xref: /openbmc/linux/mm/z3fold.c (revision 7d9e5f422150ed00de744e02a80734d74cc9704d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * z3fold.c
4   *
5   * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6   * Copyright (C) 2016, Sony Mobile Communications Inc.
7   *
8   * This implementation is based on zbud written by Seth Jennings.
9   *
10   * z3fold is an special purpose allocator for storing compressed pages. It
11   * can store up to three compressed pages per page which improves the
12   * compression ratio of zbud while retaining its main concepts (e. g. always
13   * storing an integral number of objects per page) and simplicity.
14   * It still has simple and deterministic reclaim properties that make it
15   * preferable to a higher density approach (with no requirement on integral
16   * number of object per page) when reclaim is used.
17   *
18   * As in zbud, pages are divided into "chunks".  The size of the chunks is
19   * fixed at compile time and is determined by NCHUNKS_ORDER below.
20   *
21   * z3fold doesn't export any API and is meant to be used via zpool API.
22   */
23  
24  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25  
26  #include <linux/atomic.h>
27  #include <linux/sched.h>
28  #include <linux/cpumask.h>
29  #include <linux/dcache.h>
30  #include <linux/list.h>
31  #include <linux/mm.h>
32  #include <linux/module.h>
33  #include <linux/page-flags.h>
34  #include <linux/migrate.h>
35  #include <linux/node.h>
36  #include <linux/compaction.h>
37  #include <linux/percpu.h>
38  #include <linux/mount.h>
39  #include <linux/fs.h>
40  #include <linux/preempt.h>
41  #include <linux/workqueue.h>
42  #include <linux/slab.h>
43  #include <linux/spinlock.h>
44  #include <linux/zpool.h>
45  
46  /*
47   * NCHUNKS_ORDER determines the internal allocation granularity, effectively
48   * adjusting internal fragmentation.  It also determines the number of
49   * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
50   * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
51   * in the beginning of an allocated page are occupied by z3fold header, so
52   * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
53   * which shows the max number of free chunks in z3fold page, also there will
54   * be 63, or 62, respectively, freelists per pool.
55   */
56  #define NCHUNKS_ORDER	6
57  
58  #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
59  #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
60  #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
61  #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
62  #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
63  #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
64  
65  #define BUDDY_MASK	(0x3)
66  #define BUDDY_SHIFT	2
67  #define SLOTS_ALIGN	(0x40)
68  
69  /*****************
70   * Structures
71  *****************/
72  struct z3fold_pool;
73  struct z3fold_ops {
74  	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
75  };
76  
77  enum buddy {
78  	HEADLESS = 0,
79  	FIRST,
80  	MIDDLE,
81  	LAST,
82  	BUDDIES_MAX = LAST
83  };
84  
85  struct z3fold_buddy_slots {
86  	/*
87  	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
88  	 * be enough slots to hold all possible variants
89  	 */
90  	unsigned long slot[BUDDY_MASK + 1];
91  	unsigned long pool; /* back link + flags */
92  };
93  #define HANDLE_FLAG_MASK	(0x03)
94  
95  /*
96   * struct z3fold_header - z3fold page metadata occupying first chunks of each
97   *			z3fold page, except for HEADLESS pages
98   * @buddy:		links the z3fold page into the relevant list in the
99   *			pool
100   * @page_lock:		per-page lock
101   * @refcount:		reference count for the z3fold page
102   * @work:		work_struct for page layout optimization
103   * @slots:		pointer to the structure holding buddy slots
104   * @cpu:		CPU which this page "belongs" to
105   * @first_chunks:	the size of the first buddy in chunks, 0 if free
106   * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
107   * @last_chunks:	the size of the last buddy in chunks, 0 if free
108   * @first_num:		the starting number (for the first handle)
109   * @mapped_count:	the number of objects currently mapped
110   */
111  struct z3fold_header {
112  	struct list_head buddy;
113  	spinlock_t page_lock;
114  	struct kref refcount;
115  	struct work_struct work;
116  	struct z3fold_buddy_slots *slots;
117  	short cpu;
118  	unsigned short first_chunks;
119  	unsigned short middle_chunks;
120  	unsigned short last_chunks;
121  	unsigned short start_middle;
122  	unsigned short first_num:2;
123  	unsigned short mapped_count:2;
124  };
125  
126  /**
127   * struct z3fold_pool - stores metadata for each z3fold pool
128   * @name:	pool name
129   * @lock:	protects pool unbuddied/lru lists
130   * @stale_lock:	protects pool stale page list
131   * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
132   *		buddies; the list each z3fold page is added to depends on
133   *		the size of its free region.
134   * @lru:	list tracking the z3fold pages in LRU order by most recently
135   *		added buddy.
136   * @stale:	list of pages marked for freeing
137   * @pages_nr:	number of z3fold pages in the pool.
138   * @c_handle:	cache for z3fold_buddy_slots allocation
139   * @ops:	pointer to a structure of user defined operations specified at
140   *		pool creation time.
141   * @compact_wq:	workqueue for page layout background optimization
142   * @release_wq:	workqueue for safe page release
143   * @work:	work_struct for safe page release
144   * @inode:	inode for z3fold pseudo filesystem
145   *
146   * This structure is allocated at pool creation time and maintains metadata
147   * pertaining to a particular z3fold pool.
148   */
149  struct z3fold_pool {
150  	const char *name;
151  	spinlock_t lock;
152  	spinlock_t stale_lock;
153  	struct list_head *unbuddied;
154  	struct list_head lru;
155  	struct list_head stale;
156  	atomic64_t pages_nr;
157  	struct kmem_cache *c_handle;
158  	const struct z3fold_ops *ops;
159  	struct zpool *zpool;
160  	const struct zpool_ops *zpool_ops;
161  	struct workqueue_struct *compact_wq;
162  	struct workqueue_struct *release_wq;
163  	struct work_struct work;
164  	struct inode *inode;
165  };
166  
167  /*
168   * Internal z3fold page flags
169   */
170  enum z3fold_page_flags {
171  	PAGE_HEADLESS = 0,
172  	MIDDLE_CHUNK_MAPPED,
173  	NEEDS_COMPACTING,
174  	PAGE_STALE,
175  	PAGE_CLAIMED, /* by either reclaim or free */
176  };
177  
178  /*****************
179   * Helpers
180  *****************/
181  
182  /* Converts an allocation size in bytes to size in z3fold chunks */
183  static int size_to_chunks(size_t size)
184  {
185  	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
186  }
187  
188  #define for_each_unbuddied_list(_iter, _begin) \
189  	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
190  
191  static void compact_page_work(struct work_struct *w);
192  
193  static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
194  							gfp_t gfp)
195  {
196  	struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
197  							    gfp);
198  
199  	if (slots) {
200  		memset(slots->slot, 0, sizeof(slots->slot));
201  		slots->pool = (unsigned long)pool;
202  	}
203  
204  	return slots;
205  }
206  
207  static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
208  {
209  	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
210  }
211  
212  static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
213  {
214  	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
215  }
216  
217  static inline void free_handle(unsigned long handle)
218  {
219  	struct z3fold_buddy_slots *slots;
220  	int i;
221  	bool is_free;
222  
223  	if (handle & (1 << PAGE_HEADLESS))
224  		return;
225  
226  	WARN_ON(*(unsigned long *)handle == 0);
227  	*(unsigned long *)handle = 0;
228  	slots = handle_to_slots(handle);
229  	is_free = true;
230  	for (i = 0; i <= BUDDY_MASK; i++) {
231  		if (slots->slot[i]) {
232  			is_free = false;
233  			break;
234  		}
235  	}
236  
237  	if (is_free) {
238  		struct z3fold_pool *pool = slots_to_pool(slots);
239  
240  		kmem_cache_free(pool->c_handle, slots);
241  	}
242  }
243  
244  static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
245  				int flags, const char *dev_name, void *data)
246  {
247  	static const struct dentry_operations ops = {
248  		.d_dname = simple_dname,
249  	};
250  
251  	return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
252  }
253  
254  static struct file_system_type z3fold_fs = {
255  	.name		= "z3fold",
256  	.mount		= z3fold_do_mount,
257  	.kill_sb	= kill_anon_super,
258  };
259  
260  static struct vfsmount *z3fold_mnt;
261  static int z3fold_mount(void)
262  {
263  	int ret = 0;
264  
265  	z3fold_mnt = kern_mount(&z3fold_fs);
266  	if (IS_ERR(z3fold_mnt))
267  		ret = PTR_ERR(z3fold_mnt);
268  
269  	return ret;
270  }
271  
272  static void z3fold_unmount(void)
273  {
274  	kern_unmount(z3fold_mnt);
275  }
276  
277  static const struct address_space_operations z3fold_aops;
278  static int z3fold_register_migration(struct z3fold_pool *pool)
279  {
280  	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281  	if (IS_ERR(pool->inode)) {
282  		pool->inode = NULL;
283  		return 1;
284  	}
285  
286  	pool->inode->i_mapping->private_data = pool;
287  	pool->inode->i_mapping->a_ops = &z3fold_aops;
288  	return 0;
289  }
290  
291  static void z3fold_unregister_migration(struct z3fold_pool *pool)
292  {
293  	if (pool->inode)
294  		iput(pool->inode);
295   }
296  
297  /* Initializes the z3fold header of a newly allocated z3fold page */
298  static struct z3fold_header *init_z3fold_page(struct page *page,
299  					struct z3fold_pool *pool, gfp_t gfp)
300  {
301  	struct z3fold_header *zhdr = page_address(page);
302  	struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303  
304  	if (!slots)
305  		return NULL;
306  
307  	INIT_LIST_HEAD(&page->lru);
308  	clear_bit(PAGE_HEADLESS, &page->private);
309  	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310  	clear_bit(NEEDS_COMPACTING, &page->private);
311  	clear_bit(PAGE_STALE, &page->private);
312  	clear_bit(PAGE_CLAIMED, &page->private);
313  
314  	spin_lock_init(&zhdr->page_lock);
315  	kref_init(&zhdr->refcount);
316  	zhdr->first_chunks = 0;
317  	zhdr->middle_chunks = 0;
318  	zhdr->last_chunks = 0;
319  	zhdr->first_num = 0;
320  	zhdr->start_middle = 0;
321  	zhdr->cpu = -1;
322  	zhdr->slots = slots;
323  	INIT_LIST_HEAD(&zhdr->buddy);
324  	INIT_WORK(&zhdr->work, compact_page_work);
325  	return zhdr;
326  }
327  
328  /* Resets the struct page fields and frees the page */
329  static void free_z3fold_page(struct page *page, bool headless)
330  {
331  	if (!headless) {
332  		lock_page(page);
333  		__ClearPageMovable(page);
334  		unlock_page(page);
335  	}
336  	ClearPagePrivate(page);
337  	__free_page(page);
338  }
339  
340  /* Lock a z3fold page */
341  static inline void z3fold_page_lock(struct z3fold_header *zhdr)
342  {
343  	spin_lock(&zhdr->page_lock);
344  }
345  
346  /* Try to lock a z3fold page */
347  static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
348  {
349  	return spin_trylock(&zhdr->page_lock);
350  }
351  
352  /* Unlock a z3fold page */
353  static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
354  {
355  	spin_unlock(&zhdr->page_lock);
356  }
357  
358  /* Helper function to build the index */
359  static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
360  {
361  	return (bud + zhdr->first_num) & BUDDY_MASK;
362  }
363  
364  /*
365   * Encodes the handle of a particular buddy within a z3fold page
366   * Pool lock should be held as this function accesses first_num
367   */
368  static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
369  {
370  	struct z3fold_buddy_slots *slots;
371  	unsigned long h = (unsigned long)zhdr;
372  	int idx = 0;
373  
374  	/*
375  	 * For a headless page, its handle is its pointer with the extra
376  	 * PAGE_HEADLESS bit set
377  	 */
378  	if (bud == HEADLESS)
379  		return h | (1 << PAGE_HEADLESS);
380  
381  	/* otherwise, return pointer to encoded handle */
382  	idx = __idx(zhdr, bud);
383  	h += idx;
384  	if (bud == LAST)
385  		h |= (zhdr->last_chunks << BUDDY_SHIFT);
386  
387  	slots = zhdr->slots;
388  	slots->slot[idx] = h;
389  	return (unsigned long)&slots->slot[idx];
390  }
391  
392  /* Returns the z3fold page where a given handle is stored */
393  static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
394  {
395  	unsigned long addr = h;
396  
397  	if (!(addr & (1 << PAGE_HEADLESS)))
398  		addr = *(unsigned long *)h;
399  
400  	return (struct z3fold_header *)(addr & PAGE_MASK);
401  }
402  
403  /* only for LAST bud, returns zero otherwise */
404  static unsigned short handle_to_chunks(unsigned long handle)
405  {
406  	unsigned long addr = *(unsigned long *)handle;
407  
408  	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
409  }
410  
411  /*
412   * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
413   *  but that doesn't matter. because the masking will result in the
414   *  correct buddy number.
415   */
416  static enum buddy handle_to_buddy(unsigned long handle)
417  {
418  	struct z3fold_header *zhdr;
419  	unsigned long addr;
420  
421  	WARN_ON(handle & (1 << PAGE_HEADLESS));
422  	addr = *(unsigned long *)handle;
423  	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
424  	return (addr - zhdr->first_num) & BUDDY_MASK;
425  }
426  
427  static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
428  {
429  	return slots_to_pool(zhdr->slots);
430  }
431  
432  static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
433  {
434  	struct page *page = virt_to_page(zhdr);
435  	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
436  
437  	WARN_ON(!list_empty(&zhdr->buddy));
438  	set_bit(PAGE_STALE, &page->private);
439  	clear_bit(NEEDS_COMPACTING, &page->private);
440  	spin_lock(&pool->lock);
441  	if (!list_empty(&page->lru))
442  		list_del_init(&page->lru);
443  	spin_unlock(&pool->lock);
444  	if (locked)
445  		z3fold_page_unlock(zhdr);
446  	spin_lock(&pool->stale_lock);
447  	list_add(&zhdr->buddy, &pool->stale);
448  	queue_work(pool->release_wq, &pool->work);
449  	spin_unlock(&pool->stale_lock);
450  }
451  
452  static void __attribute__((__unused__))
453  			release_z3fold_page(struct kref *ref)
454  {
455  	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
456  						refcount);
457  	__release_z3fold_page(zhdr, false);
458  }
459  
460  static void release_z3fold_page_locked(struct kref *ref)
461  {
462  	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
463  						refcount);
464  	WARN_ON(z3fold_page_trylock(zhdr));
465  	__release_z3fold_page(zhdr, true);
466  }
467  
468  static void release_z3fold_page_locked_list(struct kref *ref)
469  {
470  	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
471  					       refcount);
472  	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
473  	spin_lock(&pool->lock);
474  	list_del_init(&zhdr->buddy);
475  	spin_unlock(&pool->lock);
476  
477  	WARN_ON(z3fold_page_trylock(zhdr));
478  	__release_z3fold_page(zhdr, true);
479  }
480  
481  static void free_pages_work(struct work_struct *w)
482  {
483  	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
484  
485  	spin_lock(&pool->stale_lock);
486  	while (!list_empty(&pool->stale)) {
487  		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
488  						struct z3fold_header, buddy);
489  		struct page *page = virt_to_page(zhdr);
490  
491  		list_del(&zhdr->buddy);
492  		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
493  			continue;
494  		spin_unlock(&pool->stale_lock);
495  		cancel_work_sync(&zhdr->work);
496  		free_z3fold_page(page, false);
497  		cond_resched();
498  		spin_lock(&pool->stale_lock);
499  	}
500  	spin_unlock(&pool->stale_lock);
501  }
502  
503  /*
504   * Returns the number of free chunks in a z3fold page.
505   * NB: can't be used with HEADLESS pages.
506   */
507  static int num_free_chunks(struct z3fold_header *zhdr)
508  {
509  	int nfree;
510  	/*
511  	 * If there is a middle object, pick up the bigger free space
512  	 * either before or after it. Otherwise just subtract the number
513  	 * of chunks occupied by the first and the last objects.
514  	 */
515  	if (zhdr->middle_chunks != 0) {
516  		int nfree_before = zhdr->first_chunks ?
517  			0 : zhdr->start_middle - ZHDR_CHUNKS;
518  		int nfree_after = zhdr->last_chunks ?
519  			0 : TOTAL_CHUNKS -
520  				(zhdr->start_middle + zhdr->middle_chunks);
521  		nfree = max(nfree_before, nfree_after);
522  	} else
523  		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
524  	return nfree;
525  }
526  
527  /* Add to the appropriate unbuddied list */
528  static inline void add_to_unbuddied(struct z3fold_pool *pool,
529  				struct z3fold_header *zhdr)
530  {
531  	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
532  			zhdr->middle_chunks == 0) {
533  		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
534  
535  		int freechunks = num_free_chunks(zhdr);
536  		spin_lock(&pool->lock);
537  		list_add(&zhdr->buddy, &unbuddied[freechunks]);
538  		spin_unlock(&pool->lock);
539  		zhdr->cpu = smp_processor_id();
540  		put_cpu_ptr(pool->unbuddied);
541  	}
542  }
543  
544  static inline void *mchunk_memmove(struct z3fold_header *zhdr,
545  				unsigned short dst_chunk)
546  {
547  	void *beg = zhdr;
548  	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
549  		       beg + (zhdr->start_middle << CHUNK_SHIFT),
550  		       zhdr->middle_chunks << CHUNK_SHIFT);
551  }
552  
553  #define BIG_CHUNK_GAP	3
554  /* Has to be called with lock held */
555  static int z3fold_compact_page(struct z3fold_header *zhdr)
556  {
557  	struct page *page = virt_to_page(zhdr);
558  
559  	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
560  		return 0; /* can't move middle chunk, it's used */
561  
562  	if (unlikely(PageIsolated(page)))
563  		return 0;
564  
565  	if (zhdr->middle_chunks == 0)
566  		return 0; /* nothing to compact */
567  
568  	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
569  		/* move to the beginning */
570  		mchunk_memmove(zhdr, ZHDR_CHUNKS);
571  		zhdr->first_chunks = zhdr->middle_chunks;
572  		zhdr->middle_chunks = 0;
573  		zhdr->start_middle = 0;
574  		zhdr->first_num++;
575  		return 1;
576  	}
577  
578  	/*
579  	 * moving data is expensive, so let's only do that if
580  	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
581  	 */
582  	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
583  	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
584  			BIG_CHUNK_GAP) {
585  		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
586  		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
587  		return 1;
588  	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
589  		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
590  					+ zhdr->middle_chunks) >=
591  			BIG_CHUNK_GAP) {
592  		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
593  			zhdr->middle_chunks;
594  		mchunk_memmove(zhdr, new_start);
595  		zhdr->start_middle = new_start;
596  		return 1;
597  	}
598  
599  	return 0;
600  }
601  
602  static void do_compact_page(struct z3fold_header *zhdr, bool locked)
603  {
604  	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
605  	struct page *page;
606  
607  	page = virt_to_page(zhdr);
608  	if (locked)
609  		WARN_ON(z3fold_page_trylock(zhdr));
610  	else
611  		z3fold_page_lock(zhdr);
612  	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
613  		z3fold_page_unlock(zhdr);
614  		return;
615  	}
616  	spin_lock(&pool->lock);
617  	list_del_init(&zhdr->buddy);
618  	spin_unlock(&pool->lock);
619  
620  	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
621  		atomic64_dec(&pool->pages_nr);
622  		return;
623  	}
624  
625  	if (unlikely(PageIsolated(page) ||
626  		     test_bit(PAGE_STALE, &page->private))) {
627  		z3fold_page_unlock(zhdr);
628  		return;
629  	}
630  
631  	z3fold_compact_page(zhdr);
632  	add_to_unbuddied(pool, zhdr);
633  	z3fold_page_unlock(zhdr);
634  }
635  
636  static void compact_page_work(struct work_struct *w)
637  {
638  	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
639  						work);
640  
641  	do_compact_page(zhdr, false);
642  }
643  
644  /* returns _locked_ z3fold page header or NULL */
645  static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
646  						size_t size, bool can_sleep)
647  {
648  	struct z3fold_header *zhdr = NULL;
649  	struct page *page;
650  	struct list_head *unbuddied;
651  	int chunks = size_to_chunks(size), i;
652  
653  lookup:
654  	/* First, try to find an unbuddied z3fold page. */
655  	unbuddied = get_cpu_ptr(pool->unbuddied);
656  	for_each_unbuddied_list(i, chunks) {
657  		struct list_head *l = &unbuddied[i];
658  
659  		zhdr = list_first_entry_or_null(READ_ONCE(l),
660  					struct z3fold_header, buddy);
661  
662  		if (!zhdr)
663  			continue;
664  
665  		/* Re-check under lock. */
666  		spin_lock(&pool->lock);
667  		l = &unbuddied[i];
668  		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
669  						struct z3fold_header, buddy)) ||
670  		    !z3fold_page_trylock(zhdr)) {
671  			spin_unlock(&pool->lock);
672  			zhdr = NULL;
673  			put_cpu_ptr(pool->unbuddied);
674  			if (can_sleep)
675  				cond_resched();
676  			goto lookup;
677  		}
678  		list_del_init(&zhdr->buddy);
679  		zhdr->cpu = -1;
680  		spin_unlock(&pool->lock);
681  
682  		page = virt_to_page(zhdr);
683  		if (test_bit(NEEDS_COMPACTING, &page->private)) {
684  			z3fold_page_unlock(zhdr);
685  			zhdr = NULL;
686  			put_cpu_ptr(pool->unbuddied);
687  			if (can_sleep)
688  				cond_resched();
689  			goto lookup;
690  		}
691  
692  		/*
693  		 * this page could not be removed from its unbuddied
694  		 * list while pool lock was held, and then we've taken
695  		 * page lock so kref_put could not be called before
696  		 * we got here, so it's safe to just call kref_get()
697  		 */
698  		kref_get(&zhdr->refcount);
699  		break;
700  	}
701  	put_cpu_ptr(pool->unbuddied);
702  
703  	if (!zhdr) {
704  		int cpu;
705  
706  		/* look for _exact_ match on other cpus' lists */
707  		for_each_online_cpu(cpu) {
708  			struct list_head *l;
709  
710  			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
711  			spin_lock(&pool->lock);
712  			l = &unbuddied[chunks];
713  
714  			zhdr = list_first_entry_or_null(READ_ONCE(l),
715  						struct z3fold_header, buddy);
716  
717  			if (!zhdr || !z3fold_page_trylock(zhdr)) {
718  				spin_unlock(&pool->lock);
719  				zhdr = NULL;
720  				continue;
721  			}
722  			list_del_init(&zhdr->buddy);
723  			zhdr->cpu = -1;
724  			spin_unlock(&pool->lock);
725  
726  			page = virt_to_page(zhdr);
727  			if (test_bit(NEEDS_COMPACTING, &page->private)) {
728  				z3fold_page_unlock(zhdr);
729  				zhdr = NULL;
730  				if (can_sleep)
731  					cond_resched();
732  				continue;
733  			}
734  			kref_get(&zhdr->refcount);
735  			break;
736  		}
737  	}
738  
739  	return zhdr;
740  }
741  
742  /*
743   * API Functions
744   */
745  
746  /**
747   * z3fold_create_pool() - create a new z3fold pool
748   * @name:	pool name
749   * @gfp:	gfp flags when allocating the z3fold pool structure
750   * @ops:	user-defined operations for the z3fold pool
751   *
752   * Return: pointer to the new z3fold pool or NULL if the metadata allocation
753   * failed.
754   */
755  static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
756  		const struct z3fold_ops *ops)
757  {
758  	struct z3fold_pool *pool = NULL;
759  	int i, cpu;
760  
761  	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
762  	if (!pool)
763  		goto out;
764  	pool->c_handle = kmem_cache_create("z3fold_handle",
765  				sizeof(struct z3fold_buddy_slots),
766  				SLOTS_ALIGN, 0, NULL);
767  	if (!pool->c_handle)
768  		goto out_c;
769  	spin_lock_init(&pool->lock);
770  	spin_lock_init(&pool->stale_lock);
771  	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
772  	if (!pool->unbuddied)
773  		goto out_pool;
774  	for_each_possible_cpu(cpu) {
775  		struct list_head *unbuddied =
776  				per_cpu_ptr(pool->unbuddied, cpu);
777  		for_each_unbuddied_list(i, 0)
778  			INIT_LIST_HEAD(&unbuddied[i]);
779  	}
780  	INIT_LIST_HEAD(&pool->lru);
781  	INIT_LIST_HEAD(&pool->stale);
782  	atomic64_set(&pool->pages_nr, 0);
783  	pool->name = name;
784  	pool->compact_wq = create_singlethread_workqueue(pool->name);
785  	if (!pool->compact_wq)
786  		goto out_unbuddied;
787  	pool->release_wq = create_singlethread_workqueue(pool->name);
788  	if (!pool->release_wq)
789  		goto out_wq;
790  	if (z3fold_register_migration(pool))
791  		goto out_rwq;
792  	INIT_WORK(&pool->work, free_pages_work);
793  	pool->ops = ops;
794  	return pool;
795  
796  out_rwq:
797  	destroy_workqueue(pool->release_wq);
798  out_wq:
799  	destroy_workqueue(pool->compact_wq);
800  out_unbuddied:
801  	free_percpu(pool->unbuddied);
802  out_pool:
803  	kmem_cache_destroy(pool->c_handle);
804  out_c:
805  	kfree(pool);
806  out:
807  	return NULL;
808  }
809  
810  /**
811   * z3fold_destroy_pool() - destroys an existing z3fold pool
812   * @pool:	the z3fold pool to be destroyed
813   *
814   * The pool should be emptied before this function is called.
815   */
816  static void z3fold_destroy_pool(struct z3fold_pool *pool)
817  {
818  	kmem_cache_destroy(pool->c_handle);
819  	z3fold_unregister_migration(pool);
820  	destroy_workqueue(pool->release_wq);
821  	destroy_workqueue(pool->compact_wq);
822  	kfree(pool);
823  }
824  
825  /**
826   * z3fold_alloc() - allocates a region of a given size
827   * @pool:	z3fold pool from which to allocate
828   * @size:	size in bytes of the desired allocation
829   * @gfp:	gfp flags used if the pool needs to grow
830   * @handle:	handle of the new allocation
831   *
832   * This function will attempt to find a free region in the pool large enough to
833   * satisfy the allocation request.  A search of the unbuddied lists is
834   * performed first. If no suitable free region is found, then a new page is
835   * allocated and added to the pool to satisfy the request.
836   *
837   * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
838   * as z3fold pool pages.
839   *
840   * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
841   * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
842   * a new page.
843   */
844  static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
845  			unsigned long *handle)
846  {
847  	int chunks = size_to_chunks(size);
848  	struct z3fold_header *zhdr = NULL;
849  	struct page *page = NULL;
850  	enum buddy bud;
851  	bool can_sleep = gfpflags_allow_blocking(gfp);
852  
853  	if (!size || (gfp & __GFP_HIGHMEM))
854  		return -EINVAL;
855  
856  	if (size > PAGE_SIZE)
857  		return -ENOSPC;
858  
859  	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
860  		bud = HEADLESS;
861  	else {
862  retry:
863  		zhdr = __z3fold_alloc(pool, size, can_sleep);
864  		if (zhdr) {
865  			if (zhdr->first_chunks == 0) {
866  				if (zhdr->middle_chunks != 0 &&
867  				    chunks >= zhdr->start_middle)
868  					bud = LAST;
869  				else
870  					bud = FIRST;
871  			} else if (zhdr->last_chunks == 0)
872  				bud = LAST;
873  			else if (zhdr->middle_chunks == 0)
874  				bud = MIDDLE;
875  			else {
876  				if (kref_put(&zhdr->refcount,
877  					     release_z3fold_page_locked))
878  					atomic64_dec(&pool->pages_nr);
879  				else
880  					z3fold_page_unlock(zhdr);
881  				pr_err("No free chunks in unbuddied\n");
882  				WARN_ON(1);
883  				goto retry;
884  			}
885  			page = virt_to_page(zhdr);
886  			goto found;
887  		}
888  		bud = FIRST;
889  	}
890  
891  	page = NULL;
892  	if (can_sleep) {
893  		spin_lock(&pool->stale_lock);
894  		zhdr = list_first_entry_or_null(&pool->stale,
895  						struct z3fold_header, buddy);
896  		/*
897  		 * Before allocating a page, let's see if we can take one from
898  		 * the stale pages list. cancel_work_sync() can sleep so we
899  		 * limit this case to the contexts where we can sleep
900  		 */
901  		if (zhdr) {
902  			list_del(&zhdr->buddy);
903  			spin_unlock(&pool->stale_lock);
904  			cancel_work_sync(&zhdr->work);
905  			page = virt_to_page(zhdr);
906  		} else {
907  			spin_unlock(&pool->stale_lock);
908  		}
909  	}
910  	if (!page)
911  		page = alloc_page(gfp);
912  
913  	if (!page)
914  		return -ENOMEM;
915  
916  	zhdr = init_z3fold_page(page, pool, gfp);
917  	if (!zhdr) {
918  		__free_page(page);
919  		return -ENOMEM;
920  	}
921  	atomic64_inc(&pool->pages_nr);
922  
923  	if (bud == HEADLESS) {
924  		set_bit(PAGE_HEADLESS, &page->private);
925  		goto headless;
926  	}
927  	__SetPageMovable(page, pool->inode->i_mapping);
928  	z3fold_page_lock(zhdr);
929  
930  found:
931  	if (bud == FIRST)
932  		zhdr->first_chunks = chunks;
933  	else if (bud == LAST)
934  		zhdr->last_chunks = chunks;
935  	else {
936  		zhdr->middle_chunks = chunks;
937  		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
938  	}
939  	add_to_unbuddied(pool, zhdr);
940  
941  headless:
942  	spin_lock(&pool->lock);
943  	/* Add/move z3fold page to beginning of LRU */
944  	if (!list_empty(&page->lru))
945  		list_del(&page->lru);
946  
947  	list_add(&page->lru, &pool->lru);
948  
949  	*handle = encode_handle(zhdr, bud);
950  	spin_unlock(&pool->lock);
951  	if (bud != HEADLESS)
952  		z3fold_page_unlock(zhdr);
953  
954  	return 0;
955  }
956  
957  /**
958   * z3fold_free() - frees the allocation associated with the given handle
959   * @pool:	pool in which the allocation resided
960   * @handle:	handle associated with the allocation returned by z3fold_alloc()
961   *
962   * In the case that the z3fold page in which the allocation resides is under
963   * reclaim, as indicated by the PG_reclaim flag being set, this function
964   * only sets the first|last_chunks to 0.  The page is actually freed
965   * once both buddies are evicted (see z3fold_reclaim_page() below).
966   */
967  static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
968  {
969  	struct z3fold_header *zhdr;
970  	struct page *page;
971  	enum buddy bud;
972  
973  	zhdr = handle_to_z3fold_header(handle);
974  	page = virt_to_page(zhdr);
975  
976  	if (test_bit(PAGE_HEADLESS, &page->private)) {
977  		/* if a headless page is under reclaim, just leave.
978  		 * NB: we use test_and_set_bit for a reason: if the bit
979  		 * has not been set before, we release this page
980  		 * immediately so we don't care about its value any more.
981  		 */
982  		if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
983  			spin_lock(&pool->lock);
984  			list_del(&page->lru);
985  			spin_unlock(&pool->lock);
986  			free_z3fold_page(page, true);
987  			atomic64_dec(&pool->pages_nr);
988  		}
989  		return;
990  	}
991  
992  	/* Non-headless case */
993  	z3fold_page_lock(zhdr);
994  	bud = handle_to_buddy(handle);
995  
996  	switch (bud) {
997  	case FIRST:
998  		zhdr->first_chunks = 0;
999  		break;
1000  	case MIDDLE:
1001  		zhdr->middle_chunks = 0;
1002  		break;
1003  	case LAST:
1004  		zhdr->last_chunks = 0;
1005  		break;
1006  	default:
1007  		pr_err("%s: unknown bud %d\n", __func__, bud);
1008  		WARN_ON(1);
1009  		z3fold_page_unlock(zhdr);
1010  		return;
1011  	}
1012  
1013  	free_handle(handle);
1014  	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1015  		atomic64_dec(&pool->pages_nr);
1016  		return;
1017  	}
1018  	if (test_bit(PAGE_CLAIMED, &page->private)) {
1019  		z3fold_page_unlock(zhdr);
1020  		return;
1021  	}
1022  	if (unlikely(PageIsolated(page)) ||
1023  	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1024  		z3fold_page_unlock(zhdr);
1025  		return;
1026  	}
1027  	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1028  		spin_lock(&pool->lock);
1029  		list_del_init(&zhdr->buddy);
1030  		spin_unlock(&pool->lock);
1031  		zhdr->cpu = -1;
1032  		kref_get(&zhdr->refcount);
1033  		do_compact_page(zhdr, true);
1034  		return;
1035  	}
1036  	kref_get(&zhdr->refcount);
1037  	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1038  	z3fold_page_unlock(zhdr);
1039  }
1040  
1041  /**
1042   * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1043   * @pool:	pool from which a page will attempt to be evicted
1044   * @retries:	number of pages on the LRU list for which eviction will
1045   *		be attempted before failing
1046   *
1047   * z3fold reclaim is different from normal system reclaim in that it is done
1048   * from the bottom, up. This is because only the bottom layer, z3fold, has
1049   * information on how the allocations are organized within each z3fold page.
1050   * This has the potential to create interesting locking situations between
1051   * z3fold and the user, however.
1052   *
1053   * To avoid these, this is how z3fold_reclaim_page() should be called:
1054   *
1055   * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1056   * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1057   * call the user-defined eviction handler with the pool and handle as
1058   * arguments.
1059   *
1060   * If the handle can not be evicted, the eviction handler should return
1061   * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1062   * appropriate list and try the next z3fold page on the LRU up to
1063   * a user defined number of retries.
1064   *
1065   * If the handle is successfully evicted, the eviction handler should
1066   * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1067   * contains logic to delay freeing the page if the page is under reclaim,
1068   * as indicated by the setting of the PG_reclaim flag on the underlying page.
1069   *
1070   * If all buddies in the z3fold page are successfully evicted, then the
1071   * z3fold page can be freed.
1072   *
1073   * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1074   * no pages to evict or an eviction handler is not registered, -EAGAIN if
1075   * the retry limit was hit.
1076   */
1077  static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1078  {
1079  	int i, ret = 0;
1080  	struct z3fold_header *zhdr = NULL;
1081  	struct page *page = NULL;
1082  	struct list_head *pos;
1083  	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1084  
1085  	spin_lock(&pool->lock);
1086  	if (!pool->ops || !pool->ops->evict || retries == 0) {
1087  		spin_unlock(&pool->lock);
1088  		return -EINVAL;
1089  	}
1090  	for (i = 0; i < retries; i++) {
1091  		if (list_empty(&pool->lru)) {
1092  			spin_unlock(&pool->lock);
1093  			return -EINVAL;
1094  		}
1095  		list_for_each_prev(pos, &pool->lru) {
1096  			page = list_entry(pos, struct page, lru);
1097  
1098  			/* this bit could have been set by free, in which case
1099  			 * we pass over to the next page in the pool.
1100  			 */
1101  			if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1102  				continue;
1103  
1104  			if (unlikely(PageIsolated(page)))
1105  				continue;
1106  			if (test_bit(PAGE_HEADLESS, &page->private))
1107  				break;
1108  
1109  			zhdr = page_address(page);
1110  			if (!z3fold_page_trylock(zhdr)) {
1111  				zhdr = NULL;
1112  				continue; /* can't evict at this point */
1113  			}
1114  			kref_get(&zhdr->refcount);
1115  			list_del_init(&zhdr->buddy);
1116  			zhdr->cpu = -1;
1117  			break;
1118  		}
1119  
1120  		if (!zhdr)
1121  			break;
1122  
1123  		list_del_init(&page->lru);
1124  		spin_unlock(&pool->lock);
1125  
1126  		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1127  			/*
1128  			 * We need encode the handles before unlocking, since
1129  			 * we can race with free that will set
1130  			 * (first|last)_chunks to 0
1131  			 */
1132  			first_handle = 0;
1133  			last_handle = 0;
1134  			middle_handle = 0;
1135  			if (zhdr->first_chunks)
1136  				first_handle = encode_handle(zhdr, FIRST);
1137  			if (zhdr->middle_chunks)
1138  				middle_handle = encode_handle(zhdr, MIDDLE);
1139  			if (zhdr->last_chunks)
1140  				last_handle = encode_handle(zhdr, LAST);
1141  			/*
1142  			 * it's safe to unlock here because we hold a
1143  			 * reference to this page
1144  			 */
1145  			z3fold_page_unlock(zhdr);
1146  		} else {
1147  			first_handle = encode_handle(zhdr, HEADLESS);
1148  			last_handle = middle_handle = 0;
1149  		}
1150  
1151  		/* Issue the eviction callback(s) */
1152  		if (middle_handle) {
1153  			ret = pool->ops->evict(pool, middle_handle);
1154  			if (ret)
1155  				goto next;
1156  		}
1157  		if (first_handle) {
1158  			ret = pool->ops->evict(pool, first_handle);
1159  			if (ret)
1160  				goto next;
1161  		}
1162  		if (last_handle) {
1163  			ret = pool->ops->evict(pool, last_handle);
1164  			if (ret)
1165  				goto next;
1166  		}
1167  next:
1168  		if (test_bit(PAGE_HEADLESS, &page->private)) {
1169  			if (ret == 0) {
1170  				free_z3fold_page(page, true);
1171  				atomic64_dec(&pool->pages_nr);
1172  				return 0;
1173  			}
1174  			spin_lock(&pool->lock);
1175  			list_add(&page->lru, &pool->lru);
1176  			spin_unlock(&pool->lock);
1177  		} else {
1178  			z3fold_page_lock(zhdr);
1179  			clear_bit(PAGE_CLAIMED, &page->private);
1180  			if (kref_put(&zhdr->refcount,
1181  					release_z3fold_page_locked)) {
1182  				atomic64_dec(&pool->pages_nr);
1183  				return 0;
1184  			}
1185  			/*
1186  			 * if we are here, the page is still not completely
1187  			 * free. Take the global pool lock then to be able
1188  			 * to add it back to the lru list
1189  			 */
1190  			spin_lock(&pool->lock);
1191  			list_add(&page->lru, &pool->lru);
1192  			spin_unlock(&pool->lock);
1193  			z3fold_page_unlock(zhdr);
1194  		}
1195  
1196  		/* We started off locked to we need to lock the pool back */
1197  		spin_lock(&pool->lock);
1198  	}
1199  	spin_unlock(&pool->lock);
1200  	return -EAGAIN;
1201  }
1202  
1203  /**
1204   * z3fold_map() - maps the allocation associated with the given handle
1205   * @pool:	pool in which the allocation resides
1206   * @handle:	handle associated with the allocation to be mapped
1207   *
1208   * Extracts the buddy number from handle and constructs the pointer to the
1209   * correct starting chunk within the page.
1210   *
1211   * Returns: a pointer to the mapped allocation
1212   */
1213  static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1214  {
1215  	struct z3fold_header *zhdr;
1216  	struct page *page;
1217  	void *addr;
1218  	enum buddy buddy;
1219  
1220  	zhdr = handle_to_z3fold_header(handle);
1221  	addr = zhdr;
1222  	page = virt_to_page(zhdr);
1223  
1224  	if (test_bit(PAGE_HEADLESS, &page->private))
1225  		goto out;
1226  
1227  	z3fold_page_lock(zhdr);
1228  	buddy = handle_to_buddy(handle);
1229  	switch (buddy) {
1230  	case FIRST:
1231  		addr += ZHDR_SIZE_ALIGNED;
1232  		break;
1233  	case MIDDLE:
1234  		addr += zhdr->start_middle << CHUNK_SHIFT;
1235  		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1236  		break;
1237  	case LAST:
1238  		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1239  		break;
1240  	default:
1241  		pr_err("unknown buddy id %d\n", buddy);
1242  		WARN_ON(1);
1243  		addr = NULL;
1244  		break;
1245  	}
1246  
1247  	if (addr)
1248  		zhdr->mapped_count++;
1249  	z3fold_page_unlock(zhdr);
1250  out:
1251  	return addr;
1252  }
1253  
1254  /**
1255   * z3fold_unmap() - unmaps the allocation associated with the given handle
1256   * @pool:	pool in which the allocation resides
1257   * @handle:	handle associated with the allocation to be unmapped
1258   */
1259  static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1260  {
1261  	struct z3fold_header *zhdr;
1262  	struct page *page;
1263  	enum buddy buddy;
1264  
1265  	zhdr = handle_to_z3fold_header(handle);
1266  	page = virt_to_page(zhdr);
1267  
1268  	if (test_bit(PAGE_HEADLESS, &page->private))
1269  		return;
1270  
1271  	z3fold_page_lock(zhdr);
1272  	buddy = handle_to_buddy(handle);
1273  	if (buddy == MIDDLE)
1274  		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1275  	zhdr->mapped_count--;
1276  	z3fold_page_unlock(zhdr);
1277  }
1278  
1279  /**
1280   * z3fold_get_pool_size() - gets the z3fold pool size in pages
1281   * @pool:	pool whose size is being queried
1282   *
1283   * Returns: size in pages of the given pool.
1284   */
1285  static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1286  {
1287  	return atomic64_read(&pool->pages_nr);
1288  }
1289  
1290  static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1291  {
1292  	struct z3fold_header *zhdr;
1293  	struct z3fold_pool *pool;
1294  
1295  	VM_BUG_ON_PAGE(!PageMovable(page), page);
1296  	VM_BUG_ON_PAGE(PageIsolated(page), page);
1297  
1298  	if (test_bit(PAGE_HEADLESS, &page->private))
1299  		return false;
1300  
1301  	zhdr = page_address(page);
1302  	z3fold_page_lock(zhdr);
1303  	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1304  	    test_bit(PAGE_STALE, &page->private))
1305  		goto out;
1306  
1307  	pool = zhdr_to_pool(zhdr);
1308  
1309  	if (zhdr->mapped_count == 0) {
1310  		kref_get(&zhdr->refcount);
1311  		if (!list_empty(&zhdr->buddy))
1312  			list_del_init(&zhdr->buddy);
1313  		spin_lock(&pool->lock);
1314  		if (!list_empty(&page->lru))
1315  			list_del(&page->lru);
1316  		spin_unlock(&pool->lock);
1317  		z3fold_page_unlock(zhdr);
1318  		return true;
1319  	}
1320  out:
1321  	z3fold_page_unlock(zhdr);
1322  	return false;
1323  }
1324  
1325  static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1326  			       struct page *page, enum migrate_mode mode)
1327  {
1328  	struct z3fold_header *zhdr, *new_zhdr;
1329  	struct z3fold_pool *pool;
1330  	struct address_space *new_mapping;
1331  
1332  	VM_BUG_ON_PAGE(!PageMovable(page), page);
1333  	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1334  
1335  	zhdr = page_address(page);
1336  	pool = zhdr_to_pool(zhdr);
1337  
1338  	if (!trylock_page(page))
1339  		return -EAGAIN;
1340  
1341  	if (!z3fold_page_trylock(zhdr)) {
1342  		unlock_page(page);
1343  		return -EAGAIN;
1344  	}
1345  	if (zhdr->mapped_count != 0) {
1346  		z3fold_page_unlock(zhdr);
1347  		unlock_page(page);
1348  		return -EBUSY;
1349  	}
1350  	new_zhdr = page_address(newpage);
1351  	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1352  	newpage->private = page->private;
1353  	page->private = 0;
1354  	z3fold_page_unlock(zhdr);
1355  	spin_lock_init(&new_zhdr->page_lock);
1356  	new_mapping = page_mapping(page);
1357  	__ClearPageMovable(page);
1358  	ClearPagePrivate(page);
1359  
1360  	get_page(newpage);
1361  	z3fold_page_lock(new_zhdr);
1362  	if (new_zhdr->first_chunks)
1363  		encode_handle(new_zhdr, FIRST);
1364  	if (new_zhdr->last_chunks)
1365  		encode_handle(new_zhdr, LAST);
1366  	if (new_zhdr->middle_chunks)
1367  		encode_handle(new_zhdr, MIDDLE);
1368  	set_bit(NEEDS_COMPACTING, &newpage->private);
1369  	new_zhdr->cpu = smp_processor_id();
1370  	spin_lock(&pool->lock);
1371  	list_add(&newpage->lru, &pool->lru);
1372  	spin_unlock(&pool->lock);
1373  	__SetPageMovable(newpage, new_mapping);
1374  	z3fold_page_unlock(new_zhdr);
1375  
1376  	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1377  
1378  	page_mapcount_reset(page);
1379  	unlock_page(page);
1380  	put_page(page);
1381  	return 0;
1382  }
1383  
1384  static void z3fold_page_putback(struct page *page)
1385  {
1386  	struct z3fold_header *zhdr;
1387  	struct z3fold_pool *pool;
1388  
1389  	zhdr = page_address(page);
1390  	pool = zhdr_to_pool(zhdr);
1391  
1392  	z3fold_page_lock(zhdr);
1393  	if (!list_empty(&zhdr->buddy))
1394  		list_del_init(&zhdr->buddy);
1395  	INIT_LIST_HEAD(&page->lru);
1396  	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1397  		atomic64_dec(&pool->pages_nr);
1398  		return;
1399  	}
1400  	spin_lock(&pool->lock);
1401  	list_add(&page->lru, &pool->lru);
1402  	spin_unlock(&pool->lock);
1403  	z3fold_page_unlock(zhdr);
1404  }
1405  
1406  static const struct address_space_operations z3fold_aops = {
1407  	.isolate_page = z3fold_page_isolate,
1408  	.migratepage = z3fold_page_migrate,
1409  	.putback_page = z3fold_page_putback,
1410  };
1411  
1412  /*****************
1413   * zpool
1414   ****************/
1415  
1416  static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1417  {
1418  	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1419  		return pool->zpool_ops->evict(pool->zpool, handle);
1420  	else
1421  		return -ENOENT;
1422  }
1423  
1424  static const struct z3fold_ops z3fold_zpool_ops = {
1425  	.evict =	z3fold_zpool_evict
1426  };
1427  
1428  static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1429  			       const struct zpool_ops *zpool_ops,
1430  			       struct zpool *zpool)
1431  {
1432  	struct z3fold_pool *pool;
1433  
1434  	pool = z3fold_create_pool(name, gfp,
1435  				zpool_ops ? &z3fold_zpool_ops : NULL);
1436  	if (pool) {
1437  		pool->zpool = zpool;
1438  		pool->zpool_ops = zpool_ops;
1439  	}
1440  	return pool;
1441  }
1442  
1443  static void z3fold_zpool_destroy(void *pool)
1444  {
1445  	z3fold_destroy_pool(pool);
1446  }
1447  
1448  static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1449  			unsigned long *handle)
1450  {
1451  	return z3fold_alloc(pool, size, gfp, handle);
1452  }
1453  static void z3fold_zpool_free(void *pool, unsigned long handle)
1454  {
1455  	z3fold_free(pool, handle);
1456  }
1457  
1458  static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1459  			unsigned int *reclaimed)
1460  {
1461  	unsigned int total = 0;
1462  	int ret = -EINVAL;
1463  
1464  	while (total < pages) {
1465  		ret = z3fold_reclaim_page(pool, 8);
1466  		if (ret < 0)
1467  			break;
1468  		total++;
1469  	}
1470  
1471  	if (reclaimed)
1472  		*reclaimed = total;
1473  
1474  	return ret;
1475  }
1476  
1477  static void *z3fold_zpool_map(void *pool, unsigned long handle,
1478  			enum zpool_mapmode mm)
1479  {
1480  	return z3fold_map(pool, handle);
1481  }
1482  static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1483  {
1484  	z3fold_unmap(pool, handle);
1485  }
1486  
1487  static u64 z3fold_zpool_total_size(void *pool)
1488  {
1489  	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1490  }
1491  
1492  static struct zpool_driver z3fold_zpool_driver = {
1493  	.type =		"z3fold",
1494  	.owner =	THIS_MODULE,
1495  	.create =	z3fold_zpool_create,
1496  	.destroy =	z3fold_zpool_destroy,
1497  	.malloc =	z3fold_zpool_malloc,
1498  	.free =		z3fold_zpool_free,
1499  	.shrink =	z3fold_zpool_shrink,
1500  	.map =		z3fold_zpool_map,
1501  	.unmap =	z3fold_zpool_unmap,
1502  	.total_size =	z3fold_zpool_total_size,
1503  };
1504  
1505  MODULE_ALIAS("zpool-z3fold");
1506  
1507  static int __init init_z3fold(void)
1508  {
1509  	int ret;
1510  
1511  	/* Make sure the z3fold header is not larger than the page size */
1512  	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1513  	ret = z3fold_mount();
1514  	if (ret)
1515  		return ret;
1516  
1517  	zpool_register_driver(&z3fold_zpool_driver);
1518  
1519  	return 0;
1520  }
1521  
1522  static void __exit exit_z3fold(void)
1523  {
1524  	z3fold_unmount();
1525  	zpool_unregister_driver(&z3fold_zpool_driver);
1526  }
1527  
1528  module_init(init_z3fold);
1529  module_exit(exit_z3fold);
1530  
1531  MODULE_LICENSE("GPL");
1532  MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1533  MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1534