xref: /openbmc/linux/mm/z3fold.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 
47 /*
48  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49  * adjusting internal fragmentation.  It also determines the number of
50  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52  * in the beginning of an allocated page are occupied by z3fold header, so
53  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54  * which shows the max number of free chunks in z3fold page, also there will
55  * be 63, or 62, respectively, freelists per pool.
56  */
57 #define NCHUNKS_ORDER	6
58 
59 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
60 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
64 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65 
66 #define BUDDY_MASK	(0x3)
67 #define BUDDY_SHIFT	2
68 #define SLOTS_ALIGN	(0x40)
69 
70 /*****************
71  * Structures
72 *****************/
73 struct z3fold_pool;
74 struct z3fold_ops {
75 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76 };
77 
78 enum buddy {
79 	HEADLESS = 0,
80 	FIRST,
81 	MIDDLE,
82 	LAST,
83 	BUDDIES_MAX = LAST
84 };
85 
86 struct z3fold_buddy_slots {
87 	/*
88 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 	 * be enough slots to hold all possible variants
90 	 */
91 	unsigned long slot[BUDDY_MASK + 1];
92 	unsigned long pool; /* back link + flags */
93 };
94 #define HANDLE_FLAG_MASK	(0x03)
95 
96 /*
97  * struct z3fold_header - z3fold page metadata occupying first chunks of each
98  *			z3fold page, except for HEADLESS pages
99  * @buddy:		links the z3fold page into the relevant list in the
100  *			pool
101  * @page_lock:		per-page lock
102  * @refcount:		reference count for the z3fold page
103  * @work:		work_struct for page layout optimization
104  * @slots:		pointer to the structure holding buddy slots
105  * @pool:		pointer to the containing pool
106  * @cpu:		CPU which this page "belongs" to
107  * @first_chunks:	the size of the first buddy in chunks, 0 if free
108  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
109  * @last_chunks:	the size of the last buddy in chunks, 0 if free
110  * @first_num:		the starting number (for the first handle)
111  * @mapped_count:	the number of objects currently mapped
112  */
113 struct z3fold_header {
114 	struct list_head buddy;
115 	spinlock_t page_lock;
116 	struct kref refcount;
117 	struct work_struct work;
118 	struct z3fold_buddy_slots *slots;
119 	struct z3fold_pool *pool;
120 	short cpu;
121 	unsigned short first_chunks;
122 	unsigned short middle_chunks;
123 	unsigned short last_chunks;
124 	unsigned short start_middle;
125 	unsigned short first_num:2;
126 	unsigned short mapped_count:2;
127 };
128 
129 /**
130  * struct z3fold_pool - stores metadata for each z3fold pool
131  * @name:	pool name
132  * @lock:	protects pool unbuddied/lru lists
133  * @stale_lock:	protects pool stale page list
134  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
135  *		buddies; the list each z3fold page is added to depends on
136  *		the size of its free region.
137  * @lru:	list tracking the z3fold pages in LRU order by most recently
138  *		added buddy.
139  * @stale:	list of pages marked for freeing
140  * @pages_nr:	number of z3fold pages in the pool.
141  * @c_handle:	cache for z3fold_buddy_slots allocation
142  * @ops:	pointer to a structure of user defined operations specified at
143  *		pool creation time.
144  * @compact_wq:	workqueue for page layout background optimization
145  * @release_wq:	workqueue for safe page release
146  * @work:	work_struct for safe page release
147  * @inode:	inode for z3fold pseudo filesystem
148  *
149  * This structure is allocated at pool creation time and maintains metadata
150  * pertaining to a particular z3fold pool.
151  */
152 struct z3fold_pool {
153 	const char *name;
154 	spinlock_t lock;
155 	spinlock_t stale_lock;
156 	struct list_head *unbuddied;
157 	struct list_head lru;
158 	struct list_head stale;
159 	atomic64_t pages_nr;
160 	struct kmem_cache *c_handle;
161 	const struct z3fold_ops *ops;
162 	struct zpool *zpool;
163 	const struct zpool_ops *zpool_ops;
164 	struct workqueue_struct *compact_wq;
165 	struct workqueue_struct *release_wq;
166 	struct work_struct work;
167 	struct inode *inode;
168 };
169 
170 /*
171  * Internal z3fold page flags
172  */
173 enum z3fold_page_flags {
174 	PAGE_HEADLESS = 0,
175 	MIDDLE_CHUNK_MAPPED,
176 	NEEDS_COMPACTING,
177 	PAGE_STALE,
178 	PAGE_CLAIMED, /* by either reclaim or free */
179 };
180 
181 /*****************
182  * Helpers
183 *****************/
184 
185 /* Converts an allocation size in bytes to size in z3fold chunks */
186 static int size_to_chunks(size_t size)
187 {
188 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
189 }
190 
191 #define for_each_unbuddied_list(_iter, _begin) \
192 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
193 
194 static void compact_page_work(struct work_struct *w);
195 
196 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
197 							gfp_t gfp)
198 {
199 	struct z3fold_buddy_slots *slots;
200 
201 	slots = kmem_cache_alloc(pool->c_handle,
202 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
203 
204 	if (slots) {
205 		memset(slots->slot, 0, sizeof(slots->slot));
206 		slots->pool = (unsigned long)pool;
207 	}
208 
209 	return slots;
210 }
211 
212 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
213 {
214 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
215 }
216 
217 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
218 {
219 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
220 }
221 
222 static inline void free_handle(unsigned long handle)
223 {
224 	struct z3fold_buddy_slots *slots;
225 	int i;
226 	bool is_free;
227 
228 	if (handle & (1 << PAGE_HEADLESS))
229 		return;
230 
231 	WARN_ON(*(unsigned long *)handle == 0);
232 	*(unsigned long *)handle = 0;
233 	slots = handle_to_slots(handle);
234 	is_free = true;
235 	for (i = 0; i <= BUDDY_MASK; i++) {
236 		if (slots->slot[i]) {
237 			is_free = false;
238 			break;
239 		}
240 	}
241 
242 	if (is_free) {
243 		struct z3fold_pool *pool = slots_to_pool(slots);
244 
245 		kmem_cache_free(pool->c_handle, slots);
246 	}
247 }
248 
249 static int z3fold_init_fs_context(struct fs_context *fc)
250 {
251 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
252 }
253 
254 static struct file_system_type z3fold_fs = {
255 	.name		= "z3fold",
256 	.init_fs_context = z3fold_init_fs_context,
257 	.kill_sb	= kill_anon_super,
258 };
259 
260 static struct vfsmount *z3fold_mnt;
261 static int z3fold_mount(void)
262 {
263 	int ret = 0;
264 
265 	z3fold_mnt = kern_mount(&z3fold_fs);
266 	if (IS_ERR(z3fold_mnt))
267 		ret = PTR_ERR(z3fold_mnt);
268 
269 	return ret;
270 }
271 
272 static void z3fold_unmount(void)
273 {
274 	kern_unmount(z3fold_mnt);
275 }
276 
277 static const struct address_space_operations z3fold_aops;
278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 	if (IS_ERR(pool->inode)) {
282 		pool->inode = NULL;
283 		return 1;
284 	}
285 
286 	pool->inode->i_mapping->private_data = pool;
287 	pool->inode->i_mapping->a_ops = &z3fold_aops;
288 	return 0;
289 }
290 
291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293 	if (pool->inode)
294 		iput(pool->inode);
295  }
296 
297 /* Initializes the z3fold header of a newly allocated z3fold page */
298 static struct z3fold_header *init_z3fold_page(struct page *page,
299 					struct z3fold_pool *pool, gfp_t gfp)
300 {
301 	struct z3fold_header *zhdr = page_address(page);
302 	struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303 
304 	if (!slots)
305 		return NULL;
306 
307 	INIT_LIST_HEAD(&page->lru);
308 	clear_bit(PAGE_HEADLESS, &page->private);
309 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310 	clear_bit(NEEDS_COMPACTING, &page->private);
311 	clear_bit(PAGE_STALE, &page->private);
312 	clear_bit(PAGE_CLAIMED, &page->private);
313 
314 	spin_lock_init(&zhdr->page_lock);
315 	kref_init(&zhdr->refcount);
316 	zhdr->first_chunks = 0;
317 	zhdr->middle_chunks = 0;
318 	zhdr->last_chunks = 0;
319 	zhdr->first_num = 0;
320 	zhdr->start_middle = 0;
321 	zhdr->cpu = -1;
322 	zhdr->slots = slots;
323 	zhdr->pool = pool;
324 	INIT_LIST_HEAD(&zhdr->buddy);
325 	INIT_WORK(&zhdr->work, compact_page_work);
326 	return zhdr;
327 }
328 
329 /* Resets the struct page fields and frees the page */
330 static void free_z3fold_page(struct page *page, bool headless)
331 {
332 	if (!headless) {
333 		lock_page(page);
334 		__ClearPageMovable(page);
335 		unlock_page(page);
336 	}
337 	ClearPagePrivate(page);
338 	__free_page(page);
339 }
340 
341 /* Lock a z3fold page */
342 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
343 {
344 	spin_lock(&zhdr->page_lock);
345 }
346 
347 /* Try to lock a z3fold page */
348 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
349 {
350 	return spin_trylock(&zhdr->page_lock);
351 }
352 
353 /* Unlock a z3fold page */
354 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
355 {
356 	spin_unlock(&zhdr->page_lock);
357 }
358 
359 /* Helper function to build the index */
360 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
361 {
362 	return (bud + zhdr->first_num) & BUDDY_MASK;
363 }
364 
365 /*
366  * Encodes the handle of a particular buddy within a z3fold page
367  * Pool lock should be held as this function accesses first_num
368  */
369 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
370 {
371 	struct z3fold_buddy_slots *slots;
372 	unsigned long h = (unsigned long)zhdr;
373 	int idx = 0;
374 
375 	/*
376 	 * For a headless page, its handle is its pointer with the extra
377 	 * PAGE_HEADLESS bit set
378 	 */
379 	if (bud == HEADLESS)
380 		return h | (1 << PAGE_HEADLESS);
381 
382 	/* otherwise, return pointer to encoded handle */
383 	idx = __idx(zhdr, bud);
384 	h += idx;
385 	if (bud == LAST)
386 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
387 
388 	slots = zhdr->slots;
389 	slots->slot[idx] = h;
390 	return (unsigned long)&slots->slot[idx];
391 }
392 
393 /* Returns the z3fold page where a given handle is stored */
394 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
395 {
396 	unsigned long addr = h;
397 
398 	if (!(addr & (1 << PAGE_HEADLESS)))
399 		addr = *(unsigned long *)h;
400 
401 	return (struct z3fold_header *)(addr & PAGE_MASK);
402 }
403 
404 /* only for LAST bud, returns zero otherwise */
405 static unsigned short handle_to_chunks(unsigned long handle)
406 {
407 	unsigned long addr = *(unsigned long *)handle;
408 
409 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
410 }
411 
412 /*
413  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
414  *  but that doesn't matter. because the masking will result in the
415  *  correct buddy number.
416  */
417 static enum buddy handle_to_buddy(unsigned long handle)
418 {
419 	struct z3fold_header *zhdr;
420 	unsigned long addr;
421 
422 	WARN_ON(handle & (1 << PAGE_HEADLESS));
423 	addr = *(unsigned long *)handle;
424 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
425 	return (addr - zhdr->first_num) & BUDDY_MASK;
426 }
427 
428 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
429 {
430 	return zhdr->pool;
431 }
432 
433 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
434 {
435 	struct page *page = virt_to_page(zhdr);
436 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
437 
438 	WARN_ON(!list_empty(&zhdr->buddy));
439 	set_bit(PAGE_STALE, &page->private);
440 	clear_bit(NEEDS_COMPACTING, &page->private);
441 	spin_lock(&pool->lock);
442 	if (!list_empty(&page->lru))
443 		list_del_init(&page->lru);
444 	spin_unlock(&pool->lock);
445 	if (locked)
446 		z3fold_page_unlock(zhdr);
447 	spin_lock(&pool->stale_lock);
448 	list_add(&zhdr->buddy, &pool->stale);
449 	queue_work(pool->release_wq, &pool->work);
450 	spin_unlock(&pool->stale_lock);
451 }
452 
453 static void __attribute__((__unused__))
454 			release_z3fold_page(struct kref *ref)
455 {
456 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
457 						refcount);
458 	__release_z3fold_page(zhdr, false);
459 }
460 
461 static void release_z3fold_page_locked(struct kref *ref)
462 {
463 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
464 						refcount);
465 	WARN_ON(z3fold_page_trylock(zhdr));
466 	__release_z3fold_page(zhdr, true);
467 }
468 
469 static void release_z3fold_page_locked_list(struct kref *ref)
470 {
471 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
472 					       refcount);
473 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
474 	spin_lock(&pool->lock);
475 	list_del_init(&zhdr->buddy);
476 	spin_unlock(&pool->lock);
477 
478 	WARN_ON(z3fold_page_trylock(zhdr));
479 	__release_z3fold_page(zhdr, true);
480 }
481 
482 static void free_pages_work(struct work_struct *w)
483 {
484 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
485 
486 	spin_lock(&pool->stale_lock);
487 	while (!list_empty(&pool->stale)) {
488 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
489 						struct z3fold_header, buddy);
490 		struct page *page = virt_to_page(zhdr);
491 
492 		list_del(&zhdr->buddy);
493 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
494 			continue;
495 		spin_unlock(&pool->stale_lock);
496 		cancel_work_sync(&zhdr->work);
497 		free_z3fold_page(page, false);
498 		cond_resched();
499 		spin_lock(&pool->stale_lock);
500 	}
501 	spin_unlock(&pool->stale_lock);
502 }
503 
504 /*
505  * Returns the number of free chunks in a z3fold page.
506  * NB: can't be used with HEADLESS pages.
507  */
508 static int num_free_chunks(struct z3fold_header *zhdr)
509 {
510 	int nfree;
511 	/*
512 	 * If there is a middle object, pick up the bigger free space
513 	 * either before or after it. Otherwise just subtract the number
514 	 * of chunks occupied by the first and the last objects.
515 	 */
516 	if (zhdr->middle_chunks != 0) {
517 		int nfree_before = zhdr->first_chunks ?
518 			0 : zhdr->start_middle - ZHDR_CHUNKS;
519 		int nfree_after = zhdr->last_chunks ?
520 			0 : TOTAL_CHUNKS -
521 				(zhdr->start_middle + zhdr->middle_chunks);
522 		nfree = max(nfree_before, nfree_after);
523 	} else
524 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
525 	return nfree;
526 }
527 
528 /* Add to the appropriate unbuddied list */
529 static inline void add_to_unbuddied(struct z3fold_pool *pool,
530 				struct z3fold_header *zhdr)
531 {
532 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
533 			zhdr->middle_chunks == 0) {
534 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
535 
536 		int freechunks = num_free_chunks(zhdr);
537 		spin_lock(&pool->lock);
538 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
539 		spin_unlock(&pool->lock);
540 		zhdr->cpu = smp_processor_id();
541 		put_cpu_ptr(pool->unbuddied);
542 	}
543 }
544 
545 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
546 				unsigned short dst_chunk)
547 {
548 	void *beg = zhdr;
549 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
550 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
551 		       zhdr->middle_chunks << CHUNK_SHIFT);
552 }
553 
554 #define BIG_CHUNK_GAP	3
555 /* Has to be called with lock held */
556 static int z3fold_compact_page(struct z3fold_header *zhdr)
557 {
558 	struct page *page = virt_to_page(zhdr);
559 
560 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
561 		return 0; /* can't move middle chunk, it's used */
562 
563 	if (unlikely(PageIsolated(page)))
564 		return 0;
565 
566 	if (zhdr->middle_chunks == 0)
567 		return 0; /* nothing to compact */
568 
569 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
570 		/* move to the beginning */
571 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
572 		zhdr->first_chunks = zhdr->middle_chunks;
573 		zhdr->middle_chunks = 0;
574 		zhdr->start_middle = 0;
575 		zhdr->first_num++;
576 		return 1;
577 	}
578 
579 	/*
580 	 * moving data is expensive, so let's only do that if
581 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
582 	 */
583 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
584 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
585 			BIG_CHUNK_GAP) {
586 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
587 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
588 		return 1;
589 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
590 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
591 					+ zhdr->middle_chunks) >=
592 			BIG_CHUNK_GAP) {
593 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
594 			zhdr->middle_chunks;
595 		mchunk_memmove(zhdr, new_start);
596 		zhdr->start_middle = new_start;
597 		return 1;
598 	}
599 
600 	return 0;
601 }
602 
603 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
604 {
605 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
606 	struct page *page;
607 
608 	page = virt_to_page(zhdr);
609 	if (locked)
610 		WARN_ON(z3fold_page_trylock(zhdr));
611 	else
612 		z3fold_page_lock(zhdr);
613 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
614 		z3fold_page_unlock(zhdr);
615 		return;
616 	}
617 	spin_lock(&pool->lock);
618 	list_del_init(&zhdr->buddy);
619 	spin_unlock(&pool->lock);
620 
621 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
622 		atomic64_dec(&pool->pages_nr);
623 		return;
624 	}
625 
626 	if (unlikely(PageIsolated(page) ||
627 		     test_bit(PAGE_STALE, &page->private))) {
628 		z3fold_page_unlock(zhdr);
629 		return;
630 	}
631 
632 	z3fold_compact_page(zhdr);
633 	add_to_unbuddied(pool, zhdr);
634 	z3fold_page_unlock(zhdr);
635 }
636 
637 static void compact_page_work(struct work_struct *w)
638 {
639 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
640 						work);
641 
642 	do_compact_page(zhdr, false);
643 }
644 
645 /* returns _locked_ z3fold page header or NULL */
646 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
647 						size_t size, bool can_sleep)
648 {
649 	struct z3fold_header *zhdr = NULL;
650 	struct page *page;
651 	struct list_head *unbuddied;
652 	int chunks = size_to_chunks(size), i;
653 
654 lookup:
655 	/* First, try to find an unbuddied z3fold page. */
656 	unbuddied = get_cpu_ptr(pool->unbuddied);
657 	for_each_unbuddied_list(i, chunks) {
658 		struct list_head *l = &unbuddied[i];
659 
660 		zhdr = list_first_entry_or_null(READ_ONCE(l),
661 					struct z3fold_header, buddy);
662 
663 		if (!zhdr)
664 			continue;
665 
666 		/* Re-check under lock. */
667 		spin_lock(&pool->lock);
668 		l = &unbuddied[i];
669 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
670 						struct z3fold_header, buddy)) ||
671 		    !z3fold_page_trylock(zhdr)) {
672 			spin_unlock(&pool->lock);
673 			zhdr = NULL;
674 			put_cpu_ptr(pool->unbuddied);
675 			if (can_sleep)
676 				cond_resched();
677 			goto lookup;
678 		}
679 		list_del_init(&zhdr->buddy);
680 		zhdr->cpu = -1;
681 		spin_unlock(&pool->lock);
682 
683 		page = virt_to_page(zhdr);
684 		if (test_bit(NEEDS_COMPACTING, &page->private)) {
685 			z3fold_page_unlock(zhdr);
686 			zhdr = NULL;
687 			put_cpu_ptr(pool->unbuddied);
688 			if (can_sleep)
689 				cond_resched();
690 			goto lookup;
691 		}
692 
693 		/*
694 		 * this page could not be removed from its unbuddied
695 		 * list while pool lock was held, and then we've taken
696 		 * page lock so kref_put could not be called before
697 		 * we got here, so it's safe to just call kref_get()
698 		 */
699 		kref_get(&zhdr->refcount);
700 		break;
701 	}
702 	put_cpu_ptr(pool->unbuddied);
703 
704 	if (!zhdr) {
705 		int cpu;
706 
707 		/* look for _exact_ match on other cpus' lists */
708 		for_each_online_cpu(cpu) {
709 			struct list_head *l;
710 
711 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
712 			spin_lock(&pool->lock);
713 			l = &unbuddied[chunks];
714 
715 			zhdr = list_first_entry_or_null(READ_ONCE(l),
716 						struct z3fold_header, buddy);
717 
718 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
719 				spin_unlock(&pool->lock);
720 				zhdr = NULL;
721 				continue;
722 			}
723 			list_del_init(&zhdr->buddy);
724 			zhdr->cpu = -1;
725 			spin_unlock(&pool->lock);
726 
727 			page = virt_to_page(zhdr);
728 			if (test_bit(NEEDS_COMPACTING, &page->private)) {
729 				z3fold_page_unlock(zhdr);
730 				zhdr = NULL;
731 				if (can_sleep)
732 					cond_resched();
733 				continue;
734 			}
735 			kref_get(&zhdr->refcount);
736 			break;
737 		}
738 	}
739 
740 	return zhdr;
741 }
742 
743 /*
744  * API Functions
745  */
746 
747 /**
748  * z3fold_create_pool() - create a new z3fold pool
749  * @name:	pool name
750  * @gfp:	gfp flags when allocating the z3fold pool structure
751  * @ops:	user-defined operations for the z3fold pool
752  *
753  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
754  * failed.
755  */
756 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
757 		const struct z3fold_ops *ops)
758 {
759 	struct z3fold_pool *pool = NULL;
760 	int i, cpu;
761 
762 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
763 	if (!pool)
764 		goto out;
765 	pool->c_handle = kmem_cache_create("z3fold_handle",
766 				sizeof(struct z3fold_buddy_slots),
767 				SLOTS_ALIGN, 0, NULL);
768 	if (!pool->c_handle)
769 		goto out_c;
770 	spin_lock_init(&pool->lock);
771 	spin_lock_init(&pool->stale_lock);
772 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
773 	if (!pool->unbuddied)
774 		goto out_pool;
775 	for_each_possible_cpu(cpu) {
776 		struct list_head *unbuddied =
777 				per_cpu_ptr(pool->unbuddied, cpu);
778 		for_each_unbuddied_list(i, 0)
779 			INIT_LIST_HEAD(&unbuddied[i]);
780 	}
781 	INIT_LIST_HEAD(&pool->lru);
782 	INIT_LIST_HEAD(&pool->stale);
783 	atomic64_set(&pool->pages_nr, 0);
784 	pool->name = name;
785 	pool->compact_wq = create_singlethread_workqueue(pool->name);
786 	if (!pool->compact_wq)
787 		goto out_unbuddied;
788 	pool->release_wq = create_singlethread_workqueue(pool->name);
789 	if (!pool->release_wq)
790 		goto out_wq;
791 	if (z3fold_register_migration(pool))
792 		goto out_rwq;
793 	INIT_WORK(&pool->work, free_pages_work);
794 	pool->ops = ops;
795 	return pool;
796 
797 out_rwq:
798 	destroy_workqueue(pool->release_wq);
799 out_wq:
800 	destroy_workqueue(pool->compact_wq);
801 out_unbuddied:
802 	free_percpu(pool->unbuddied);
803 out_pool:
804 	kmem_cache_destroy(pool->c_handle);
805 out_c:
806 	kfree(pool);
807 out:
808 	return NULL;
809 }
810 
811 /**
812  * z3fold_destroy_pool() - destroys an existing z3fold pool
813  * @pool:	the z3fold pool to be destroyed
814  *
815  * The pool should be emptied before this function is called.
816  */
817 static void z3fold_destroy_pool(struct z3fold_pool *pool)
818 {
819 	kmem_cache_destroy(pool->c_handle);
820 	z3fold_unregister_migration(pool);
821 	destroy_workqueue(pool->release_wq);
822 	destroy_workqueue(pool->compact_wq);
823 	kfree(pool);
824 }
825 
826 /**
827  * z3fold_alloc() - allocates a region of a given size
828  * @pool:	z3fold pool from which to allocate
829  * @size:	size in bytes of the desired allocation
830  * @gfp:	gfp flags used if the pool needs to grow
831  * @handle:	handle of the new allocation
832  *
833  * This function will attempt to find a free region in the pool large enough to
834  * satisfy the allocation request.  A search of the unbuddied lists is
835  * performed first. If no suitable free region is found, then a new page is
836  * allocated and added to the pool to satisfy the request.
837  *
838  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
839  * as z3fold pool pages.
840  *
841  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
842  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
843  * a new page.
844  */
845 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
846 			unsigned long *handle)
847 {
848 	int chunks = size_to_chunks(size);
849 	struct z3fold_header *zhdr = NULL;
850 	struct page *page = NULL;
851 	enum buddy bud;
852 	bool can_sleep = gfpflags_allow_blocking(gfp);
853 
854 	if (!size)
855 		return -EINVAL;
856 
857 	if (size > PAGE_SIZE)
858 		return -ENOSPC;
859 
860 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
861 		bud = HEADLESS;
862 	else {
863 retry:
864 		zhdr = __z3fold_alloc(pool, size, can_sleep);
865 		if (zhdr) {
866 			if (zhdr->first_chunks == 0) {
867 				if (zhdr->middle_chunks != 0 &&
868 				    chunks >= zhdr->start_middle)
869 					bud = LAST;
870 				else
871 					bud = FIRST;
872 			} else if (zhdr->last_chunks == 0)
873 				bud = LAST;
874 			else if (zhdr->middle_chunks == 0)
875 				bud = MIDDLE;
876 			else {
877 				if (kref_put(&zhdr->refcount,
878 					     release_z3fold_page_locked))
879 					atomic64_dec(&pool->pages_nr);
880 				else
881 					z3fold_page_unlock(zhdr);
882 				pr_err("No free chunks in unbuddied\n");
883 				WARN_ON(1);
884 				goto retry;
885 			}
886 			page = virt_to_page(zhdr);
887 			goto found;
888 		}
889 		bud = FIRST;
890 	}
891 
892 	page = NULL;
893 	if (can_sleep) {
894 		spin_lock(&pool->stale_lock);
895 		zhdr = list_first_entry_or_null(&pool->stale,
896 						struct z3fold_header, buddy);
897 		/*
898 		 * Before allocating a page, let's see if we can take one from
899 		 * the stale pages list. cancel_work_sync() can sleep so we
900 		 * limit this case to the contexts where we can sleep
901 		 */
902 		if (zhdr) {
903 			list_del(&zhdr->buddy);
904 			spin_unlock(&pool->stale_lock);
905 			cancel_work_sync(&zhdr->work);
906 			page = virt_to_page(zhdr);
907 		} else {
908 			spin_unlock(&pool->stale_lock);
909 		}
910 	}
911 	if (!page)
912 		page = alloc_page(gfp);
913 
914 	if (!page)
915 		return -ENOMEM;
916 
917 	zhdr = init_z3fold_page(page, pool, gfp);
918 	if (!zhdr) {
919 		__free_page(page);
920 		return -ENOMEM;
921 	}
922 	atomic64_inc(&pool->pages_nr);
923 
924 	if (bud == HEADLESS) {
925 		set_bit(PAGE_HEADLESS, &page->private);
926 		goto headless;
927 	}
928 	if (can_sleep) {
929 		lock_page(page);
930 		__SetPageMovable(page, pool->inode->i_mapping);
931 		unlock_page(page);
932 	} else {
933 		if (trylock_page(page)) {
934 			__SetPageMovable(page, pool->inode->i_mapping);
935 			unlock_page(page);
936 		}
937 	}
938 	z3fold_page_lock(zhdr);
939 
940 found:
941 	if (bud == FIRST)
942 		zhdr->first_chunks = chunks;
943 	else if (bud == LAST)
944 		zhdr->last_chunks = chunks;
945 	else {
946 		zhdr->middle_chunks = chunks;
947 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
948 	}
949 	add_to_unbuddied(pool, zhdr);
950 
951 headless:
952 	spin_lock(&pool->lock);
953 	/* Add/move z3fold page to beginning of LRU */
954 	if (!list_empty(&page->lru))
955 		list_del(&page->lru);
956 
957 	list_add(&page->lru, &pool->lru);
958 
959 	*handle = encode_handle(zhdr, bud);
960 	spin_unlock(&pool->lock);
961 	if (bud != HEADLESS)
962 		z3fold_page_unlock(zhdr);
963 
964 	return 0;
965 }
966 
967 /**
968  * z3fold_free() - frees the allocation associated with the given handle
969  * @pool:	pool in which the allocation resided
970  * @handle:	handle associated with the allocation returned by z3fold_alloc()
971  *
972  * In the case that the z3fold page in which the allocation resides is under
973  * reclaim, as indicated by the PG_reclaim flag being set, this function
974  * only sets the first|last_chunks to 0.  The page is actually freed
975  * once both buddies are evicted (see z3fold_reclaim_page() below).
976  */
977 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
978 {
979 	struct z3fold_header *zhdr;
980 	struct page *page;
981 	enum buddy bud;
982 
983 	zhdr = handle_to_z3fold_header(handle);
984 	page = virt_to_page(zhdr);
985 
986 	if (test_bit(PAGE_HEADLESS, &page->private)) {
987 		/* if a headless page is under reclaim, just leave.
988 		 * NB: we use test_and_set_bit for a reason: if the bit
989 		 * has not been set before, we release this page
990 		 * immediately so we don't care about its value any more.
991 		 */
992 		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
993 			spin_lock(&pool->lock);
994 			list_del(&page->lru);
995 			spin_unlock(&pool->lock);
996 			free_z3fold_page(page, true);
997 			atomic64_dec(&pool->pages_nr);
998 		}
999 		return;
1000 	}
1001 
1002 	/* Non-headless case */
1003 	z3fold_page_lock(zhdr);
1004 	bud = handle_to_buddy(handle);
1005 
1006 	switch (bud) {
1007 	case FIRST:
1008 		zhdr->first_chunks = 0;
1009 		break;
1010 	case MIDDLE:
1011 		zhdr->middle_chunks = 0;
1012 		break;
1013 	case LAST:
1014 		zhdr->last_chunks = 0;
1015 		break;
1016 	default:
1017 		pr_err("%s: unknown bud %d\n", __func__, bud);
1018 		WARN_ON(1);
1019 		z3fold_page_unlock(zhdr);
1020 		return;
1021 	}
1022 
1023 	free_handle(handle);
1024 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1025 		atomic64_dec(&pool->pages_nr);
1026 		return;
1027 	}
1028 	if (test_bit(PAGE_CLAIMED, &page->private)) {
1029 		z3fold_page_unlock(zhdr);
1030 		return;
1031 	}
1032 	if (unlikely(PageIsolated(page)) ||
1033 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1034 		z3fold_page_unlock(zhdr);
1035 		return;
1036 	}
1037 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1038 		spin_lock(&pool->lock);
1039 		list_del_init(&zhdr->buddy);
1040 		spin_unlock(&pool->lock);
1041 		zhdr->cpu = -1;
1042 		kref_get(&zhdr->refcount);
1043 		do_compact_page(zhdr, true);
1044 		return;
1045 	}
1046 	kref_get(&zhdr->refcount);
1047 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1048 	z3fold_page_unlock(zhdr);
1049 }
1050 
1051 /**
1052  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1053  * @pool:	pool from which a page will attempt to be evicted
1054  * @retries:	number of pages on the LRU list for which eviction will
1055  *		be attempted before failing
1056  *
1057  * z3fold reclaim is different from normal system reclaim in that it is done
1058  * from the bottom, up. This is because only the bottom layer, z3fold, has
1059  * information on how the allocations are organized within each z3fold page.
1060  * This has the potential to create interesting locking situations between
1061  * z3fold and the user, however.
1062  *
1063  * To avoid these, this is how z3fold_reclaim_page() should be called:
1064  *
1065  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1066  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1067  * call the user-defined eviction handler with the pool and handle as
1068  * arguments.
1069  *
1070  * If the handle can not be evicted, the eviction handler should return
1071  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1072  * appropriate list and try the next z3fold page on the LRU up to
1073  * a user defined number of retries.
1074  *
1075  * If the handle is successfully evicted, the eviction handler should
1076  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1077  * contains logic to delay freeing the page if the page is under reclaim,
1078  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1079  *
1080  * If all buddies in the z3fold page are successfully evicted, then the
1081  * z3fold page can be freed.
1082  *
1083  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1084  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1085  * the retry limit was hit.
1086  */
1087 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1088 {
1089 	int i, ret = 0;
1090 	struct z3fold_header *zhdr = NULL;
1091 	struct page *page = NULL;
1092 	struct list_head *pos;
1093 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1094 
1095 	spin_lock(&pool->lock);
1096 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1097 		spin_unlock(&pool->lock);
1098 		return -EINVAL;
1099 	}
1100 	for (i = 0; i < retries; i++) {
1101 		if (list_empty(&pool->lru)) {
1102 			spin_unlock(&pool->lock);
1103 			return -EINVAL;
1104 		}
1105 		list_for_each_prev(pos, &pool->lru) {
1106 			page = list_entry(pos, struct page, lru);
1107 
1108 			/* this bit could have been set by free, in which case
1109 			 * we pass over to the next page in the pool.
1110 			 */
1111 			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1112 				continue;
1113 
1114 			if (unlikely(PageIsolated(page)))
1115 				continue;
1116 			if (test_bit(PAGE_HEADLESS, &page->private))
1117 				break;
1118 
1119 			zhdr = page_address(page);
1120 			if (!z3fold_page_trylock(zhdr)) {
1121 				zhdr = NULL;
1122 				continue; /* can't evict at this point */
1123 			}
1124 			kref_get(&zhdr->refcount);
1125 			list_del_init(&zhdr->buddy);
1126 			zhdr->cpu = -1;
1127 			break;
1128 		}
1129 
1130 		if (!zhdr)
1131 			break;
1132 
1133 		list_del_init(&page->lru);
1134 		spin_unlock(&pool->lock);
1135 
1136 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1137 			/*
1138 			 * We need encode the handles before unlocking, since
1139 			 * we can race with free that will set
1140 			 * (first|last)_chunks to 0
1141 			 */
1142 			first_handle = 0;
1143 			last_handle = 0;
1144 			middle_handle = 0;
1145 			if (zhdr->first_chunks)
1146 				first_handle = encode_handle(zhdr, FIRST);
1147 			if (zhdr->middle_chunks)
1148 				middle_handle = encode_handle(zhdr, MIDDLE);
1149 			if (zhdr->last_chunks)
1150 				last_handle = encode_handle(zhdr, LAST);
1151 			/*
1152 			 * it's safe to unlock here because we hold a
1153 			 * reference to this page
1154 			 */
1155 			z3fold_page_unlock(zhdr);
1156 		} else {
1157 			first_handle = encode_handle(zhdr, HEADLESS);
1158 			last_handle = middle_handle = 0;
1159 		}
1160 
1161 		/* Issue the eviction callback(s) */
1162 		if (middle_handle) {
1163 			ret = pool->ops->evict(pool, middle_handle);
1164 			if (ret)
1165 				goto next;
1166 		}
1167 		if (first_handle) {
1168 			ret = pool->ops->evict(pool, first_handle);
1169 			if (ret)
1170 				goto next;
1171 		}
1172 		if (last_handle) {
1173 			ret = pool->ops->evict(pool, last_handle);
1174 			if (ret)
1175 				goto next;
1176 		}
1177 next:
1178 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1179 			if (ret == 0) {
1180 				free_z3fold_page(page, true);
1181 				atomic64_dec(&pool->pages_nr);
1182 				return 0;
1183 			}
1184 			spin_lock(&pool->lock);
1185 			list_add(&page->lru, &pool->lru);
1186 			spin_unlock(&pool->lock);
1187 		} else {
1188 			z3fold_page_lock(zhdr);
1189 			clear_bit(PAGE_CLAIMED, &page->private);
1190 			if (kref_put(&zhdr->refcount,
1191 					release_z3fold_page_locked)) {
1192 				atomic64_dec(&pool->pages_nr);
1193 				return 0;
1194 			}
1195 			/*
1196 			 * if we are here, the page is still not completely
1197 			 * free. Take the global pool lock then to be able
1198 			 * to add it back to the lru list
1199 			 */
1200 			spin_lock(&pool->lock);
1201 			list_add(&page->lru, &pool->lru);
1202 			spin_unlock(&pool->lock);
1203 			z3fold_page_unlock(zhdr);
1204 		}
1205 
1206 		/* We started off locked to we need to lock the pool back */
1207 		spin_lock(&pool->lock);
1208 	}
1209 	spin_unlock(&pool->lock);
1210 	return -EAGAIN;
1211 }
1212 
1213 /**
1214  * z3fold_map() - maps the allocation associated with the given handle
1215  * @pool:	pool in which the allocation resides
1216  * @handle:	handle associated with the allocation to be mapped
1217  *
1218  * Extracts the buddy number from handle and constructs the pointer to the
1219  * correct starting chunk within the page.
1220  *
1221  * Returns: a pointer to the mapped allocation
1222  */
1223 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1224 {
1225 	struct z3fold_header *zhdr;
1226 	struct page *page;
1227 	void *addr;
1228 	enum buddy buddy;
1229 
1230 	zhdr = handle_to_z3fold_header(handle);
1231 	addr = zhdr;
1232 	page = virt_to_page(zhdr);
1233 
1234 	if (test_bit(PAGE_HEADLESS, &page->private))
1235 		goto out;
1236 
1237 	z3fold_page_lock(zhdr);
1238 	buddy = handle_to_buddy(handle);
1239 	switch (buddy) {
1240 	case FIRST:
1241 		addr += ZHDR_SIZE_ALIGNED;
1242 		break;
1243 	case MIDDLE:
1244 		addr += zhdr->start_middle << CHUNK_SHIFT;
1245 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1246 		break;
1247 	case LAST:
1248 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1249 		break;
1250 	default:
1251 		pr_err("unknown buddy id %d\n", buddy);
1252 		WARN_ON(1);
1253 		addr = NULL;
1254 		break;
1255 	}
1256 
1257 	if (addr)
1258 		zhdr->mapped_count++;
1259 	z3fold_page_unlock(zhdr);
1260 out:
1261 	return addr;
1262 }
1263 
1264 /**
1265  * z3fold_unmap() - unmaps the allocation associated with the given handle
1266  * @pool:	pool in which the allocation resides
1267  * @handle:	handle associated with the allocation to be unmapped
1268  */
1269 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1270 {
1271 	struct z3fold_header *zhdr;
1272 	struct page *page;
1273 	enum buddy buddy;
1274 
1275 	zhdr = handle_to_z3fold_header(handle);
1276 	page = virt_to_page(zhdr);
1277 
1278 	if (test_bit(PAGE_HEADLESS, &page->private))
1279 		return;
1280 
1281 	z3fold_page_lock(zhdr);
1282 	buddy = handle_to_buddy(handle);
1283 	if (buddy == MIDDLE)
1284 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1285 	zhdr->mapped_count--;
1286 	z3fold_page_unlock(zhdr);
1287 }
1288 
1289 /**
1290  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1291  * @pool:	pool whose size is being queried
1292  *
1293  * Returns: size in pages of the given pool.
1294  */
1295 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1296 {
1297 	return atomic64_read(&pool->pages_nr);
1298 }
1299 
1300 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1301 {
1302 	struct z3fold_header *zhdr;
1303 	struct z3fold_pool *pool;
1304 
1305 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1306 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1307 
1308 	if (test_bit(PAGE_HEADLESS, &page->private))
1309 		return false;
1310 
1311 	zhdr = page_address(page);
1312 	z3fold_page_lock(zhdr);
1313 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1314 	    test_bit(PAGE_STALE, &page->private))
1315 		goto out;
1316 
1317 	pool = zhdr_to_pool(zhdr);
1318 
1319 	if (zhdr->mapped_count == 0) {
1320 		kref_get(&zhdr->refcount);
1321 		if (!list_empty(&zhdr->buddy))
1322 			list_del_init(&zhdr->buddy);
1323 		spin_lock(&pool->lock);
1324 		if (!list_empty(&page->lru))
1325 			list_del(&page->lru);
1326 		spin_unlock(&pool->lock);
1327 		z3fold_page_unlock(zhdr);
1328 		return true;
1329 	}
1330 out:
1331 	z3fold_page_unlock(zhdr);
1332 	return false;
1333 }
1334 
1335 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1336 			       struct page *page, enum migrate_mode mode)
1337 {
1338 	struct z3fold_header *zhdr, *new_zhdr;
1339 	struct z3fold_pool *pool;
1340 	struct address_space *new_mapping;
1341 
1342 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1343 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1344 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1345 
1346 	zhdr = page_address(page);
1347 	pool = zhdr_to_pool(zhdr);
1348 
1349 	if (!z3fold_page_trylock(zhdr)) {
1350 		return -EAGAIN;
1351 	}
1352 	if (zhdr->mapped_count != 0) {
1353 		z3fold_page_unlock(zhdr);
1354 		return -EBUSY;
1355 	}
1356 	if (work_pending(&zhdr->work)) {
1357 		z3fold_page_unlock(zhdr);
1358 		return -EAGAIN;
1359 	}
1360 	new_zhdr = page_address(newpage);
1361 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1362 	newpage->private = page->private;
1363 	page->private = 0;
1364 	z3fold_page_unlock(zhdr);
1365 	spin_lock_init(&new_zhdr->page_lock);
1366 	INIT_WORK(&new_zhdr->work, compact_page_work);
1367 	/*
1368 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1369 	 * so we only have to reinitialize it.
1370 	 */
1371 	INIT_LIST_HEAD(&new_zhdr->buddy);
1372 	new_mapping = page_mapping(page);
1373 	__ClearPageMovable(page);
1374 	ClearPagePrivate(page);
1375 
1376 	get_page(newpage);
1377 	z3fold_page_lock(new_zhdr);
1378 	if (new_zhdr->first_chunks)
1379 		encode_handle(new_zhdr, FIRST);
1380 	if (new_zhdr->last_chunks)
1381 		encode_handle(new_zhdr, LAST);
1382 	if (new_zhdr->middle_chunks)
1383 		encode_handle(new_zhdr, MIDDLE);
1384 	set_bit(NEEDS_COMPACTING, &newpage->private);
1385 	new_zhdr->cpu = smp_processor_id();
1386 	spin_lock(&pool->lock);
1387 	list_add(&newpage->lru, &pool->lru);
1388 	spin_unlock(&pool->lock);
1389 	__SetPageMovable(newpage, new_mapping);
1390 	z3fold_page_unlock(new_zhdr);
1391 
1392 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1393 
1394 	page_mapcount_reset(page);
1395 	put_page(page);
1396 	return 0;
1397 }
1398 
1399 static void z3fold_page_putback(struct page *page)
1400 {
1401 	struct z3fold_header *zhdr;
1402 	struct z3fold_pool *pool;
1403 
1404 	zhdr = page_address(page);
1405 	pool = zhdr_to_pool(zhdr);
1406 
1407 	z3fold_page_lock(zhdr);
1408 	if (!list_empty(&zhdr->buddy))
1409 		list_del_init(&zhdr->buddy);
1410 	INIT_LIST_HEAD(&page->lru);
1411 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1412 		atomic64_dec(&pool->pages_nr);
1413 		return;
1414 	}
1415 	spin_lock(&pool->lock);
1416 	list_add(&page->lru, &pool->lru);
1417 	spin_unlock(&pool->lock);
1418 	z3fold_page_unlock(zhdr);
1419 }
1420 
1421 static const struct address_space_operations z3fold_aops = {
1422 	.isolate_page = z3fold_page_isolate,
1423 	.migratepage = z3fold_page_migrate,
1424 	.putback_page = z3fold_page_putback,
1425 };
1426 
1427 /*****************
1428  * zpool
1429  ****************/
1430 
1431 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1432 {
1433 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1434 		return pool->zpool_ops->evict(pool->zpool, handle);
1435 	else
1436 		return -ENOENT;
1437 }
1438 
1439 static const struct z3fold_ops z3fold_zpool_ops = {
1440 	.evict =	z3fold_zpool_evict
1441 };
1442 
1443 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1444 			       const struct zpool_ops *zpool_ops,
1445 			       struct zpool *zpool)
1446 {
1447 	struct z3fold_pool *pool;
1448 
1449 	pool = z3fold_create_pool(name, gfp,
1450 				zpool_ops ? &z3fold_zpool_ops : NULL);
1451 	if (pool) {
1452 		pool->zpool = zpool;
1453 		pool->zpool_ops = zpool_ops;
1454 	}
1455 	return pool;
1456 }
1457 
1458 static void z3fold_zpool_destroy(void *pool)
1459 {
1460 	z3fold_destroy_pool(pool);
1461 }
1462 
1463 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1464 			unsigned long *handle)
1465 {
1466 	return z3fold_alloc(pool, size, gfp, handle);
1467 }
1468 static void z3fold_zpool_free(void *pool, unsigned long handle)
1469 {
1470 	z3fold_free(pool, handle);
1471 }
1472 
1473 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1474 			unsigned int *reclaimed)
1475 {
1476 	unsigned int total = 0;
1477 	int ret = -EINVAL;
1478 
1479 	while (total < pages) {
1480 		ret = z3fold_reclaim_page(pool, 8);
1481 		if (ret < 0)
1482 			break;
1483 		total++;
1484 	}
1485 
1486 	if (reclaimed)
1487 		*reclaimed = total;
1488 
1489 	return ret;
1490 }
1491 
1492 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1493 			enum zpool_mapmode mm)
1494 {
1495 	return z3fold_map(pool, handle);
1496 }
1497 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1498 {
1499 	z3fold_unmap(pool, handle);
1500 }
1501 
1502 static u64 z3fold_zpool_total_size(void *pool)
1503 {
1504 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1505 }
1506 
1507 static struct zpool_driver z3fold_zpool_driver = {
1508 	.type =		"z3fold",
1509 	.owner =	THIS_MODULE,
1510 	.create =	z3fold_zpool_create,
1511 	.destroy =	z3fold_zpool_destroy,
1512 	.malloc =	z3fold_zpool_malloc,
1513 	.free =		z3fold_zpool_free,
1514 	.shrink =	z3fold_zpool_shrink,
1515 	.map =		z3fold_zpool_map,
1516 	.unmap =	z3fold_zpool_unmap,
1517 	.total_size =	z3fold_zpool_total_size,
1518 };
1519 
1520 MODULE_ALIAS("zpool-z3fold");
1521 
1522 static int __init init_z3fold(void)
1523 {
1524 	int ret;
1525 
1526 	/* Make sure the z3fold header is not larger than the page size */
1527 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1528 	ret = z3fold_mount();
1529 	if (ret)
1530 		return ret;
1531 
1532 	zpool_register_driver(&z3fold_zpool_driver);
1533 
1534 	return 0;
1535 }
1536 
1537 static void __exit exit_z3fold(void)
1538 {
1539 	z3fold_unmount();
1540 	zpool_unregister_driver(&z3fold_zpool_driver);
1541 }
1542 
1543 module_init(init_z3fold);
1544 module_exit(exit_z3fold);
1545 
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1548 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1549