1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * z3fold.c 4 * 5 * Author: Vitaly Wool <vitaly.wool@konsulko.com> 6 * Copyright (C) 2016, Sony Mobile Communications Inc. 7 * 8 * This implementation is based on zbud written by Seth Jennings. 9 * 10 * z3fold is an special purpose allocator for storing compressed pages. It 11 * can store up to three compressed pages per page which improves the 12 * compression ratio of zbud while retaining its main concepts (e. g. always 13 * storing an integral number of objects per page) and simplicity. 14 * It still has simple and deterministic reclaim properties that make it 15 * preferable to a higher density approach (with no requirement on integral 16 * number of object per page) when reclaim is used. 17 * 18 * As in zbud, pages are divided into "chunks". The size of the chunks is 19 * fixed at compile time and is determined by NCHUNKS_ORDER below. 20 * 21 * z3fold doesn't export any API and is meant to be used via zpool API. 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/atomic.h> 27 #include <linux/sched.h> 28 #include <linux/cpumask.h> 29 #include <linux/list.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/page-flags.h> 33 #include <linux/migrate.h> 34 #include <linux/node.h> 35 #include <linux/compaction.h> 36 #include <linux/percpu.h> 37 #include <linux/mount.h> 38 #include <linux/pseudo_fs.h> 39 #include <linux/fs.h> 40 #include <linux/preempt.h> 41 #include <linux/workqueue.h> 42 #include <linux/slab.h> 43 #include <linux/spinlock.h> 44 #include <linux/zpool.h> 45 #include <linux/magic.h> 46 47 /* 48 * NCHUNKS_ORDER determines the internal allocation granularity, effectively 49 * adjusting internal fragmentation. It also determines the number of 50 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the 51 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks 52 * in the beginning of an allocated page are occupied by z3fold header, so 53 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y), 54 * which shows the max number of free chunks in z3fold page, also there will 55 * be 63, or 62, respectively, freelists per pool. 56 */ 57 #define NCHUNKS_ORDER 6 58 59 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) 60 #define CHUNK_SIZE (1 << CHUNK_SHIFT) 61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE) 62 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT) 63 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT) 64 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT) 65 66 #define BUDDY_MASK (0x3) 67 #define BUDDY_SHIFT 2 68 #define SLOTS_ALIGN (0x40) 69 70 /***************** 71 * Structures 72 *****************/ 73 struct z3fold_pool; 74 struct z3fold_ops { 75 int (*evict)(struct z3fold_pool *pool, unsigned long handle); 76 }; 77 78 enum buddy { 79 HEADLESS = 0, 80 FIRST, 81 MIDDLE, 82 LAST, 83 BUDDIES_MAX = LAST 84 }; 85 86 struct z3fold_buddy_slots { 87 /* 88 * we are using BUDDY_MASK in handle_to_buddy etc. so there should 89 * be enough slots to hold all possible variants 90 */ 91 unsigned long slot[BUDDY_MASK + 1]; 92 unsigned long pool; /* back link + flags */ 93 }; 94 #define HANDLE_FLAG_MASK (0x03) 95 96 /* 97 * struct z3fold_header - z3fold page metadata occupying first chunks of each 98 * z3fold page, except for HEADLESS pages 99 * @buddy: links the z3fold page into the relevant list in the 100 * pool 101 * @page_lock: per-page lock 102 * @refcount: reference count for the z3fold page 103 * @work: work_struct for page layout optimization 104 * @slots: pointer to the structure holding buddy slots 105 * @pool: pointer to the containing pool 106 * @cpu: CPU which this page "belongs" to 107 * @first_chunks: the size of the first buddy in chunks, 0 if free 108 * @middle_chunks: the size of the middle buddy in chunks, 0 if free 109 * @last_chunks: the size of the last buddy in chunks, 0 if free 110 * @first_num: the starting number (for the first handle) 111 * @mapped_count: the number of objects currently mapped 112 */ 113 struct z3fold_header { 114 struct list_head buddy; 115 spinlock_t page_lock; 116 struct kref refcount; 117 struct work_struct work; 118 struct z3fold_buddy_slots *slots; 119 struct z3fold_pool *pool; 120 short cpu; 121 unsigned short first_chunks; 122 unsigned short middle_chunks; 123 unsigned short last_chunks; 124 unsigned short start_middle; 125 unsigned short first_num:2; 126 unsigned short mapped_count:2; 127 }; 128 129 /** 130 * struct z3fold_pool - stores metadata for each z3fold pool 131 * @name: pool name 132 * @lock: protects pool unbuddied/lru lists 133 * @stale_lock: protects pool stale page list 134 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2- 135 * buddies; the list each z3fold page is added to depends on 136 * the size of its free region. 137 * @lru: list tracking the z3fold pages in LRU order by most recently 138 * added buddy. 139 * @stale: list of pages marked for freeing 140 * @pages_nr: number of z3fold pages in the pool. 141 * @c_handle: cache for z3fold_buddy_slots allocation 142 * @ops: pointer to a structure of user defined operations specified at 143 * pool creation time. 144 * @compact_wq: workqueue for page layout background optimization 145 * @release_wq: workqueue for safe page release 146 * @work: work_struct for safe page release 147 * @inode: inode for z3fold pseudo filesystem 148 * 149 * This structure is allocated at pool creation time and maintains metadata 150 * pertaining to a particular z3fold pool. 151 */ 152 struct z3fold_pool { 153 const char *name; 154 spinlock_t lock; 155 spinlock_t stale_lock; 156 struct list_head *unbuddied; 157 struct list_head lru; 158 struct list_head stale; 159 atomic64_t pages_nr; 160 struct kmem_cache *c_handle; 161 const struct z3fold_ops *ops; 162 struct zpool *zpool; 163 const struct zpool_ops *zpool_ops; 164 struct workqueue_struct *compact_wq; 165 struct workqueue_struct *release_wq; 166 struct work_struct work; 167 struct inode *inode; 168 }; 169 170 /* 171 * Internal z3fold page flags 172 */ 173 enum z3fold_page_flags { 174 PAGE_HEADLESS = 0, 175 MIDDLE_CHUNK_MAPPED, 176 NEEDS_COMPACTING, 177 PAGE_STALE, 178 PAGE_CLAIMED, /* by either reclaim or free */ 179 }; 180 181 /***************** 182 * Helpers 183 *****************/ 184 185 /* Converts an allocation size in bytes to size in z3fold chunks */ 186 static int size_to_chunks(size_t size) 187 { 188 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; 189 } 190 191 #define for_each_unbuddied_list(_iter, _begin) \ 192 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) 193 194 static void compact_page_work(struct work_struct *w); 195 196 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool, 197 gfp_t gfp) 198 { 199 struct z3fold_buddy_slots *slots; 200 201 slots = kmem_cache_alloc(pool->c_handle, 202 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE))); 203 204 if (slots) { 205 memset(slots->slot, 0, sizeof(slots->slot)); 206 slots->pool = (unsigned long)pool; 207 } 208 209 return slots; 210 } 211 212 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s) 213 { 214 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK); 215 } 216 217 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle) 218 { 219 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1)); 220 } 221 222 static inline void free_handle(unsigned long handle) 223 { 224 struct z3fold_buddy_slots *slots; 225 int i; 226 bool is_free; 227 228 if (handle & (1 << PAGE_HEADLESS)) 229 return; 230 231 WARN_ON(*(unsigned long *)handle == 0); 232 *(unsigned long *)handle = 0; 233 slots = handle_to_slots(handle); 234 is_free = true; 235 for (i = 0; i <= BUDDY_MASK; i++) { 236 if (slots->slot[i]) { 237 is_free = false; 238 break; 239 } 240 } 241 242 if (is_free) { 243 struct z3fold_pool *pool = slots_to_pool(slots); 244 245 kmem_cache_free(pool->c_handle, slots); 246 } 247 } 248 249 static int z3fold_init_fs_context(struct fs_context *fc) 250 { 251 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM; 252 } 253 254 static struct file_system_type z3fold_fs = { 255 .name = "z3fold", 256 .init_fs_context = z3fold_init_fs_context, 257 .kill_sb = kill_anon_super, 258 }; 259 260 static struct vfsmount *z3fold_mnt; 261 static int z3fold_mount(void) 262 { 263 int ret = 0; 264 265 z3fold_mnt = kern_mount(&z3fold_fs); 266 if (IS_ERR(z3fold_mnt)) 267 ret = PTR_ERR(z3fold_mnt); 268 269 return ret; 270 } 271 272 static void z3fold_unmount(void) 273 { 274 kern_unmount(z3fold_mnt); 275 } 276 277 static const struct address_space_operations z3fold_aops; 278 static int z3fold_register_migration(struct z3fold_pool *pool) 279 { 280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb); 281 if (IS_ERR(pool->inode)) { 282 pool->inode = NULL; 283 return 1; 284 } 285 286 pool->inode->i_mapping->private_data = pool; 287 pool->inode->i_mapping->a_ops = &z3fold_aops; 288 return 0; 289 } 290 291 static void z3fold_unregister_migration(struct z3fold_pool *pool) 292 { 293 if (pool->inode) 294 iput(pool->inode); 295 } 296 297 /* Initializes the z3fold header of a newly allocated z3fold page */ 298 static struct z3fold_header *init_z3fold_page(struct page *page, 299 struct z3fold_pool *pool, gfp_t gfp) 300 { 301 struct z3fold_header *zhdr = page_address(page); 302 struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp); 303 304 if (!slots) 305 return NULL; 306 307 INIT_LIST_HEAD(&page->lru); 308 clear_bit(PAGE_HEADLESS, &page->private); 309 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 310 clear_bit(NEEDS_COMPACTING, &page->private); 311 clear_bit(PAGE_STALE, &page->private); 312 clear_bit(PAGE_CLAIMED, &page->private); 313 314 spin_lock_init(&zhdr->page_lock); 315 kref_init(&zhdr->refcount); 316 zhdr->first_chunks = 0; 317 zhdr->middle_chunks = 0; 318 zhdr->last_chunks = 0; 319 zhdr->first_num = 0; 320 zhdr->start_middle = 0; 321 zhdr->cpu = -1; 322 zhdr->slots = slots; 323 zhdr->pool = pool; 324 INIT_LIST_HEAD(&zhdr->buddy); 325 INIT_WORK(&zhdr->work, compact_page_work); 326 return zhdr; 327 } 328 329 /* Resets the struct page fields and frees the page */ 330 static void free_z3fold_page(struct page *page, bool headless) 331 { 332 if (!headless) { 333 lock_page(page); 334 __ClearPageMovable(page); 335 unlock_page(page); 336 } 337 ClearPagePrivate(page); 338 __free_page(page); 339 } 340 341 /* Lock a z3fold page */ 342 static inline void z3fold_page_lock(struct z3fold_header *zhdr) 343 { 344 spin_lock(&zhdr->page_lock); 345 } 346 347 /* Try to lock a z3fold page */ 348 static inline int z3fold_page_trylock(struct z3fold_header *zhdr) 349 { 350 return spin_trylock(&zhdr->page_lock); 351 } 352 353 /* Unlock a z3fold page */ 354 static inline void z3fold_page_unlock(struct z3fold_header *zhdr) 355 { 356 spin_unlock(&zhdr->page_lock); 357 } 358 359 /* Helper function to build the index */ 360 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud) 361 { 362 return (bud + zhdr->first_num) & BUDDY_MASK; 363 } 364 365 /* 366 * Encodes the handle of a particular buddy within a z3fold page 367 * Pool lock should be held as this function accesses first_num 368 */ 369 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud) 370 { 371 struct z3fold_buddy_slots *slots; 372 unsigned long h = (unsigned long)zhdr; 373 int idx = 0; 374 375 /* 376 * For a headless page, its handle is its pointer with the extra 377 * PAGE_HEADLESS bit set 378 */ 379 if (bud == HEADLESS) 380 return h | (1 << PAGE_HEADLESS); 381 382 /* otherwise, return pointer to encoded handle */ 383 idx = __idx(zhdr, bud); 384 h += idx; 385 if (bud == LAST) 386 h |= (zhdr->last_chunks << BUDDY_SHIFT); 387 388 slots = zhdr->slots; 389 slots->slot[idx] = h; 390 return (unsigned long)&slots->slot[idx]; 391 } 392 393 /* Returns the z3fold page where a given handle is stored */ 394 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h) 395 { 396 unsigned long addr = h; 397 398 if (!(addr & (1 << PAGE_HEADLESS))) 399 addr = *(unsigned long *)h; 400 401 return (struct z3fold_header *)(addr & PAGE_MASK); 402 } 403 404 /* only for LAST bud, returns zero otherwise */ 405 static unsigned short handle_to_chunks(unsigned long handle) 406 { 407 unsigned long addr = *(unsigned long *)handle; 408 409 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT; 410 } 411 412 /* 413 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle 414 * but that doesn't matter. because the masking will result in the 415 * correct buddy number. 416 */ 417 static enum buddy handle_to_buddy(unsigned long handle) 418 { 419 struct z3fold_header *zhdr; 420 unsigned long addr; 421 422 WARN_ON(handle & (1 << PAGE_HEADLESS)); 423 addr = *(unsigned long *)handle; 424 zhdr = (struct z3fold_header *)(addr & PAGE_MASK); 425 return (addr - zhdr->first_num) & BUDDY_MASK; 426 } 427 428 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr) 429 { 430 return zhdr->pool; 431 } 432 433 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) 434 { 435 struct page *page = virt_to_page(zhdr); 436 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 437 438 WARN_ON(!list_empty(&zhdr->buddy)); 439 set_bit(PAGE_STALE, &page->private); 440 clear_bit(NEEDS_COMPACTING, &page->private); 441 spin_lock(&pool->lock); 442 if (!list_empty(&page->lru)) 443 list_del_init(&page->lru); 444 spin_unlock(&pool->lock); 445 if (locked) 446 z3fold_page_unlock(zhdr); 447 spin_lock(&pool->stale_lock); 448 list_add(&zhdr->buddy, &pool->stale); 449 queue_work(pool->release_wq, &pool->work); 450 spin_unlock(&pool->stale_lock); 451 } 452 453 static void __attribute__((__unused__)) 454 release_z3fold_page(struct kref *ref) 455 { 456 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 457 refcount); 458 __release_z3fold_page(zhdr, false); 459 } 460 461 static void release_z3fold_page_locked(struct kref *ref) 462 { 463 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 464 refcount); 465 WARN_ON(z3fold_page_trylock(zhdr)); 466 __release_z3fold_page(zhdr, true); 467 } 468 469 static void release_z3fold_page_locked_list(struct kref *ref) 470 { 471 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, 472 refcount); 473 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 474 spin_lock(&pool->lock); 475 list_del_init(&zhdr->buddy); 476 spin_unlock(&pool->lock); 477 478 WARN_ON(z3fold_page_trylock(zhdr)); 479 __release_z3fold_page(zhdr, true); 480 } 481 482 static void free_pages_work(struct work_struct *w) 483 { 484 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work); 485 486 spin_lock(&pool->stale_lock); 487 while (!list_empty(&pool->stale)) { 488 struct z3fold_header *zhdr = list_first_entry(&pool->stale, 489 struct z3fold_header, buddy); 490 struct page *page = virt_to_page(zhdr); 491 492 list_del(&zhdr->buddy); 493 if (WARN_ON(!test_bit(PAGE_STALE, &page->private))) 494 continue; 495 spin_unlock(&pool->stale_lock); 496 cancel_work_sync(&zhdr->work); 497 free_z3fold_page(page, false); 498 cond_resched(); 499 spin_lock(&pool->stale_lock); 500 } 501 spin_unlock(&pool->stale_lock); 502 } 503 504 /* 505 * Returns the number of free chunks in a z3fold page. 506 * NB: can't be used with HEADLESS pages. 507 */ 508 static int num_free_chunks(struct z3fold_header *zhdr) 509 { 510 int nfree; 511 /* 512 * If there is a middle object, pick up the bigger free space 513 * either before or after it. Otherwise just subtract the number 514 * of chunks occupied by the first and the last objects. 515 */ 516 if (zhdr->middle_chunks != 0) { 517 int nfree_before = zhdr->first_chunks ? 518 0 : zhdr->start_middle - ZHDR_CHUNKS; 519 int nfree_after = zhdr->last_chunks ? 520 0 : TOTAL_CHUNKS - 521 (zhdr->start_middle + zhdr->middle_chunks); 522 nfree = max(nfree_before, nfree_after); 523 } else 524 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks; 525 return nfree; 526 } 527 528 /* Add to the appropriate unbuddied list */ 529 static inline void add_to_unbuddied(struct z3fold_pool *pool, 530 struct z3fold_header *zhdr) 531 { 532 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 || 533 zhdr->middle_chunks == 0) { 534 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied); 535 536 int freechunks = num_free_chunks(zhdr); 537 spin_lock(&pool->lock); 538 list_add(&zhdr->buddy, &unbuddied[freechunks]); 539 spin_unlock(&pool->lock); 540 zhdr->cpu = smp_processor_id(); 541 put_cpu_ptr(pool->unbuddied); 542 } 543 } 544 545 static inline void *mchunk_memmove(struct z3fold_header *zhdr, 546 unsigned short dst_chunk) 547 { 548 void *beg = zhdr; 549 return memmove(beg + (dst_chunk << CHUNK_SHIFT), 550 beg + (zhdr->start_middle << CHUNK_SHIFT), 551 zhdr->middle_chunks << CHUNK_SHIFT); 552 } 553 554 #define BIG_CHUNK_GAP 3 555 /* Has to be called with lock held */ 556 static int z3fold_compact_page(struct z3fold_header *zhdr) 557 { 558 struct page *page = virt_to_page(zhdr); 559 560 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private)) 561 return 0; /* can't move middle chunk, it's used */ 562 563 if (unlikely(PageIsolated(page))) 564 return 0; 565 566 if (zhdr->middle_chunks == 0) 567 return 0; /* nothing to compact */ 568 569 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { 570 /* move to the beginning */ 571 mchunk_memmove(zhdr, ZHDR_CHUNKS); 572 zhdr->first_chunks = zhdr->middle_chunks; 573 zhdr->middle_chunks = 0; 574 zhdr->start_middle = 0; 575 zhdr->first_num++; 576 return 1; 577 } 578 579 /* 580 * moving data is expensive, so let's only do that if 581 * there's substantial gain (at least BIG_CHUNK_GAP chunks) 582 */ 583 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 && 584 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >= 585 BIG_CHUNK_GAP) { 586 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS); 587 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 588 return 1; 589 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 && 590 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle 591 + zhdr->middle_chunks) >= 592 BIG_CHUNK_GAP) { 593 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks - 594 zhdr->middle_chunks; 595 mchunk_memmove(zhdr, new_start); 596 zhdr->start_middle = new_start; 597 return 1; 598 } 599 600 return 0; 601 } 602 603 static void do_compact_page(struct z3fold_header *zhdr, bool locked) 604 { 605 struct z3fold_pool *pool = zhdr_to_pool(zhdr); 606 struct page *page; 607 608 page = virt_to_page(zhdr); 609 if (locked) 610 WARN_ON(z3fold_page_trylock(zhdr)); 611 else 612 z3fold_page_lock(zhdr); 613 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) { 614 z3fold_page_unlock(zhdr); 615 return; 616 } 617 spin_lock(&pool->lock); 618 list_del_init(&zhdr->buddy); 619 spin_unlock(&pool->lock); 620 621 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 622 atomic64_dec(&pool->pages_nr); 623 return; 624 } 625 626 if (unlikely(PageIsolated(page) || 627 test_bit(PAGE_STALE, &page->private))) { 628 z3fold_page_unlock(zhdr); 629 return; 630 } 631 632 z3fold_compact_page(zhdr); 633 add_to_unbuddied(pool, zhdr); 634 z3fold_page_unlock(zhdr); 635 } 636 637 static void compact_page_work(struct work_struct *w) 638 { 639 struct z3fold_header *zhdr = container_of(w, struct z3fold_header, 640 work); 641 642 do_compact_page(zhdr, false); 643 } 644 645 /* returns _locked_ z3fold page header or NULL */ 646 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool, 647 size_t size, bool can_sleep) 648 { 649 struct z3fold_header *zhdr = NULL; 650 struct page *page; 651 struct list_head *unbuddied; 652 int chunks = size_to_chunks(size), i; 653 654 lookup: 655 /* First, try to find an unbuddied z3fold page. */ 656 unbuddied = get_cpu_ptr(pool->unbuddied); 657 for_each_unbuddied_list(i, chunks) { 658 struct list_head *l = &unbuddied[i]; 659 660 zhdr = list_first_entry_or_null(READ_ONCE(l), 661 struct z3fold_header, buddy); 662 663 if (!zhdr) 664 continue; 665 666 /* Re-check under lock. */ 667 spin_lock(&pool->lock); 668 l = &unbuddied[i]; 669 if (unlikely(zhdr != list_first_entry(READ_ONCE(l), 670 struct z3fold_header, buddy)) || 671 !z3fold_page_trylock(zhdr)) { 672 spin_unlock(&pool->lock); 673 zhdr = NULL; 674 put_cpu_ptr(pool->unbuddied); 675 if (can_sleep) 676 cond_resched(); 677 goto lookup; 678 } 679 list_del_init(&zhdr->buddy); 680 zhdr->cpu = -1; 681 spin_unlock(&pool->lock); 682 683 page = virt_to_page(zhdr); 684 if (test_bit(NEEDS_COMPACTING, &page->private)) { 685 z3fold_page_unlock(zhdr); 686 zhdr = NULL; 687 put_cpu_ptr(pool->unbuddied); 688 if (can_sleep) 689 cond_resched(); 690 goto lookup; 691 } 692 693 /* 694 * this page could not be removed from its unbuddied 695 * list while pool lock was held, and then we've taken 696 * page lock so kref_put could not be called before 697 * we got here, so it's safe to just call kref_get() 698 */ 699 kref_get(&zhdr->refcount); 700 break; 701 } 702 put_cpu_ptr(pool->unbuddied); 703 704 if (!zhdr) { 705 int cpu; 706 707 /* look for _exact_ match on other cpus' lists */ 708 for_each_online_cpu(cpu) { 709 struct list_head *l; 710 711 unbuddied = per_cpu_ptr(pool->unbuddied, cpu); 712 spin_lock(&pool->lock); 713 l = &unbuddied[chunks]; 714 715 zhdr = list_first_entry_or_null(READ_ONCE(l), 716 struct z3fold_header, buddy); 717 718 if (!zhdr || !z3fold_page_trylock(zhdr)) { 719 spin_unlock(&pool->lock); 720 zhdr = NULL; 721 continue; 722 } 723 list_del_init(&zhdr->buddy); 724 zhdr->cpu = -1; 725 spin_unlock(&pool->lock); 726 727 page = virt_to_page(zhdr); 728 if (test_bit(NEEDS_COMPACTING, &page->private)) { 729 z3fold_page_unlock(zhdr); 730 zhdr = NULL; 731 if (can_sleep) 732 cond_resched(); 733 continue; 734 } 735 kref_get(&zhdr->refcount); 736 break; 737 } 738 } 739 740 return zhdr; 741 } 742 743 /* 744 * API Functions 745 */ 746 747 /** 748 * z3fold_create_pool() - create a new z3fold pool 749 * @name: pool name 750 * @gfp: gfp flags when allocating the z3fold pool structure 751 * @ops: user-defined operations for the z3fold pool 752 * 753 * Return: pointer to the new z3fold pool or NULL if the metadata allocation 754 * failed. 755 */ 756 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp, 757 const struct z3fold_ops *ops) 758 { 759 struct z3fold_pool *pool = NULL; 760 int i, cpu; 761 762 pool = kzalloc(sizeof(struct z3fold_pool), gfp); 763 if (!pool) 764 goto out; 765 pool->c_handle = kmem_cache_create("z3fold_handle", 766 sizeof(struct z3fold_buddy_slots), 767 SLOTS_ALIGN, 0, NULL); 768 if (!pool->c_handle) 769 goto out_c; 770 spin_lock_init(&pool->lock); 771 spin_lock_init(&pool->stale_lock); 772 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2); 773 if (!pool->unbuddied) 774 goto out_pool; 775 for_each_possible_cpu(cpu) { 776 struct list_head *unbuddied = 777 per_cpu_ptr(pool->unbuddied, cpu); 778 for_each_unbuddied_list(i, 0) 779 INIT_LIST_HEAD(&unbuddied[i]); 780 } 781 INIT_LIST_HEAD(&pool->lru); 782 INIT_LIST_HEAD(&pool->stale); 783 atomic64_set(&pool->pages_nr, 0); 784 pool->name = name; 785 pool->compact_wq = create_singlethread_workqueue(pool->name); 786 if (!pool->compact_wq) 787 goto out_unbuddied; 788 pool->release_wq = create_singlethread_workqueue(pool->name); 789 if (!pool->release_wq) 790 goto out_wq; 791 if (z3fold_register_migration(pool)) 792 goto out_rwq; 793 INIT_WORK(&pool->work, free_pages_work); 794 pool->ops = ops; 795 return pool; 796 797 out_rwq: 798 destroy_workqueue(pool->release_wq); 799 out_wq: 800 destroy_workqueue(pool->compact_wq); 801 out_unbuddied: 802 free_percpu(pool->unbuddied); 803 out_pool: 804 kmem_cache_destroy(pool->c_handle); 805 out_c: 806 kfree(pool); 807 out: 808 return NULL; 809 } 810 811 /** 812 * z3fold_destroy_pool() - destroys an existing z3fold pool 813 * @pool: the z3fold pool to be destroyed 814 * 815 * The pool should be emptied before this function is called. 816 */ 817 static void z3fold_destroy_pool(struct z3fold_pool *pool) 818 { 819 kmem_cache_destroy(pool->c_handle); 820 z3fold_unregister_migration(pool); 821 destroy_workqueue(pool->release_wq); 822 destroy_workqueue(pool->compact_wq); 823 kfree(pool); 824 } 825 826 /** 827 * z3fold_alloc() - allocates a region of a given size 828 * @pool: z3fold pool from which to allocate 829 * @size: size in bytes of the desired allocation 830 * @gfp: gfp flags used if the pool needs to grow 831 * @handle: handle of the new allocation 832 * 833 * This function will attempt to find a free region in the pool large enough to 834 * satisfy the allocation request. A search of the unbuddied lists is 835 * performed first. If no suitable free region is found, then a new page is 836 * allocated and added to the pool to satisfy the request. 837 * 838 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used 839 * as z3fold pool pages. 840 * 841 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or 842 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate 843 * a new page. 844 */ 845 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp, 846 unsigned long *handle) 847 { 848 int chunks = size_to_chunks(size); 849 struct z3fold_header *zhdr = NULL; 850 struct page *page = NULL; 851 enum buddy bud; 852 bool can_sleep = gfpflags_allow_blocking(gfp); 853 854 if (!size) 855 return -EINVAL; 856 857 if (size > PAGE_SIZE) 858 return -ENOSPC; 859 860 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) 861 bud = HEADLESS; 862 else { 863 retry: 864 zhdr = __z3fold_alloc(pool, size, can_sleep); 865 if (zhdr) { 866 if (zhdr->first_chunks == 0) { 867 if (zhdr->middle_chunks != 0 && 868 chunks >= zhdr->start_middle) 869 bud = LAST; 870 else 871 bud = FIRST; 872 } else if (zhdr->last_chunks == 0) 873 bud = LAST; 874 else if (zhdr->middle_chunks == 0) 875 bud = MIDDLE; 876 else { 877 if (kref_put(&zhdr->refcount, 878 release_z3fold_page_locked)) 879 atomic64_dec(&pool->pages_nr); 880 else 881 z3fold_page_unlock(zhdr); 882 pr_err("No free chunks in unbuddied\n"); 883 WARN_ON(1); 884 goto retry; 885 } 886 page = virt_to_page(zhdr); 887 goto found; 888 } 889 bud = FIRST; 890 } 891 892 page = NULL; 893 if (can_sleep) { 894 spin_lock(&pool->stale_lock); 895 zhdr = list_first_entry_or_null(&pool->stale, 896 struct z3fold_header, buddy); 897 /* 898 * Before allocating a page, let's see if we can take one from 899 * the stale pages list. cancel_work_sync() can sleep so we 900 * limit this case to the contexts where we can sleep 901 */ 902 if (zhdr) { 903 list_del(&zhdr->buddy); 904 spin_unlock(&pool->stale_lock); 905 cancel_work_sync(&zhdr->work); 906 page = virt_to_page(zhdr); 907 } else { 908 spin_unlock(&pool->stale_lock); 909 } 910 } 911 if (!page) 912 page = alloc_page(gfp); 913 914 if (!page) 915 return -ENOMEM; 916 917 zhdr = init_z3fold_page(page, pool, gfp); 918 if (!zhdr) { 919 __free_page(page); 920 return -ENOMEM; 921 } 922 atomic64_inc(&pool->pages_nr); 923 924 if (bud == HEADLESS) { 925 set_bit(PAGE_HEADLESS, &page->private); 926 goto headless; 927 } 928 if (can_sleep) { 929 lock_page(page); 930 __SetPageMovable(page, pool->inode->i_mapping); 931 unlock_page(page); 932 } else { 933 if (trylock_page(page)) { 934 __SetPageMovable(page, pool->inode->i_mapping); 935 unlock_page(page); 936 } 937 } 938 z3fold_page_lock(zhdr); 939 940 found: 941 if (bud == FIRST) 942 zhdr->first_chunks = chunks; 943 else if (bud == LAST) 944 zhdr->last_chunks = chunks; 945 else { 946 zhdr->middle_chunks = chunks; 947 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS; 948 } 949 add_to_unbuddied(pool, zhdr); 950 951 headless: 952 spin_lock(&pool->lock); 953 /* Add/move z3fold page to beginning of LRU */ 954 if (!list_empty(&page->lru)) 955 list_del(&page->lru); 956 957 list_add(&page->lru, &pool->lru); 958 959 *handle = encode_handle(zhdr, bud); 960 spin_unlock(&pool->lock); 961 if (bud != HEADLESS) 962 z3fold_page_unlock(zhdr); 963 964 return 0; 965 } 966 967 /** 968 * z3fold_free() - frees the allocation associated with the given handle 969 * @pool: pool in which the allocation resided 970 * @handle: handle associated with the allocation returned by z3fold_alloc() 971 * 972 * In the case that the z3fold page in which the allocation resides is under 973 * reclaim, as indicated by the PG_reclaim flag being set, this function 974 * only sets the first|last_chunks to 0. The page is actually freed 975 * once both buddies are evicted (see z3fold_reclaim_page() below). 976 */ 977 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle) 978 { 979 struct z3fold_header *zhdr; 980 struct page *page; 981 enum buddy bud; 982 983 zhdr = handle_to_z3fold_header(handle); 984 page = virt_to_page(zhdr); 985 986 if (test_bit(PAGE_HEADLESS, &page->private)) { 987 /* if a headless page is under reclaim, just leave. 988 * NB: we use test_and_set_bit for a reason: if the bit 989 * has not been set before, we release this page 990 * immediately so we don't care about its value any more. 991 */ 992 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) { 993 spin_lock(&pool->lock); 994 list_del(&page->lru); 995 spin_unlock(&pool->lock); 996 free_z3fold_page(page, true); 997 atomic64_dec(&pool->pages_nr); 998 } 999 return; 1000 } 1001 1002 /* Non-headless case */ 1003 z3fold_page_lock(zhdr); 1004 bud = handle_to_buddy(handle); 1005 1006 switch (bud) { 1007 case FIRST: 1008 zhdr->first_chunks = 0; 1009 break; 1010 case MIDDLE: 1011 zhdr->middle_chunks = 0; 1012 break; 1013 case LAST: 1014 zhdr->last_chunks = 0; 1015 break; 1016 default: 1017 pr_err("%s: unknown bud %d\n", __func__, bud); 1018 WARN_ON(1); 1019 z3fold_page_unlock(zhdr); 1020 return; 1021 } 1022 1023 free_handle(handle); 1024 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) { 1025 atomic64_dec(&pool->pages_nr); 1026 return; 1027 } 1028 if (test_bit(PAGE_CLAIMED, &page->private)) { 1029 z3fold_page_unlock(zhdr); 1030 return; 1031 } 1032 if (unlikely(PageIsolated(page)) || 1033 test_and_set_bit(NEEDS_COMPACTING, &page->private)) { 1034 z3fold_page_unlock(zhdr); 1035 return; 1036 } 1037 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) { 1038 spin_lock(&pool->lock); 1039 list_del_init(&zhdr->buddy); 1040 spin_unlock(&pool->lock); 1041 zhdr->cpu = -1; 1042 kref_get(&zhdr->refcount); 1043 do_compact_page(zhdr, true); 1044 return; 1045 } 1046 kref_get(&zhdr->refcount); 1047 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work); 1048 z3fold_page_unlock(zhdr); 1049 } 1050 1051 /** 1052 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it 1053 * @pool: pool from which a page will attempt to be evicted 1054 * @retries: number of pages on the LRU list for which eviction will 1055 * be attempted before failing 1056 * 1057 * z3fold reclaim is different from normal system reclaim in that it is done 1058 * from the bottom, up. This is because only the bottom layer, z3fold, has 1059 * information on how the allocations are organized within each z3fold page. 1060 * This has the potential to create interesting locking situations between 1061 * z3fold and the user, however. 1062 * 1063 * To avoid these, this is how z3fold_reclaim_page() should be called: 1064 * 1065 * The user detects a page should be reclaimed and calls z3fold_reclaim_page(). 1066 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and 1067 * call the user-defined eviction handler with the pool and handle as 1068 * arguments. 1069 * 1070 * If the handle can not be evicted, the eviction handler should return 1071 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the 1072 * appropriate list and try the next z3fold page on the LRU up to 1073 * a user defined number of retries. 1074 * 1075 * If the handle is successfully evicted, the eviction handler should 1076 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free() 1077 * contains logic to delay freeing the page if the page is under reclaim, 1078 * as indicated by the setting of the PG_reclaim flag on the underlying page. 1079 * 1080 * If all buddies in the z3fold page are successfully evicted, then the 1081 * z3fold page can be freed. 1082 * 1083 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are 1084 * no pages to evict or an eviction handler is not registered, -EAGAIN if 1085 * the retry limit was hit. 1086 */ 1087 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) 1088 { 1089 int i, ret = 0; 1090 struct z3fold_header *zhdr = NULL; 1091 struct page *page = NULL; 1092 struct list_head *pos; 1093 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0; 1094 1095 spin_lock(&pool->lock); 1096 if (!pool->ops || !pool->ops->evict || retries == 0) { 1097 spin_unlock(&pool->lock); 1098 return -EINVAL; 1099 } 1100 for (i = 0; i < retries; i++) { 1101 if (list_empty(&pool->lru)) { 1102 spin_unlock(&pool->lock); 1103 return -EINVAL; 1104 } 1105 list_for_each_prev(pos, &pool->lru) { 1106 page = list_entry(pos, struct page, lru); 1107 1108 /* this bit could have been set by free, in which case 1109 * we pass over to the next page in the pool. 1110 */ 1111 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) 1112 continue; 1113 1114 if (unlikely(PageIsolated(page))) 1115 continue; 1116 if (test_bit(PAGE_HEADLESS, &page->private)) 1117 break; 1118 1119 zhdr = page_address(page); 1120 if (!z3fold_page_trylock(zhdr)) { 1121 zhdr = NULL; 1122 continue; /* can't evict at this point */ 1123 } 1124 kref_get(&zhdr->refcount); 1125 list_del_init(&zhdr->buddy); 1126 zhdr->cpu = -1; 1127 break; 1128 } 1129 1130 if (!zhdr) 1131 break; 1132 1133 list_del_init(&page->lru); 1134 spin_unlock(&pool->lock); 1135 1136 if (!test_bit(PAGE_HEADLESS, &page->private)) { 1137 /* 1138 * We need encode the handles before unlocking, since 1139 * we can race with free that will set 1140 * (first|last)_chunks to 0 1141 */ 1142 first_handle = 0; 1143 last_handle = 0; 1144 middle_handle = 0; 1145 if (zhdr->first_chunks) 1146 first_handle = encode_handle(zhdr, FIRST); 1147 if (zhdr->middle_chunks) 1148 middle_handle = encode_handle(zhdr, MIDDLE); 1149 if (zhdr->last_chunks) 1150 last_handle = encode_handle(zhdr, LAST); 1151 /* 1152 * it's safe to unlock here because we hold a 1153 * reference to this page 1154 */ 1155 z3fold_page_unlock(zhdr); 1156 } else { 1157 first_handle = encode_handle(zhdr, HEADLESS); 1158 last_handle = middle_handle = 0; 1159 } 1160 1161 /* Issue the eviction callback(s) */ 1162 if (middle_handle) { 1163 ret = pool->ops->evict(pool, middle_handle); 1164 if (ret) 1165 goto next; 1166 } 1167 if (first_handle) { 1168 ret = pool->ops->evict(pool, first_handle); 1169 if (ret) 1170 goto next; 1171 } 1172 if (last_handle) { 1173 ret = pool->ops->evict(pool, last_handle); 1174 if (ret) 1175 goto next; 1176 } 1177 next: 1178 if (test_bit(PAGE_HEADLESS, &page->private)) { 1179 if (ret == 0) { 1180 free_z3fold_page(page, true); 1181 atomic64_dec(&pool->pages_nr); 1182 return 0; 1183 } 1184 spin_lock(&pool->lock); 1185 list_add(&page->lru, &pool->lru); 1186 spin_unlock(&pool->lock); 1187 } else { 1188 z3fold_page_lock(zhdr); 1189 clear_bit(PAGE_CLAIMED, &page->private); 1190 if (kref_put(&zhdr->refcount, 1191 release_z3fold_page_locked)) { 1192 atomic64_dec(&pool->pages_nr); 1193 return 0; 1194 } 1195 /* 1196 * if we are here, the page is still not completely 1197 * free. Take the global pool lock then to be able 1198 * to add it back to the lru list 1199 */ 1200 spin_lock(&pool->lock); 1201 list_add(&page->lru, &pool->lru); 1202 spin_unlock(&pool->lock); 1203 z3fold_page_unlock(zhdr); 1204 } 1205 1206 /* We started off locked to we need to lock the pool back */ 1207 spin_lock(&pool->lock); 1208 } 1209 spin_unlock(&pool->lock); 1210 return -EAGAIN; 1211 } 1212 1213 /** 1214 * z3fold_map() - maps the allocation associated with the given handle 1215 * @pool: pool in which the allocation resides 1216 * @handle: handle associated with the allocation to be mapped 1217 * 1218 * Extracts the buddy number from handle and constructs the pointer to the 1219 * correct starting chunk within the page. 1220 * 1221 * Returns: a pointer to the mapped allocation 1222 */ 1223 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle) 1224 { 1225 struct z3fold_header *zhdr; 1226 struct page *page; 1227 void *addr; 1228 enum buddy buddy; 1229 1230 zhdr = handle_to_z3fold_header(handle); 1231 addr = zhdr; 1232 page = virt_to_page(zhdr); 1233 1234 if (test_bit(PAGE_HEADLESS, &page->private)) 1235 goto out; 1236 1237 z3fold_page_lock(zhdr); 1238 buddy = handle_to_buddy(handle); 1239 switch (buddy) { 1240 case FIRST: 1241 addr += ZHDR_SIZE_ALIGNED; 1242 break; 1243 case MIDDLE: 1244 addr += zhdr->start_middle << CHUNK_SHIFT; 1245 set_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1246 break; 1247 case LAST: 1248 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT); 1249 break; 1250 default: 1251 pr_err("unknown buddy id %d\n", buddy); 1252 WARN_ON(1); 1253 addr = NULL; 1254 break; 1255 } 1256 1257 if (addr) 1258 zhdr->mapped_count++; 1259 z3fold_page_unlock(zhdr); 1260 out: 1261 return addr; 1262 } 1263 1264 /** 1265 * z3fold_unmap() - unmaps the allocation associated with the given handle 1266 * @pool: pool in which the allocation resides 1267 * @handle: handle associated with the allocation to be unmapped 1268 */ 1269 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle) 1270 { 1271 struct z3fold_header *zhdr; 1272 struct page *page; 1273 enum buddy buddy; 1274 1275 zhdr = handle_to_z3fold_header(handle); 1276 page = virt_to_page(zhdr); 1277 1278 if (test_bit(PAGE_HEADLESS, &page->private)) 1279 return; 1280 1281 z3fold_page_lock(zhdr); 1282 buddy = handle_to_buddy(handle); 1283 if (buddy == MIDDLE) 1284 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private); 1285 zhdr->mapped_count--; 1286 z3fold_page_unlock(zhdr); 1287 } 1288 1289 /** 1290 * z3fold_get_pool_size() - gets the z3fold pool size in pages 1291 * @pool: pool whose size is being queried 1292 * 1293 * Returns: size in pages of the given pool. 1294 */ 1295 static u64 z3fold_get_pool_size(struct z3fold_pool *pool) 1296 { 1297 return atomic64_read(&pool->pages_nr); 1298 } 1299 1300 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode) 1301 { 1302 struct z3fold_header *zhdr; 1303 struct z3fold_pool *pool; 1304 1305 VM_BUG_ON_PAGE(!PageMovable(page), page); 1306 VM_BUG_ON_PAGE(PageIsolated(page), page); 1307 1308 if (test_bit(PAGE_HEADLESS, &page->private)) 1309 return false; 1310 1311 zhdr = page_address(page); 1312 z3fold_page_lock(zhdr); 1313 if (test_bit(NEEDS_COMPACTING, &page->private) || 1314 test_bit(PAGE_STALE, &page->private)) 1315 goto out; 1316 1317 pool = zhdr_to_pool(zhdr); 1318 1319 if (zhdr->mapped_count == 0) { 1320 kref_get(&zhdr->refcount); 1321 if (!list_empty(&zhdr->buddy)) 1322 list_del_init(&zhdr->buddy); 1323 spin_lock(&pool->lock); 1324 if (!list_empty(&page->lru)) 1325 list_del(&page->lru); 1326 spin_unlock(&pool->lock); 1327 z3fold_page_unlock(zhdr); 1328 return true; 1329 } 1330 out: 1331 z3fold_page_unlock(zhdr); 1332 return false; 1333 } 1334 1335 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage, 1336 struct page *page, enum migrate_mode mode) 1337 { 1338 struct z3fold_header *zhdr, *new_zhdr; 1339 struct z3fold_pool *pool; 1340 struct address_space *new_mapping; 1341 1342 VM_BUG_ON_PAGE(!PageMovable(page), page); 1343 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1344 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 1345 1346 zhdr = page_address(page); 1347 pool = zhdr_to_pool(zhdr); 1348 1349 if (!z3fold_page_trylock(zhdr)) { 1350 return -EAGAIN; 1351 } 1352 if (zhdr->mapped_count != 0) { 1353 z3fold_page_unlock(zhdr); 1354 return -EBUSY; 1355 } 1356 if (work_pending(&zhdr->work)) { 1357 z3fold_page_unlock(zhdr); 1358 return -EAGAIN; 1359 } 1360 new_zhdr = page_address(newpage); 1361 memcpy(new_zhdr, zhdr, PAGE_SIZE); 1362 newpage->private = page->private; 1363 page->private = 0; 1364 z3fold_page_unlock(zhdr); 1365 spin_lock_init(&new_zhdr->page_lock); 1366 INIT_WORK(&new_zhdr->work, compact_page_work); 1367 /* 1368 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty, 1369 * so we only have to reinitialize it. 1370 */ 1371 INIT_LIST_HEAD(&new_zhdr->buddy); 1372 new_mapping = page_mapping(page); 1373 __ClearPageMovable(page); 1374 ClearPagePrivate(page); 1375 1376 get_page(newpage); 1377 z3fold_page_lock(new_zhdr); 1378 if (new_zhdr->first_chunks) 1379 encode_handle(new_zhdr, FIRST); 1380 if (new_zhdr->last_chunks) 1381 encode_handle(new_zhdr, LAST); 1382 if (new_zhdr->middle_chunks) 1383 encode_handle(new_zhdr, MIDDLE); 1384 set_bit(NEEDS_COMPACTING, &newpage->private); 1385 new_zhdr->cpu = smp_processor_id(); 1386 spin_lock(&pool->lock); 1387 list_add(&newpage->lru, &pool->lru); 1388 spin_unlock(&pool->lock); 1389 __SetPageMovable(newpage, new_mapping); 1390 z3fold_page_unlock(new_zhdr); 1391 1392 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work); 1393 1394 page_mapcount_reset(page); 1395 put_page(page); 1396 return 0; 1397 } 1398 1399 static void z3fold_page_putback(struct page *page) 1400 { 1401 struct z3fold_header *zhdr; 1402 struct z3fold_pool *pool; 1403 1404 zhdr = page_address(page); 1405 pool = zhdr_to_pool(zhdr); 1406 1407 z3fold_page_lock(zhdr); 1408 if (!list_empty(&zhdr->buddy)) 1409 list_del_init(&zhdr->buddy); 1410 INIT_LIST_HEAD(&page->lru); 1411 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) { 1412 atomic64_dec(&pool->pages_nr); 1413 return; 1414 } 1415 spin_lock(&pool->lock); 1416 list_add(&page->lru, &pool->lru); 1417 spin_unlock(&pool->lock); 1418 z3fold_page_unlock(zhdr); 1419 } 1420 1421 static const struct address_space_operations z3fold_aops = { 1422 .isolate_page = z3fold_page_isolate, 1423 .migratepage = z3fold_page_migrate, 1424 .putback_page = z3fold_page_putback, 1425 }; 1426 1427 /***************** 1428 * zpool 1429 ****************/ 1430 1431 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle) 1432 { 1433 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict) 1434 return pool->zpool_ops->evict(pool->zpool, handle); 1435 else 1436 return -ENOENT; 1437 } 1438 1439 static const struct z3fold_ops z3fold_zpool_ops = { 1440 .evict = z3fold_zpool_evict 1441 }; 1442 1443 static void *z3fold_zpool_create(const char *name, gfp_t gfp, 1444 const struct zpool_ops *zpool_ops, 1445 struct zpool *zpool) 1446 { 1447 struct z3fold_pool *pool; 1448 1449 pool = z3fold_create_pool(name, gfp, 1450 zpool_ops ? &z3fold_zpool_ops : NULL); 1451 if (pool) { 1452 pool->zpool = zpool; 1453 pool->zpool_ops = zpool_ops; 1454 } 1455 return pool; 1456 } 1457 1458 static void z3fold_zpool_destroy(void *pool) 1459 { 1460 z3fold_destroy_pool(pool); 1461 } 1462 1463 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp, 1464 unsigned long *handle) 1465 { 1466 return z3fold_alloc(pool, size, gfp, handle); 1467 } 1468 static void z3fold_zpool_free(void *pool, unsigned long handle) 1469 { 1470 z3fold_free(pool, handle); 1471 } 1472 1473 static int z3fold_zpool_shrink(void *pool, unsigned int pages, 1474 unsigned int *reclaimed) 1475 { 1476 unsigned int total = 0; 1477 int ret = -EINVAL; 1478 1479 while (total < pages) { 1480 ret = z3fold_reclaim_page(pool, 8); 1481 if (ret < 0) 1482 break; 1483 total++; 1484 } 1485 1486 if (reclaimed) 1487 *reclaimed = total; 1488 1489 return ret; 1490 } 1491 1492 static void *z3fold_zpool_map(void *pool, unsigned long handle, 1493 enum zpool_mapmode mm) 1494 { 1495 return z3fold_map(pool, handle); 1496 } 1497 static void z3fold_zpool_unmap(void *pool, unsigned long handle) 1498 { 1499 z3fold_unmap(pool, handle); 1500 } 1501 1502 static u64 z3fold_zpool_total_size(void *pool) 1503 { 1504 return z3fold_get_pool_size(pool) * PAGE_SIZE; 1505 } 1506 1507 static struct zpool_driver z3fold_zpool_driver = { 1508 .type = "z3fold", 1509 .owner = THIS_MODULE, 1510 .create = z3fold_zpool_create, 1511 .destroy = z3fold_zpool_destroy, 1512 .malloc = z3fold_zpool_malloc, 1513 .free = z3fold_zpool_free, 1514 .shrink = z3fold_zpool_shrink, 1515 .map = z3fold_zpool_map, 1516 .unmap = z3fold_zpool_unmap, 1517 .total_size = z3fold_zpool_total_size, 1518 }; 1519 1520 MODULE_ALIAS("zpool-z3fold"); 1521 1522 static int __init init_z3fold(void) 1523 { 1524 int ret; 1525 1526 /* Make sure the z3fold header is not larger than the page size */ 1527 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE); 1528 ret = z3fold_mount(); 1529 if (ret) 1530 return ret; 1531 1532 zpool_register_driver(&z3fold_zpool_driver); 1533 1534 return 0; 1535 } 1536 1537 static void __exit exit_z3fold(void) 1538 { 1539 z3fold_unmount(); 1540 zpool_unregister_driver(&z3fold_zpool_driver); 1541 } 1542 1543 module_init(init_z3fold); 1544 module_exit(exit_z3fold); 1545 1546 MODULE_LICENSE("GPL"); 1547 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>"); 1548 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages"); 1549