xref: /openbmc/linux/mm/z3fold.c (revision b664e06d)
1 /*
2  * z3fold.c
3  *
4  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
5  * Copyright (C) 2016, Sony Mobile Communications Inc.
6  *
7  * This implementation is based on zbud written by Seth Jennings.
8  *
9  * z3fold is an special purpose allocator for storing compressed pages. It
10  * can store up to three compressed pages per page which improves the
11  * compression ratio of zbud while retaining its main concepts (e. g. always
12  * storing an integral number of objects per page) and simplicity.
13  * It still has simple and deterministic reclaim properties that make it
14  * preferable to a higher density approach (with no requirement on integral
15  * number of object per page) when reclaim is used.
16  *
17  * As in zbud, pages are divided into "chunks".  The size of the chunks is
18  * fixed at compile time and is determined by NCHUNKS_ORDER below.
19  *
20  * z3fold doesn't export any API and is meant to be used via zpool API.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/atomic.h>
26 #include <linux/sched.h>
27 #include <linux/cpumask.h>
28 #include <linux/dcache.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/fs.h>
39 #include <linux/preempt.h>
40 #include <linux/workqueue.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/zpool.h>
44 
45 /*
46  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
47  * adjusting internal fragmentation.  It also determines the number of
48  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
49  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
50  * in the beginning of an allocated page are occupied by z3fold header, so
51  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
52  * which shows the max number of free chunks in z3fold page, also there will
53  * be 63, or 62, respectively, freelists per pool.
54  */
55 #define NCHUNKS_ORDER	6
56 
57 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
58 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
59 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
60 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
61 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
62 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
63 
64 #define BUDDY_MASK	(0x3)
65 #define BUDDY_SHIFT	2
66 #define SLOTS_ALIGN	(0x40)
67 
68 /*****************
69  * Structures
70 *****************/
71 struct z3fold_pool;
72 struct z3fold_ops {
73 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
74 };
75 
76 enum buddy {
77 	HEADLESS = 0,
78 	FIRST,
79 	MIDDLE,
80 	LAST,
81 	BUDDIES_MAX = LAST
82 };
83 
84 struct z3fold_buddy_slots {
85 	/*
86 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
87 	 * be enough slots to hold all possible variants
88 	 */
89 	unsigned long slot[BUDDY_MASK + 1];
90 	unsigned long pool; /* back link + flags */
91 };
92 #define HANDLE_FLAG_MASK	(0x03)
93 
94 /*
95  * struct z3fold_header - z3fold page metadata occupying first chunks of each
96  *			z3fold page, except for HEADLESS pages
97  * @buddy:		links the z3fold page into the relevant list in the
98  *			pool
99  * @page_lock:		per-page lock
100  * @refcount:		reference count for the z3fold page
101  * @work:		work_struct for page layout optimization
102  * @slots:		pointer to the structure holding buddy slots
103  * @cpu:		CPU which this page "belongs" to
104  * @first_chunks:	the size of the first buddy in chunks, 0 if free
105  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
106  * @last_chunks:	the size of the last buddy in chunks, 0 if free
107  * @first_num:		the starting number (for the first handle)
108  * @mapped_count:	the number of objects currently mapped
109  */
110 struct z3fold_header {
111 	struct list_head buddy;
112 	spinlock_t page_lock;
113 	struct kref refcount;
114 	struct work_struct work;
115 	struct z3fold_buddy_slots *slots;
116 	short cpu;
117 	unsigned short first_chunks;
118 	unsigned short middle_chunks;
119 	unsigned short last_chunks;
120 	unsigned short start_middle;
121 	unsigned short first_num:2;
122 	unsigned short mapped_count:2;
123 };
124 
125 /**
126  * struct z3fold_pool - stores metadata for each z3fold pool
127  * @name:	pool name
128  * @lock:	protects pool unbuddied/lru lists
129  * @stale_lock:	protects pool stale page list
130  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
131  *		buddies; the list each z3fold page is added to depends on
132  *		the size of its free region.
133  * @lru:	list tracking the z3fold pages in LRU order by most recently
134  *		added buddy.
135  * @stale:	list of pages marked for freeing
136  * @pages_nr:	number of z3fold pages in the pool.
137  * @c_handle:	cache for z3fold_buddy_slots allocation
138  * @ops:	pointer to a structure of user defined operations specified at
139  *		pool creation time.
140  * @compact_wq:	workqueue for page layout background optimization
141  * @release_wq:	workqueue for safe page release
142  * @work:	work_struct for safe page release
143  * @inode:	inode for z3fold pseudo filesystem
144  *
145  * This structure is allocated at pool creation time and maintains metadata
146  * pertaining to a particular z3fold pool.
147  */
148 struct z3fold_pool {
149 	const char *name;
150 	spinlock_t lock;
151 	spinlock_t stale_lock;
152 	struct list_head *unbuddied;
153 	struct list_head lru;
154 	struct list_head stale;
155 	atomic64_t pages_nr;
156 	struct kmem_cache *c_handle;
157 	const struct z3fold_ops *ops;
158 	struct zpool *zpool;
159 	const struct zpool_ops *zpool_ops;
160 	struct workqueue_struct *compact_wq;
161 	struct workqueue_struct *release_wq;
162 	struct work_struct work;
163 	struct inode *inode;
164 };
165 
166 /*
167  * Internal z3fold page flags
168  */
169 enum z3fold_page_flags {
170 	PAGE_HEADLESS = 0,
171 	MIDDLE_CHUNK_MAPPED,
172 	NEEDS_COMPACTING,
173 	PAGE_STALE,
174 	PAGE_CLAIMED, /* by either reclaim or free */
175 };
176 
177 /*****************
178  * Helpers
179 *****************/
180 
181 /* Converts an allocation size in bytes to size in z3fold chunks */
182 static int size_to_chunks(size_t size)
183 {
184 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
185 }
186 
187 #define for_each_unbuddied_list(_iter, _begin) \
188 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
189 
190 static void compact_page_work(struct work_struct *w);
191 
192 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool)
193 {
194 	struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
195 							GFP_KERNEL);
196 
197 	if (slots) {
198 		memset(slots->slot, 0, sizeof(slots->slot));
199 		slots->pool = (unsigned long)pool;
200 	}
201 
202 	return slots;
203 }
204 
205 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
206 {
207 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
208 }
209 
210 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
211 {
212 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
213 }
214 
215 static inline void free_handle(unsigned long handle)
216 {
217 	struct z3fold_buddy_slots *slots;
218 	int i;
219 	bool is_free;
220 
221 	if (handle & (1 << PAGE_HEADLESS))
222 		return;
223 
224 	WARN_ON(*(unsigned long *)handle == 0);
225 	*(unsigned long *)handle = 0;
226 	slots = handle_to_slots(handle);
227 	is_free = true;
228 	for (i = 0; i <= BUDDY_MASK; i++) {
229 		if (slots->slot[i]) {
230 			is_free = false;
231 			break;
232 		}
233 	}
234 
235 	if (is_free) {
236 		struct z3fold_pool *pool = slots_to_pool(slots);
237 
238 		kmem_cache_free(pool->c_handle, slots);
239 	}
240 }
241 
242 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
243 				int flags, const char *dev_name, void *data)
244 {
245 	static const struct dentry_operations ops = {
246 		.d_dname = simple_dname,
247 	};
248 
249 	return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
250 }
251 
252 static struct file_system_type z3fold_fs = {
253 	.name		= "z3fold",
254 	.mount		= z3fold_do_mount,
255 	.kill_sb	= kill_anon_super,
256 };
257 
258 static struct vfsmount *z3fold_mnt;
259 static int z3fold_mount(void)
260 {
261 	int ret = 0;
262 
263 	z3fold_mnt = kern_mount(&z3fold_fs);
264 	if (IS_ERR(z3fold_mnt))
265 		ret = PTR_ERR(z3fold_mnt);
266 
267 	return ret;
268 }
269 
270 static void z3fold_unmount(void)
271 {
272 	kern_unmount(z3fold_mnt);
273 }
274 
275 static const struct address_space_operations z3fold_aops;
276 static int z3fold_register_migration(struct z3fold_pool *pool)
277 {
278 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
279 	if (IS_ERR(pool->inode)) {
280 		pool->inode = NULL;
281 		return 1;
282 	}
283 
284 	pool->inode->i_mapping->private_data = pool;
285 	pool->inode->i_mapping->a_ops = &z3fold_aops;
286 	return 0;
287 }
288 
289 static void z3fold_unregister_migration(struct z3fold_pool *pool)
290 {
291 	if (pool->inode)
292 		iput(pool->inode);
293  }
294 
295 /* Initializes the z3fold header of a newly allocated z3fold page */
296 static struct z3fold_header *init_z3fold_page(struct page *page,
297 					struct z3fold_pool *pool)
298 {
299 	struct z3fold_header *zhdr = page_address(page);
300 	struct z3fold_buddy_slots *slots = alloc_slots(pool);
301 
302 	if (!slots)
303 		return NULL;
304 
305 	INIT_LIST_HEAD(&page->lru);
306 	clear_bit(PAGE_HEADLESS, &page->private);
307 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
308 	clear_bit(NEEDS_COMPACTING, &page->private);
309 	clear_bit(PAGE_STALE, &page->private);
310 	clear_bit(PAGE_CLAIMED, &page->private);
311 
312 	spin_lock_init(&zhdr->page_lock);
313 	kref_init(&zhdr->refcount);
314 	zhdr->first_chunks = 0;
315 	zhdr->middle_chunks = 0;
316 	zhdr->last_chunks = 0;
317 	zhdr->first_num = 0;
318 	zhdr->start_middle = 0;
319 	zhdr->cpu = -1;
320 	zhdr->slots = slots;
321 	INIT_LIST_HEAD(&zhdr->buddy);
322 	INIT_WORK(&zhdr->work, compact_page_work);
323 	return zhdr;
324 }
325 
326 /* Resets the struct page fields and frees the page */
327 static void free_z3fold_page(struct page *page, bool headless)
328 {
329 	if (!headless) {
330 		lock_page(page);
331 		__ClearPageMovable(page);
332 		unlock_page(page);
333 	}
334 	ClearPagePrivate(page);
335 	__free_page(page);
336 }
337 
338 /* Lock a z3fold page */
339 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
340 {
341 	spin_lock(&zhdr->page_lock);
342 }
343 
344 /* Try to lock a z3fold page */
345 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
346 {
347 	return spin_trylock(&zhdr->page_lock);
348 }
349 
350 /* Unlock a z3fold page */
351 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
352 {
353 	spin_unlock(&zhdr->page_lock);
354 }
355 
356 /* Helper function to build the index */
357 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
358 {
359 	return (bud + zhdr->first_num) & BUDDY_MASK;
360 }
361 
362 /*
363  * Encodes the handle of a particular buddy within a z3fold page
364  * Pool lock should be held as this function accesses first_num
365  */
366 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
367 {
368 	struct z3fold_buddy_slots *slots;
369 	unsigned long h = (unsigned long)zhdr;
370 	int idx = 0;
371 
372 	/*
373 	 * For a headless page, its handle is its pointer with the extra
374 	 * PAGE_HEADLESS bit set
375 	 */
376 	if (bud == HEADLESS)
377 		return h | (1 << PAGE_HEADLESS);
378 
379 	/* otherwise, return pointer to encoded handle */
380 	idx = __idx(zhdr, bud);
381 	h += idx;
382 	if (bud == LAST)
383 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
384 
385 	slots = zhdr->slots;
386 	slots->slot[idx] = h;
387 	return (unsigned long)&slots->slot[idx];
388 }
389 
390 /* Returns the z3fold page where a given handle is stored */
391 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
392 {
393 	unsigned long addr = h;
394 
395 	if (!(addr & (1 << PAGE_HEADLESS)))
396 		addr = *(unsigned long *)h;
397 
398 	return (struct z3fold_header *)(addr & PAGE_MASK);
399 }
400 
401 /* only for LAST bud, returns zero otherwise */
402 static unsigned short handle_to_chunks(unsigned long handle)
403 {
404 	unsigned long addr = *(unsigned long *)handle;
405 
406 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
407 }
408 
409 /*
410  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
411  *  but that doesn't matter. because the masking will result in the
412  *  correct buddy number.
413  */
414 static enum buddy handle_to_buddy(unsigned long handle)
415 {
416 	struct z3fold_header *zhdr;
417 	unsigned long addr;
418 
419 	WARN_ON(handle & (1 << PAGE_HEADLESS));
420 	addr = *(unsigned long *)handle;
421 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
422 	return (addr - zhdr->first_num) & BUDDY_MASK;
423 }
424 
425 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
426 {
427 	return slots_to_pool(zhdr->slots);
428 }
429 
430 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
431 {
432 	struct page *page = virt_to_page(zhdr);
433 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
434 
435 	WARN_ON(!list_empty(&zhdr->buddy));
436 	set_bit(PAGE_STALE, &page->private);
437 	clear_bit(NEEDS_COMPACTING, &page->private);
438 	spin_lock(&pool->lock);
439 	if (!list_empty(&page->lru))
440 		list_del_init(&page->lru);
441 	spin_unlock(&pool->lock);
442 	if (locked)
443 		z3fold_page_unlock(zhdr);
444 	spin_lock(&pool->stale_lock);
445 	list_add(&zhdr->buddy, &pool->stale);
446 	queue_work(pool->release_wq, &pool->work);
447 	spin_unlock(&pool->stale_lock);
448 }
449 
450 static void __attribute__((__unused__))
451 			release_z3fold_page(struct kref *ref)
452 {
453 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
454 						refcount);
455 	__release_z3fold_page(zhdr, false);
456 }
457 
458 static void release_z3fold_page_locked(struct kref *ref)
459 {
460 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
461 						refcount);
462 	WARN_ON(z3fold_page_trylock(zhdr));
463 	__release_z3fold_page(zhdr, true);
464 }
465 
466 static void release_z3fold_page_locked_list(struct kref *ref)
467 {
468 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
469 					       refcount);
470 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
471 	spin_lock(&pool->lock);
472 	list_del_init(&zhdr->buddy);
473 	spin_unlock(&pool->lock);
474 
475 	WARN_ON(z3fold_page_trylock(zhdr));
476 	__release_z3fold_page(zhdr, true);
477 }
478 
479 static void free_pages_work(struct work_struct *w)
480 {
481 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
482 
483 	spin_lock(&pool->stale_lock);
484 	while (!list_empty(&pool->stale)) {
485 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
486 						struct z3fold_header, buddy);
487 		struct page *page = virt_to_page(zhdr);
488 
489 		list_del(&zhdr->buddy);
490 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
491 			continue;
492 		spin_unlock(&pool->stale_lock);
493 		cancel_work_sync(&zhdr->work);
494 		free_z3fold_page(page, false);
495 		cond_resched();
496 		spin_lock(&pool->stale_lock);
497 	}
498 	spin_unlock(&pool->stale_lock);
499 }
500 
501 /*
502  * Returns the number of free chunks in a z3fold page.
503  * NB: can't be used with HEADLESS pages.
504  */
505 static int num_free_chunks(struct z3fold_header *zhdr)
506 {
507 	int nfree;
508 	/*
509 	 * If there is a middle object, pick up the bigger free space
510 	 * either before or after it. Otherwise just subtract the number
511 	 * of chunks occupied by the first and the last objects.
512 	 */
513 	if (zhdr->middle_chunks != 0) {
514 		int nfree_before = zhdr->first_chunks ?
515 			0 : zhdr->start_middle - ZHDR_CHUNKS;
516 		int nfree_after = zhdr->last_chunks ?
517 			0 : TOTAL_CHUNKS -
518 				(zhdr->start_middle + zhdr->middle_chunks);
519 		nfree = max(nfree_before, nfree_after);
520 	} else
521 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
522 	return nfree;
523 }
524 
525 /* Add to the appropriate unbuddied list */
526 static inline void add_to_unbuddied(struct z3fold_pool *pool,
527 				struct z3fold_header *zhdr)
528 {
529 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
530 			zhdr->middle_chunks == 0) {
531 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
532 
533 		int freechunks = num_free_chunks(zhdr);
534 		spin_lock(&pool->lock);
535 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
536 		spin_unlock(&pool->lock);
537 		zhdr->cpu = smp_processor_id();
538 		put_cpu_ptr(pool->unbuddied);
539 	}
540 }
541 
542 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
543 				unsigned short dst_chunk)
544 {
545 	void *beg = zhdr;
546 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
547 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
548 		       zhdr->middle_chunks << CHUNK_SHIFT);
549 }
550 
551 #define BIG_CHUNK_GAP	3
552 /* Has to be called with lock held */
553 static int z3fold_compact_page(struct z3fold_header *zhdr)
554 {
555 	struct page *page = virt_to_page(zhdr);
556 
557 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
558 		return 0; /* can't move middle chunk, it's used */
559 
560 	if (unlikely(PageIsolated(page)))
561 		return 0;
562 
563 	if (zhdr->middle_chunks == 0)
564 		return 0; /* nothing to compact */
565 
566 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
567 		/* move to the beginning */
568 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
569 		zhdr->first_chunks = zhdr->middle_chunks;
570 		zhdr->middle_chunks = 0;
571 		zhdr->start_middle = 0;
572 		zhdr->first_num++;
573 		return 1;
574 	}
575 
576 	/*
577 	 * moving data is expensive, so let's only do that if
578 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
579 	 */
580 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
581 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
582 			BIG_CHUNK_GAP) {
583 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
584 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
585 		return 1;
586 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
587 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
588 					+ zhdr->middle_chunks) >=
589 			BIG_CHUNK_GAP) {
590 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
591 			zhdr->middle_chunks;
592 		mchunk_memmove(zhdr, new_start);
593 		zhdr->start_middle = new_start;
594 		return 1;
595 	}
596 
597 	return 0;
598 }
599 
600 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
601 {
602 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
603 	struct page *page;
604 
605 	page = virt_to_page(zhdr);
606 	if (locked)
607 		WARN_ON(z3fold_page_trylock(zhdr));
608 	else
609 		z3fold_page_lock(zhdr);
610 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
611 		z3fold_page_unlock(zhdr);
612 		return;
613 	}
614 	spin_lock(&pool->lock);
615 	list_del_init(&zhdr->buddy);
616 	spin_unlock(&pool->lock);
617 
618 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
619 		atomic64_dec(&pool->pages_nr);
620 		return;
621 	}
622 
623 	if (unlikely(PageIsolated(page) ||
624 		     test_bit(PAGE_STALE, &page->private))) {
625 		z3fold_page_unlock(zhdr);
626 		return;
627 	}
628 
629 	z3fold_compact_page(zhdr);
630 	add_to_unbuddied(pool, zhdr);
631 	z3fold_page_unlock(zhdr);
632 }
633 
634 static void compact_page_work(struct work_struct *w)
635 {
636 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
637 						work);
638 
639 	do_compact_page(zhdr, false);
640 }
641 
642 /* returns _locked_ z3fold page header or NULL */
643 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
644 						size_t size, bool can_sleep)
645 {
646 	struct z3fold_header *zhdr = NULL;
647 	struct page *page;
648 	struct list_head *unbuddied;
649 	int chunks = size_to_chunks(size), i;
650 
651 lookup:
652 	/* First, try to find an unbuddied z3fold page. */
653 	unbuddied = get_cpu_ptr(pool->unbuddied);
654 	for_each_unbuddied_list(i, chunks) {
655 		struct list_head *l = &unbuddied[i];
656 
657 		zhdr = list_first_entry_or_null(READ_ONCE(l),
658 					struct z3fold_header, buddy);
659 
660 		if (!zhdr)
661 			continue;
662 
663 		/* Re-check under lock. */
664 		spin_lock(&pool->lock);
665 		l = &unbuddied[i];
666 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
667 						struct z3fold_header, buddy)) ||
668 		    !z3fold_page_trylock(zhdr)) {
669 			spin_unlock(&pool->lock);
670 			zhdr = NULL;
671 			put_cpu_ptr(pool->unbuddied);
672 			if (can_sleep)
673 				cond_resched();
674 			goto lookup;
675 		}
676 		list_del_init(&zhdr->buddy);
677 		zhdr->cpu = -1;
678 		spin_unlock(&pool->lock);
679 
680 		page = virt_to_page(zhdr);
681 		if (test_bit(NEEDS_COMPACTING, &page->private)) {
682 			z3fold_page_unlock(zhdr);
683 			zhdr = NULL;
684 			put_cpu_ptr(pool->unbuddied);
685 			if (can_sleep)
686 				cond_resched();
687 			goto lookup;
688 		}
689 
690 		/*
691 		 * this page could not be removed from its unbuddied
692 		 * list while pool lock was held, and then we've taken
693 		 * page lock so kref_put could not be called before
694 		 * we got here, so it's safe to just call kref_get()
695 		 */
696 		kref_get(&zhdr->refcount);
697 		break;
698 	}
699 	put_cpu_ptr(pool->unbuddied);
700 
701 	if (!zhdr) {
702 		int cpu;
703 
704 		/* look for _exact_ match on other cpus' lists */
705 		for_each_online_cpu(cpu) {
706 			struct list_head *l;
707 
708 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
709 			spin_lock(&pool->lock);
710 			l = &unbuddied[chunks];
711 
712 			zhdr = list_first_entry_or_null(READ_ONCE(l),
713 						struct z3fold_header, buddy);
714 
715 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
716 				spin_unlock(&pool->lock);
717 				zhdr = NULL;
718 				continue;
719 			}
720 			list_del_init(&zhdr->buddy);
721 			zhdr->cpu = -1;
722 			spin_unlock(&pool->lock);
723 
724 			page = virt_to_page(zhdr);
725 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
726 				z3fold_page_unlock(zhdr);
727 				zhdr = NULL;
728 				if (can_sleep)
729 					cond_resched();
730 				continue;
731 			}
732 			kref_get(&zhdr->refcount);
733 			break;
734 		}
735 	}
736 
737 	return zhdr;
738 }
739 
740 /*
741  * API Functions
742  */
743 
744 /**
745  * z3fold_create_pool() - create a new z3fold pool
746  * @name:	pool name
747  * @gfp:	gfp flags when allocating the z3fold pool structure
748  * @ops:	user-defined operations for the z3fold pool
749  *
750  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
751  * failed.
752  */
753 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
754 		const struct z3fold_ops *ops)
755 {
756 	struct z3fold_pool *pool = NULL;
757 	int i, cpu;
758 
759 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
760 	if (!pool)
761 		goto out;
762 	pool->c_handle = kmem_cache_create("z3fold_handle",
763 				sizeof(struct z3fold_buddy_slots),
764 				SLOTS_ALIGN, 0, NULL);
765 	if (!pool->c_handle)
766 		goto out_c;
767 	spin_lock_init(&pool->lock);
768 	spin_lock_init(&pool->stale_lock);
769 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
770 	if (!pool->unbuddied)
771 		goto out_pool;
772 	for_each_possible_cpu(cpu) {
773 		struct list_head *unbuddied =
774 				per_cpu_ptr(pool->unbuddied, cpu);
775 		for_each_unbuddied_list(i, 0)
776 			INIT_LIST_HEAD(&unbuddied[i]);
777 	}
778 	INIT_LIST_HEAD(&pool->lru);
779 	INIT_LIST_HEAD(&pool->stale);
780 	atomic64_set(&pool->pages_nr, 0);
781 	pool->name = name;
782 	pool->compact_wq = create_singlethread_workqueue(pool->name);
783 	if (!pool->compact_wq)
784 		goto out_unbuddied;
785 	pool->release_wq = create_singlethread_workqueue(pool->name);
786 	if (!pool->release_wq)
787 		goto out_wq;
788 	if (z3fold_register_migration(pool))
789 		goto out_rwq;
790 	INIT_WORK(&pool->work, free_pages_work);
791 	pool->ops = ops;
792 	return pool;
793 
794 out_rwq:
795 	destroy_workqueue(pool->release_wq);
796 out_wq:
797 	destroy_workqueue(pool->compact_wq);
798 out_unbuddied:
799 	free_percpu(pool->unbuddied);
800 out_pool:
801 	kmem_cache_destroy(pool->c_handle);
802 out_c:
803 	kfree(pool);
804 out:
805 	return NULL;
806 }
807 
808 /**
809  * z3fold_destroy_pool() - destroys an existing z3fold pool
810  * @pool:	the z3fold pool to be destroyed
811  *
812  * The pool should be emptied before this function is called.
813  */
814 static void z3fold_destroy_pool(struct z3fold_pool *pool)
815 {
816 	kmem_cache_destroy(pool->c_handle);
817 	z3fold_unregister_migration(pool);
818 	destroy_workqueue(pool->release_wq);
819 	destroy_workqueue(pool->compact_wq);
820 	kfree(pool);
821 }
822 
823 /**
824  * z3fold_alloc() - allocates a region of a given size
825  * @pool:	z3fold pool from which to allocate
826  * @size:	size in bytes of the desired allocation
827  * @gfp:	gfp flags used if the pool needs to grow
828  * @handle:	handle of the new allocation
829  *
830  * This function will attempt to find a free region in the pool large enough to
831  * satisfy the allocation request.  A search of the unbuddied lists is
832  * performed first. If no suitable free region is found, then a new page is
833  * allocated and added to the pool to satisfy the request.
834  *
835  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
836  * as z3fold pool pages.
837  *
838  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
839  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
840  * a new page.
841  */
842 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
843 			unsigned long *handle)
844 {
845 	int chunks = size_to_chunks(size);
846 	struct z3fold_header *zhdr = NULL;
847 	struct page *page = NULL;
848 	enum buddy bud;
849 	bool can_sleep = gfpflags_allow_blocking(gfp);
850 
851 	if (!size || (gfp & __GFP_HIGHMEM))
852 		return -EINVAL;
853 
854 	if (size > PAGE_SIZE)
855 		return -ENOSPC;
856 
857 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
858 		bud = HEADLESS;
859 	else {
860 retry:
861 		zhdr = __z3fold_alloc(pool, size, can_sleep);
862 		if (zhdr) {
863 			if (zhdr->first_chunks == 0) {
864 				if (zhdr->middle_chunks != 0 &&
865 				    chunks >= zhdr->start_middle)
866 					bud = LAST;
867 				else
868 					bud = FIRST;
869 			} else if (zhdr->last_chunks == 0)
870 				bud = LAST;
871 			else if (zhdr->middle_chunks == 0)
872 				bud = MIDDLE;
873 			else {
874 				if (kref_put(&zhdr->refcount,
875 					     release_z3fold_page_locked))
876 					atomic64_dec(&pool->pages_nr);
877 				else
878 					z3fold_page_unlock(zhdr);
879 				pr_err("No free chunks in unbuddied\n");
880 				WARN_ON(1);
881 				goto retry;
882 			}
883 			page = virt_to_page(zhdr);
884 			goto found;
885 		}
886 		bud = FIRST;
887 	}
888 
889 	page = NULL;
890 	if (can_sleep) {
891 		spin_lock(&pool->stale_lock);
892 		zhdr = list_first_entry_or_null(&pool->stale,
893 						struct z3fold_header, buddy);
894 		/*
895 		 * Before allocating a page, let's see if we can take one from
896 		 * the stale pages list. cancel_work_sync() can sleep so we
897 		 * limit this case to the contexts where we can sleep
898 		 */
899 		if (zhdr) {
900 			list_del(&zhdr->buddy);
901 			spin_unlock(&pool->stale_lock);
902 			cancel_work_sync(&zhdr->work);
903 			page = virt_to_page(zhdr);
904 		} else {
905 			spin_unlock(&pool->stale_lock);
906 		}
907 	}
908 	if (!page)
909 		page = alloc_page(gfp);
910 
911 	if (!page)
912 		return -ENOMEM;
913 
914 	zhdr = init_z3fold_page(page, pool);
915 	if (!zhdr) {
916 		__free_page(page);
917 		return -ENOMEM;
918 	}
919 	atomic64_inc(&pool->pages_nr);
920 
921 	if (bud == HEADLESS) {
922 		set_bit(PAGE_HEADLESS, &page->private);
923 		goto headless;
924 	}
925 	__SetPageMovable(page, pool->inode->i_mapping);
926 	z3fold_page_lock(zhdr);
927 
928 found:
929 	if (bud == FIRST)
930 		zhdr->first_chunks = chunks;
931 	else if (bud == LAST)
932 		zhdr->last_chunks = chunks;
933 	else {
934 		zhdr->middle_chunks = chunks;
935 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
936 	}
937 	add_to_unbuddied(pool, zhdr);
938 
939 headless:
940 	spin_lock(&pool->lock);
941 	/* Add/move z3fold page to beginning of LRU */
942 	if (!list_empty(&page->lru))
943 		list_del(&page->lru);
944 
945 	list_add(&page->lru, &pool->lru);
946 
947 	*handle = encode_handle(zhdr, bud);
948 	spin_unlock(&pool->lock);
949 	if (bud != HEADLESS)
950 		z3fold_page_unlock(zhdr);
951 
952 	return 0;
953 }
954 
955 /**
956  * z3fold_free() - frees the allocation associated with the given handle
957  * @pool:	pool in which the allocation resided
958  * @handle:	handle associated with the allocation returned by z3fold_alloc()
959  *
960  * In the case that the z3fold page in which the allocation resides is under
961  * reclaim, as indicated by the PG_reclaim flag being set, this function
962  * only sets the first|last_chunks to 0.  The page is actually freed
963  * once both buddies are evicted (see z3fold_reclaim_page() below).
964  */
965 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
966 {
967 	struct z3fold_header *zhdr;
968 	struct page *page;
969 	enum buddy bud;
970 
971 	zhdr = handle_to_z3fold_header(handle);
972 	page = virt_to_page(zhdr);
973 
974 	if (test_bit(PAGE_HEADLESS, &page->private)) {
975 		/* if a headless page is under reclaim, just leave.
976 		 * NB: we use test_and_set_bit for a reason: if the bit
977 		 * has not been set before, we release this page
978 		 * immediately so we don't care about its value any more.
979 		 */
980 		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
981 			spin_lock(&pool->lock);
982 			list_del(&page->lru);
983 			spin_unlock(&pool->lock);
984 			free_z3fold_page(page, true);
985 			atomic64_dec(&pool->pages_nr);
986 		}
987 		return;
988 	}
989 
990 	/* Non-headless case */
991 	z3fold_page_lock(zhdr);
992 	bud = handle_to_buddy(handle);
993 
994 	switch (bud) {
995 	case FIRST:
996 		zhdr->first_chunks = 0;
997 		break;
998 	case MIDDLE:
999 		zhdr->middle_chunks = 0;
1000 		break;
1001 	case LAST:
1002 		zhdr->last_chunks = 0;
1003 		break;
1004 	default:
1005 		pr_err("%s: unknown bud %d\n", __func__, bud);
1006 		WARN_ON(1);
1007 		z3fold_page_unlock(zhdr);
1008 		return;
1009 	}
1010 
1011 	free_handle(handle);
1012 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1013 		atomic64_dec(&pool->pages_nr);
1014 		return;
1015 	}
1016 	if (test_bit(PAGE_CLAIMED, &page->private)) {
1017 		z3fold_page_unlock(zhdr);
1018 		return;
1019 	}
1020 	if (unlikely(PageIsolated(page)) ||
1021 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1022 		z3fold_page_unlock(zhdr);
1023 		return;
1024 	}
1025 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1026 		spin_lock(&pool->lock);
1027 		list_del_init(&zhdr->buddy);
1028 		spin_unlock(&pool->lock);
1029 		zhdr->cpu = -1;
1030 		kref_get(&zhdr->refcount);
1031 		do_compact_page(zhdr, true);
1032 		return;
1033 	}
1034 	kref_get(&zhdr->refcount);
1035 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1036 	z3fold_page_unlock(zhdr);
1037 }
1038 
1039 /**
1040  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1041  * @pool:	pool from which a page will attempt to be evicted
1042  * @retries:	number of pages on the LRU list for which eviction will
1043  *		be attempted before failing
1044  *
1045  * z3fold reclaim is different from normal system reclaim in that it is done
1046  * from the bottom, up. This is because only the bottom layer, z3fold, has
1047  * information on how the allocations are organized within each z3fold page.
1048  * This has the potential to create interesting locking situations between
1049  * z3fold and the user, however.
1050  *
1051  * To avoid these, this is how z3fold_reclaim_page() should be called:
1052  *
1053  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1054  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1055  * call the user-defined eviction handler with the pool and handle as
1056  * arguments.
1057  *
1058  * If the handle can not be evicted, the eviction handler should return
1059  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1060  * appropriate list and try the next z3fold page on the LRU up to
1061  * a user defined number of retries.
1062  *
1063  * If the handle is successfully evicted, the eviction handler should
1064  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1065  * contains logic to delay freeing the page if the page is under reclaim,
1066  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1067  *
1068  * If all buddies in the z3fold page are successfully evicted, then the
1069  * z3fold page can be freed.
1070  *
1071  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1072  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1073  * the retry limit was hit.
1074  */
1075 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1076 {
1077 	int i, ret = 0;
1078 	struct z3fold_header *zhdr = NULL;
1079 	struct page *page = NULL;
1080 	struct list_head *pos;
1081 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1082 
1083 	spin_lock(&pool->lock);
1084 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1085 		spin_unlock(&pool->lock);
1086 		return -EINVAL;
1087 	}
1088 	for (i = 0; i < retries; i++) {
1089 		if (list_empty(&pool->lru)) {
1090 			spin_unlock(&pool->lock);
1091 			return -EINVAL;
1092 		}
1093 		list_for_each_prev(pos, &pool->lru) {
1094 			page = list_entry(pos, struct page, lru);
1095 
1096 			/* this bit could have been set by free, in which case
1097 			 * we pass over to the next page in the pool.
1098 			 */
1099 			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1100 				continue;
1101 
1102 			if (unlikely(PageIsolated(page)))
1103 				continue;
1104 			if (test_bit(PAGE_HEADLESS, &page->private))
1105 				break;
1106 
1107 			zhdr = page_address(page);
1108 			if (!z3fold_page_trylock(zhdr)) {
1109 				zhdr = NULL;
1110 				continue; /* can't evict at this point */
1111 			}
1112 			kref_get(&zhdr->refcount);
1113 			list_del_init(&zhdr->buddy);
1114 			zhdr->cpu = -1;
1115 			break;
1116 		}
1117 
1118 		if (!zhdr)
1119 			break;
1120 
1121 		list_del_init(&page->lru);
1122 		spin_unlock(&pool->lock);
1123 
1124 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1125 			/*
1126 			 * We need encode the handles before unlocking, since
1127 			 * we can race with free that will set
1128 			 * (first|last)_chunks to 0
1129 			 */
1130 			first_handle = 0;
1131 			last_handle = 0;
1132 			middle_handle = 0;
1133 			if (zhdr->first_chunks)
1134 				first_handle = encode_handle(zhdr, FIRST);
1135 			if (zhdr->middle_chunks)
1136 				middle_handle = encode_handle(zhdr, MIDDLE);
1137 			if (zhdr->last_chunks)
1138 				last_handle = encode_handle(zhdr, LAST);
1139 			/*
1140 			 * it's safe to unlock here because we hold a
1141 			 * reference to this page
1142 			 */
1143 			z3fold_page_unlock(zhdr);
1144 		} else {
1145 			first_handle = encode_handle(zhdr, HEADLESS);
1146 			last_handle = middle_handle = 0;
1147 		}
1148 
1149 		/* Issue the eviction callback(s) */
1150 		if (middle_handle) {
1151 			ret = pool->ops->evict(pool, middle_handle);
1152 			if (ret)
1153 				goto next;
1154 		}
1155 		if (first_handle) {
1156 			ret = pool->ops->evict(pool, first_handle);
1157 			if (ret)
1158 				goto next;
1159 		}
1160 		if (last_handle) {
1161 			ret = pool->ops->evict(pool, last_handle);
1162 			if (ret)
1163 				goto next;
1164 		}
1165 next:
1166 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1167 			if (ret == 0) {
1168 				free_z3fold_page(page, true);
1169 				atomic64_dec(&pool->pages_nr);
1170 				return 0;
1171 			}
1172 			spin_lock(&pool->lock);
1173 			list_add(&page->lru, &pool->lru);
1174 			spin_unlock(&pool->lock);
1175 		} else {
1176 			z3fold_page_lock(zhdr);
1177 			clear_bit(PAGE_CLAIMED, &page->private);
1178 			if (kref_put(&zhdr->refcount,
1179 					release_z3fold_page_locked)) {
1180 				atomic64_dec(&pool->pages_nr);
1181 				return 0;
1182 			}
1183 			/*
1184 			 * if we are here, the page is still not completely
1185 			 * free. Take the global pool lock then to be able
1186 			 * to add it back to the lru list
1187 			 */
1188 			spin_lock(&pool->lock);
1189 			list_add(&page->lru, &pool->lru);
1190 			spin_unlock(&pool->lock);
1191 			z3fold_page_unlock(zhdr);
1192 		}
1193 
1194 		/* We started off locked to we need to lock the pool back */
1195 		spin_lock(&pool->lock);
1196 	}
1197 	spin_unlock(&pool->lock);
1198 	return -EAGAIN;
1199 }
1200 
1201 /**
1202  * z3fold_map() - maps the allocation associated with the given handle
1203  * @pool:	pool in which the allocation resides
1204  * @handle:	handle associated with the allocation to be mapped
1205  *
1206  * Extracts the buddy number from handle and constructs the pointer to the
1207  * correct starting chunk within the page.
1208  *
1209  * Returns: a pointer to the mapped allocation
1210  */
1211 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1212 {
1213 	struct z3fold_header *zhdr;
1214 	struct page *page;
1215 	void *addr;
1216 	enum buddy buddy;
1217 
1218 	zhdr = handle_to_z3fold_header(handle);
1219 	addr = zhdr;
1220 	page = virt_to_page(zhdr);
1221 
1222 	if (test_bit(PAGE_HEADLESS, &page->private))
1223 		goto out;
1224 
1225 	z3fold_page_lock(zhdr);
1226 	buddy = handle_to_buddy(handle);
1227 	switch (buddy) {
1228 	case FIRST:
1229 		addr += ZHDR_SIZE_ALIGNED;
1230 		break;
1231 	case MIDDLE:
1232 		addr += zhdr->start_middle << CHUNK_SHIFT;
1233 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1234 		break;
1235 	case LAST:
1236 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1237 		break;
1238 	default:
1239 		pr_err("unknown buddy id %d\n", buddy);
1240 		WARN_ON(1);
1241 		addr = NULL;
1242 		break;
1243 	}
1244 
1245 	if (addr)
1246 		zhdr->mapped_count++;
1247 	z3fold_page_unlock(zhdr);
1248 out:
1249 	return addr;
1250 }
1251 
1252 /**
1253  * z3fold_unmap() - unmaps the allocation associated with the given handle
1254  * @pool:	pool in which the allocation resides
1255  * @handle:	handle associated with the allocation to be unmapped
1256  */
1257 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1258 {
1259 	struct z3fold_header *zhdr;
1260 	struct page *page;
1261 	enum buddy buddy;
1262 
1263 	zhdr = handle_to_z3fold_header(handle);
1264 	page = virt_to_page(zhdr);
1265 
1266 	if (test_bit(PAGE_HEADLESS, &page->private))
1267 		return;
1268 
1269 	z3fold_page_lock(zhdr);
1270 	buddy = handle_to_buddy(handle);
1271 	if (buddy == MIDDLE)
1272 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1273 	zhdr->mapped_count--;
1274 	z3fold_page_unlock(zhdr);
1275 }
1276 
1277 /**
1278  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1279  * @pool:	pool whose size is being queried
1280  *
1281  * Returns: size in pages of the given pool.
1282  */
1283 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1284 {
1285 	return atomic64_read(&pool->pages_nr);
1286 }
1287 
1288 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1289 {
1290 	struct z3fold_header *zhdr;
1291 	struct z3fold_pool *pool;
1292 
1293 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1294 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1295 
1296 	if (test_bit(PAGE_HEADLESS, &page->private))
1297 		return false;
1298 
1299 	zhdr = page_address(page);
1300 	z3fold_page_lock(zhdr);
1301 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1302 	    test_bit(PAGE_STALE, &page->private))
1303 		goto out;
1304 
1305 	pool = zhdr_to_pool(zhdr);
1306 
1307 	if (zhdr->mapped_count == 0) {
1308 		kref_get(&zhdr->refcount);
1309 		if (!list_empty(&zhdr->buddy))
1310 			list_del_init(&zhdr->buddy);
1311 		spin_lock(&pool->lock);
1312 		if (!list_empty(&page->lru))
1313 			list_del(&page->lru);
1314 		spin_unlock(&pool->lock);
1315 		z3fold_page_unlock(zhdr);
1316 		return true;
1317 	}
1318 out:
1319 	z3fold_page_unlock(zhdr);
1320 	return false;
1321 }
1322 
1323 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1324 			       struct page *page, enum migrate_mode mode)
1325 {
1326 	struct z3fold_header *zhdr, *new_zhdr;
1327 	struct z3fold_pool *pool;
1328 	struct address_space *new_mapping;
1329 
1330 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1331 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1332 
1333 	zhdr = page_address(page);
1334 	pool = zhdr_to_pool(zhdr);
1335 
1336 	if (!trylock_page(page))
1337 		return -EAGAIN;
1338 
1339 	if (!z3fold_page_trylock(zhdr)) {
1340 		unlock_page(page);
1341 		return -EAGAIN;
1342 	}
1343 	if (zhdr->mapped_count != 0) {
1344 		z3fold_page_unlock(zhdr);
1345 		unlock_page(page);
1346 		return -EBUSY;
1347 	}
1348 	new_zhdr = page_address(newpage);
1349 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1350 	newpage->private = page->private;
1351 	page->private = 0;
1352 	z3fold_page_unlock(zhdr);
1353 	spin_lock_init(&new_zhdr->page_lock);
1354 	new_mapping = page_mapping(page);
1355 	__ClearPageMovable(page);
1356 	ClearPagePrivate(page);
1357 
1358 	get_page(newpage);
1359 	z3fold_page_lock(new_zhdr);
1360 	if (new_zhdr->first_chunks)
1361 		encode_handle(new_zhdr, FIRST);
1362 	if (new_zhdr->last_chunks)
1363 		encode_handle(new_zhdr, LAST);
1364 	if (new_zhdr->middle_chunks)
1365 		encode_handle(new_zhdr, MIDDLE);
1366 	set_bit(NEEDS_COMPACTING, &newpage->private);
1367 	new_zhdr->cpu = smp_processor_id();
1368 	spin_lock(&pool->lock);
1369 	list_add(&newpage->lru, &pool->lru);
1370 	spin_unlock(&pool->lock);
1371 	__SetPageMovable(newpage, new_mapping);
1372 	z3fold_page_unlock(new_zhdr);
1373 
1374 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1375 
1376 	page_mapcount_reset(page);
1377 	unlock_page(page);
1378 	put_page(page);
1379 	return 0;
1380 }
1381 
1382 static void z3fold_page_putback(struct page *page)
1383 {
1384 	struct z3fold_header *zhdr;
1385 	struct z3fold_pool *pool;
1386 
1387 	zhdr = page_address(page);
1388 	pool = zhdr_to_pool(zhdr);
1389 
1390 	z3fold_page_lock(zhdr);
1391 	if (!list_empty(&zhdr->buddy))
1392 		list_del_init(&zhdr->buddy);
1393 	INIT_LIST_HEAD(&page->lru);
1394 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1395 		atomic64_dec(&pool->pages_nr);
1396 		return;
1397 	}
1398 	spin_lock(&pool->lock);
1399 	list_add(&page->lru, &pool->lru);
1400 	spin_unlock(&pool->lock);
1401 	z3fold_page_unlock(zhdr);
1402 }
1403 
1404 static const struct address_space_operations z3fold_aops = {
1405 	.isolate_page = z3fold_page_isolate,
1406 	.migratepage = z3fold_page_migrate,
1407 	.putback_page = z3fold_page_putback,
1408 };
1409 
1410 /*****************
1411  * zpool
1412  ****************/
1413 
1414 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1415 {
1416 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1417 		return pool->zpool_ops->evict(pool->zpool, handle);
1418 	else
1419 		return -ENOENT;
1420 }
1421 
1422 static const struct z3fold_ops z3fold_zpool_ops = {
1423 	.evict =	z3fold_zpool_evict
1424 };
1425 
1426 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1427 			       const struct zpool_ops *zpool_ops,
1428 			       struct zpool *zpool)
1429 {
1430 	struct z3fold_pool *pool;
1431 
1432 	pool = z3fold_create_pool(name, gfp,
1433 				zpool_ops ? &z3fold_zpool_ops : NULL);
1434 	if (pool) {
1435 		pool->zpool = zpool;
1436 		pool->zpool_ops = zpool_ops;
1437 	}
1438 	return pool;
1439 }
1440 
1441 static void z3fold_zpool_destroy(void *pool)
1442 {
1443 	z3fold_destroy_pool(pool);
1444 }
1445 
1446 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1447 			unsigned long *handle)
1448 {
1449 	return z3fold_alloc(pool, size, gfp, handle);
1450 }
1451 static void z3fold_zpool_free(void *pool, unsigned long handle)
1452 {
1453 	z3fold_free(pool, handle);
1454 }
1455 
1456 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1457 			unsigned int *reclaimed)
1458 {
1459 	unsigned int total = 0;
1460 	int ret = -EINVAL;
1461 
1462 	while (total < pages) {
1463 		ret = z3fold_reclaim_page(pool, 8);
1464 		if (ret < 0)
1465 			break;
1466 		total++;
1467 	}
1468 
1469 	if (reclaimed)
1470 		*reclaimed = total;
1471 
1472 	return ret;
1473 }
1474 
1475 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1476 			enum zpool_mapmode mm)
1477 {
1478 	return z3fold_map(pool, handle);
1479 }
1480 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1481 {
1482 	z3fold_unmap(pool, handle);
1483 }
1484 
1485 static u64 z3fold_zpool_total_size(void *pool)
1486 {
1487 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1488 }
1489 
1490 static struct zpool_driver z3fold_zpool_driver = {
1491 	.type =		"z3fold",
1492 	.owner =	THIS_MODULE,
1493 	.create =	z3fold_zpool_create,
1494 	.destroy =	z3fold_zpool_destroy,
1495 	.malloc =	z3fold_zpool_malloc,
1496 	.free =		z3fold_zpool_free,
1497 	.shrink =	z3fold_zpool_shrink,
1498 	.map =		z3fold_zpool_map,
1499 	.unmap =	z3fold_zpool_unmap,
1500 	.total_size =	z3fold_zpool_total_size,
1501 };
1502 
1503 MODULE_ALIAS("zpool-z3fold");
1504 
1505 static int __init init_z3fold(void)
1506 {
1507 	int ret;
1508 
1509 	/* Make sure the z3fold header is not larger than the page size */
1510 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1511 	ret = z3fold_mount();
1512 	if (ret)
1513 		return ret;
1514 
1515 	zpool_register_driver(&z3fold_zpool_driver);
1516 
1517 	return 0;
1518 }
1519 
1520 static void __exit exit_z3fold(void)
1521 {
1522 	z3fold_unmount();
1523 	zpool_unregister_driver(&z3fold_zpool_driver);
1524 }
1525 
1526 module_init(init_z3fold);
1527 module_exit(exit_z3fold);
1528 
1529 MODULE_LICENSE("GPL");
1530 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1531 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1532