 1119 bud = MIDDLE; 1120 else { 1121 if (kref_put(&zhdr->refcount, 1122 release_z3fold_page_locked)) 1123 atomic64_dec(&pool->pages_nr); 1124 else 1125 z3fold_page_unlock(zhdr); 1126 pr_err("No free chunks in unbuddied\n"); 1127 WARN_ON(1); 1128 goto retry; 1129 } 1130 page = virt_to_page(zhdr); 1131 goto found; 1132 } 1133 bud = FIRST; 1134 } 1135 1136 page = NULL; 1137 if (can_sleep) { 1138 spin_lock(&pool->stale_lock); 1139 zhdr = list_first_entry_or_null(&pool->stale, 1140 struct z3fold_header, buddy); 1141 /* 1142 * Before allocating a page, let's see if we can take one from 1143 * the stale pages list. cancel_work_sync() can sleep so we 1144 * limit this case to the contexts where we can sleep 1145 */ 1146 if (zhdr) { 1147 list_del(&zhdr->buddy); 1148 spin_unlock(&pool->stale_lock); 1149 cancel_work_sync(&zhdr->work); 1150 page = virt_to_page(zhdr); 1151 } else { 1152 spin_unlock(&pool->stale_lock); 1153 } 1154 } 1155 if (!page) 1156 page = alloc_page(gfp); 1157 1158 if (!page) 1159 return -ENOMEM; 1160 1161 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp); 1162 if (!zhdr) { 1163 __free_page(page); 1164 return -ENOMEM; 1165 } 1166 atomic64_inc(&pool->pages_nr); 1167 1168 if (bud == HEADLESS) { 1169 set_bit(PAGE_HEADLESS, &page->private); 1170 goto headless; 1171 } 1172 if (can_sleep) { 1173 lock_page(page); 1174 __SetPageMovable(page, pool->inode->i_mapping); 1175 unlock_page(page); 1176 } else { 1177 if (trylock_page(page)) { 1178 __SetPageMovable(page, pool->inode->i_mapping); 1179 unlock_page(page); 1180 } 1181 } 1182 z3fold_page_lock(zhdr); 1183 1184 found: 1185 if (bud == FIRST) 1186 zhdr->first_chunks = chunks; 1187 else if (bud == LAST) 1188 zhdr->last_chunks = chunks; 1189 else { 1190 zhdr->middle_chunks = chunks; 1191 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 1192 } 1193 add_to_unbuddied(pool, zhdr); 1194 1195 headless: 1196 spin_lock(&pool->lock); 1197 /* Add/move z3fold page to beginning of LRU */ 1198 if (!list_empty(&page->lru)) 1199 list_del(&page->lru); 1200 1201 list_add(&page->lru, &pool->lru); 1202 1203 *handle = encode_handle(zhdr, bud); 1204 spin_unlock(&pool->lock); 1205 if (bud != HEADLESS) 1206 z3fold_page_unlock(zhdr); 1207 1208 return 0; 1209 } 1210 1211 /** 1212 * z3fold_free() - frees the allocation associated with the given handle 1213 * @pool: pool in which the allocation resided 1214 * @handle: handle associated with the allocation returned by z3fold_alloc() 1215 * 1216 * In the case that the z3fold page in which the allocation resides is under 1217 * reclaim, as indicated by the PG_reclaim flag being set, this function 1218 * only sets the first|last_chunks to 0. The page is actually freed 1219 * once both buddies are evicted (see z3fold_reclaim_page() below). 1220 */ 1221 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 1222 { 1223 struct z3fold_header *zhdr; 1224 struct page *page; 1225 enum buddy bud; 1226 bool page_claimed; 1227 1228 zhdr = get_z3fold_header(handle); 1229 page = virt_to_page(zhdr); 1230 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private); 1231 1232 if (test_bit(PAGE_HEADLESS, &page->private)) { 1233 /* if a headless page is under reclaim, just leave. 1234 * NB: we use test_and_set_bit for a reason: if the bit 1235 * has not been set before, we release this page 1236 * immediately so we don't care about its value any more. 1237 */ 1238 if (!page_claimed) { 1239 spin_lock(&pool->lock); 1240 list_del(&page->lru); 1241 spin_unlock(&pool->lock); 1242 put_z3fold_header(zhdr); 1243 free_z3fold_page(page, true); 1244 atomic64_dec(&pool->pages_nr); 1245 } 1246 return; 1247 } 1248 1249 /* Non-headless case */ 1250 bud = handle_to_buddy(handle); 1251 1252 switch (bud) { 1253 case FIRST: 1254 zhdr->first_chunks = 0; 1255 break; 1256 case MIDDLE: 1257 zhdr->middle_chunks = 0; 1258 break; 1259 case LAST: 1260 zhdr->last_chunks = 0; 1261 break; 1262 default: 1263 pr_err("%s: unknown bud %d\n", __func__, bud); 1264 WARN_ON(1); 1265 put_z3fold_header(zhdr); 1266 clear_bit(PAGE_CLAIMED, &page->private); 1267 return; 1268 } 1269 1270 if (!page_claimed) 1271 free_handle(handle); 1272 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1273 atomic64_dec(&pool->pages_nr); 1274 return; 1275 } 1276 if (page_claimed) { 1277 /* the page has not been claimed by us */ 1278 z3fold_page_unlock(zhdr); 1279 return; 1280 } 1281 if (unlikely(PageIsolated(page)) || 1282 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1283 put_z3fold_header(zhdr); 1284 clear_bit(PAGE_CLAIMED, &page->private); 1285 return; 1286 } 1287 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1288 spin_lock(&pool->lock); 1289 list_del_init(&zhdr->buddy); 1290 spin_unlock(&pool->lock); 1291 zhdr->cpu = -1; 1292 kref_get(&zhdr->refcount); 1293 clear_bit(PAGE_CLAIMED, &page->private); 1294 do_compact_page(zhdr, true); 1295 return; 1296 } 1297 kref_get(&zhdr->refcount); 1298 clear_bit(PAGE_CLAIMED, &page->private); 1299 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1300 put_z3fold_header(zhdr); 1301 } 1302 1303 /** 1304 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1305 * @pool: pool from which a page will attempt to be evicted 1306 * @retries: number of pages on the LRU list for which eviction will 1307 * be attempted before failing 1308 * 1309 * z3fold reclaim is different from normal system reclaim in that it is done 1310 * from the bottom, up. This is because only the bottom layer, z3fold, has 1311 * information on how the allocations are organized within each z3fold page. 1312 * This has the potential to create interesting locking situations between 1313 * z3fold and the user, however. 1314 * 1315 * To avoid these, this is how z3fold_reclaim_page() should be called: 1316 * 1317 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1318 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1319 * call the user-defined eviction handler with the pool and handle as 1320 * arguments. 1321 * 1322 * If the handle can not be evicted, the eviction handler should return 1323 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1324 * appropriate list and try the next z3fold page on the LRU up to 1325 * a user defined number of retries. 1326 * 1327 * If the handle is successfully evicted, the eviction handler should 1328 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1329 * contains logic to delay freeing the page if the page is under reclaim, 1330 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1331 * 1332 * If all buddies in the z3fold page are successfully evicted, then the 1333 * z3fold page can be freed. 1334 * 1335 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1336 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1337 * the retry limit was hit. 1338 */ 1339 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1340 { 1341 int i, ret = -1; 1342 struct z3fold_header *zhdr = NULL; 1343 struct page *page = NULL; 1344 struct list_head *pos; 1345 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1346 1347 spin_lock(&pool->lock); 1348 if (!pool->ops || !pool->ops->evict || retries == 0) { 1349 spin_unlock(&pool->lock); 1350 return -EINVAL; 1351 } 1352 for (i = 0; i < retries; i++) { 1353 if (list_empty(&pool->lru)) { 1354 spin_unlock(&pool->lock); 1355 return -EINVAL; 1356 } 1357 list_for_each_prev(pos, &pool->lru) { 1358 page = list_entry(pos, struct page, lru); 1359 1360 /* this bit could have been set by free, in which case 1361 * we pass over to the next page in the pool. 1362 */ 1363 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) { 1364 page = NULL; 1365 continue; 1366 } 1367 1368 if (unlikely(PageIsolated(page))) { 1369 clear_bit(PAGE_CLAIMED, &page->private); 1370 page = NULL; 1371 continue; 1372 } 1373 zhdr = page_address(page); 1374 if (test_bit(PAGE_HEADLESS, &page->private)) 1375 break; 1376 1377 if (!z3fold_page_trylock(zhdr)) { 1378 clear_bit(PAGE_CLAIMED, &page->private); 1379 zhdr = NULL; 1380 continue; /* can't evict at this point */ 1381 } 1382 if (zhdr->foreign_handles) { 1383 clear_bit(PAGE_CLAIMED, &page->private); 1384 z3fold_page_unlock(zhdr); 1385 zhdr = NULL; 1386 continue; /* can't evict such page */ 1387 } 1388 kref_get(&zhdr->refcount); 1389 list_del_init(&zhdr->buddy); 1390 zhdr->cpu = -1; 1391 break; 1392 } 1393 1394 if (!zhdr) 1395 break; 1396 1397 list_del_init(&page->lru); 1398 spin_unlock(&pool->lock); 1399 1400 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1401 /* 1402 * We need encode the handles before unlocking, and 1403 * use our local slots structure because z3fold_free 1404 * can zero out zhdr->slots and we can't do much 1405 * about that 1406 */ 1407 first_handle = 0; 1408 last_handle = 0; 1409 middle_handle = 0; 1410 if (zhdr->first_chunks) 1411 first_handle = encode_handle(zhdr, FIRST); 1412 if (zhdr->middle_chunks) 1413 middle_handle = encode_handle(zhdr, MIDDLE); 1414 if (zhdr->last_chunks) 1415 last_handle = encode_handle(zhdr, LAST); 1416 /* 1417 * it's safe to unlock here because we hold a 1418 * reference to this page 1419 */ 1420 z3fold_page_unlock(zhdr); 1421 } else { 1422 first_handle = encode_handle(zhdr, HEADLESS); 1423 last_handle = middle_handle = 0; 1424 } 1425 /* Issue the eviction callback(s) */ 1426 if (middle_handle) { 1427 ret = pool->ops->evict(pool, middle_handle); 1428 if (ret) 1429 goto next; 1430 free_handle(middle_handle); 1431 } 1432 if (first_handle) { 1433 ret = pool->ops->evict(pool, first_handle); 1434 if (ret) 1435 goto next; 1436 free_handle(first_handle); 1437 } 1438 if (last_handle) { 1439 ret = pool->ops->evict(pool, last_handle); 1440 if (ret) 1441 goto next; 1442 free_handle(last_handle); 1443 } 1444 next: 1445 if (test_bit(PAGE_HEADLESS, &page->private)) { 1446 if (ret == 0) { 1447 free_z3fold_page(page, true); 1448 atomic64_dec(&pool->pages_nr); 1449 return 0; 1450 } 1451 spin_lock(&pool->lock); 1452 list_add(&page->lru, &pool->lru); 1453 spin_unlock(&pool->lock); 1454 clear_bit(PAGE_CLAIMED, &page->private); 1455 } else { 1456 z3fold_page_lock(zhdr); 1457 if (kref_put(&zhdr->refcount, 1458 release_z3fold_page_locked)) { 1459 atomic64_dec(&pool->pages_nr); 1460 return 0; 1461 } 1462 /* 1463 * if we are here, the page is still not completely 1464 * free. Take the global pool lock then to be able 1465 * to add it back to the lru list 1466 */ 1467 spin_lock(&pool->lock); 1468 list_add(&page->lru, &pool->lru); 1469 spin_unlock(&pool->lock); 1470 z3fold_page_unlock(zhdr); 1471 clear_bit(PAGE_CLAIMED, &page->private); 1472 } 1473 1474 /* We started off locked to we need to lock the pool back */ 1475 spin_lock(&pool->lock); 1476 } 1477 spin_unlock(&pool->lock); 1478 return -EAGAIN; 1479 } 1480 1481 /** 1482 * z3fold_map() - maps the allocation associated with the given handle 1483 * @pool: pool in which the allocation resides 1484 * @handle: handle associated with the allocation to be mapped 1485 * 1486 * Extracts the buddy number from handle and constructs the pointer to the 1487 * correct starting chunk within the page. 1488 * 1489 * Returns: a pointer to the mapped allocation 1490 */ 1491 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1492 { 1493 struct z3fold_header *zhdr; 1494 struct page *page; 1495 void *addr; 1496 enum buddy buddy; 1497 1498 zhdr = get_z3fold_header(handle); 1499 addr = zhdr; 1500 page = virt_to_page(zhdr); 1501 1502 if (test_bit(PAGE_HEADLESS, &page->private)) 1503 goto out; 1504 1505 buddy = handle_to_buddy(handle); 1506 switch (buddy) { 1507 case FIRST: 1508 addr += ZHDR_SIZE_ALIGNED; 1509 break; 1510 case MIDDLE: 1511 addr += zhdr->start_middle << CHUNK_SHIFT; 1512 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1513 break; 1514 case LAST: 1515 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1516 break; 1517 default: 1518 pr_err("unknown buddy id %d\n", buddy); 1519 WARN_ON(1); 1520 addr = NULL; 1521 break; 1522 } 1523 1524 if (addr) 1525 zhdr->mapped_count++; 1526 out: 1527 put_z3fold_header(zhdr); 1528 return addr; 1529 } 1530 1531 /** 1532 * z3fold_unmap() - unmaps the allocation associated with the given handle 1533 * @pool: pool in which the allocation resides 1534 * @handle: handle associated with the allocation to be unmapped 1535 */ 1536 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1537 { 1538 struct z3fold_header *zhdr; 1539 struct page *page; 1540 enum buddy buddy; 1541 1542 zhdr = get_z3fold_header(handle); 1543 page = virt_to_page(zhdr); 1544 1545 if (test_bit(PAGE_HEADLESS, &page->private)) 1546 return; 1547 1548 buddy = handle_to_buddy(handle); 1549 if (buddy == MIDDLE) 1550 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1551 zhdr->mapped_count--; 1552 put_z3fold_header(zhdr); 1553 } 1554 1555 /** 1556 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1557 * @pool: pool whose size is being queried 1558 * 1559 * Returns: size in pages of the given pool. 1560 */ 1561 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1562 { 1563 return atomic64_read(&pool->pages_nr); 1564 } 1565 1566 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1567 { 1568 struct z3fold_header *zhdr; 1569 struct z3fold_pool *pool; 1570 1571 VM_BUG_ON_PAGE(!PageMovable(page), page); 1572 VM_BUG_ON_PAGE(PageIsolated(page), page); 1573 1574 if (test_bit(PAGE_HEADLESS, &page->private) || 1575 test_bit(PAGE_CLAIMED, &page->private)) 1576 return false; 1577 1578 zhdr = page_address(page); 1579 z3fold_page_lock(zhdr); 1580 if (test_bit(NEEDS_COMPACTING, &page->private) || 1581 test_bit(PAGE_STALE, &page->private)) 1582 goto out; 1583 1584 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) 1585 goto out; 1586 1587 pool = zhdr_to_pool(zhdr); 1588 spin_lock(&pool->lock); 1589 if (!list_empty(&zhdr->buddy)) 1590 list_del_init(&zhdr->buddy); 1591 if (!list_empty(&page->lru)) 1592 list_del_init(&page->lru); 1593 spin_unlock(&pool->lock); 1594 1595 kref_get(&zhdr->refcount); 1596 z3fold_page_unlock(zhdr); 1597 return true; 1598 1599 out: 1600 z3fold_page_unlock(zhdr); 1601 return false; 1602 } 1603 1604 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1605 struct page *page, enum migrate_mode mode) 1606 { 1607 struct z3fold_header *zhdr, *new_zhdr; 1608 struct z3fold_pool *pool; 1609 struct address_space *new_mapping; 1610 1611 VM_BUG_ON_PAGE(!PageMovable(page), page); 1612 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1613 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1614 1615 zhdr = page_address(page); 1616 pool = zhdr_to_pool(zhdr); 1617 1618 if (!z3fold_page_trylock(zhdr)) { 1619 return -EAGAIN; 1620 } 1621 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) { 1622 z3fold_page_unlock(zhdr); 1623 return -EBUSY; 1624 } 1625 if (work_pending(&zhdr->work)) { 1626 z3fold_page_unlock(zhdr); 1627 return -EAGAIN; 1628 } 1629 new_zhdr = page_address(newpage); 1630 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1631 newpage->private = page->private; 1632 page->private = 0; 1633 z3fold_page_unlock(zhdr); 1634 spin_lock_init(&new_zhdr->page_lock); 1635 INIT_WORK(&new_zhdr->work, compact_page_work); 1636 /* 1637 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty, 1638 * so we only have to reinitialize it. 1639 */ 1640 INIT_LIST_HEAD(&new_zhdr->buddy); 1641 new_mapping = page_mapping(page); 1642 __ClearPageMovable(page); 1643 ClearPagePrivate(page); 1644 1645 get_page(newpage); 1646 z3fold_page_lock(new_zhdr); 1647 if (new_zhdr->first_chunks) 1648 encode_handle(new_zhdr, FIRST); 1649 if (new_zhdr->last_chunks) 1650 encode_handle(new_zhdr, LAST); 1651 if (new_zhdr->middle_chunks) 1652 encode_handle(new_zhdr, MIDDLE); 1653 set_bit(NEEDS_COMPACTING, &newpage->private); 1654 new_zhdr->cpu = smp_processor_id(); 1655 spin_lock(&pool->lock); 1656 list_add(&newpage->lru, &pool->lru); 1657 spin_unlock(&pool->lock); 1658 __SetPageMovable(newpage, new_mapping); 1659 z3fold_page_unlock(new_zhdr); 1660 1661 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1662 1663 page_mapcount_reset(page); 1664 put_page(page); 1665 return 0; 1666 } 1667 1668 static void z3fold_page_putback(struct page *page) 1669 { 1670 struct z3fold_header *zhdr; 1671 struct z3fold_pool *pool; 1672 1673 zhdr = page_address(page); 1674 pool = zhdr_to_pool(zhdr); 1675 1676 z3fold_page_lock(zhdr); 1677 if (!list_empty(&zhdr->buddy)) 1678 list_del_init(&zhdr->buddy); 1679 INIT_LIST_HEAD(&page->lru); 1680 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1681 atomic64_dec(&pool->pages_nr); 1682 return; 1683 } 1684 spin_lock(&pool->lock); 1685 list_add(&page->lru, &pool->lru); 1686 spin_unlock(&pool->lock); 1687 z3fold_page_unlock(zhdr); 1688 } 1689 1690 static const struct address_space_operations z3fold_aops = { 1691 .isolate_page = z3fold_page_isolate, 1692 .migratepage = z3fold_page_migrate, 1693 .putback_page = z3fold_page_putback, 1694 }; 1695 1696 /***************** 1697 * zpool 1698 ****************/ 1699 1700 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1701 { 1702 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1703 return pool->zpool_ops->evict(pool->zpool, handle); 1704 else 1705 return -ENOENT; 1706 } 1707 1708 static const struct z3fold_ops z3fold_zpool_ops = { 1709 .evict = z3fold_zpool_evict 1710 }; 1711 1712 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1713 const struct zpool_ops *zpool_ops, 1714 struct zpool *zpool) 1715 { 1716 struct z3fold_pool *pool; 1717 1718 pool = z3fold_create_pool(name, gfp, 1719 zpool_ops ? &z3fold_zpool_ops : NULL); 1720 if (pool) { 1721 pool->zpool = zpool; 1722 pool->zpool_ops = zpool_ops; 1723 } 1724 return pool; 1725 } 1726 1727 static void z3fold_zpool_destroy(void *pool) 1728 { 1729 z3fold_destroy_pool(pool); 1730 } 1731 1732 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1733 unsigned long *handle) 1734 { 1735 return z3fold_alloc(pool, size, gfp, handle); 1736 } 1737 static void z3fold_zpool_free(void *pool, unsigned long handle) 1738 { 1739 z3fold_free(pool, handle); 1740 } 1741 1742 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1743 unsigned int *reclaimed) 1744 { 1745 unsigned int total = 0; 1746 int ret = -EINVAL; 1747 1748 while (total < pages) { 1749 ret = z3fold_reclaim_page(pool, 8); 1750 if (ret < 0) 1751 break; 1752 total++; 1753 } 1754 1755 if (reclaimed) 1756 *reclaimed = total; 1757 1758 return ret; 1759 } 1760 1761 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1762 enum zpool_mapmode mm) 1763 { 1764 return z3fold_map(pool, handle); 1765 } 1766 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1767 { 1768 z3fold_unmap(pool, handle); 1769 } 1770 1771 static u64 z3fold_zpool_total_size(void *pool) 1772 { 1773 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1774 } 1775 1776 static struct zpool_driver z3fold_zpool_driver = { 1777 .type = "z3fold", 1778 .owner = THIS_MODULE, 1779 .create = z3fold_zpool_create, 1780 .destroy = z3fold_zpool_destroy, 1781 .malloc = z3fold_zpool_malloc, 1782 .free = z3fold_zpool_free, 1783 .shrink = z3fold_zpool_shrink, 1784 .map = z3fold_zpool_map, 1785 .unmap = z3fold_zpool_unmap, 1786 .total_size = z3fold_zpool_total_size, 1787 }; 1788 1789 MODULE_ALIAS("zpool-z3fold"); 1790 1791 static int __init init_z3fold(void) 1792 { 1793 int ret; 1794 1795 /* Make sure the z3fold header is not larger than the page size */ 1796 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1797 ret = z3fold_mount(); 1798 if (ret) 1799 return ret; 1800 1801 zpool_register_driver(&z3fold_zpool_driver); 1802 1803 return 0; 1804 } 1805 1806 static void __exit exit_z3fold(void) 1807 { 1808 z3fold_unmount(); 1809 zpool_unregister_driver(&z3fold_zpool_driver); 1810 } 1811 1812 module_init(init_z3fold); 1813 module_exit(exit_z3fold); 1814 1815 MODULE_LICENSE("GPL"); 1816 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1817 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1818